Large genetic panel analysis of British and French childhood-onset lupus cohorts

Alexandre Belot, MD^{1, 2,#}, Gillian I Rice, PhD^{3°}, Sulliman Ommar Omarjee, PhD^{2°}, Quentin Rouchon, MS^{4, 5}, Eve MD Smith, MD^{6, 7}, Marion Moreews, MS², Maud Tusseau, MS², Cécile Frachette, MD^{1, 2}, Raphael Bournhonesque, MS², Nicole Thielens, PhD⁸, Christine Gaboriaud, PhD⁸, Isabelle Rouvet, PharmD⁹, Emilie Chopin, MS⁹, Akihiro Hoshino, PhD¹⁰, Sylvain Latour, PhD^{10,11}, Bruno Ranchin, MD¹, Rolando Cimaz, MD¹², Paula Romagnani, MD¹³, Christophe Malcus, PharmD¹⁴, Nicole Fabien, PharmD¹⁵, Marie Nathalie Sarda, MD¹⁵, Behrouz Kassai, MD¹⁶, Jean-Christophe Lega, MD¹⁷, Stéphane Decramer, MD¹⁸, Pauline Aboujaoude, MD¹⁹, Ian N Bruce, MD^{20, 21}, Thomas Simonet, PhD²², Claire Bardel, PhD^{22, 23}, Pierre Antoine Rollat-Farnier PhD²³, Sebastien Viel, PharmD¹⁵, Héloise Reumaux, MD²⁴, James O'Sullivan, MS²⁵, Thierry Walzer, PhD², Anne-Laure Mathieu, PhD², Gaelle Marenne, PhD²⁶, Thomas Ludwig, PhD^{26, 27}, Emmanuelle Genin, PhD²⁶, FREX Consortium, Jamie Ellingford, PhD²⁵, Brigitte Bader-Meunier, MD²⁸, Tracy A Briggs, MD^{3, 25}, Michael W Beresford, MD^{6, 7}, Yanick J Crow, MD^{25, 29, 30, 31}, and GENIAL Investigators, UK JSLE Study Group

1. Pediatric Nephrology, Rheumatology, Dermatology Unit, Femme Mere Enfant Hospital, Hospices Civils de Lyon, France

2. CIRI, Centre International de Recherche en Infectiologie / International Center for Infectiology Research, Inserm, U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR5308, Lyon, France

3. Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom

4. Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium

5. Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium

6. Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom

7. Department of Women and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom

8. University of Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France

9. Centre de biotechnologie cellulaire et Biothèque, Groupe Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France

10. Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France

11. University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France

12. Rheumatology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Italy

13. Nephrology Unit, Anna Meyer Children Hospital and University of Florence, University of Florence, Italy

14. Service d'Immunologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69437 Lyon, France

15. Service d'immunologie, Hospices Civils de Lyon, CHLS, 69495 Pierre-Bénite, France

16: EPICIME-CIC 1407 de Lyon, Inserm, Service de Pharmacotoxicologie, Hospices Civils de Lyon & Université Lyon 1, 69677, Bron, France

17. Internal Medicine Unit, CHLS, Hospices Civils de Lyon, Pierre Benite, Université de Lyon 1, Lyon, France

18. Department of Pediatric Nephrology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. Centre De Référence des Maladies Rénales Rares du Sud Ouest & Inserm U1048, France

19. Department of Pediatric Nephrology, St George Hospital, University Medical Center, Lebanon

20. Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK.

21. NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.

22. Department of biostatistics – bioinformatics, Hospices Civils de Lyon, 69677, Bron, France

23. CNRS UMR5558, Biometry and evolutionary biology lab, Lyon University, Lyon 1 University, F-69622 Villeurbanne, France

24. CHU Lille, pediatric rheumatology unit, 59000 Lille, France

25. Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom

26. Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France

27. CHU Brest, Brest, France.

28. Pediatric Rheumatology and Immunology Unit, Necker hospital, Imagine Institution, Paris, France

29. Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris, France

30. Paris Descartes University, Sorbonne-Paris-Cité, Institut Imagine, Paris, France

31. Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom

° Equal contribution

Corresponding author:

Pr. Alexandre Belot, MD, PhD, Pediatric Nephrology, Rheumatology, Dermatology Unit, HFME, HCL and University of Lyon, 57 Bd Pinel, 69677 Bron, France (alexandre.belot@chu-lyon.fr)

Conflict of interest: The authors have nothing to disclose.

Word count: 3602

Large genetic panel analysis of British and French childhood-onset lupus cohorts

Objectives

Systemic lupus erythematosus (SLE) is a rare immunological disorder where genetic factors are considered important in causation. Monogenic lupus has been associated with around 30 genotypes in humans, and 60 in mice; whilst genome-wide association studies have identified more than 90 risk loci. We aimed to determine the genetic contribution of rare and predicted pathogenic gene variants in a population of unselected cases of childhood-onset SLE (cSLE).

Methods

We designed a next generation sequencing (NGS) panel comprising 147 genes, including all known lupus causing (KLC) genes in humans, and potentially lupus causing (PLC) genes identified through GWAS and animal models. We screened 117 probands fulfilling ACR criteria for SLE, ascertained through British and French cohorts of cSLE, and compared these data with those of 791 ethnically matched controls from the 1000 Genomes Project, 574 controls from the FREX consortium.

Results

Mendelian genotypes were confirmed in eight probands, involving mutations in *C1QA*, *C1QC C2*, *DNASE1L3* and *IKZF1*. Seven additional patients carried heterozygous mutations in complement or type I interferon associated autosomal recessive genes, with decreased levels of the encoded proteins recorded in two patients. Rare, predicted damaging variants were significantly enriched in the cSLE cohort compared to controls; 25% of SLE probands versus 4.6% of controls were identified to harbour at least one rare, predicted damaging variant ($p = 4.14 \times 10^{-15}$).

