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Abstract: Efficient propagation of imprecise probability models is one of the most important, yet 
challenging tasks, for uncertainty quantification in many areas and engineering practices, 
especially when the involved epistemic uncertainty is substantial due to the extreme lack of 
information. In this work, a new methodology framework, named as “Non-intrusive Imprecise 
Probabilistic Integration (NIPI)”, is developed for achieving the above target, and specifically, the 
distributional probability-box model and the estimation of the corresponding probabilistic 
moments of model responses are of concern. The NIPI owns two attractive characters. First, the 
spatial correlation information in both aleatory and epistemic uncertainty spaces, revealed by the 
Gaussian Process Regression (GPR) model, is fully integrated for deriving NIPI estimations of high 
accuracy by using Bayesian inference. Second, the numerical errors are regarded as a kind of 
epistemic uncertainty, by analytically propagating them, the posterior variances are derived for 
indicating the errors of the NIPI estimations. Further, an adaptive experiment design strategy is 
developed to accelerate the convergence of NIPI by making full use of the information of 
“contribution to posterior variance” revealed by the GPR model. The performance of the proposed 
methods is demonstrated by numerical and engineering examples. 
Keywords: Uncertainty Quantification; Bayesian inference; Probabilistic Integration; Imprecise 
probabilities; Gaussian Process Regression; Epistemic Uncertainty;  
 
1. Introduction 

In real-world engineering applications such as structural health monitoring and structural 
reliability assessment, the uncertainties resulting from different sources, such as natural 
randomness, measurement errors, vagueness and abstraction of available information, have 
proved to be very ubiquitous, and prevent us from making reliable assessments and decisions. 
Commonly, those uncertainties are grouped as either aleatory uncertainty or epistemic uncertainty 
depending on whether they are reducible or not. The aleatory uncertainty is associated with the 
random nature of events or parameters, and cannot be reduced with more information, whereas, 
the epistemic uncertainty is associated with lack of information, and thus can be reduced when 
more information is collected [1][2]. Correctly distinguishing between different types of 
uncertainty, based on their nature and their effects on analysis, and properly characterizing these 
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uncertainties with mathematical models have proved to be of primary importance for reliable 
safety assessment and decision making [1]. 

Many uncertainty characterization models have been developed for filling the above gap (see, 
e.g., Refs. [3]-[5] for review of these models), among which the imprecise probability models, such 
as probability-box (p-box) model [6], evidence theory (also called Dempster-Shafer theory) [6], 
second-order probability model [7] and fuzzy probability model [8], have received great attention 
due to their hierarchical model structure, which allows separating the two kinds of uncertainties 
in all uncertainty quantification (UQ) analysis tasks such as uncertainty propagation, model 
updating, and reliability analysis. However, it is those hierarchical model structures that make the 
propagation of the imprecise probability models computationally much more challenging than that 
of precise probability models. The focus of this paper is on the efficient propagation of the 
imprecise probability models, especially when the epistemic uncertainty of the model inputs is 
very large, and specifically, we take the p-box model as an example.  

The traditional algorithms for dealing with this kind of problems commonly involves a double-
loop numerical procedure, and two strategies have been developed. The first strategy involves 
performing optimization in the outer-loop by regarding the non-deterministic distribution 
parameters of model inputs as design variables, and then applying stochastic analysis in the inner 
loop for each design of distribution parameters [9]. The second double-loop strategy is based on 
performing sampling in the outer-loop in order to draw a set of interval samples, and then 
performing numerical optimization in the inner-loop for each interval sample [10][11]. Both of the 
above double-loop strategies can be computationally quite expensive, especially for time-
consuming computer simulators such as finite element models (FEMs) of complex structures. 
Another group of methods aims at reducing the vast computational cost of the first double-loop 
strategy by reusing the samples in each inner loop iteration. The typical developments of this group 
include the double-loop advanced line sampling developed in Ref. [12] and the extended Monte 
Carlo simulation (EMCS) developed in Ref. [13], and also reported in Ref. [14]. The main drawback 
of this group of methods is that the variability of the estimators can be substantial when the 
dimension of non-deterministic distribution parameters is high and/or when the input epistemic 
uncertainty is large.  

For tackling the “curse of dimensionality”, a general methodology framework, named as Non-
intrusive Imprecise Stochastic Simulation (NISS), has been developed by the authors in a set of 
companion papers [15][16]. These developments provide a general framework for efficiently 
propagating the imprecise probability models, and for estimating the associated failure probability 
functions, with only one stochastic analysis. For reliability analysis, both the classical subset 
simulation [16] and line sampling [17] have been injected into the framework for dealing with the 
rare failure event analysis. These methods have also been generalized for propagating the 
imprecise probability models and non-probabilistic models (e.g., interval models) simultaneously 
[18]. However, our current experience shows that NISS works well for problems with relatively 
small epistemic uncertainty. In some real-world engineering applications, due to the extreme lack 
of information, the model inputs may involve substantial epistemic uncertainty, resulting in a large 
span of the support of the non-deterministic distribution parameters. For this type of problem, the 
NISS estimations often show large variations, and solving this type of problem is the aim of this 
work. Besides the above stochastic simulation techniques, surrogate model methods have also 
been developed for propagating the imprecise probability models (see, e.g., [19] and [20]), but we 
don’t give more details for the sake of brevity. 

This paper aims at developing a new methodology framework, named as “Non-intrusive 
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Imprecise Probabilistic Integration (NIPI)”, for propagating the p-box models in which the supports 
of the non-deterministic distribution parameters are large, resulting from the large epistemic 
uncertainty involved, based on the Bayesian probabilistic integration [21][22]. The developed 
method has two appealing characteristics, which makes it extremely effective. First, the spatial 
correlation information in both aleatory uncertainty space and epistemic uncertainty space is 
integrated for inferring closed-form expressions for integrals, where the spatial correlation 
information is captured by a Gaussian Process Regression (GPR) model. It is shown that this spatial 
correlation information makes a substantial contribution to the accuracy of the NIPI estimations. 
Second, the numerical errors are modeled as a kind of epistemic uncertainty being analytically 
propagated to the NIPI estimations, making it possible to analytically quantify the discretization 
errors. Besides, an adaptive experiment design strategy originally developed by the authors in Ref. 
[23] is also injected into the NIPI framework for further reducing the required number of model 
calls, by making full use of the spatial correlation information. One numerical test example and two 
real-world engineering examples are introduced for demonstrating the advantages and 
disadvantages of the proposed method. 

