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Identifying pathways to a high-performing Lean Automation 

implementation: an empirical study in the manufacturing industry 

 

Abstract 

This paper examines pathways to implement a high-performing Lean Automation (LA). We 

asked 61 manufacturers from Brazil and India that are undergoing a lean implementation 

together with the adoption of disruptive digital technologies from Industry 4.0 (I4.0) to indicate 

their implementation sequence. We then used multivariate data techniques to analyze the 

collected data. Our findings suggested three sets of lean practices and I4.0 technologies; 

namely: start-up, in-transition and advanced. Further, companies that presented a higher 

performance improvement have more extensively implemented start-up and in-transition 

practices/technologies. However, no significant difference was found for the adoption level of 

advanced practices/technologies between low- and high-performer companies. Since the 

integration of I4.0 technologies into Lean Manufacturing (LM) is a relatively recent 

phenomenon, our study provides guidelines related to a preferential implementation sequence 

within this portfolio of practices and technologies. 

Keywords: Lean Automation, Lean Manufacturing, Industry 4.0, Performance. 

 

1. Introduction 

Lean thinking has been subscribed for decades by both manufacturing and services sector to 

improve their performance (Womack and Jones, 1997; Stone, 2012). One of the strong reasons 

for the consistent adoption of lean thinking across diverse sectors is the simplicity at which the 

different lean tools and techniques can be implemented even by the shop floor employees, by 
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just relying on common sense (Holt, 2019). Lean Manufacturing (LM) was not only simple to 

implement but also delivered large returns for firms. It helped firms to significantly reduce 

non-value adding tasks and enhance value-adding tasks, which finally enhanced their 

operational performance (Shah and Ward, 2003; Chavez et al., 2013; Bortolotti et al., 2015a).  

In the recent past, firms have started adopting Industry 4.0 (I4.0) by deploying smart 

components and machines that are integrated into a common digital network based on well-

proven internet standards (Kolberg et al., 2017). Researchers have stated I4.0 as a new 

industrial paradigm that can enable firms to deliver higher financial, ecological and social 

performance (Stock et al., 2018). Through the deployment of digital technologies, I4.0 

facilitates higher levels of mass customized processes, products and services (Zawadzki and 

Żywicki, 2016), new product and service developments (Dalenogare et al., 2018), and business 

model innovations (Frank et al., 2019) allowing firms to achieve improved performance levels.  

As both LM and I4.0 have individually shown to enhance performance, firms have started 

integrating both approaches to achieve superior performance and competitive advantage over 

their competitors in the market (Tortorella et al., 2019a; 2019b). On the one hand, LM delivers 

its positive impact on performance through a systematic and continuous search for waste 

reduction and improvements (Narayanamurthy and Gurumurthy, 2016). On the other hand, I4.0 

technologies introduce automation and interconnectivity that can mitigate pre-existing 

management difficulties (Tortorella et al., 2020a). Combining LM with I4.0 helps firms in 

achieving Lean Automation (LA), which according to Kolberg et al. (2017) aims for higher 

changeability and shorter information flows to meet future market demands. Therefore, it is 

clear that these two interventions introduce capabilities that can operate together to lead firms 

to new performance standards that are much higher than in the past. 

However, even though literature converges on the potential of combining LM and I4.0 

implementation together to achieve LA for higher performance, research has not focused on 
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examining if the sequence of implementation of different LM practices and I4.0 technologies 

in a firm will have an impact on its operational performance. That the actual implementation 

sequence has an impact is indicated by Browning and Heath (2009) in the context of LM 

practices. Browning and Heath (2009) conducted a detailed case study research of Lockheed 

Martin’s production system for the F22. They proposed that the cost reduction benefits 

achievable through the implementation of LM practices could vary depending on the timing of 

their implementation. This temporal aspect of LM practices implementation played such a 

crucial role that it can change the benefits to go from positive to negative (costs).  

Similarly, research has discussed implementation patterns of I4.0 technologies. For instance, 

recently Frank et al. (2019) started by splitting I4.0 technologies into two broad categories, 

namely front-end (comprising of smart manufacturing, smart products, smart supply chain and 

smart working) and base technologies (comprising of cloud, IoT, big data and analytics). Then 

by applying cluster analysis, they defined patterns of adoption of these two layers of 

technologies in the surveyed companies and summarized the sequence of implementation in a 

framework. Yet, while the importance of the implementation sequence is widely recognized, 

no study to date empirically assessed the sequence in which LM and I4.0 are implemented in 

practice, and how the different pathways affect performance. Therefore, by extending the 

research on finding the optimal sequence of implementation of LM practices and I4.0 

technologies individually, we answer the following research question:  

RQ: Which pathway of implementation of LM practices and I4.0 technologies can 

mature the LA intervention to achieve superior performance improvement? 

To answer the above-stated research question, we randomly listed 21 LM practices suggested 

by Shah and Ward (2003) and 14 I4.0 technologies listed by Tortorella and Fettermann (2018) 

and Rossini et al. (2019). The respondents were asked to sequence the LM practices and I4.0 

technologies in the order of their implementation and provide the response on their adoption 
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level. Finally, respondents’ perceptions on operational performance improvement during the 

last three years were recorded. The data was collected from manufacturing firms in India and 

Brazil using a questionnaire. The final sample comprised of 61 manufacturers from Brazil and 

India that were undergoing a lean implementation together with the adoption of digital 

technologies from I4.0. We used multivariate data techniques to analyze the collected data.  

Our findings indicate that there is no clear path in terms of individual practices/technologies. 

Yet, there are sets of LA practices/technologies that are more prone to be implemented first 

than others, suggesting the existence of a precedence relationship. Our study identifies three 

sets of lean practices and I4.0 technologies using unique ranking data. Since the integration of 

I4.0 technologies into lean management is a relatively recent phenomenon, our study provides 

guidelines related to a preferential implementation sequence within this portfolio of practices 

and technologies. To the best of our knowledge, this study is the first one to use ranking data 

to answer the aforementioned question. 

The paper is structured as follows. In section 2, we review the related literature to provide the 

background to our study. In section 3, we present the research method, including questionnaire 

development, data collection, and data analysis. In section 4, we discuss the results obtained 

and develop a schematic representation of the pathway to a high-performing LA 

implementation. Finally, in section 5, we conclude the research, outline implications for 

research and practice, and list the limitations and future research directions. 

 

2. Background 

In this section, we review literature that has discussed the importance of the sequence in which 

LM and I4.0 are implemented. Following it, we then review the literature that discusses the 

impact of LA on performance. Note that we do not aim to provide a systematic and 
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comprehensive review of the literature. This would be far out of the scope of this study given 

the large amount of relevant literature. We rather seek to identify and discuss key papers to 

contextualize our study. 

 

2.1. LM implementation 

LM implementation is grounded on five broad tenets: (i) identify/define value, (ii) map the 

value stream, (iii) create flow, (iv) establish pull system, and (v) pursue perfection. Adopting 

these tenets in sequence allows value stream managers to spot inefficiencies, create better flow 

in work processes, enhance value for their customers, and develop a continuous improvement 

culture (Åhlström, 1998; Åhlström and Karlsson, 2000). It has been noticed in recent research 

that these tenets are operationalized differently by firms leading to a disconnect between theory 

and practice (Narayanamurthy et al., 2018). 

According to Browning and Heath (2009), maturation of lean research has advanced more 

rapidly in philosophy than in actual theory and the mechanisms governing how and when to 

apply lean practices require further elucidation. The majority of lean practices help in achieving 

one of the two key objectives – controlling inventory buildup and reducing system variability. 

Hüttmeir et al. (2009) examine the choice firms have to make between lean practice heijunka 

(leanness) and just-in-sequence (responsiveness) to remain competitive. Based on the case 

study of a BMW engine plant, they propose a hybrid strategy with first using heijunka to 

smooth out the most extreme production values followed by JIS for the remainder of the 

production. 

According to Chavez et al. (2013), complexity of the lean practices-performance link is yet not 

well understood and needs further exploration. Researchers have observed in the field that 

scope and focus of lean practices rollout is determined by workers perceptions, which are 
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influenced by preexisting process characteristics and gender of employees (Losonci et al., 

2011). They noticed that plants with more transparent processes achieved moderate lean 

transformation through work method and commitment, and plants with less transparent 

processes achieved radical lean transformation through communication and belief. By studying 

the impact of internal lean practices (comprised of pull-production systems, set-up time 

reduction, just-in-time and quality management) on operational performance, Chavez et al. 