Conclusions

Inborn errors of immunity account for 7% of cSLE, with defects of innate immunity representing the main monogenic contribution. An accumulation of rare, predicted damaging variants in SLE-associated genes may contribute to disease expression and clinical heterogeneity.

Keywords: Monogenic lupus; paediatric rheumatology; genetics; innate immunity; complement deficiency

Word counts: 3602 words

Introduction

The term systemic lupus erythematosus (SLE) describes a rare, heterogeneous set of phenotypes characterized by the presence of autoantibodies targeting nuclear autoantigens and type I interferon upregulation. Familial aggregation and higher concordance rates between monozygotic compared to dizygotic twins suggest a major hereditary component to pathogenesis¹. Genome-wide association studies (GWAS) have identified more than 90 SLE-associated loci². GWAS defined variants are common, confer small effects on disease susceptibility and typically fall outside of coding regions. In contrast, monogenic forms of SLE, of which almost 30 have been described in humans, and greater than 60 in mice³, involve highly penetrant rare variants in protein encoding DNA⁴.

Mendelian forms of disease can help define the involvement of discrete pathways in pathogenesis. For example, both classical complement gene mutations and DNASE1L3 deficiency highlight the importance of efferocytosis in lupus pathology^{5,6}, whilst the relevance of type I interferon signalling to SLE is underlined by the association with the Mendelian type I interferonopathies^{7,8}. Finally, B cells are a key player in lupus causation⁹, with PKCo deficiency the first described B cell related form of monogenic lupus¹⁰, and heterozygous germline mutations in *IKZF1*, encoding IKAROS, a B cell transcription factor, a cause of autoimmunity including SLE¹¹.

Recent sequencing studies suggest a false dichotomy in categorizing diseases according to strict complex or Mendelian models, an alternative possibility highlighting the importance of combinations of small numbers of rare variants promoting disease in a single individual and at a population level¹². Immune responses are variable in humans, with up to 40% of this diversity estimated to be explained by genetic variation¹³. In association with environmental factors, such genetic polymorphisms may promote tolerance breakdown¹⁴, as exemplified by the lupus phenotype.

Here, we describe a large-scale molecular analysis of childhood-onset SLE (cSLE), indicating a mutational spectrum directly causing, or strongly influencing, pathogenesis.

Material and methods

Patients

We identified 117 unrelated probands from the UK Juvenile-onset SLE (JSLE)¹⁵ and French SLE GENIAL cohorts fulfilling American College of Rheumatology (ACR) criteria for lupus, diagnosed before the age of 16 years. The study was approved by the relevant ethics committees (see the Appendix for further details). The combined cohort comprised the following ethnicities: European (50%), African (33%) and South Asian (16%), classified according to International Genome Sample resource criteria (figure 1A).

Gene selection

To identify genetic variations potentially responsible for SLE, we selected a set of genes based on: i) known Mendelian forms of lupus ('known lupus causing' – KLC - genes; n = 28), some also detected by GWAS and/or in murine studies (table S1); ii) defined causes of monogenic lupus in mouse models (n = 62) and/or genes demonstrating an association with SLE identified through GWAS (n = 67), with 11 genes common to both. The latter group are referred to as 'putative lupus causing' (PLC) genes (table S2). Defined as of 2013 when the study was initiated, this set comprised 147 genes in total.

DNA sequencing, variant discovery and filtering

Details of our sequencing protocols and variant analyses are provided in the Appendix. In brief, targeted enrichment and sequencing of the coding regions of 147 gene panel was undertaken using DNA extracted from peripheral blood. Single nucleotide variants (SNV) and indels were identified according to strict bioinformatic protocols, aligned with 1000 Genomes Project (1000g) sequence sets, and variant pathogenicity assessed using SIFT, Polyphen-2 and Combined Annotation Dependent Depletion (CADD) v1.3 scores. A rarity filter considered SNVs according to their population frequencies within the Exome Aggregation Consortium (ExAC) dataset, employing 1% and 0.1% in the case of putative biallelic mutations, or 0.01% and 0.001% for heterozygous variants in the case of indels or SNVs respectively, as our thresholds (threshold (heterozygous) = threshold (homozygous)² i.e. 10^{-4} for indels and 10^{-6} for SNVs). A pathogenicity filter considered selected indels with a CADD score higher than 15, and SNVs according to the formula: CADD score ≥ 15 AND sift score ≤ 0.05 AND Polyphen 2 score ≥ 0.9 . A cartoon of the characterization of different sequence variants is given in figure S1 in the Appendix. For the FREX consortium and UK controls, only SNVs were analysed.

Control cohorts

Control data were derived from the 1000 Genomes Project (1000g). The healthy control cohort comprised 791 unrelated individuals demonstrating a similar ethnic distribution to the cSLE cohort (50% European, 33% African; 16% South Asian), built by random sampling among the 1000g sample set. Two additional control populations were ascertained through the FREX consortium, a French-specific database containing the exome data of a reference control panel of 574 individuals of French ancestry (<u>http://lysine.univ-brest.fr/FrExAC/</u>) and a UK control panel: 74 adults from the north west of England, sequenced and analysed using exactly the same targeted exon panel, sequencing platform and filtering strategy as employed in the lupus cohort. Additional information is given in Appendix.

In vitro assays, structural analyses

Details of *in vitro* experiments, structural studies and protein interaction network construction are given in the Appendix.