The rest of this paper is organized as follows. Section 2 states the problems to be solved in this 
work, followed by a brief review of the Bayesian probabilistic integration method in section 3. The 
NIPI method is then presented in section 4, and the adaptive design strategy for further improving 
the NIPI method is described in section 5. The test examples, as well as the discussion of results, 
are presented in section 6. Section 7 gives conclusions to this paper.            
2. Problem Statement 

The problem considered in this work is the efficient propagation of imprecise probability 
models, which have been well-established for characterizing polymorphic uncertainty [24]. As an 

example, we only consider the distributional p-box model. Let  denote the 

n-dimensional row vector of model inputs, each component of which is characterized by a p-box 

model  , with   being the non-deterministic distribution parameters of  . We 

rearrange the distribution parameter vector as  , where 

  refers to the total number of non-deterministic distribution parameters. For simplicity, it is 

assumed that all the input variables are independent, and the joint density function and cumulative 

distribution function are formulated as   and 

 respectively, with  being the marginal distribution function 

of .  

The epistemic uncertainty of  is reflected by the uncertainty of  which is characterized 

by independent intervals  , where    is the lower 

bound, and  is the upper bound. For the developments in 

this work, an auxiliary probability distribution should be assumed for . However, one should 

note that this does not necessarily imply that  must be a random vector. This assumption is only 

necessary for numerical implementation. Denote the joint density and cumulative distribution 

functions as   and   respectively, where   and 

 indicate the marginal density and distribution functions of  respectively.  
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The space  of input vector  is called aleatory space as the probability distribution of  

characterizes the aleatory uncertainty of model inputs, and the space  is termed as epistemic 

space since the interval of  models the epistemic uncertainty of the inputs resulting from the 

lack of information on distribution parameters associated with the probabilistic description of .  

The deterministic computer simulator of interest is represented by the g-function  

with  being the univariate model response. One should note that the developments in this work 

are also applicable to multivariate response cases, but only the univariate case is considered for 
simplicity. The target is then to estimate the resultant probabilistic characters of the model 
response   such as the expectation and variance. However, due to the epistemic uncertainty 

presented in the model inputs, those statistics are no longer deterministic values, but interval 
quantities with bounds depending on the bounds of . We take the response expectation as an 

example, and it can be expressed as a n-dimensional integral, i.e., 

 . (1) 

With the above setting, the aleatory uncertainty present in model inputs is characterized by the 
probability distribution of  , while that present in the model output is characterized by the 

probability distribution of . The epistemic uncertainty of model inputs due to lack of information 

is modeled by the interval model of , and that propagated to the model output is described by 

the resultant interval of . For the second-order origin moment, one needs only to replace 

 with  in Eq. (1), thus below we only consider the estimation of response expectation.  

The target of this work is then to learn the behavior of the function  visibly, especially 

when the epistemic uncertainty is large, and thus the intervals  comprise a wide support, 

for which case, the NISS methods may exhibit poor performance.  
3. Bayesian probabilistic Integration 

We consider the integration of the function  with respect to the n-dimensional arguments 

 under independent standard Gaussian density weight, and we denote this integral as . 

The probabilistic integration rule is applied over a properly-trained (Bayesian) GPR model for 

, thus it is necessary to introduce the GPR model in advance. 

Without any prior information on the behavior of , it is assumed that  is represented 

by a GPR model  , where   is the prior mean function which can be 

assumed to be any explicit form such as zero, constant and linear, and  is the covariance 

function, which is also called kernel function, representing the strength of spatial correlation 
between the two sites  and . Both the forms of mean function and kernel function reflect the 

prior knowledge of the behavior of the g-function. Many forms of kernel function have been 
developed, one can refer to Ref. [25] for more information. The one used in this work is the squared 
exponential kernel formulated as: 

  (2) 

, where  is the hyper-parameter used for characterizing the (epistemic) variance at each site, 
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and   with  (  ) being the length scale of   and representing 

the strength of correlation along the i-th dimension.  

   Let  denote the training sample matrix with each row being a sample vector of , and  

indicates the column-wise vector of g-function value, i.e., . Then, based on the training 

data, the hyper-parameters in  and  can be inferred by maximizing the likelihood 

function. The values of those hyper-parameters reflect information learned from the training data 
for the GPR model. Let  denote the properly-trained GPR model, where the posterior mean 

at the site  is formulated as [25]: 

  (3) 

, and the posterior covariance between two the sites  and  is expressed as:  

  (4) 

, where  is a column vector with the i-th element being ,  indicates the i-th 

row of , and  is a matrix with the -th component being . 

   Based on Eq. (3) and (4), the integration  for approximating the integral  

is a Gaussian random variable with the posterior expectation and variance formulated by [21][23]: 

  (5) 

, and 

  (6) 

, where  represents the integral of  with respect to both arguments under 

independent standard Gaussian density weights   and  . To generate the analytical 

values of Eq. (5) and Eq.(6), one needs to derive the closed-form expression for the three integrals 

,  and . For the commonly used zero, constant, linear and 

even polynomial mean functions, the derivation of the analytical value of  is quite trivial, 

and we don’t give details. The closed-form expressions for  and  are 

formulated as [23]: 

  (7) 

, and 
  (8) 

, where  indicates the inverse of the square root of the determinant of the argument,  is 

the identity matrix with the diagonal elements being one and the other elements being zero, 
  indicates a column-wise vector generated with the diagonal elements of the 

argument matrix. The squared exponential kernel in Eq. (2) and the Gaussian density weight is 

one of the kernel-distribution pairs resulting in the closed-form expressions of both   

and  , which is a desirable property for probabilistic integration. There are also 

other kernel-distribution pairs satisfying this property, and one can refer to Ref. [25] for more 
details. In this work, all the developed algorithms are implemented with standard Gaussian density 
weight, thus only the squared exponential kernel is used. However, all the developments apply to 
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any type of probability distribution, as will be shown in the next section.  
4. Probabilistic response function estimation 

The uncertainty propagation task in this work mainly concerns the estimation of the response 

expectation function (REF)  defined by Eq. (1). For higher-order moment functions, the 

theoretical details are similar, and thus, they are not presented for the sake of brevity.   
4.1. High-dimensional model representation 

As mentioned above, the integrals in this work are all assumed to have standard Gaussian 
density weight, thus it is necessary to transform both  and  into standard Gaussian variables. 