(2013) explain under which circumstances lean practices are more effective by considering 

industry clockspeed contingency. While developing a methodology to assess systemic leanness 

of a value stream, Narayanamurthy and Gurumurthy (2016) explained that lean adoption 

undergoes three broad stages – lean implementation readiness, lean implementation and lean 

implementation assessment. Value streams transition from one stage to another in the lean 

adoption journey and poor maturity in the previous stage delivers inferior results in the stages 

to follow.  

Replicating the overall success of lean practices implementation continues to remain infeasible 

in practice. This is attributed to the piecemeal approach of firms as they merely implement 

isolated lean practices and allow the means (the practices) to become ends in themselves. This 

pattern leads to falling short of the underlying philosophy of lean - to achieve an overall 

efficient and effective production system (Bortolotti et al., 2015). Driven by this need, the 

objective of this research is to examine the sequence in which lean practices should be 

implemented, especially in contexts where industry 4.0 technologies are simultaneously 

adopted by firms to achieve superior performance. It is hoped that this supports firms in 

replicating the overall success of lean practices implementation from one firm to another. Table 

1 summarizes the literature on the implementation sequence of LM practices discussed in this 

section. 
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Table 1 – Literature on implementation sequence of LM practices 

 

2.2. I4.0 adoption 

The advent of I4.0 and the envisioned benefits from its adoption have motivated many 

researchers to develop strategic guidelines and roadmaps to support companies in their digital 

transformation (Pessl et al., 2017). In general, those guidelines and roadmaps encompass a set 

of design principles and digital technologies that aim at providing advice on the proper 

sequence for I4.0 adoption. However, some researchers (e.g. Erol et al., 2016; Ganzarain and 

Errasti, 2016) claim that those roadmaps should be tailored to each company’s needs, being 

adapted and customized in a way that undermines a generalizable approach.  

In this sense, a few studies have attempted to identify trends in I4.0 adoption, so that an 

implementation framework could be more assertively proposed. Based on a multi-method 

study encompassing a literature review and case study, Mishra et al. (2018) have suggested a 

conceptual I4.0 roadmap to support a sustainable growth in the industrial sector. More recently, 

Frank et al. (2019) have surveyed Brazilian manufacturers in order to identify I4.0 

implementation patterns and empirically validate a conceptual framework. Nevertheless, 

companies’ low readiness level on I4.0 has hindered the examination of basic digital 

technologies, such as big data and analytics.  

Therefore, although the evidence on I4.0 adoption is prolific, most studies are either of a 

conceptual/theoretical nature or applications with a very narrow perspective. Overall, the 

scarcity of empirical evidence and the lack of understanding of what a full I4.0 adoption 

actually is, may obstruct the determination of a specific pathway for I4.0. Additionally, the 

required infrastructure and labor skills for I4.0 (Santos et al., 2017) do not contribute to a faster 

and wider adoption across companies and socioeconomic contexts (Ghobakhloo, 2018). This 

fact negatively influences the comprehension of I4.0 adoption from a system-wide perspective, 
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suggesting that further investigation on the topic is needed. Finally, Table 2 summarizes the 

literature on the implementation sequence of I4.0 technologies discussed in this section. 

 

Table 2 – Literature on implementation sequence of I4.0 technologies 

 

2.3. Impact of LA on performance 

Already in the early 1990s, initial attempts for integrating automation using technology into 

LM emerged (Kolberg et al., 2017). Robotics has been in use for at least three decades to 

improve quality, performance and efficiency in manufacturing industries (Hedelind and 

Jackson, 2011). With the ecosystem that is currently being offered through I4.0 technologies, 

lean automation is becoming more feasible and attractive for enhancing performance 

(Tortorella et al., 2019a). Easy integration and relationship maintenance between the business 

partners through internet and common cloud contributes to strong collaboration, 

synchronization and better communication which enables effective supplier feedback (Sanders 

et al., 2016). In addition, more advanced analytics and big data environments equip machines 

to be self-aware and self-maintained, thereby achieving significant improvements in their total 

productive and preventive maintenance (Dombrowski et al., 2017). 

However, contradictory evidences on the impact of LA on performance are also found in 

literature (e.g. Sanders et al., 2016; Tortorella and Fettermann, 2018; Rossini et al., 2019), 

which call for deeper comprehension and exploration. For instance, it gets difficult to embrace 

JIT production, small batch-sizes, and continuous improvement when integrating industrial 

robots without a well-thought through strategy (Hedelind and Jackson, 2011), which, in turn, 

can negatively impact the overall performance. Therefore, it is important to delineate and 

understand the impact that the sequence in which LM and I4.0 are implemented can have on 
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performance. Table 3 summarizes the literature on the impact of LA on performance discussed 

in this section. 

 

Table 3 – Literature on the impact of LA on performance 

 

3. Research method 

This study aims at identifying pathways to implement a high-performing LA. For that, we 

conducted an empirical research, which is a recommended approach for exploratory studies 

(Goodwin, 2005). Among the existing ways of data collection for empirical research purposes, 

the survey method is frequently adopted due to its advantages, such as high level of 

representativeness, low cost, and provision of good statistical significance and standardized 

stimulus to all respondents (Montgomery, 2013). The quantification of empirical evidence 

gathered from respondents carefully selected is a usual approach in studies of similar nature 

(e.g. Tortorella and Fettermann, 2018; Rossini et al., 2019). Therefore, we conducted a survey-

based study with practitioners so that we could answer the research question: “which pathway 

of implementation of LM practices and I4.0 technologies can mature the LA intervention to 

achieve superior performance improvement?”. The proposed research method was comprised 

of three steps: questionnaire development, data collection and sample characterization, and 

data analysis. Each step is described in detail in the sections to follow. 

 

3.1. Questionnaire development  

In alignment with our research question the applied questionnaire was composed by four parts: 

(i) respondent information, (ii) implementation sequence of LM practices and I4.0 
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technologies, (iii) adoption level of those LM practices and I4.0 technologies and (iv) 

perception of operational performance.   

The first part collected information of respondents (e.g. roles) and their respective companies 

(e.g. ownership, manufacturing strategy, country, size and sector). In the second part, 

respondents were asked to sequence the implementation order of LM practices and I4.0 

technologies in their companies. For that, we listed the 21 LM practices suggested by Shah and 

Ward (2003) and the 14 I4.0 technologies listed by Tortorella and Fettermann (2018) and 

Rossini et al. (2019). These sets of practices and technologies were chosen since they were 

consistently referred to by other studies (e.g. Dahlgaard‐Park and Pettersen, 2009; Marodin et 

al., 2016; Pagliosa et al., 2019). Thus, to represent the LA implementation, we combined those 

21 LM practices with the 14 I4.0 technologies, and randomly displayed the 35 items in the 

questionnaire to avoid bias in the responses of the implementation sequence. Respondents 

should then assign ‘1’ to the first practice/technology that they have implemented and then 

look for another practice/technology that was subsequently adopted, assigning the equivalent 

incremental number. If two or more practices/technologies were simultaneously implemented, 

respondents were asked to give them all the same number. In turn, practices/technologies that 

were not implemented at all should not receive any number. The third part assessed the 

adoption level of those LM practices and I4.0 technologies according to the 3-point scale 

proposed in Shah and Ward (2003): (1) no implementation; (2) some implementation; (3) 

extensive implementation. The fourth and last part of the questionnaire aimed at measuring 

respondents’ perceptions on operational performance improvement during the last three years. 

Following Tortorella et al. (2018), we evaluated five performance indicators (i.e. productivity, 

delivery service level, inventory level, workplace accidents, and scraps and reworks). A 7-point 

Likert scale ranging from 1 (worsened significantly) to 7 (improved significantly) was applied 

in this part. We used a 7-point Likert scale since it allows for a better reflection of a 



12 
 

respondent’s true evaluation than a 5-point Likert scale (Finstad, 2010). All items and measures 

are given in the Appendix. 

 

3.2. Data collection and sample characterization 

To ensure the participation of appropriate respondents, we defined a few selection criteria. 

First, following the suggestion from Tortorella et al. (2019a), all respondents should be 

knowledgeable about LM and I4.0 with a minimum experience of 2 years with both 

approaches. Second, respondents should play key roles in their companies to allow them to 

conduct a wider judgement of LA implementation within their companies. In this sense, we 

focused on either senior/middle managers, who could perceive the company as a whole, or 

engineers/analysts, who were directly in charge of LA implementation in their companies. 