Statistical analysis

Fisher's exact test was used to compare the frequencies of variants in the control and cSLE cohorts. Data normality was assessed using a Shapiro-Wilk test and quantile-quantile plots. The mean of SNPs per individual was compared between control and cSLE cohorts using a Mann-Whitney U test (Wilcoxon rank-sum test). P-values were adjusted using the Bonferroni correction where appropriate. Odd ratios were calculated using the standard formula, with S1/2 the number of variants that passed a filter and F1/2 those which failed for the two groups compared (OR = S1*F2 / F1*S2).

Role of the funding source

The funders were represented by European or National academic funding agencies. The funders had no role in the study design, data collection, data analysis, data interpretation or writing of the report. The views expressed in this publication are those of the authors and not necessarily those of the agencies. The corresponding authors had final responsibility for the decision to submit for publication.

Results

Population characteristics

Our patient cohort demonstrated a median age at disease onset of 9 (range 1.8 - 16) years and sex ratio of 25/92 (male:female = 1:3.7) (figure 1B, table S3). Similar to previous studies of cSLE, major organ involvement was frequent, with renal and cerebral disease noted in 59% and 23% of individuals respectively. A family history of lupus was reported in 20% of cases (first or second degree relatives).

Next generation sequencing identified a total of 30,955 variants in the 147 KLC and PLC genes across 117 patients (figures 1C, 1D) in the protein coding part of the gene (Supplemental Figure S1). Filtering according to the strategy described above was used to select for very rare variants, allowing us to exclude 99.95% of the initially identified polymorphisms. A similar strategy was applied to the control cohort of 791 ethnically matched individuals from the 1000g (SNVs and indels) and from the FREX consortium (SNVs) (figure 1E). An additional confirmatory cohort was generated from UK control panel: 74 adults from the north west of England sequenced and analysed using exactly the same targeted exon panel, sequencing platform and filtering strategy as employed in the lupus cohort.

Characterization of Mendelian genotypes

After filtering, 15 unrelated probands were identified to harbour a total of 14 either heterozygous or biallelic variants in 11 KLC genes (table 1), relating to components of the classical complement pathway (*C1QA, C1QC, C2, C3, C8B, C9*), DNASE1L3 deficiency (*DNASE1L3*), type I interferonopathies (*TREX1, RNASEH2C, ACP5*) or B-cell dysfunction (*IKZF1*). Ten of these 14 variants were novel (i.e. not seen in publicly available databases), with five having been reported previously as disease causing.

Segregation was compatible with autosomal recessive inheritance due to complement deficiency in six pedigrees. Biallelic mutations in either *C1QC* or *C1QA* were identified in three families (figure 2A). *In silico* structural analysis of C1qC predicted that the p.Gly164Ser substitution, already reported as pathogenic¹⁶, destabilizes the globular head of the C1q complement protein (figure 2B). Two other variants in *C1QC* and *C1QA* were nonsense mutations. C1q was undetectable in patient 1 and 2 (Pt1, Pt2) (figure 2C). Patients 4 to 6 carried the same biallelic deletion in the *C2* gene (figure 2D), previously described as a cause of lupus with incomplete penetrance¹⁷. CH50 and C2 levels were decreased in Pt6, whist C3 and C4 were normal (figure 2E).

Two predicted damaging variants in *DNASE1L3* were identified in Pt7, and biallelic inheritance confirmed by parental testing (figure 3A). The nonsense mutation has been reported as disease causing¹⁸, whilst the deletion of exon 5 was novel, located in the deoxyribonuclease domain (figure 3B) and confirmed by TAQman qPCR.

Sequencing of the family of Pt8 demonstrated segregation of a novel missense *IKZF1* variant with disease status in two additional relatives (figure 3C). A previous GWAS identified significant association with lupus at the *IKZF1* locus¹⁹, whilst loss-of-function germline mutations have been recently reported to cause systemic autoimmunity and B cell deficiency¹¹. Thus, *IKZF1*, initially considered as a PLC gene, was subsequently classified as a KLC gene. The p.Asp120Val IKZF1 variant is located in the first zinc finger of the protein (figure 3D). Confocal microscopy of NIH-3T3 cells transfected with wild type (WT) and mutant constructs revealed a punctate staining pattern characteristic of pericentromeric heterochromatin binding and localization of the WT protein, whereas the mutant protein exhibited diffuse nuclear staining, as previously observed for other pathogenic missense variants²⁰. We also performed an electrophoretic mobility-shift assay (EMSA) using nuclear extract of transfected cells, and observed that the Asp120Val protein was unable to bind a consensus-binding sequence (similar to a previously reported mutation Arg164GIn) (figure 3D). Finally, we transduced Granta cells with inducible lenti-vector pInducer21 (ORF-EG)

(Addgene) expressing either WT-IKZF1 or Asp120Val-IKZF1, and recorded a decrease of transcriptional activity of the mutant construct by RNAseq analysis (figure 3E, F). Notably, all three affected patients carrying the p.Asp120Val mutation had normal immunoglobulin levels and did not present features of immunodeficiency.

Heterozygous variants in autosomal recessive KLC genes (Mendeliome) and PLC genes

Seven probands were identified to carry a monoallelic, rare, predicted damaging variant in a KLC gene previously described to cause SLE as an autosomal recessive trait (table 2). A TREX1 p.Ser82Leufs*9 frameshift mutation had already been reported as disease-causing in Aicardi-Goutières syndrome (AGS)²¹. Other predicted damaging variants were recorded in RNASEH2C, ACP5, C3, C8B and C9. In this group of seven patients the sex ratio was 4:3, similar to the subset of probands described immediately above, and differing from the overall composition of our cohort (figure S2). Furthermore, the mean age at onset was earlier in this group than in the cohort overall. Pt15, carrying a p.lle1093Ser C3 substitution, presented with a phenotype characterized by early onset glomerulonephritis (lupus nephritis with C1g deposits) and thrombotic microangiopathy. He benefited from treatment with eculizumab and is still in remission after three years of therapy. C3 was undetectable on several assessments, representing the lowest levels recorded in the whole cSLE cohort (figure 3G). Heterozygous variants in C3 have been reported as possibly causal of SLE²² and evolution with eculizumab strongly support a causal impact of the mutation. A C9 variant was similarly associated with decreased protein levels in patient plasma (Pt14) (figure 3H). The C8B variant seen in Pt13 did not impact on plasmatic C8 concentration. The other patients were not available for additional investigations.