This can be achieved by using Rosenblatt's transformation [26]. Take univariate input   with 

distribution function   and scalar non-deterministic distribution parameter   as an 

example. The auxiliary distribution function for   is denoted as  . Then   can be 

transformed to a standard Gaussian variable   by  , and   can be also 

transformed to standard Gaussian variable  by . In the multivariate 

case, the transformation pairs for  and  are formulated as: 

  (9) 

, and 

  (10) 

Let  denote the n-dimensional integral of a -dimensional function with respect to 

its first n inputs with independent standard Gaussian weight. Then the conditional expectation in 
Eq. (1) can be rewritten as:  

  (11) 

, or further as 
  (12) 

, where   and  . With any one of   and 

 being estimated properly, the other one can be easily derived.  

In NISS methods, the REF is decomposed by High-Dimensional Model Representation (HDMR) 
into the summation of a set of functional components with input dimensions varying from 1 to d. 
This scheme brings at least two benefits. First, since the REF is mostly governed by low order 
component functions, the explicit estimation of these low order component function enables the 
analysts to learn the behavior of REF visibly. Second, the relative importance of each  can be 

learned from those component functions, and provides useful information for directing the future 
information collection (so as to further reduce the epistemic uncertainty of model response), and 
also for reducing the dimensionality of the optimization procedure used for computing the bounds 
of model response expectation. In this subsection, we follow this idea to estimate the component 
functions by probabilistic integration.  

In the NISS framework, two HDMR schemes are utilized, where the cut-HDMR decomposition 
is used in local NISS methods, while the RS (Random Sampling)-HDMR is utilized in global NISS 
methods [15][16]. In this work, only the RS-HDMR is used, thus below we use HDMR to denote RS-
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HDMR. The HDMR decomposition of the REF  is formulated as [27]: 

  (13) 

, where , and  

  (14) 

, with  indicating the integral with respect to all input variables of the integrand except , 

and  being integral with respect to all arguments of the integral except . 

4.2. Bayesian Inference of HDMR components 

Next, consider the estimation of   as well as its HDMR components. For ease of 

illustration, let . Given a set of training samples  with each row of  being a 

sample point of   and each component of the column-wise vector of   being the 

corresponding value of model response function . Then a GPR model  can be trained 

with the posterior mean and posterior variance at any new site  being: 

  (15) 

, and 

  (16) 

, where   is the prior basis function,   is the kernel function, and   is the 

covariance matrix for training data  computed with the kernel .  

 Constant HDMR Component 

Eq. (14) reveals that the constant HDMR component  is actually a -dimensional 

integral with respect to all elements of , the estimation of  resulting from the GPR model 

  is a Gaussian random variable, and the posterior mean and posterior variance are 

formulated as: 

  (17) 

, and 

 . (18) 

The closed-form expressions for the integrals   and   in Eq. (17) 

and Eq. (18) can be similarly formulated as (7) and (8), and we don’t repeat them. 
   For the first- and second- order HDMR components, the posterior estimations resulting from 

the GPR model  are one- and two- dimensional GP models, respectively, and the posterior 

means and expectations can be analytically derived from .  

 First-order HDMR Component Functions 
The posterior mean of the first-order HDMR component is formulated as: 
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  (19) 

, where the derivation of   is trivial, and we don’t give details, the closed-form 

expression of the integral  is formulated as:    

  (20) 

, with  being the column-wise sample of ,  indicating the sample matrix generated by 

removing   from  ,   referring to the length scale hyper-parameter of  , and   

denoting the diagonal matrix generated by removing the -th column and -th row 

from . 

The posterior variance of the first-order component is given as: 

  (21) 

, where   is given in Eq. (18), and  is formulated as: 

  (22) 

, where   represents the (n+d)-dimensional row vector equal to  , except its (n+i)-th 

component, which is equal to ,   has been given in Eq. (20), and  

 . (23) 

The posterior covariance in Eq. (21) is given by: 

  (24) 

, where  is given by Eq. (20), and  indicates the integral with 

respect to  and , which is explicitly formulated as  

 . (25) 

The mathematical derivations of Eqs. (21)-(25) are given in Appendix A.  
 Second-order HDMR Component 

The second-order HDMR component  resulting from the GPR model  is then 

a two-dimensional GPR model. The posterior mean is formulated as: 

  (26) 

, where  is explicitly formulated as: 

  (27) 

, with  indicating the -dimensional diagonal matrix composed of  and ,  

indicates the -dimensional diagonal matrix generated by removing  
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from ,  is the sample matrix of ,  refers to the sample matrix of , and  

indicates the -dimensional vector generated by removing  from .  

The closed-form expression of the posterior variance  is cumbersome, and for 

simplification, it is listed in Appendix B.  
   Based on the above formulas, we can generate the posterior means and variances for all the 
zero-, first- and second- order HDMR component functions of the probabilistic response function 

, as by-products of the properly-trained GPR model , which are commonly sufficient 

for understanding the behavior of . However, if necessary, higher-order HDMR component 

functions can be similarly derived, but we don’t go further for simplicity. By replacing   in 

 with , we can generate the posterior mean and variance of the first-order 

HDMR component of , which can be very useful for learning the behavior of  with respect 

to .  