Third, because we aimed to assess LA implementation in an manufacturing environment, we 

only included respondents that worked for product-oriented manufacturers. This criterion 

helped to increase the likelihood of a more experienced respondents in terms of LA, as both 

LM and I4.0 were initially conceived in this industrial context (Womack et al., 2007; Lasi et 

al., 2014). However, no specific manufacturing sector was targeted due to the limited number 

of companies in both countries (Brazil and India) that are concurrently adopting LM practices 

and I4.0 technologies.  

The questionnaire was first sent by e-mail in October 2019 to 255 potential respondents that 

met the aforementioned criteria. We received 45 responses, from which 8 were excluded due 

to unsatisfactory completion of the questionnaire. Then, a follow-up email was sent in 

November 2019, adding a further 27 responses to our dataset from which 3 were withdrawn 

due to lack of information. The final sample thus comprised 61 respondents, which results in a 

response rate of 23.9%. To check for non-response bias, we analyzed differences in means 
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between early (n1 = 37) and late (n2 = 24) respondents through Levene's test for equality of 

variances and a t-test for the equality of means (Armstrong and Overton, 1977). Results 

indicated significance levels higher than 0.05, which allowed us to disregard the possibility of 

differences in means and variances.  

It is worth mentioning that the sample size of 61 respondents was below our expectations. 

However, the establishment of rigorous sample selection criteria, such as a minimum 2-year 

experience with both LM and I4.0, may have affected the number of responses in our dataset. 

As noticed by Tortorella and Fettermann (2018), few manufacturing companies have 

concurrently implemented LM and I4.0 for a significant amount of time. Further, the 

combination of both approaches become even rarer when considering the context of emerging 

economies, such as Brazil and India, which significantly restricts the number of respondents 

that meet such criteria. Still these criteria are necessary to ensure qualified responses. 

The final sample was reasonably balanced with regards to respondents’ characteristics, as 

shown in Table 4. Most respondents had an Engineer or Analyst (57.4%) role within their 

companies. Most companies were located in Brazil (59.0%) and had more than 500 employees 

(59.0%). The majority of manufacturers were national (52.5%), i.e. owned by either Brazilian 

or Indian companies, and belonged to the food sector (32.8%). Regarding their manufacturing 

strategies, surprisingly, most companies had either a ‘made-to-order’ or ‘engineered-to-order’ 

strategy, with 37.7% of respondents each. 

 

Table 4 – Sample characteristics (n = 61) 

 

To best of our knowledge, there is no measure to assess the validity of partial complete 

heterogenous ranking data as collected in the second part of our questionnaire. Similar, the 
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third part on the adoption level does not measure any concept or construct. Only results from 

the fourth part, performance improvements, were therefore checked for reliability using 

Cronbach’s alpha. A value of 0.781 infers a high reliability of responses according to Meyers 

et al.’s (2006) threshold of 0.6 or higher.  

 

3.3. Data analysis 

There was no significant implementation sequence for our initial analyses at the item level. 

Hence, we looked for clusters based on the performance improvement levels, and the 

implementation sequence of LM practices and I4.0 technologies. Clustering tools are designed 

to examine the relationships within a database to determine whether it is possible to describe 

such data using a small number of observations of similar classes (Gordon, 1999). According 

to Rencher (2002), the objects within a cluster must be similar to the other inserted into the 

same cluster (homogeneity), and different from other objects embedded in other clusters 

(denoting heterogeneity). We performed two clustering analyses: one aiming to identify 

different levels of operational performance improvement among respondents, and another one 

considering the sequence of implementation of LM practices and I4.0 technologies as 

clustering variables.  

For the first clustering analysis, we used observations related to operational performance 

improvement as clustering variables. To identify the most adequate number of clusters, we 

applied Ward’s hierarchical method (Rencher, 2002). Next, using k-means method, we 

rearranged observations into the number of clusters previously identified (Hair et al., 2006). It 

is worth mentioning that we performed an analysis of variance (ANOVA) as a post hoc 

procedure to check for differences in means across clustering variables calculated using data 

from each cluster. 
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We also tested for differences in frequencies of observations between clusters according to 

each company characteristic; i.e. company size, manufacturing strategy and ownership. These 

variables were considered as categorical since we were utilizing the dimensions obtained from 

the clustering analysis for performance improvement and companies’ characteristics, which 

allowed for the application of the chi-square test with contingency tables and adjusted 

residuals. This procedure was applied to test the hypothesis that frequencies in the contingency 

table were independent (Tabachnick and Fidell, 2013). It allowed to verify whether clusters’ 

composition was associated with performance improvement or not. We considered associations 

to be significant when the adjusted residual values were larger than |1.96| and |2.58|, which 

corresponds to a significance level of 0.05 and 0.01, respectively (Hair et al., 2006). 

The second clustering analysis utilized the implementation sequence of LM practices and I4.0 

technologies as clustering variables for the LA implementation sequence. This is partial 

complete heterogenous ranking data. To create complete ranking data for further analysis, 

whenever a practice or technology had its response empty (i.e. was not implemented), we 

purposefully assigned the value of ‘35’ to its implementation sequence, since we have in total 

35 practices/technologies and this would be the last possible number. There is no recommended 

procedure for clustering heterogenous ranking data. Our ranking data represent time which in 

turn can be represented as a geometrical distance. We therefore considered Ward’s hierarchical 

method that focus on the squared Euclidean distance to be appropriate for our data.  

Differences in the mean implementation levels of each one of the clusters of LA 

implementation were verified according to performance improvement levels (based on the 

performance improvement clusters identified previously). For that, we applied One-way 

ANOVAs, testing the null hypothesis that states that samples in all groups are drawn from 

populations with the same mean values. The ANOVA produces an F-statistic, which is the ratio 

of the variance calculated among the means to the variance within the samples. A higher ratio 
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therefore implies that the samples were drawn from populations with different mean values 

(Howell, 2012).  

 

4. Results and discussion 

4.1 Presentation of results – Performance Clustering 

Figure 1 depicts the dendogram for the clustering analysis based on the improvement level of 

operational performance; two clusters were identified. Then, using the k-means method and 

fixing k equals to two, clusters were rearranged (see Table 5), and the ANOVA results indicated 

that all five performance indicators presented significant differences in means (p-values < 

0.05). The 23 observations assigned to cluster 1 displayed lower mean values for all 

performance indicators, suggesting that these respondents perceived a lower level of 

performance improvement in their companies in the last three years. Hence, this cluster was 

labeled as ‘Low Performance Improvement’ (LPI). The remaining 38 respondents grouped in 

cluster 2 perceived significantly higher means, indicating that these companies had a higher 

improvement level of their performance. This cluster was consequently labeled as ‘High 

Performance Improvement’ (HPI). 

 

Figure 1 – Dendrogram of operational performance improvement clusters 

 

Table 5 – ANOVA between performance improvement variables of each cluster 

 

Table 6 shows the contingency table and chi-square results for all companies’ characteristics 

(i.e. company size, manufacturing strategy and ownership) according to the perceived 

performance improvement level of manufacturers. Frequencies indicated the number of 
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companies assigned to each cluster (LPI or HPI) that present certain characteristics; for 

example, there are 11 companies that adopt an engineered-to-order strategy within the LPI 

cluster. Adjusted residual values indicated that the effect of companies’ characteristics on the 

perceived improvement level is less pervasive than expected. In fact, only company size seems 

to be significantly associated (χ2 = 6.036; p-value < 0.05) with the improvement level in 

operational performance. In other words, larger manufacturers (≥ 500 employees) have 

perceived a more prominent performance improvement in the past few years, as these 

companies are significantly more frequent in HPI cluster than smaller ones (< 500 employees). 

No significant association was found between the other characteristics and performance 

improvement.  

 

Table 6 - Chi-square test among contextual variables according to operational performance improvement 

 

On the one hand, the identification of the influence of company size on operational 

performance has been evidenced by many studies (e.g. Yeung, 2008; Aras et al., 2010; Hui et 

al., 2013). However, indications and extension of this effect may vary (i.e. positive or negative) 

depending on the performance metric that is considered. Our results suggested that the 

improvement level of those five performance indicators is more likely to be higher when 

considering large-sized companies. According to Muscalu et al. (2013) and Schreck and 

Raithel (2018), although large companies usually present more complex organizational 

communication channels, their operational performance control and results dissemination 

among employees are generally more structured, allowing a more in-depth understanding and, 

hence, accurate perception of the variation of these indicators. This might explain the positive 

association between company size and the perceived performance improvement.  
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On the other hand, this result is somewhat convergent to the indications from Anand et al. 