Focusing on variants in PLC genes, we detected 17 rare, predicted damaging PLC variants in 16 additional unrelated probands (Table 2).

To test in an unbiased manner if the accumulation of rare, predicted damaging heterozygous KLC and PLC variants was specifically associated with cSLE status, we constituted first a control cohort by analysing the genomic sequence data of 791 healthy individuals from the 1000g database, ensuring a similar distribution of ethnicity to our patient group, as shown by the PCA analysis of the frequent (MAF>1%) SNPs (figure S3). We applied the same algorithm to the controls as used in our cSLE data set. In so doing, we observed a statistically significant excess of rare, predicted damaging variants within the cSLE population compared to 1000g controls after adding filtering for rarity plus pathogenicity (figure 4A), with an odds ratio of 17.2 (CI 95% = 3.36-90,34) in KLC genes (figure 4C). For PLC genes, a significant difference was also identified with the same filtering strategy (rarity plus pathogenicity) (figure 4B), with an enrichment of 4.4 (CI95% = [2.02;8.18]) in the lupus population (figure 4C, D). These data comprised all variants in our gene panel in the SLE and 1000g cohort datasets, generated respectively by targeted sequencing and whole genome sequencing. Of note, sequence coverage was different between our in-house derived sequence and those of the 1000g (table S4). To further consider the comparability of our patient and control groups, we undertook a confirmatory analysis using data from a second control population (FREX Consortium)(figure 4A, 4B), demonstrating a higher coverage across our gene panel (table S4). Again, the overall mutational load was significantly increased for KLC and PLC genes in the cSLE population, with a greater odds ratio when considering rarity plus pathogenicity status, compared to rarity only, with an OR that reached 11.1 (Cl95% = [2.151;57.202]) and 2.83 (Cl95%=[1.398;5.735]) for KLC and PLC genes respectively under this latter filtering strategy (figure 4C, 4D). Coverage information of the variants selected from the panel are represented in supplemental table S5. A similar trend was also observed when we considered 74 controls from a United Kingdom cohort of healthy adults performed using the same panel sequencing sharing identical coverage and analysed with the same gene panel and filtering strategies, but the analysis did

not reach significance (table S6). In addition to the global evaluation of rare genetic variants, we tested if rare variants within the genes identified in the panel were differentially distributed in the lupus patients compared to controls. To do so, we performed rare variant association tests using the sequence Kernel association (SKAT-O) method, which combines burden and variance component tests and has been used to explore rare genetic variants association testing. We observed a higher burden of rare variants in the lupus population in three genes: *C1QC, RNASEH2C, MECP2* and *CD19* (table S7). Finally, we compared the combined frequency of KLC and PLC rare and predicted damaging variants per proband in the panel and 1000g, and identified a statistically significant increase of filtered variants in one, two and three genes per individual in the SLE population (figure 4E,F). Taken together, these mutational load and gene specific analyses suggest an enhanced contribution of rare and predicted damaging monoallelic variants in KLC or PLC genes to cSLE susceptibility.

Discussion

Immunoprofiling of cSLE patients has highlighted the heterogeneous nature of this phenotype²³. Whilst the basis of such heterogeneity remains poorly defined, the identification of Mendelian forms of SLE related to different pathogenic mechanisms indicates that genetic factors are likely important. Low frequency variants are not captured by GWAS, nor do they confer sufficiently large effect sizes to be detected by classical linkage analysis in small family studies⁴. Meanwhile, the observation of variable penetrance and expression in Mendelian disorders indicates that other genes or environmental factors can impact phenotype. Here, we add to the understanding of germline predisposition to early-onset SLE.

A major challenge of our study was to set appropriate thresholds, in terms of population frequency and pathogenicity prediction, in order to capture likely causal variants. Given the identification of unequivocal Mendelian genotypes, the algorithms we employed appear valid. This bioinformatics strategy also demonstrated that the distribution of filtered variants was not equal in ethnically matched patient and control populations. Such stringent filtering, leading to an enrichment for likely pathogenic alleles, risks excluding possible disease-causing variants. For example, a p.Asp105Ala heterozygous variant in RNASEH2B, previously considered as causal for SLE⁷, was excluded using this filtering strategy (data not shown). As such, our results likely represent a conservative estimate of the associated high-penetrant genetic load.

Our analysis identified eight probands with mutations in KLC genes consistent with Mendelian causation. Complement deficiencies accounted for 5% of probands in our cohort and a defect of efferocytosis is also relevant in DNASE1L3 deficiency⁶. Only one patient in our cohort was identified with a monogenic disease involving B cell dysfunction. That is, a novel mutation in *IKZF1*, encoding the transcription factor IKAROS, playing a role in B cell development. No mutations were identified in *PRKCD*, previously associated with monogenic lupus¹⁰. Thus, whilst SLE is often considered as a B cell driven disease, the majority of Mendelian forms observed in our cSLE relates to mutations in innate immunity related genes.