5. Adaptive Experiment Design  
It is unquestionably that the performance of the probabilistic integration relies on the training 

data set  used for training the GPR model . A simple way to create this data set is simple 

random sampling or quasi-random samplings such as Latin-hypercube sampling [28] and Sobol’ 
low-discrepancy sequence [29]. However, all those random sampling design strategies do not take 
the behavior of g-function into consideration, thus, of course, cannot provide the optimal design 
for the training data. In principle, given a small set of training data, the properly-trained GPR model 

  delivers information on the contribution of the GPR prediction error to the posterior 

variance of the integration. This kind of information can be valuable for identifying the design point 
that, by adding it to the training data provides the greatest reduction on the posterior variance of 
the integration. Based on this idea, we introduce an adaptive experiment design strategy for 
actively generating training data. 

The core of this algorithm is the so-called learning function. In this paper, we use the learning 
function we defined in our previous work [23]. The definition of the learning function is formulated 
as: 

  (28) 

, where 

  (29) 

, with  indicating the integral with respect to . From Eq. (18), it is seen that the following 

equation holds: 

 . (30) 

Eqs. (28)-(30) reveal that the learning function   measures the contribution of the 

prediction error at the point  to the posterior variance , with the consideration of its 

spatial correlation information over all the other points in both the aleatory and epistemic space. 
We name this kind of information as “contribution to posterior variance” at point  , and the 
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learning function as Posterior Variance Contribution (PVC) function. Then, by adding the point  

with the maximum value of  to the training data , it is expected that the greatest reduction 

of the posterior variance  can be achieved. The closed-form expression of the learning 

function can be derived. The expression for the integral  in Eq. (29) is similar to 

Eq. (7). The closed-form expression for  is formulated as: 

 . (31) 

The learning function is usually multi-modal, thus it is recommended to search the design 
point  by using a global optimization algorithm. In this paper, the particle 

swarm code in the Matlab Global Optimization Toolbox is utilized.  
   Based on the PVC function, an adaptive experiment design strategy is developed, and the 
associated flowchart for implementation is schematically shown in Fig. 1. It involves first creating 

a small set of training data  with which a GPR model can be trained, and the corresponding 

learning function can be analytically derived. Then, the point   can be specified as 

  and added to the training data set  . The above process is implemented 

repeatedly until a stopping criterion is satisfied. In this paper, the stopping criterion is selected as 

the posterior Coefficient Of Variation (COV) of   being less than a small value  , i.e.,

 . However, it is found that the above stopping criteria may result in 

posterior distribution with small variation but large bias when the initial training data size is too 
small. To avoid this situation, it is suggested to use a delayed judgment strategy, which means 
finishing the algorithm only when the above stopping criteria is satisfied for several (e.g., three) 
times in succession. 
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Figure 1 Flowchart of the adaptive experiment design.   

 
6. Test Examples 
6.1. General remarks 

For numerical implementation, the auxiliary probability distribution   should be pre-

assumed for the non-deterministic distribution parameters  so as to create training data for 

both  and . Similar to NISS method [18], any type of probability distribution can be utilized, 

and the type of probability distribution will not affect the behavior of , but only affects its 

HDMR component functions as well as their posterior estimation.  The optimal probability 

distribution for  definitely depends on the behavior of the g-function, which is beyond the 

scope of this paper. Without loss of generality, it is assumed that the elements of   are 

independent, and follow uniform distribution. It is found that, by setting the support of this 

auxiliary distribution, used for generating the training data, larger than the real support , 

the performance of estimation can be improved for the area around the bounds. Therefore, the 

support of the auxiliary distribution is can be relaxed as , where  and  are 

both positive parameters, and can be attributed with any values that make 

  and   hold, 

with  being the CDF of uniform distribution bounded by , and 

 indicating the CDF of standard Gaussian distribution. For all the three test examples in this 

section, we use the constant mean function  for the GPR model.  
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6.2. Illustrative example 
We use the same toy example as in Ref. [15] to illustrate the proposed NIPI method, and to 

compare its performance with the global NISS method. The g-function of this toy example is 
formulated as: 

  (32) 

, where  ,  ,   and   are both Gaussian random variables with non-deterministic 

distribution parameters. The mean parameters of the two variables are denoted as  and , 

both of which have interval support , and the STandard Deviation (STD) parameters are 

indicated by  and  with the support being . One should note that, with the above 

setting, the epistemic uncertainty of the model inputs is much larger than that considered in Ref. 
[15]. 
   We first consider the NIPI method without active learning. For the numerical implementation, 

 and  are both set to be five percent of the bound length  for each dimension of  

for both NIPI and NISS. The training data size for NIPI is set to be 200, and the sample size for NISS 
is set to be 2,000. For both methods, the samples are generated by LHS design. We first discuss the 
results of the constant HDMR component , which are shown in Figure 2. One note that the NISS 

estimators also follow Gaussian distribution, thus the results of both methods are shown with 
Gaussian density. Obviously, the posterior mean of NIPI is closer to the true value than the mean 
estimation of NISS, but the posterior variance of NIPI is much smaller than that of NISS. This 
indicates that NIPI provides much better estimation than NISS, for the constant HDMR component, 
although its computational cost is only one-tenth of that of NISS.   

 
Figure 2 Results for constant HDMR component of the toy example. 

 
The results of the first-order component functions generated by both NIPI and NISS are then 

reported in Figure 3, together with the analytical results for comparison. Both the mean estimates 
and the 99% Confidence Intervals (CIs) generated by both methods are reported. We first examine 
the mean estimates. Obviously, the posterior means produced with NIPI of all the four first-order 
component functions match very well with the analytical results over the whole supports. 
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Conversely, the mean estimates of NISS show good agreement with the analytical results only in 
some small regions. The above phenomenon suggests that NIPI provides much better mean 
estimates for all the first-order components. Next, we analyze the confidence intervals shown in 
Figure 3. Obviously, for all these four components, NIPI provides much tighter and more accurate 
confidence intervals in the whole region. It is also shown that, NISS provides very poor estimation 
near the edges of the epistemic intervals, especially for the component function of  . This is 

caused by the large variation of the density ratio functions presented in NISS estimators. Whereas, 
in the NIPI estimator, such kind of ratio function does not exist. Based on the above analysis, it can 
be concluded that, if the input epistemic uncertainty has small support, both NISS and NIPI can 
provide satisfactory estimation, but for cases with large epistemic uncertainty, NIPI is much more 
powerful. Besides, NIPI is much more efficient than NISS for this example since the required 
number of g-function calls is only one-tenth of that of NISS.         