(2009) and Singh and Singh (2014), which have argued that the effect of contextual variables 

on performance improvement might be less intense when companies have a structured and 

formal approach for continuous improvement. This suggests that the observed performance 

improvement is unlikely to be influenced by companies’ characteristics. Consequently, 

performance improvements might be better explained by the practices and technologies 

companies have been adopting over the years. Thus, understanding the sequence and level of 

implementation of LA may shed some light on the variation in performance among these 

companies. This will be discussed in Section 4.3 below.  

 

4.2 Presentation of results – Implementation Sequence Clustering 

Regarding the clustering analysis for the LM practices and I4.0 technologies, we initially 

identified three clusters of LA implementation, as shown in Figure 2. As aforementioned, 

whenever a practice and/or technology has not been implemented at all, respondents should 

not assign any value to such item in the second part of the questionnaire. This resulted in the 

implementation rate, which represented the percentage of respondents that claimed to 

implement that practice/technology at a certain moment within their organizations. The details 

of the second clustering analysis of the 35 practices and technologies are shown in Table 7. In 

total three clusters were identified as follows: 

 Cluster 1 (Start-up) was comprised by 10 practices and technologies that presented the 

lowest mean values for the implementation sequence order and the highest mean 

implementation rate (71.1%). This indicates that, in general, these practices are the first to 

be adopted in a LA implementation. It is worth noticing that all 10 are LM practices from 
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Shah and Ward’s (2003). This suggests that these LM practices establish the fundamental 

basis for a LA implementation; hence, this cluster was denoted as ‘Start-up’ practices.  

 Cluster 2 (In-transition) was composed by 5 I4.0 technologies and 6 LM practices, whose 

mean values for implementation sequence order varied from 15.0 to 21.4. The mean 

implementation rate of these 11 practices and technologies was 44.6% and their mean values 

for implementation sequence were considered intermediate. Practices (e.g. pull 

system/Kanban, self-directed teams and lot size reductions) and technologies (e.g. real-time 

data sharing with suppliers/customers and RFID tags at products) encompassed in this 

cluster present a slightly higher complexity when compared to the practices in the Start-up 

cluster. However, they are not cutting-edge practice/technologies in manufacturing 

environments. Thus, it becomes reasonable to expect that this cluster represents practices 

and technologies that support the transition of a manufacturer to a more advanced level of 

LA implementation, which led us to label this cluster as ‘In-transition’ 

practices/technologies.  

 Cluster 3 (Advanced) encompassed the remaining 5 LM practices and 9 I4.0 technologies, 

which had the highest mean values for the implementation sequence order (varying from 

24.4 to 33.7). Practices and technologies from this cluster also had the lowest mean 

implementation rate (31.9%), which corroborates the indication that these are typically 

adopted last in a LA implementation. A possible explanation is the high-complexity and the 

strict requirements necessary to implement those practices/technologies. Further, contrary 

to what was observed in previous clusters, this cluster is mainly comprised by I4.0 

technologies that specifically need more sophisticated infrastructure and labor skills to work 

appropriately, such as cloud computing system and augmented reality. Based on these 

arguments, this cluster was denoted as ‘Advanced’ practices/technologies. 
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Figure 2 – Dendrogram of practices/technologies based on implementation sequence order 

 

Table 7 – Clusters of LA practices/technologies based on implementation sequence 

 

Finally, Table 8 gives the results from the One-way ANOVA used to verify the differences in 

the mean implementation levels of each of the three clusters of LA implementation according 

to performance improvement levels (LPI and HPI). Contrarily to companies’ characteristics, 

performance improvement appears to be closely related to LA implementation level. For 

instance, when considering the Start-up practices/technologies, the implementation level seems 

to be positively associated with performance improvement (F-value = 2.694; p-value < 0.05). 

In other words, companies that have been adopting these practices/technologies more 

extensively are more likely to perceive larger leaps in their operational performance over the 

years. As Start-up practices/technologies are usually implemented first and mainly comprised 

by LM practices, this result reinforces that the establishment of a robust LA basis helps to 

ensure relevant increments in performance, even when considering a medium-term perspective 

(i.e. three years). Such outcome converges to indications from Kolberg et al. (2017) and 

Tortorella et al. (2020b), which have emphasized that LM implementation provides a solid 

process and behavioral foundation on which I4.0 technologies may build and potentialize 

results.  

A similar trend was observed with respect to In-transition practices/technologies, as its 

implementation level appears to be positively related to companies’ performance improvement 

level (F-value = 3.599; p-value < 0.05). Practices and technologies bundled in this LA set may 

face additional challenges. According to Negrão et al. (2020), one of the most critical moments 

for a lean implementation occurs after the “honeymoon” period, which is typical of the 

beginner stage. After the short-term wins, companies need to perform fundamental changes in 
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their sociotechnical systems so that they keep evolving and improving their processes 

(Narayanamurthy and Gurumurthy, 2016; Tortorella et al., 2017). In other words, the 

successful implementation of In-transition practices/technologies usually goes beyond the 

technicalities, being affected by the way people behave and internalize the required 

sociocultural changes (Cassell et al., 2006; Bortolotti et al., 2015b). Nevertheless, our results 

evidenced that the extensive adoption of these In-transition practices/technologies may lead to 

a superior performance, underpinning the assumption that they may positively bridge the 

transition of a manufacturer from a beginner to an advanced LA transformation.  

In opposition, Advanced practices/technologies did not show a relationship with the same 

significance level as the previous ones. No association was found between their implementation 

level and the variation in operational performance. 

 

Table 8 – One-way ANOVA results for mean implementation levels of practices/technologies according to 

operational performance improvement 

 

4.3 Discussion of results: schematic pathway development 

Our results raised interesting insights that deserve further discussion. First, the fact that Start-

up and In-transition practices/technologies are indeed associated with higher performing 

companies empirically confirms that LA implementation does have a positive impact on 

operational outcomes. This finding consistently converges to Tortorella and Fetterman’s 

(2018) and Rossini et al.’s (2019) works, which have verified the effect of the integration 

between I4.0 and LM on companies’ performance. However, it adds to these studies as we 

suggested a preferential implementation sequence (i.e. pathway) for LA, which provides 

clearer guidelines for managers and academicians with respect to how to successfully adopt 

these practices and technologies.  
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Second, it was observed that, as LA implementation advances, companies tend to move from 

an exclusively LM approach to an I4.0 technologies orientation. This means that most high-

performing companies begin their LA implementation based on a solid understanding and 

adoption of LM practices. To continue progressing on their continuous improvement approach, 

these manufacturers start integrating I4.0 technologies of medium complexity, such as ‘RFID 

tags at products’, ‘sensors for monitoring the production process’ and ‘machines with digital 

interfaces and sensors’, observing consistent and positive enhancements on their performance 

level. Nevertheless, this integration does not exempt the need to refine LM comprehension 

since they keep adopting higher-complexity practices, such as ‘pull system/kanban’ and ‘self-

directed work teams’. This transient LA stage is very much aligned with the exploitation phase 

suggested by Netland and Ferdows (2016), in which companies are realizing the benefits from 

integrating I4.0 into LM. In-transition practices/technologies are expected to support further 

developments for a full LA implementation. The final stage for LA implementation 

comprehends the adoption of Advanced practices/technologies. Contrary to Start-up, here 

companies may spend more efforts in adopting I4.0 technologies, since LM practices were 

substantially addressed in previous stages. In this sense, Advanced LA implementation 

concerns the adoption of highly complex and more infrastructure-demanding technologies (e.g. 

cloud computing system, additive manufacturing, rapid prototyping and 3D printing) that are 

likely to aid LM practices that emphasize the improvement of flow within manufacturers (e.g. 

cellular manufacturing, JIT/continuous flow production and quick changeover techniques). 