In cSLE patients compared to controls, we observed an increased frequency of monoallelic variants in KLC genes described to cause lupus as an autosomal recessive trait in both type I interferonopathy and complement related genes. In this group the sex ratio was 4:3, and the onset of disease was very early, possibly suggesting a significant impact of the observed heterozygous variants on disease induction. Among these variants, a *TREX1* mutation has already been reported in AGS, a recognized type I interferonopathy associated with an increased risk of SLE⁸. Günther et al. also described an increase of rare heterozygous variants in components of the RNase H2 complex in lupus⁷. Using our filtering strategy, one patient was detected with a heterozygous *RNASEH2C* predicted pathogenic substitution. Of note, the SKAT-O test also highlighted a higher rare-disease burden for this gene in the lupus population. We recorded an *ACP5* missense variant in one patient. Biallelic mutations

in *ACP5* are a cause of Mendelian lupus, and an increase of predicted pathogenic heterozygous variants in this gene has been reported in an SLE cohort²⁴. The patient carrying the novel variant in C3 displayed features of lupus nephritis and haemolytic uremic syndrome (HUS), with C3 deficiency a known cause of HUS. We also noticed markedly decreased levels of C3 in this patient, strongly arguing for a genetic contribution of the variant to the phenotype. Overall, these observations support the possibility that genes known as directly causal of classical Mendelian lupus may play an important role in driving susceptibility to complex disease. Indeed, a recent report using whole genome sequencing identified an enrichment of heterozygous variants in genes related to monogenic lupus in an SLE cohort²⁵. In addition, *de novo* monoallelic mutations have been described in KLC genes, including *PRKCD*, in cSLE patients, further supporting the contention of a genetic driven threshold for the occurrence of autoimmunity²⁶.

We identified 15 patients with heterozygous, putative mutations in PLC genes. The frequency of these rare, predicted damaging variants was also significantly increased in cSLE patients compared to the controls, suggesting that they might represent novel SLE predisposing alleles. Furthermore, some filtered variants co-segregated in a single individual. For example, Pt8 carried a LYN substitution associated with the novel IKZF1 mutation discussed above, whilst Pt10 was identified with a novel, predicted damaging variant in each of ACP5 and RASGRP3. It seems plausible that a lupus phenotype might be driven by pathogenic variants in two or more genes. Consistent with this hypothesis, we demonstrated an accumulation of rare and predicted damaging variants in individual cSLE patients compared to controls. It is important to emphasize that the number of rare variants per se did not vary between these populations; rather, it was the combination of variant frequency and pathogenicity score which distinguished the two groups in terms of monoallelic variant burden, with an odds ratio between patients and controls of from 11.1 to 17.1, and from 2.83 to 4.4 in the KLC and PLC gene sets respectively. Of note, a recent study in patients with C1R deficiency also suggested that common SLE-associated variants may influence the severity of an otherwise monogenic disease state²⁷.

Using our strategy, focusing on exons and polymorphisms with predicted functional consequences, we identified putative disease causing variants in the coding regions of genes already detected in GWAS studies. As examples, we recorded two unrelated patients carrying the same variant in PDHX, and a novel PTPN22 variant was observed in one patient. Rare variants may contribute to the burden of the disease, with their accumulation influencing age at onset and clinical spectrum. Rare variants in two genes identified in GWAS studies, *BLK* and *BANK1*, were also recently identified in lupus patients with functional impact on B cell biology²⁸. In our study, the bioinformatic filter we used was more stringent, and filtered out some of these variants in these genes. In addition, we may have missed functionally relevant regulatory variants located in non-coding regions of the genome that were not captured by the panel. Thus, given the stringency of the bioinformatic algorithm that we employed, our study probably underestimates the genetic contribution of the genes selected here. Furthermore, parental DNA was not systematically available in all patients. preventing us from detecting *de novo* mutations that might have otherwise been identified by trio analyses²⁵. Finally, by limiting our analysis to a 147 gene panel we omit several other genes that may contribute to a Mendelian susceptibility to lupus. Functional studies were only performed when material was available, and to robustly address the contribution of interesting variants, their introduction into cellular and/or animal models may prove helpful.

Studying extreme phenotypes of complex disease represents a powerful strategy to simplify and understand human pathology. Our analysis highlights the heterogeneity of the genetic basis of cSLE, with 25% of the cSLE population carrying at least one rare and predicted damaging variant. Numerous clinical trials have failed to demonstrate a positive effect of a variety of medications in SLE, and current clinical and laboratory criteria are clearly not sufficient to detect specific factors determining treatment outcome. Explicitly considering rare, high penetrant gene variants might identify patient subsets with distinct therapeutic responses, thereby enabling personalized treatments according to genetic background and molecular taxonomy²⁸.

Research in Context

Evidence before this study

Familial aggregation, and higher concordance rates between monozygotic (20 - 40%) relative to dizygotic twins and other full siblings (2 - 5%), suggest a major hereditary component to the pathogenesis of systemic lupus erythematosus (SLE). Whilst genome-wide association studies (GWAS) have identified more than 90 loci as robustly associated with the lupus phenotype, it is an overlooked fact that Mendelian forms of lupus have been described in the context of almost 30 discrete genotypes in humans, referred to here as the Mendeliome, and more than 60 single gene defects in mice. At present, the significance of these observations for the understanding of lupus biology remains unclear.

Added value of this study

To address the issue of the genetic contribution to lupus in children, we performed an analysis of 147 genes at depth, selected on the basis of their involvement in lupus pathogenesis, in 117 unrelated probands with SLE demonstrating onset before the age of 16 years. Within the Mendeliome, we observed mutant genotypes to be present in 7% of probands. Furthermore, heterozygous, predicted pathogenic variants in genes previously implicated in lupus causation were significantly enriched in the SLE cohort compared to controls. Of further interest, our study supports the concept of oligogenicity in SLE genetic susceptibility, with an accumulation of rare, predicted pathogenic variants in different genes in patients.