 
Figure 3 First-order HDMR component functions of the toy example. 

 
The second-order HDMR components are then computed based on the same GPR model, and it 

is found that only the one involving  is influential, whose results are shown in Figure 4, 

together with the analytical results for comparison. We don’t show the results of NISS since they 
are much poorer than those generated by NIPI. Figure 4 shows that the posterior mean matches 
well with the analytical result, and the posterior STD is very small, indicating the high accuracy of 
NIPI for estimating the second-order component functions.  
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Figure 4 NIPI results of the influential second-order HDMR component function of  and  

for the toy example. 
 

Next, we illustrate the potential of the adaptive experiment design for further improving the 
efficiency of NIPI. In Figure 2, the posterior COV of the NIPI estimate is computed to be 0.04, thus 
we take this value as the stopping criteria of the adaptive design. That is once the posterior COV 
being less than 0.04 for three times in succession, the adaptive algorithm stops. We start the 
adaptive design with 50 training samples generated by LHS design. With the above setting, the 
algorithm adaptively produces 35 more training data before touching the stopping criteria. The 
posterior density of the constant component generated with these adaptively designed points is 
compared with the one generated with 200 LHS design points in Figure 5. As can be seen, both 
probability distributions cover the analytical results with high confidence, indicating that both 
results are accurate. The posterior variance by adaptive design is a little bit smaller than that 
generated without adaptive design.  

 
Figure 5 Posterior densities of the constant HDMR component of the toy example generated by 

NIPI with LHS design and adaptive design. 
For illustrating the process of the adaptive experiment design, the evolution of the 99% 

confidence intervals and the COV of  with respect to the training sample size  are shown 

in Figure 6. As a comparison, the evolution process of NIPI without adaptive design but with the 
same set of 50 initial training points is also schematically shown in Figure 6. It can be seen that the 
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adaptive NIPI converges much faster than the NIPI without adaptive design, indicating that the 
adaptive design can substantially reduce the number of required g-function calls. It is also shown 
in Figure 6 that, for adaptive NIPI, during the design process, the posterior variation does not 
decrease monotonically with respect to the increment of sample size. The stopping criterion can 
be satisfied when the posterior variance is small but the posterior mean shows large bias, although 
this situation is not seen often. However, if the posterior COV is less than the threshold (0.04) for 
several times in succession (see the part with  ), it is believed that the algorithm has 

converged with high confidence. Thus, by using the delayed judgment, the algorithm can be much 
more robust.  

 
Figure 6 Evolution process of posterior confidence intervals and COVs of , where the left axis 

shows the evolution of the 99% confidence intervals and the right axis shows the evolution of the 
posterior COV. 

 
The results of first-order component functions generated with and without adaptive design are 

then compared in Figure 7. It is shown that the steady-state curves are all bounded by the 
confidence intervals generated with both strategies, and it is hard to say which strategy produces 
better results.  

Based on the above analysis, we believe that the results generated with and without adaptive 
design are of the same quality. However, by introducing the adaptive design strategy, the required 
number of g-function calls is reduced from 200 to 85, which can be quite substantial for real-world 
engineering applications where one g-function call takes several minutes or even several hours.  

 

True value 99% CIs by Adaptive NIPI 99% CIs by NIPI without Adaptive Design

COV by Adaptive NIPI COV by NIPI without Adaptive Design
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Figure 7 Comparison of first-order component functions results generated by NIPI with and 

without adaptive design. 
6.3. A steady-state confined seepage model 

Consider a model simulating the steady-state confined seepage below a dam adapted from Ref. 
[30]. The elevation of the dam is schematically shown in Figure 8. The soil below the dam consists 
of one impermeable layer and two permeable layers. In this example, the water height  in the 

upstream side and the permeability properties of the two permeable layers are assumed to be 
input random variables. The water height   is assumed to be a precise random variable 

following uniform distribution with support between 7 [m] and 10 [m]. The permeability 
properties are all assumed to be imprecise random variables characterized by lognormal p-box, 
and are described in Table 1. One can refer to Ref. [30] for the detailed description of this model. 
The governing PDE of this model is formulated as [30]: 

  (33) 

, where   indicates the hydraulic head over segment AB. The above PDE is 

numerically solved by the finite element method with 3413 nodes and 1628 quadratic triangular 
elements. Once the above PDE being solved, the seepage  at the downstream side of the dam, 

measured in units of volume over time over distance, can be calculated by: 

 . (34) 

The target of this application is to learn the behavior of the function of the expectation  with 

respect to the eight non-deterministic distribution parameters given in Table 1. The order of 
magnitude of the model response is relatively small (as expected for seepage problems), and for 
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simplicity, we do all the analysis by multiplying the model response  by 106.  
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Figure 8 Schematic illustration of the dam. 
 