According to Womack and Jones (1997), an efficient and defect-free flow of value is a key 

aspect of a lean system and usually the ultimate goal of an organization, which is reasonably 

supported by the adoption of Advanced practices and technologies. However, these practices 

and technologies did not yield the same level of performance improvement as observed in the 

first two stages. 
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In fact, another insightful finding was the absence of a statistically significant relationship 

between the adoption of Advanced practices/technologies and performance improvement. A 

possible explanation is the law of diminishing returns, i.e. as improvement moves a 

manufacturing plant nearer and nearer to its operating or asset frontier more and more resources 

must be expended in order to achieve each additional increment of benefit (Schmenner and 

Swink, 1998). While new technology shifts the asset frontier, there is a final frontier given by 

the current technological process. This highlights that it is important for managers to be aware 

of diminishing performance returns when moving along our pathway to a high-performing LA 

implementation schematized in Figure 3.   

  

Figure 3 – Schematic representation of the pathway to a high-performing LA implementation 

 

5. Conclusions 

This study aimed at investigating pathways to implement a high-performing LA. Our findings 

have relevant implications for both theory and practice, which are detailed as follows. 

With regards to theory, the identification of three sets of LA practices/technologies that should 

be subsequently implemented suggests an interdependence and precedence relationship 

between them. This time dimension is typically neglected in the literature which tends to 

observe the implementation level of practices and technologies at one moment in time. Such 

outcome indicates the existence of stages through which companies need to pass so that a full 

LA implementation is achieved. Furthermore, our findings highlight that much still needs to be 

unveiled, especially in terms of the impact of LA on performance improvement as companies 

achieve more advanced levels of implementation. 



24 
 

In practical terms, most studies that investigate LA (or the integration of novel technologies 

into LM) approach the topic without recommending a clear implementation sequence of 

practices and technologies. Although most of these studies have suggested a positive 

correlation between LM and I4.0 towards a successful LA implementation, to the best of our 

knowledge none of them have indicated such pathway. In this sense, managers and practitioners 

from companies undergoing a LA implementation may find here guidelines that can support 

them to prioritize efforts and more objectively focus on the proper set of practices and 

technologies. This is particularly valid when companies realize their actual readiness level and 

the next steps to continuously improve their products, processes and services are not quite 

evident. Meanwhile, it is important that managers are aware that there will be diminishing 

performance returns as the LA transition progresses and the company approaches the final asset 

frontier given by current technological possibilities. 

It is worth mentioning that there are also some limitations to this study. The first comprises our 

sampling process. Our indications are limited to manufacturers located in Brazil and India. 

However, LA has been implemented in different industry sectors worldwide and additional 

insights could probably be gained if sample size was increased and the sample diversified. This 

would also allow the utilization of more sophisticated statistical techniques, which could lead 

to complementary findings. Another key limitation concerns the sets of LA 

practices/technologies. The actual validation of these sets still needs further empirical and 

experimental analysis, which could be extensively carried out by future studies. Additionally, 

companies might implement other practices/technologies that were not contemplated in our 

study, which could potentially raise additional insights. These issues could also motivate future 

studies on the topic. Finally, the transition throughout the proposed LA pathway is subtle and 

not explicit between sets of practices/technologies (i.e. stages). Therefore, methods that help 
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companies assess their readiness level would complement our study, avoiding jumping ahead 

to stages for which companies are not yet mature. 

 

References 

Åhlström, P. (1998). Sequences in the implementation of lean production. European Management Journal, 16(3), 

327-334. 

Åhlström, P., & Karlsson, C. (2000). Sequences of manufacturing improvement initiatives: the case of 

delayering. International Journal of Operations & Production Management, 20(11), 1259-1277. 

Anand, G., Ward, P., Tatikonda, M., & Schilling, D. (2009). Dynamic capabilities through continuous 

improvement infrastructure. Journal of Operations Management, 27(6), 444-461. 

Aras, G., Aybars, A., & Kutlu, O. (2010). Managing corporate performance. International Journal of Productivity 

and Performance Management, 59(3), 229-254. 

Armstrong, J., & Overton, S. (1977). Estimating nonresponse bias in mail surveys. Journal of Marketing 

Research, 14(3), 396-402. 

Bortolotti, T., Boscari, S., & Danese, P. (2015b). Successful lean implementation: Organizational culture and soft 

lean practices. International Journal of Production Economics, 160, 182-201. 

Bortolotti, T., Danese, P., Flynn, B., & Romano, P. (2015a). Leveraging fitness and lean bundles to build the 

cumulative performance sand cone model. International Journal of Production Economics, 162, 227-241. 

Browning, T., & Heath, R. (2009). Reconceptualizing the effects of lean on production costs with evidence from 

the F-22 program. Journal of Operations Management, 27(1), 23-44. 

Cassell, C., Worley, J., & Doolen, T. (2006). The role of communication and management support in a lean 

manufacturing implementation. Management Decision, 44(2), 228-245. 

Cezarino, L., Liboni, L., Stefanelli, N., Oliveira, B., & Stocco, L. (2019). Diving into emerging economies 

bottleneck: Industry 4.0 and implications for circular economy. Management Decision, (forthcoming). 

Chavez, R., Gimenez, C., Fynes, B., Wiengarten, F., & Yu, W. (2013). Internal lean practices and operational 

performance. International Journal of Operations & Production Management, 33(5), 562-588. 



26 
 

Dahlgaard‐Park, S., & Pettersen, J. (2009). Defining lean production: some conceptual and practical issues. The 

TQM Journal, 21(2), 127-142. 

Dalenogare, L., Benitez, G., Ayala, N., & Frank, A. (2018). The expected contribution of Industry 4.0 technologies 

for industrial performance. International Journal of Production Economics, 204, 383-394. 

Dombrowski, U., Richter, T., & Krenkel, P. (2017). Interdependencies of Industrie 4.0 & Lean production 

systems: A use cases analysis. Procedia Manufacturing, 11, 1061-1068. 

Erol, S., Schumacher, A., & Sihn, W. (2016). Strategic guidance towards Industry 4.0–a three-stage process 

model. In International Conference on Competitive Manufacturing (Vol. 9, No. 1, pp. 495-501), January. 

Finstad, K. (2010). Response interpolation and scale sensitivity: Evidence against 5-point scales. Journal of 

Usability Studies, 5(3), 104-110.  

Frank, A., Dalenogare, L., & Ayala, N. (2019). Industry 4.0 technologies: Implementation patterns in 

manufacturing companies. International Journal of Production Economics, 210, 15-26. 

Frank, A., Mendes, G., Ayala, N., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital 

transformation of product firms: A business model innovation perspective. Technological Forecasting and Social 

Change, 141, 341-351. 

Ganzarain, J., & Errasti, N. (2016). Three stage maturity model in SME's toward industry 4.0. Journal of Industrial 

Engineering and Management, 9(5), 1119-1128. 

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal 

of Manufacturing Technology Management, 29(6), 910-936. 

Goodwin, C. (2005). Research in Psychology: methods and design. John Wiley & Sons, Inc., New York. 

Gordon, A. (1999). Classification. Chapman and Hall-CRC, London. 

Hair, J., Tatham, R., Anderson, R., & Black, W. (2006). Multivariate data analysis, Pearson Prentice Hall, Upper 

Saddle River, NJ. 

Hedelind, M., & Jackson, M. (2011). How to improve the use of industrial robots in lean manufacturing 

systems. Journal of Manufacturing Technology Management, 22(7), 891-905. 

Holt, P. (2019). The Simplicity of Lean: Defeating Complexity, Delivering Excellence. Vakmedianet 

Management B.V. 



27 
 

Howell, D. (2012). Statistical methods for psychology. Cengage Learning, London. 

Hui, H., Wan Mohamed Radzi, C., Jenatabadi, H., Abu Kasim, F., & Radu, S. (2013). The impact of firm age and 

size on the relationship among organizational innovation, learning, and performance: A moderation analysis in 

Asian food manufacturing companies. Interdisciplinary Journal of Contemporary Research in Business, 5(3). 

Hüttmeir, A., De Treville, S., Van Ackere, A., Monnier, L., & Prenninger, J. (2009). Trading off between heijunka 

and just-in-sequence. International Journal of Production Economics, 118(2), 501-507. 

Kolberg, D., Knobloch, J., & Zühlke, D. (2017). Towards a lean automation interface for 

workstations. International Journal of Production Research, 55(10), 2845-2856. 

Lasi, H., Fettke, P., Kemper, H., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems 

Engineering, 6(4), 239-242. 

Losonci, D., Demeter, K., & Jenei, I. (2011). Factors influencing employee perceptions in lean 

transformations. International Journal of Production Economics, 131(1), 30-43. 