Implication of the available evidence

Numerous clinical trials in SLE have failed to demonstrate a positive effect of a variety of study drugs, and current clinical and laboratory criteria are clearly not sufficient to detect specific factors determining treatment outcome. Our results are consistent with an underlying heterogeneity of the lupus phenotype, with dysfunction of innate immunity playing an important role. Our data suggest that an exploration of genetic burden in single individuals may be informative in tailoring future personalized therapeutic interventions.

Acknowledgements

YJC acknowledges the European Research Council (GA 309449; and 786142 - E-T1IFNs), ERA-NET Neuron (MR/M501803/1) and a state subsidy managed by the National Research Agency (France) under the "Investments for the Future" program bearing the reference ANR-10-IAHU-01. AB acknowledges the French ANR program 14-CE14-0026 LUMUGENE and the "Jeune Chercheur" support from Hospices Civils de Lvon. TAB acknowledges the National Institute for Health Research (NIHR) (NIHR Transitional Research Fellowship, Dr Tracy Briggs, TRF-2016-09-002) and the Medical Research Foundation. TAB and INB acknowledge funding from the NIHR Manchester Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. JME is funded by a postdoctoral research fellowship from the Health Education England Genomics Education Programme (HEE GEP). The views expressed in this publication are those of the authors and not necessarily those of the HEE GEP. MWB acknowledges the UK JSLE Cohort Study is supported by Lupus UK (#LUPUS UK: JXR10500, JXR12309), the UK 'Experimental Arthritis Treatment Centre for Children' supported by Arthritis Research UK (ARUK #20621), the Alder Hey Charity, University of Liverpool, Alder Hey Children's NHS Foundation Trust and the National Institute of Health Research (NIHR) Alder Hey Clinical Research Facility. The authors would like to acknowledge all patients and their families for participating in the UK JSLE and the GENIAL cohort studies, and are grateful to all the support given by the local principle investigators and entire multi-disciplinary teams within each of the paediatric centres as part of the UK JSLE Study Group (https://www.liverpool.ac.uk/translationalmedicine/research/ukjsle/jsle/) and GENIAL Study Group.

References

1. Criswell LA. The genetic contribution to systemic lupus erythematosus. Bull NYU Hosp Jt Dis 2008;66(3):176–83.

2. Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015;47(12):1457–64.

3. Kono DH, Theofilopoulos AN. Genetics of SLE in mice. Springer Semin Immunopathol 2006;28(2):83–96.

4. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461(7265):747–53.

 Al-Mayouf SM, Sunker A, Abdwani R, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 2011;43(12):1186–8.
 Sisirak V, Sally B, D'Agati V, et al. Digestion of Chromatin in Apoptotic Cell

Microparticles Prevents Autoimmunity. Cell 2016;166(1):88–101.

7. Günther C, Kind B, Reijns MAM, et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 2015;125(1):413–24.

8. Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007;39(9):1065.

9. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol 2001;2(9):764.

10. Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum 2013;65(8):2161–71.

11. Hoshino A, Okada S, Yoshida K, et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol 2017;140(1):223–31.

12. Jordan DM, Do R. Using Full Genomic Information to Predict Disease: Breaking Down the Barriers Between Complex and Mendelian Diseases. Annu Rev Genomics Hum Genet 2018;19:289–301.

13. Brodin P, Davis MM. Human immune system variation. Nat Rev Immunol 2017;17(1):21–9.

14. Watson L, Leone V, Pilkington C, et al. Disease activity, severity, and damage in the UK juvenile-onset systemic lupus erythematosus cohort. Arthritis Rheum 2012;64(7):2356–65.

15. López-Lera A, Torres-Canizales JM, Garrido S, Morales A, López-Trascasa M. Rothmund-Thomson syndrome and glomerulonephritis in a homozygous C1q-deficient patient due to a Gly164Ser C1qC mutation. J Invest Dermatol 2014;134(4):1152–4.

16. Johnson CA, Densen P, Wetsel RA, Cole FS, Goeken NE, Colten HR. Molecular heterogeneity of C2 deficiency. N Engl J Med 1992;326(13):871–4.

17. Ozçakar ZB, Foster J, Diaz-Horta O, et al. DNASE1L3 mutations in

hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum 2013;65(8):2183–9.
18. Han J-W, Zheng H-F, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009;41(11):1234–7.

19. Kuehn HS, Boisson B, Cunningham-Rundles C, et al. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med 2016;374(11):1032–43.

20. Crow YJ, Chase DS, Lowenstein Schmidt J, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 2015;167A(2):296–312.

21. Nozal P, Garrido S, Martínez-Ara J, et al. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation. BMC Nephrol 2015;16:40.

22. Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell 2016;165(6):1548–50.

23. An J, Briggs TA, Dumax-Vorzet A, et al. Tartrate-Resistant Acid Phosphatase Deficiency in the Predisposition to Systemic Lupus Erythematosus. Arthritis Rheumatol Hoboken NJ 2017;69(1):131–42.

24. Almlöf JC, Nystedt S, Leonard D, et al. Whole-genome sequencing identifies complex contributions to genetic risk by variants in genes causing monogenic systemic lupus erythematosus. Hum Genet 2019;138(2):141–50.

25. Pullabhatla V, Roberts AL, Lewis MJ, et al. De novo mutations implicate novel genes in systemic lupus erythematosus. Hum Mol Genet 2018;27(3):421–9.

26. Demirkaya E, Zhou Q, Smith CK, et al. Brief Report: Deficiency of Complement 1r Subcomponent in Early-Onset Systemic Lupus Erythematosus: The Role of Disease-Modifying Alleles in a Monogenic Disease. Arthritis Rheumatol Hoboken NJ 2017;69(9):1832–9.