Table 1 Description of the four imprecise random input variables of the seepage model. 
Input 

variables 
Description Distribution 

type 
Mean of logarithmic values 

([ ]) 

STD of logarithmic values 

([ ]) 

 Horizontal permeability 
of silty sand layer 

Lognormal   

 Vertical permeability of 
silty sand layer 

Lognormal   

 Horizontal permeability 
of silty gravel layer 

Lognormal   

 Vertical permeability of 
silty gravel layer 

Lognormal   

 
The analytical results for this example are unavailable due to the implicit model response 

function, thus we use the Double-Loop Monte Carlo Simulation (DLMCS) procedure with 2,000 
samples in each inner-loop step to create the reference solutions [9]. The results of the constant 
component generated by NIPI with and without active learning are then reported in Figure 9. One 
notes that, for constant component, the estimation of Monte Carlo Simulation (MCS) is the same as 
those of DLMCS and NISS. The posterior COV of constant component generated by NIPI with 200 
LHS samples is 0.012, thus for the adaptive NIPI algorithm, the stopping criteria is set to that 

 happens three times in succession. As can be seen from Figure 

9, both the adaptive NIPI and that without adaptive design produces robust and accurate estimates 
for the constant HDMR component. The posterior variances of both procedures are quite close, but 
by introducing the adaptive design, the total number of required g-function calls is reduced from 
200 to 72.  
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Figure 9 Results for constant HDMR component of the seepage model 

 
The results for the first-order component functions by NISS ( ), NIPI ( ), 

Adaptive NIPI ( ) and double-MCS ( ) are then reported in 

Figure 10. One notes the double-loop MCS results are regarded as the reference solution since the 
estimates are unbiased and the variations are very small. As can be seen, the results generated by 
both NIPI and adaptive NIPI are in good agreement with the reference solutions. However, the NISS 
method, although consumed much more g-function calls, provides poor estimations. This is due to 
the large span of the support of the eight distribution parameters. As can be seen, among the eight 
distribution parameters, the last three have no obvious effect on the expectation of the seepage, 
and the other five distribution parameters show approximately linear increment effects on the 
model response expectation. Among all the eight distribution parameters,  possess the largest 

individual effect on the epistemic uncertainty of , thus it is most beneficial to collect the data 

of  so as to efficiently reduce the epistemic uncertainty of . 

1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

0

5

10

15

20

D
en

si
ty



19 
 

 
Figure 10 Results of first-order HDMR component functions of seepage model. 

 
The posterior mean of the second-order component function generated by NIPI without 

adaptive design is then shown in Figure 11, and for simplicity, we only show the six most influential 

component functions. It is shown that, among all the second-order components, the one of  

is the most influential, but is less important than the first-order component of .   
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Figure 11 Posterior mean of the six most influential second-order HDMR component functions of 

the seepage model. 
6.4. Multi-stage High-speed Axial Compressor System 

Both of the previous two test examples have smooth model response function, and it is shown 
that both the adaptive NIPI and the NIPI without adaptive design works well for these examples. 
Here we introduce a system reliability analysis problem that involves non-smooth g-function. This 
model, originally developed in Ref. [31], concerns the reliability of a multi-stage high-speed axial 
compressor of the Institute for Turbomachinery and Fluid Dynamics at Leibniz University 
Hannover. One can refer to Refs. [31][32] for the detailed description of this model. The functional 
block diagram of this system is shown in Figure 12. This system is composed of eight components, 
each of which represents one of the rotor blade rows or stator blade rows. In this paper, these eight 
components are denoted as ( ), and are classified into four categories denoted by 

T1~T4. It is assumed that the components of the same type have the same survival functions with 
equal but unknown distribution parameters. Following Refs. [31][32], we assume that all the four 
categories of components follow the exponential distribution, and their mean parameters are 
denoted as . One notes that the failure rate of the i-th type of component is then . Due 

to the limited life data available, the true value of each distribution parameter cannot be learned, 
and their supports are all assumed to be [1, 5]. Let   denote the failure time of the eight 

components, and  indicate the system failure time. The g-function of the system failure time 

with respect to the failure times of components can then be formulated as: 

  (35) 

, where  ( ) indicates the failure times of the eight path sets, which are formulated 

by: 

 . (36) 

The output of interest is the Mean Time To Failure (MTTF) of the system, which is formulated as 

the expectation of the system failure time , i.e., . Obviously,  is a function of . 
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The g-function given in Eq. (35) is quite non-smooth since there are many minimum and maximum 
operators. In this case, the spatial correlation can be much weaker than that for the smooth g-
function, which poses a challenge for NIPI.    

T1 T1

T2

T3

T4

T4

T4

T4
 

Figure 12 Block Diagram of the multistage high-speed axial compressor system. 
 
For all the numerical implementation, we set both  and  as 0.4 for each . We use 500 

training samples created by LHS design to implement NIPI, and the posterior density of the 
constant component is shown in Figure 13. The posterior COV is 0.016, thus we set 

 as the stopping criteria, and use 200 LHS samples to start the 

adaptive experiment design. The posterior density generated by this adaptive NIPI procedure is 
also presented in Figure 13. The reference solution is generated by MCS with 104 samples, and is 
provided in Figure 13. As can be seen, although the posterior COVs generated by NIPI with and 
without adaptive design is almost the same, the posterior mean generated by NIPI is closer to the 
reference mean. The adaptive NIPI requires slightly less g-functions calls than that generated 
without adaptive design, but the adaptive design procedure introduces extra computational cost 
for searching the maximum values of the learning function. The evolution details of both NIPI 
algorithms with the same 200 initial training samples are then compared in Figure 14. As can be 
seen, the rate of COV reduction generated with the adaptive design is almost the same as that 
generated without adaptive design. It is believed that, by introducing the adaptive design, no 
obvious benefit is obtained. The essential reason behind this phenomenon is that, due to the non-
smoothness of the g-function in this example, the spatial correlation is much weaker than that in 
the last two test examples with smooth g-functions, causing that non-training point contributes 
equally to the posterior variance in most iteration steps. Thus, for non-smooth and computationally 
cheap g-functions like the one in this example, the adaptive design is not recommended. This also 
why the NIPI method requires more training samples in this example than that in the previous two 
examples.    
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Figure 13 Results for the constant component of the compressor system. 

 

 
Figure 14 Evolution details of the NIPI algorithms with and without adaptive design for the 

compressor system. 
 