Marodin, G., Frank, A., Tortorella, G., & Saurin, T. (2016). Contextual factors and lean production 

implementation in the Brazilian automotive supply chain. Supply Chain Management: An International Journal, 

21(4), 417-432. 

Meyers, L., Gamst, G., & Guarino, A. (2006). Applied Multivariate Research, Sage Publications, Thousand Oaks. 

Mishra, D., Roy, R., Dutta, S., Pal, S., & Chakravarty, D. (2018). A review on sensor based monitoring and control 

of friction stir welding process and a roadmap to Industry 4.0. Journal of Manufacturing Processes, 36, 373-397. 

Montgomery, D. (2013). Design and analysis of experiments. Wiley, New York. 

Muscalu, E., Todericiu, R., & Fraticiu, L. (2013). Efficient organizational communication-A key to success. 

Studies in Business and Economics, 8(2), 74-78. 

Narayanamurthy, G., & Gurumurthy, A. (2016). Leanness assessment: a literature review. International Journal 

of Operations & Production Management, 36(10), 1115-1160. 

Narayanamurthy, G., & Gurumurthy, A. (2016). Systemic leanness - An index for facilitating continuous 

improvement of lean implementation. Journal of Manufacturing Technology Management, 27(8), 1014-1053. 

Narayanamurthy, G., Gurumurthy, A., & Moser, R. (2018). “8A” framework for value stream selection–an 

empirical case study. Journal of Organizational Change Management, 31(5), 1001-1026. 



28 
 

Negrão, L., Lopes de Sousa Jabbour, A., Latan, H., Godinho Filho, M., Chiappetta Jabbour, C., & Ganga, G. 

(2020). Lean manufacturing and business performance: testing the S-curve theory. Production Planning & 

Control, 31(10), 771-785. 

Netland, T., & Ferdows, K. (2016). The S‐curve effect of lean implementation. Production and Operations 

Management, 25(6), 1106-1120. 

Pagliosa, M., Tortorella, G., & Ferreira, J. (2019). Industry 4.0 and Lean Manufacturing: A systematic literature 

review and future research directions. Journal of Manufacturing Technology Management (forthcoming). 

Pessl, E., Sorko, S., & Mayer, B. (2017). Roadmap Industry 4.0–implementation guideline for enterprises. 

International Journal of Science, Technology and Society, 5(6), 193-202. 

Rencher, A. (2002). Methods of multivariate analysis, Wiley-Interscience, New Jersey. 

Rossini, M., Costa, F., Tortorella, G., & Portioli-Staudacher, A. (2019). The interrelation between Industry 4.0 

and lean production: an empirical study on European manufacturers. The International Journal of Advanced 

Manufacturing Technology, 102(9-12), 3963-3976. 

Samaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0—A technological 

readiness perspective. In 2017 IEEE International Conference on Industrial Engineering and Engineering 

Management (IEEM) (pp. 529-533). December 14-17th. 

Sanders, A., Elangeswaran, C., & Wulfsberg, J. P. (2016). Industry 4.0 implies lean manufacturing: Research 

activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and 

Management (JIEM), 9(3), 811-833. 

Santos, C., Mehrsai, A., Barros, A., Araújo, M., & Ares, E. (2017). Towards Industry 4.0: an overview of 

European strategic roadmaps. Procedia Manufacturing, 13, 972-979. 

Schreck, P., & Raithel, S. (2018). Corporate social performance, firm size, and organizational visibility: Distinct 

and joint effects on voluntary sustainability reporting. Business & Society, 57(4), 742-778. 

Shah, R., & Ward, P. (2003). Lean manufacturing: context, practice bundles, and performance. Journal of 

Operations Management, 21(2), 129-149. 



29 
 

Singh, J., & Singh, H. (2014). Performance enhancement of a manufacturing industry by using continuous 

improvement strategies–a case study. International Journal of Productivity and Quality Management, 14(1), 36-

65. 

Stock, T., Obenaus, M., Kunz, S., & Kohl, H. (2018). Industry 4.0 as enabler for a sustainable development: A 

qualitative assessment of its ecological and social potential. Process Safety and Environmental Protection, 118, 

254-267. 

Stone, K. (2012). Four decades of lean: a systematic literature review. International Journal of Lean Six Sigma, 

3(2), 112-132.  

Tabachnick, B., & Fidell, L. (2013). Using multivariate statistics, Pearson, Upper Saddle River, NJ. 

Tortorella, G., & Fettermann, D. (2018). Implementation of Industry 4.0 and lean production in Brazilian 

manufacturing companies. International Journal of Production Research, 56(8), 2975-2987. 

Tortorella, G., Fettermann, D., Anzanello, M., & Sawhney, R. (2017). Lean manufacturing implementation, 

context and behaviors of multi-level leadership: A mixed-methods exploratory research. Journal of 

Manufacturing Technology Management, 28(7), 867-891. 

Tortorella, G. L., Giglio, R., & van Dun, D. (2019a). Industry 4.0 adoption as a moderator of the impact of lean 

production practices on operational performance improvement. International journal of operations & production 

management. 

Tortorella, G., Rossini, M., Costa, F., Portioli Staudacher, A., & Sawhney, R. (2019b). A comparison on Industry 

4.0 and Lean Production between manufacturers from emerging and developed economies. Total Quality 

Management & Business Excellence, 1-22. 

Tortorella, G., Miorando, R., Caiado, R., Nascimento, D., & Portioli Staudacher, A. (2018). The mediating effect 

of employees’ involvement on the relationship between Industry 4.0 and operational performance improvement. 

Total Quality Management & Business Excellence, (forthcoming). 

Tortorella, G., Sawhney, R., Jurburg, D., de Paula, I. C., Tlapa, D., & Thurer, M. (2020b). Towards the proposition 

of a Lean Automation framework. Journal of Manufacturing Technology Management, (forthcoming). 

Tortorella, G., Vergara, A., Garza-Reyes, J., & Sawhney, R. (2020a). Organizational learning paths based upon 

industry 4.0 adoption: An empirical study with Brazilian manufacturers. International Journal of Production 

Economics, 219, 284-294. 



30 
 

Womack, J., & Jones, D. (1997). Lean thinking—banish waste and create wealth in your corporation. Journal of 

the Operational Research Society, 48(11), 1148-1148. 

Womack, J., Jones, D., & Roos, D. (2007). The machine that changed the world: The story of lean production-

Toyota's secret weapon in the global car wars that is now revolutionizing world industry. Simon and Schuster, 

New York. 

Yeung, A. (2008). Strategic supply management, quality initiatives, and organizational performance. Journal of 

Operations Management, 26(4), 490-502. 
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Table 1 – Literature on implementation sequence of LM practices 

Reference Research questions Methodology Findings 

Åhlström (1998) 

Whether to implement 
improvement initiatives (i.e. 

elimination of waste, zero 

defects, pull scheduling, 
multifunctional teams, 

delayering, team leaders, 

vertical information systems, 
and continuous improvement) 

in parallel or sequentially? 

Longitudinal case study of a 

Sweden-based company by 

spending 130 days over a period 
of two and a half years. 

Zero defects and delayering are starting 

principles - Requires management effort and 

resources early on in the implementation. 
Elimination of waste, multifunctional teams, 

and pull scheduling are core principles - 

Requires management effort and resources 
throughout implementation. 

Vertical information systems and team leaders 

are supporting principles - Requires 
management effort and resources throughout 

the whole implementation, but less than the 

core principles. 
Continuous improvement principle after the 

base has been laid - Management devoted 

effort and resources  
late during implementation. 

Åhlström and 

Karlsson (2000) 

When during manufacturing 
improvement a delayering of 

the organization should take 

place? 

Longitudinal case study started 

in February 1993 and ended in 
August 1995. Data were 

collected through three ways: 

participant observation, 
interviews and documents. 

Management devoted effort and resources to 

delayering mostly early in the adoption 
process. 

Browning and 

Heath (2009) 

How novelty, complexity, 

instability, and buffering 

affect the relationship between 
lean implementation and 

production costs? 

Case/field study of Lockheed 

Martin’s production system for 
the F22. 

Develop a revised framework that 

reconceptualizes the effect of lean on 
production costs and use it to develop 

propositions about how the timing, scale, and 

extent of lean implementation can regulate the 
benefits of lean. 

Hüttmeir et al. 

(2009) 

Is it better for a manufacturing 

plant to use heijunka to 
maximize its leanness, or to 

use JIS to maximize its 

responsiveness? 