Jiang SH, Athanasopoulos V, Ellyard JI, et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat Commun 2019;10(1):2201.
 Barturen G, Beretta L, Cervera R, Van Vollenhoven R, Alarcón-Riquelme ME. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat Rev Rheumatol 2018;14(3):180.

29. Carbonella A, Mancano G, Gremese E, et al. An autosomal recessive DNASE1L3related autoimmune disease with unusual clinical presentation mimicking systemic lupus erythematosus. Lupus 2017;26(7):768–72.

Contributions

AB and YJC conceived the study, planned, designed and interpreted experiments and wrote the initial draft. GIR performed PCR sequencing and participated in variant analysis with TL. EG, GM performed SKAT-O analyses. QR and RB performed the initial filtering of variants and the first analyses on the dataset. JOS, PARF, CB, TS, TL, TB, GIR analysed the panel data, 1000g and FREX data. Complement dosage was performed by MNS. Autoantibody screening was performed by NF. Structural 3D structures were provided by NT and CG. Biobanking and processing of samples were undertaken by EC and IR. SL and AH generated EMSA for Ikaros variant. Functional immunological and transcriptome studies were performed by SOO, MM, MT, SV, and KK. ES, CF, BR, RC, PR, BK, JCL, SD, PA, HR, BBM and MB provided clinical samples and critically reviewed patient data. GENIAL Investigators, UK JSLE Study Group provided additional samples. The FREX Consortium and samples from Professor G Evans, Manchester Centre for Genomic Medicine with sequencing funded by the BRC provided control data. All authors reviewed the manuscript and agreed to its submission.

Figure 1. Demographic characteristics of the cSLE cohort and bioinformatic analysis strategy. Ethnicity (A), age and sex (B) of the 117 probands in the cSLE cohort. (C) Schematic of the bioinformatic pipeline used to detect rare predicted damaging variants, leading to the definition of three categories of patient: 8 patients with monogenic SLE; 8 patients carrying monoallelic variants in autosomal recessive known lupus causing (KLC) genes; 16 additional patients with filtered variants in potentially lupus causing (PLC) genes. Total and individual variant numbers are presented before and after the application of filters of rarity and pathogenicity in the SLE (D) and 1000g (E) cohorts. Note that three patients in the KLC groups carried additional rare and predicted damaging variants in PLC genes, as indicated in brackets.

Figure 2. Complement deficiencies in cSLE. Pedigrees of families with mutations in *C1q* (A), *C2* (D),(black shading represents affected cSLE status), with identified mutations shown below each pedigree. (B) Structure of C1q globular domain with C1qA (red), C1qB (green) and C1qC (blue), calcium ion (yellow) and representation of the Gly164 residue (magenta). This amino acid is highly conserved across the C1q family. The glycine at position 164 is located near the junction between the collagen-like stem (red, green and blue circles) with the globular domain. The glycine is tightly packed into the structure, and any substitution is predicted to destabilize the assembly of the three chains. (C) ELISA quantification of complement components in sera from patients with C1Q and (E) C2 deficiency.

Figure 3: Other genetic defects in the Mendeliome. (A) Family pedigree of Pt 7. (B) Representation of the DNASE1L3 protein showing the T97Ifs*2 substitution and the deletion identified in Pt7 (red) and parents with linear representation of DNASE1L3 and the only other mutation so-far reported within the coding region (black). (C) Family pedigree of Pt 8 with (D) position of the D120V mutation (red) in the IKAROS zinc finger domain required for DNA-binding, and previously reported mutations (black). NIH3T3 cells were transfected with HA-tagged WT or D120V mutant expression vectors labelled with anti-HA antibody and an Alexa 488-conjugated (green) secondary antibody. Cells were visualized using confocal microscopy. Mutant D120V was analysed for DNA binding with the use of an electrophoretic mobilityshift assay (EMSA), and compared to the already reported defective variant R162Q (E) Heat map of regulated genes by RNA-Seq analyses in Granta cells with transfection of inducible WT-IKZF1 or D120V-IKZF1 (left panel without induction, right panel following induction). (F) Transcriptomic activity of WT and D120V variant.

Figure 4. Rare and predicted damaging variants in cSLE and phenotypes. (A) Heterozygous variant mean of SNPs in known lupus causing (KLC) genes previously associated with lupus causation as an autosomal recessive trait, in cSLE probands compared to controls in 1000g and FREX database. (B) Heterozygous variant mean of SNPs in putative lupus causing (PLC) genes in cSLE probands compared to controls in 1000g and FREX database. (B) Heterozygous variant mean of SNPs in putative lupus causing (PLC) genes in cSLE probands compared to controls in 1000g and FREX database. (C) Odds ratio for the mutational load in KLC (A) and PLC (B) genes of SNPs under the different filtering conditions of the lupus patients compared to 1000g or FREX cohorts (E) Number of KLC and PLC genes per individual in which a rare, predicted damaging variant was identified in cSLE probands and controls. (F) Representation of genes with either filtered variants (inner white circle) or without filtered variants (outer grey circle). Chromosome localization and number of filtered variants (innermost coloured dots) are indicated. Variants were divided into three categories: causal for monogenic disease (red), heterozygous in KLC genes previously associated with lupus causation as an autosomal recessive trait (orange), or PLC (blue) genes. Putative di- or tri-genic associations of variants in a single proband are signified by connecting lines.

Supplementary figure S1. Coding region filter. The boxes outline what we refer to as the coding region i.e. exons and canonical splice site nucleotides.

Supplementary figure S2. Population comparability

Principal component analysis of the distribution of frequent variants in the cSLE panel and 1000g populations showing three subgroups of populations within the two populations.