The 99% confidence intervals of the first-order HDMR component functions computed by NISS 

(N=104), NIPI (N=500) and adaptive NIPI (N=200+212) are shown in Figure 15, together with the 
reference 99% confidence intervals generated by double-loop MCS. As can be seen, both NIPI and 
adaptive NIPI produce accurate and robust results, which are all better than those generated by 
NISS. However, the quality of the NISS results is also acceptable. In terms of efficiency, it can be seen 
that both NIPI and adaptive NIPI require much fewer g-function calls than NISS. It is shown that 
the system MTTF increases monotonically with respect to the increment of each . This is fair 

since the system under consideration is a coherent system, indicating that the increment of 
component function time will not result in the decrement of system failure time. It is seen, that  

is the most important distribution parameter, and for reducing the epistemic uncertainty on system 
MTTF, hence, collecting the failure data for T3 type of component should be the primary choice. 
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This is also fair since it can be seen from Figure 12, T3 type component is the weakest link of the 
system. The posterior means of the six second-order HDMR component functions are then 
reported in Figure 16. As can be seen, among each pair of distribution parameters,  and  

have the most interaction effect on the system MTTF.  

 
Figure 15 Results for first-order components of the compressor system, where the first column 
shows the results of NISS (N=104), the second column presents the results of NIPI (N=500), and 

the third column gives the results of adaptive NIPI (N=200+212). The reference results generated 
by double-loop MCS are also provided in each subplot. 
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Figure 16 Posterior mean of the second-order components of the compressor system generated 

by NIPI. 
To summarize, although the g-function in this example is non-smooth, and the spatial 

correlation in both aleatory and epistemic spaces is not as strong as that in the last two examples, 
the NIPI procedure still provides much better results, than NISS, in terms of both accuracy and 
efficiency. This indicates that, as long as the g-function is not totally non-smooth and it exhibits a 
certain extent of spatial correlation, the NIPI shows its advantages.  
6.5. Final remarks 

The results of the three test examples have demonstrated our arguments in the introduction 
and methodology sections, and also show new findings. The classical NISS method makes use of 
the spatial correlation information in the epistemic uncertainty space so as to formulate a set of 
estimators being Gaussian processes, and it is much more efficient than the double-loop 
procedures. Whereas, the NIPI method makes full use of the spatial correlation information in both 
aleatory space and epistemic space, and results show that NIPI is much more efficient than NISS 
for the test examples in this work. However, it should be noted that, in all the three test examples, 
the support of the epistemic space is very large, and the NISS method is not good at dealing with 
this type of problem. NISS performs well for small epistemic uncertainty, but may lose its advantage 
when the epistemic uncertainty is large, resulting from the large variation of the ratio functions in 
the NISS estimators (see Refs. [15][16] for more details.). Conversely, the NIPI method performs 
well no matter how large the epistemic uncertainty is.  

By comparing the results, it is found that the NIPI method is extremely efficient for problems 
with smooth model response functions, and for non-smooth model response functions, the NIPI 
method will slightly lose its efficiency, but is still much more efficient for problems with large 
epistemic uncertainty. It is also shown that, by introducing the adaptive experiment design strategy 
to the NIPI method, the required number of g-function calls can be further reduced if the model 
response functions are smooth. However, as this improvement is obtained by making full use of the 
spatial correlation information integrated in the learning function, for problems with non-smooth 
model response functions where the spatial correlation is weak, the adaptive experiment design 
may lose its advantage.    

All the results of the above test examples are limited to the REF for the simplicity of illustration. 
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However, the method is applicable for any orders of model response moments. Take the second-

order origin moment as an example. For this case, the integrand in Eq. (1) should be replaced by 

, and all the remaining procedures keep the same. While the second-order central moment 

 is concerned, one can first formulate the corresponding integral as: 

  (37) 

, where   is an independent replicate of  . Based on Eq. (37), we need to replace the 

integrand to   for estimating the second-order central moment function 

.  

When using the NIPI method, one should avoid confusion of the two kinds of epistemic 

uncertainties involved. As explained in section 2, for all the model inputs, the epistemic uncertainty 

due to the lack of information is characterized by the interval models of the distribution 

parameters , which results in the epistemic uncertainty of the model response moments. The 

amount of epistemic uncertainty presented on the model output can be reflected by the span of the 

bounds of the response moments. In this paper, the exact values of the bounds are not of specific 

concern, but they can also be computed directly from the estimated model response moment 

functions. The specific concern here is to study quantitatively the functional relationship between 

the model response moments and the epistemic input parameters, and this information is reflected 

visibly by the HDMR components of the model response expectation function. Another kind of 

epistemic uncertainty is the numerical discretization error caused by the limited number of 

training data, and it is measured and properly controlled by using the posterior variance of the NIPI 

estimates. This source of epistemic uncertainty does not reflect the input epistemic uncertainty, 

and one should not be confused.    

7. Conclusions 
This paper presents two contributions for efficiently propagating the distributional p-box 

models based on the probabilistic integration method. First, the NIPI method is developed for 
analytically deriving the posterior mean and variance of the HDMR components of the probabilistic 
response function, which are useful for learning the behavior of the function of the probabilistic 
responses (e.g., response expectation and variance) with respect to non-deterministic input 
distribution parameters. Second, an adaptive design strategy is developed for further improving 
the efficiency of NIPI by identifying the optimal training points actively. The above two 
developments make full use of the spatial correlation information in both the aleatory space and 
epistemic space to improve the accuracy of the numerical integration, and the numerical errors are 
regarded as a source of epistemic uncertainty being analytically propagated to the integration 
results. Results of examples show that, for smooth model response functions, the proposed method 
is very efficient, and for non-smooth response function, the efficiency will decrease, but is still more 
efficient than NISS.  