Stylized simulation model with 
a case study of a BMW engine 

plant. 

A hybrid approach where heijunka is used to 

smooth out the most extreme production 

values and JIS is used for the remainder of 
production carried out. 

Losonci et al. 

(2011) 

How intrinsic factors 

(commitment, belief) and 

external factors (lean work 
method, communication) 

affect the success of lean 

implementation from worker’s 

point of view? 

Combination of case study and 

survey methodologies 

Intrinsic factors (commitment, belief) and 

external factors (lean work 

method, communication) 
have direct impact on workers’ perceptions of 

lean success. The effects are contingent on the 

scope and focus of changes and is influenced 

by process characteristics. 

Chavez et al. 

(2013) 

To what extent do internal lean 

practices impact on multiple 
operational performance? 

To what extent is the 

relationship between internal 
lean practices and multiple 

operational performance 

contingent upon IC? 

Regression analysis on 

empirical data gathered from 

228 manufacturing companies 
in the Republic of Ireland. 

 

Internal lean practices are positively related to 
quality, delivery, flexibility and cost. Industry 

clockspeed moderates this relationship except 

with cost. 

Bortolotti et al. 

(2015) 

Which lean practices support 
cumulative performance and is 

there a particular sequence of 

practices that will support it? 

Structural equation modeling on 
data gathered from 317 plants in 

three industries and ten 

countries. 

Fitness bundles establish the foundation for 

layering the development of JIT and TQM 
bundles that are more specific and targeted. 

While adapting TQM and JIT bundles to 

firm’s own context, it has to further develop 
its capabilities associated with fitness bundles. 

Narayanamurthy 

and Gurumurthy 

(2016) 

How to conduct systemic 

leanness assessment by 
incorporating the interactions 

between lean elements for 

achieving continuous 
improvement of lean 

implementation? 

Graph-theoretic approach. 

A scale has been developed to assist firms in 

assessing and comparing their systemic 

leanness index. 

Narayanamurthy 
et al. (2018) 

How to properly select the 

value stream on which LM 

should be implemented first? 

The 8A framework is proposed 
by reviewing the literature on 

lean implementation case 

studies. Single case study 
methodology has been adopted 

to validate the application of 8A 

framework. A multi-criteria 
decision-making approach has 

been employed for choosing the 

value stream. 
 

Utility of the proposed 8A framework for 

value stream selection was confirmed through 
its successful application in an educational 

institute. Qualitative cross-validation and 

sensitivity analysis also confirmed the 
robustness of the value stream selection made 

using the 8A framework. 
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Table 2 – Literature on implementation sequence of I4.0 technologies 

Reference Research questions Methodology Findings 

Erol et al. (2016) 

How to align companies’ 

strategy with the challenges 

imposed by I4.0? 

Framework proposition based 

on workshop sessions with 

experts. 

Results show a strong need for guided 

support in developing a company-specific 

Industry 4.0 vision and roadmap. 

Ganzarain and 
Errasti (2016) 

How to address the challenges 
regarding the concept of I4.0 and 

the diversification methodology 

based on the vision and strategy 
of the company? 

Involves industry within the 

pilot program; from the 

diversification and capacity 
assessment analysis of the 

company`s profile, skills and 

technologies that dominates. 

The application of maturity models to the 

I4.0 may help organizations to integrate 

this methodology into their culture. Results 
show a real need for guided support in 

developing a company-specific I4.0 vision 

and specific project planning. 

Santos et al. (2017) 
How do key I4.0 technologies 
and concepts have been 

addressed over time? 

Review of some major 

European industrial 

guidelines, roadmaps and 
scientific literature. 

The move towards I4.0 has presented new 

and reconverted some relevant concepts; 

which has partially been either substituted 
or improved by some new technologies. 

Pessl et al. (2017) 

How does a company’s maturity 
help to identify their own targets 

to develop a specific I4.0 

implementation plan? 

A detailed theoretical and 
practical perspective is given 

for the procedure model for 

the field of action human. 

Results for an Austrian company are 

presented showing that organizational 
changes within this field are still a 

bottom up driven process instead of a 

management indicated holistic change 
process. 

Mishra et al. (2018) 

How does I4.0 help to exchange 

data efficiently for a sustainable 
growth in the industrial sector? 

A literature review combined 

with a case study have been 
conducted. 

A roadmap towards achieving the goals of 

I4.0 has been proposed. 

Ghobakhloo (2018) 

What are I4.0’s key design 

principles and technology 
trends? 

Systematic and content-

centric review of literature 
based on a six-stage approach 

to identify key design 

principles and technology 
trends of I4.0. 

I4.0 is an integrative system of value 

creation that is comprised of 12 design 

principles and 14 technology trends. I4.0 is 
no longer a hype and manufacturers need 

to get on board sooner rather than later. 

Frank et al. (2019) 

What are the current I4.0 

technologies adoption patterns in 

manufacturing companies? 

A survey in 92 manufacturers 

was conducted to study the 
implementation of these 

technologies. 

I4.0 is related to a systemic adoption of the 

front-end technologies, in which Smart 
Manufacturing plays a central role. 

Implementation of base technologies is 

challenging companies, since big data and 
analytics are still low implemented in the 

sample studied. 
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Table 3 – Literature on the impact of LA on performance 

Reference Research questions Methodology Findings 

Hedelind and 

Jackson 
(2011) 

How industrial robotics fits into 

LM systems? 

Case study with interviews, 

observations and data 

collection on performance 
measures and historical 

production data. 

Differences between how Swedish and Japanese 

companies work with industrial robotics are 

highlighted. Create a guideline for how to design 
industrial robotic work cells that can easily be 

integrated into LM systems. 

Sanders et al. 

(2016) 

How LM can be implemented 

through the technologies of I4.0? 
Literature review. 

Bridges the gap between I4.0 and LM by 

identifying exactly which aspects of I4.0 
contribute towards respective dimensions of LM. 

Dombrowski 
et al. (2017) 

How are I4.0 technologies and 

principles of LM systems 

interdependent on each other? 

260 I4.0 use cases, 
presented on the “Platform 

I4.0” have been analyzed 

regarding the application of 
I4.0 elements. 

Several I4.0 elements have been structured into 

technologies, systems and process related 
characteristics. Large interdependence between 

I4.0 technologies and lean practices were found 

for avoidance of waste and cloud computing, zero 
defect and big data, visualization and cloud 

computing. 

Kolberg et al. 

(2017) 

What is the ongoing work towards 

a common, unified communication 

interface to digitize LM methods 

using cyber physical systems? 

Review of 41 methods of 
LM and a demonstration of 

Kanban method to evaluate 

the feasibility of unified 
communication interface. 

Based on the model-view-controller-pattern, an 

architecture for the cyber-physical systems to 
loosely couple workstations to vendor-independent 

third-party solutions has been introduced. This is 

expected to lower the integration efforts and 
thereby assist in transitioning to lean automation 

solutions. 

Tortorella 
and 

Fettermann 

(2018) 

What is the relationship between 
LM practices and the 

implementation of I4.0 in Brazilian 

manufacturing companies? 

Multivariate analysis on 

data from a survey carried 
out with 110 companies. 

LM practices are positively associated with I4.0 

technologies and their concurrent implementation 
leads to larger performance improvements. 

Tortorella et 

al. (2019a) 

How does I4.0 adoption (Process-

related & product/service-related) 

moderate the relationship between 
LM practices (pull, flow and low 

setup) and operational performance 

improvement (safety, delivery, 
quality, productivity and inventory) 

in a developing economy context? 

Multivariate data analyses 

including ordinary least 
square hierarchical linear 

regression models on data 

gathered from 147 
manufacturing companies. 

Process-related technologies negatively moderate 

the effect of low setup practices on performance, 

whereas product/service-related technologies 
positively moderate the effect of flow practices on 

performance. 

Rossini et al. 

(2019) 

What is the interrelation between 

the adoption of I4.0 technologies 
and the implementation of lean 

practices on the improvement level 

of European manufacturers’ 

operational performance? 

Multivariate analysis on 
data from a survey carried 

out with 108 European 

manufacturers. 

Higher adoption levels of I4.0 may be easier to 

achieve when lean practices are extensively 
implemented in the company. When continuous 

improvement practices are not established, 

companies’ readiness for adopting novel 

technologies may be lower. 

 

 

 

Table 4 – Sample characteristics (n = 61) 

Company’s ownership Manufacturing sector 

National 32 52.5% Food 20 32.8% 

Foreigner 29 47.5% Pharmaceutical 10 16.4% 

Company size Metallurgy 7 11.5% 

< 500 employees 25 41.0% Equipment 6 9.8% 

≥ 500 employees 36 59.0% Plastic 4 6.6% 

Respondent’s role Automotive 3 4.9% 

Manager or Director 8 13.1% Packaging 2 3.3% 

Supervisor or Coordinator 18 29.5% Furniture 2 3.3% 

Engineer or Analyst 35 57.4% Others 7 11.4% 

Country Manufacturing strategy 

Brazil 36 59.0% Made-to-stock 15 24.6% 

India 25 41.0% Made-to-order 23 37.7% 

   Engineered-to-order 23 37.7% 
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Table 5 – ANOVA between performance improvement variables of each cluster 

Performance indicators 
LPI (n = 23) HPI (n = 38) ANOVA 

F-value Mean Std. Dev. Mean Std. Dev. 

Safety (accidents) 4.70  6.55  29.67** 
Delivery service level 4.39  6.29  64.40** 

Quality (scrap and rework) 4.65  6.21  32.31** 

Productivity 4.52  6.42  36.74** 
Inventory level 4.17  5.39  6.83* 

Note: * p-value < 0.05; ** p-value < 0.01. 

 

 

 

 

Table 6 - Chi-square test among contextual variables according to operational performance improvement 

Contextual variables 

LPI (n = 23) HPI (n = 38) Total 

frequen

cy 

Pearson chi-
square Frequency 

Adjusted 

residual 
Frequency 

Adjusted 

residual 

Company size 

< 500 employees 
1

4 
56.0% 

2.5* 
11 44.0% -2.5* 25 

 

≥ 500 employees 9 25.0% -2.5* 27 75.0% 2.5* 36 6.036** 

Total frequency 
2

3 
37.7% 

 
38 62.3%  61 

 

Manufacturin
g strategy 

Made-to-stock 4 26.7% -1.0 11 73.3% 1.0 15 

1.865 

Made-to-order 8 34.8% -0.4 15 65.2% 0.4 23 

Engineered-to-order 
1
1 

47.8% 
1.3 

12 52.2% -1.3 23 

Total frequency 
2

3 
37.7% 

 
38 62.3%  61 

Ownership 

National 
1
0 

31.3% 
-1.1 

22 68.8% 1.1 32 

1.194 Foreigner 
1

3 
44.8% 

1.1 
16 55.2% -1.1 29 

Total frequency 
2
3 

37.7% 
 

38 62.3%  61 

Note: * significant at 5%. 
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Table 7 – Clusters of LA practices/technologies based on implementation sequence 

Cluster Practices/Technologies 
Implementation 

ratea 

Mean 

implementation 

sequence order 

Mean 

implementation 

levelb 

Denominationc 

1  

(n1 = 10) 

Planning and scheduling strategies 86.9% 3.0 1.60 (0.79) 

Start-up  

(71.1%) 

Preventive maintenance 77.0% 4.6 1.68 (0.47) 

Quality management programs 68.9% 6.8 1.91 (0.94) 
Safety improvement programs 65.6% 8.4 1.76 (1.02) 

Continuous improvement programs 72.1% 9.4 1.68 (0.68) 

Process capability measurement 68.9% 10.6 1.56 (0.62) 
New process equipment/technologies 65.6% 10.9 1.70 (1.09) 

Cross-functional work force 59.0% 11.4 1.79 (0.98) 

Cycle time reductions 70.5% 12.7 1.63 (0.64) 
Bottleneck removal (production smoothing) 77.0% 13.9 1.63 (0.85) 

2 

(n2 = 11) 

Pull system/Kanban 37.7% 15.0 1.56 (0.56) 

In-transition  

(44.6%) 

Focused factory production 39.3% 15.2 1.80 (0.41) 

Self-directed work teams 44.3% 16.4 1.42 (0.50) 

Lot size reductions 42.6% 17.2 1.41 (0.50) 

Real-time data sharing with suppliers/customers 42.6% 18.2 1.35 (0.49) 

RFID tags at products 34.4% 19.1 1.59 (0.50) 

Highly Automated Machines 41.0% 19.5 1.69 (0.47) 

Maintenance optimization 50.8% 19.7 1.41 (0.64) 

Total quality management 54.1% 19.9 1.53 (0.65) 

Sensors for monitoring the production process 49.2% 20.0 1.26 (0.76) 

Machines with digital interfaces and sensors 54.1% 21.4 1.28 (0.68) 

3  

(n3 = 14) 

Additive manufacturing, rapid prototyping, 3D printing 21.3% 24.4 0.96 (0.64) 

Advanced  

(31.9%) 

Augmented reality 19.7% 25.2 0.83 (0.71) 

Artificial intelligence and machine learning algorithms 19.7% 26.0 0.70 (0.72) 

Robotic stations on automated production line 23.0% 26.9 0.90 (0.79) 

Reengineered production process 27.9% 27.7 1.14 (0.74) 

Autonomous production processes (MES, SCADA, etc.) 34.4% 28.7 1.03 (0.86) 

Big Data 34.4% 29.2 1.13 (0.72) 

Competitive benchmarking 39.3% 29.6 1.52 (0.69) 

Internet of Things (IoT) 27.9% 30.5 1.04 (0.69) 

Cellular manufacturing 26.2% 30.7 0.96 (0.76) 

JIT/continuous flow production 39.3% 31.6 1.13 (0.78) 

Quick changeover techniques 47.5% 32.3 1.39 (0.69) 

Cloud computing system 45.9% 33.2 1.29 (0.77) 

Integrated engineering systems (CAD, CAM, etc.) 39.3% 33.7 1.09 (0.88) 

Notes: a Rate calculated out of a sample of 61 respondents. 
b Numbers within parentheses represent the standard deviation of the implementation level of each practice/technology.  
c Numbers within parentheses represent the mean implementation rate of practices and technologies of the cluster. 

 

 

Table 8 – One-way ANOVA results for mean implementation levels of practices/technologies according to 

operational performance improvement 

Practices/  
technologies 

LPI (n = 23) HPI (n = 38) 

Mean 

implementation 
level 

Std. 

dev. 

95% conf. interval Mean 

implementatio
n level 

Std. 

dev. 

95% conf. interval 
ANOVA 

F-value 
Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

Start-up (n = 10) 1.13 0.86 0.75 1.50 1.42 0.52 1.25 1.59 2.694* 

In-transition (n = 11) 0.75 0.99 0.33 1.18 1.20 0.83 0.93 1.48 3.599* 

Advanced (n = 14) 0.77 1.12 0.29 1.26 1.16 0.92 0.85 1.46 2.098 

Note: * p-value < 0.05. 
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Figure 1 – Dendrogram of operational performance improvement clusters 

 

 

Figure 2 – Dendrogram of practices/technologies based on implementation sequence order 

 

 

Cluster 1 Cluster 2 

Cluster 3 Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 
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Figure 3 – Schematic representation of the pathway to a high-performing LA implementation   
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Appendix – Questionnaire measures  
Industry 4.0 technologies (Tortorella and Fettermann, 2018; Rossini et al., 2019) Lean manufacturing practices (Shah and Ward, 2003) 

Robotic stations on automated production line Bottleneck removal (production smoothing) 

Highly Automated Machines  Cellular manufacturing  

RFID tags at products Competitive benchmarking 

Sensors for monitoring the production process Continuous improvement programs 

Machines with digital interfaces and sensors Cross-functional work force 

Collaboration with suppliers/customers through real-time data sharing Cycle time reductions  

Autonomous production processes (MES, SCADA etc.) Focused factory production 

Artificial intelligence and machine learning algorithms JIT/continuous flow production 

Integrated engineering systems (CAD, CAM etc.) Lot size reductions 

Additive manufacturing, rapid prototyping or 3D printing Maintenance optimization 

Augmented reality, 3D etc. New process equipment/technologies 

Big data Planning and scheduling strategies 

Cloud computing system Preventive maintenance 

Internet of Things (IoT) Process capability measurement 

Operational performance improvement (Tortorella et al., 2019) Pull system/kanban 

Safety (work accidents) Quality management programs 

Delivery service level Quick changeover techniques 

Quality (scrap and rework) Reengineered production process 

Productivity Safety improvement programs 

Inventory level Self-directed work teams 

 Total quality management 

 