Compared with the NISS methodology framework, there are still several challenges to be fixed. 
First, the spatial correlation information is learned by the kernel function in the GPR model, thus 
for very high-dimensional problems (e.g., ), the proposed method can be ineffective, 
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and proper dimensionality reduction techniques need to be developed. Second, the NIPI method is 
currently not applicable for estimating the failure probability function since the integrand is the 
non-smooth indicator function of the failure domain which commonly shows large unbalance in 
the aleatory space of model inputs. There should be some special treatments to deal with such kind 
of problems. Both challenges will be explored in future work.   
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Appendix A: Posterior Variances of First-order HDMR Components 

The posterior variance of the first-order component function   induced by the GPR 

model  can be derived as: 

  (A1) 

, where the posterior variance   is given by Eq.(18), and the posterior variance

 is further derived as: 

  (A2) 

with   given in Eq. (20), and   indicating the integral 

with respect to  and , which is analytically solved as: 

 . (A3) 

In Eq. (A1), the covariance term is derived as: 

  (A4) 

, where   indicates the integral with respect to   and  , and its integrand is 

formulated as: 

 . (A5) 

Substituting Eq. (A5) into Eq. (A4) yields: 

  (A6) 

, where 

  (A7) 

, and  



27 
 

  (A8) 

By substituting Eq.(18), Eq. (A2) and Eq. (A6) into Eq. (A1), we generate the closed-form 

expression for the posterior variance  of the first-order HDMR components.  

  
Appendix B: Posterior Variances of Second-order HDMR Components 

The posterior variance  of  is derived as: 

 (A9) 

In the above equation, the closed-form expressions for   and 

 have been given in Eq. (A2), and that for  is given in Eq. (18). In 

Eq. (A9), the analytical expressions for the last two covariance terms are given by Eq. (A6). 
Therefore, we need only to derive the closed-form expressions for the variance term 

 and the remaining four covariance terms.  

Similar to Eq. (A2), the posterior variance  can be derived as: 

  (A10) 

, where  represents the (n+d)-dimensional row vector equal to , except for the (n+i)-

th and (n+j)-th components, which are equal to  and  respectively,  is given 

by Eq. (27), and  indicates the integral with respect to  and , 

whose closed-form expression is derived as: 
 . (A11) 

   Next we derive the expressions for the four covariance terms. Similar to Eq. (A6), the posterior 

covariance  can be formulated as: 

  (A12) 

, where the integrals  and  are given by Eq. (20) and Eq. (27) 

respectively, and the integral  is further derived as: 
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  (A13) 

Note that the expression for   can be deduced from Eq. 

(A12).  

The posterior covariance  is similarly derived as: 

  (A14) 

, where  is given by Eq. (27), and  is expressed as: 

   (A15) 

The covariance term  can be similarly formulated as: 

  (A16) 

, where 
 . (A17) 

Till now, we generate the closed-form expressions for all the terms of posterior variances and 
posterior covariance in Eq. (A9), from which we can obtain the explicit expression for the 

posterior variance  of the second-order component functions.  

  
 
References 
[1]. Helton J C, Johnson J D, Oberkampf W L, et al. Representation of analysis results involving 

aleatory and epistemic uncertainty. International Journal of General Systems, 2010, 39(6): 
605-646. 

[2]. Der Kiureghian A, Ditlevsen O. Aleatory or epistemic? Does it matter? Structural safety, 2009, 
31(2): 105-112. 

[3]. Helton J C, Johnson J D, Oberkampf W L. An exploration of alternative approaches to the 
representation of uncertainty in model predictions. Reliability Engineering & System Safety, 
2004, 85(1-3): 39-71. 

[4]. Faes M, Moens D. Recent trends in the modeling and quantification of non-probabilistic 
uncertainty. Archives of Computational Methods in Engineering, 2019: 1-39. 

[5]. Beer M, Ferson S, Kreinovich V. Imprecise probabilities in engineering analyses. Mechanical 
systems and signal processing, 2013, 37(1-2): 4-29. 

[6]. Ferson S, Kreinovich V, Grinzburg L, et al. Constructing probability boxes and Dempster-Shafer 
structures. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2015 

[7]. Sankararaman S, Mahadevan S. Likelihood-based representation of epistemic uncertainty due 
to sparse point data and/or interval data. Reliability Engineering & System Safety, 2011, 96(7): 



29 
 

814-824. 
[8]. Stein M, Beer M, Kreinovich V. Bayesian approach for inconsistent information. Information 

sciences, 2013, 245: 96-111. 
[9]. Pedroni N, Zio E. Hybrid uncertainty and sensitivity analysis of the model of a twin-jet 

aircraft. Journal of Aerospace Information Systems, 2015, 12(1): 73-96. 
[10]. Zhang H, Dai H, Beer M, et al. Structural reliability analysis on the basis of small 

samples: an interval quasi-Monte Carlo method. Mechanical Systems and Signal 
Processing, 2013, 37(1-2): 137-151 

[11]. Alvarez D A, Uribe F, Hurtado J E. Estimation of the lower and upper bounds on the 
probability of failure using subset simulation and random set theory. Mechanical Systems 
and Signal Processing, 2018, 100: 782-801. 

[12]. de Angelis M, Patelli E, Beer M. Advanced line sampling for efficient robust reliability 
analysis. Structural safety, 2015, 52: 170-182. 

[13]. Wei P, Lu Z, Song J. Extended Monte Carlo simulation for parametric global sensitivity 
analysis and optimization. AIAA journal, 2014, 52(4): 867-878. 

[14]. Zhang J, Shields M D. On the quantification and efficient propagation of imprecise 
probabilities resulting from small datasets. Mechanical Systems and Signal Processing, 
2018, 98: 465-483. 

[15]. Wei P, Song J, Bi S, et al. Non-intrusive stochastic analysis with parameterized 
imprecise probability models: I. Performance estimation. Mechanical Systems and Signal 
Processing, 2019, 124: 349-368 

[16]. Wei P, Song J, Bi S, et al. Non-intrusive stochastic analysis with parameterized 
imprecise probability models: II. Reliability and rare events analysis. Mechanical Systems 
and Signal Processing, 2019, 126: 227-247 

[17]. Song J, Valdebenito M, Wei P, et al. Non-intrusive imprecise stochastic simulation by 
line sampling. Structural Safety, 2020, 84: 101936 

[18]. Song J, Wei P, Valdebenito M, et al. Generalization of non-intrusive imprecise 
stochastic simulation for mixed uncertain variables. Mechanical Systems and Signal 
Processing, 2019, 134: 106316 
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