Supplementary figure S3. Phenotype according to genotype. Spider plots of the frequency of clinical features seen in: A) cSLE patients with Mendelian disease (n = 8); (B) probands carrying heterozygous variants in autosomal recessive KLC genes (n = 8); (C) probands with variants in PLC genes (n = 16); and (D) probands with no identified filtered variants (n = 85). Sex ratios and age at diagnosis are provided for each plot. Sex ratio, male:female; age, median age at onset in years; SD: standard deviation.

	Pt8		Pt7	Pt6	Pt5	Pt4	Pt3				Pt2	Pt1	Patient	to 15
Lyn	IKZF1		DNASE1L3	C2	C2	C2	C1QA	CLEC16A	CD19		CTQC	CIQC	Gene	
NM_002350.3:c.773T>C	NM_006060.6:c.199A>T	Exon 5 deletion	NM_004944.3:c.290_291del CA	NM_000063.4:c.841_849+19 del	NM_000063.4:c.841_849+19 del	NM_000063.4:c.841_849+19 del	NM_001347465.2:c.44delT	NM_001114101.3:c.490G>A	NM_001178098.2:c.1638del A	NM_001114101.3:c.490G>A	NM_001114101.3:c.121delC	NM_001114101.3:c.490G>A	Variant (HGVS)	
p.Phe258Ser	p.Asp120Val		p.Thr97llefsTer2	p.Val281_Arg283 del	p.Val281_Arg283 del	p.Val281_Arg283 del	p.lle15AsnfsTer7	p.His129Asp	p.Gly547GlufsTer 33	p.Gly164Ser	p.Leu41CysfsTer 97	p.Gly164Ser	Protein change	
Heterozygous	Heterozygous	Compound heterozygous	Compound heterozygous	Homozygous	Homozygous	Homozygous	Homozygous	Heterozygous	Heterozygous	Compound heterozygous	Compound heterozygous	Homozygous	Zygoty	
Deleteri ous	Deleteri ous	I		I	ı	ı	I	I		Deleteri ous	ı	Deleteri ous	SIFT	
Probably damaging	Probably damaging	I	I	I			I	I	ı	Probably damaging	I	Probably damaging	Polyphen 2	
25.8	26.3		25.1	32	32	32	21.3	28.9	25.4	3 3	26.2	33	CADD	
Likely pathogenic	Likely pathogenic		Likely pathogenic	Likely pathogenic	Likely pathogenic	Likely pathogenic	Likely	Undetermined	ı	Likely pathogenic	Pathogenic	Likely pathogenic	ACMG classification	
Novel	Novel	Novel	10/121384	619/121204 1 hom	619/121204 1 hom	619/121204 1 hom	Novel	Novel	Novel	1/121376	Novel	1/121376	ExAc	
			29			28						27	Refe- rences	

Pt15	Pt14	Pt13	Pt12	Pt11		Pt10	Pt9
C3	<i>C9</i>	C8B	<i>C</i> 9	RNASEH2 C	RASGRP3	ACP5	TREX1
NM_000064.4:c.3278T>G	NM_001737.5:c.1490C>T	NM_000066.3:c99	NM_001737.5:c.1209_1222d	NM_032193.3:c.472C>G	NM_001349975.2:c.686C>G	NM_001111035.3:c.79C>A	NM_033629.6:c.236_243dup CTGCAGCC
p.lle1093Ser	p.Ala497Val	ι (p.Asp403GlufsTer 5	p.His158Asp	p.Ala229Gly	p.Arg27Ser	p.Ser82LeufsTer9
Heterozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous	Heterozygous
ous Deleteri ous	Deleteri	I	ı	Deleteri ous	Deleteri ous	Deleteri ous	
Probably damaging	Probably	I	I	Probably damaging	Probably damaging	Probably damaging	
31	29.2	16.31	34	28.8	31	28.1	24.6
Likely pathogenic	Likely	Ċ	Undetermined	Undetermined significance	Undetermined significance	Undetermined significance	Pathogenic
Novel	Novel	Novel	8/121256	Novel	Novel	Novel	Novel
						23	

Patient	Gene	Heterozygous variants	Protein change	SIFT	Polyphen2	CAE
Pt16 Pt17	IRF7 CLEC16A	NM_004031.2:c.926A>T NM_015226.3:c.908_910delGAG	p.Lys309Met p.Gly303del	Deleterious -	Probably damaging -	→ N
	NFE2L2 TNXR	NM_006164.4:c11_9del ENST00000375244 7:c:12727G>A	n Glv4943Arn	- Deleterious	- Prohahlv damadind	N N
D +18	TRAFTIPS	NM 147686 3.0 1366C>A	n Valds6Met	Deleterious	Prohahly	J
					damaning	
Pt19	PDHX	NM_003477.2:c.171T>G	p.lle57Met	Deleterious	Probably damaging	N
Pt20	JAZF1	NM_175061.4:c23deIA		·		<u>_</u>
Pt21	PHRF1	NM_020901.3:c.1355C>T	p.Pro452Leu	Deleterious	Possibly	N
Pt22	CD19	NM_001178098.1:c.1318G>A	p.Glu440Lys	Deleterious	damaging Probably damaging	ω
Pt23	CBLB	NM_170662.4:c.621T>G	p.lle207Met	Deleterious	Probably damaging	N
	TMEM39A TMEM39A	NM_018266.2:c.689_696del NM_018266.2:c681_687del	p.Thr230Argfs*21_ p.Ser227Argfs*20			1, 22
Pt24	TNXB	NM_019105.6:c.4535_4552del	p.Asp1512_Val1517del	ı	ı	16
Pt25	PTPN22	NM_015967.5:c.314C>T	p.Pro105Leu	Deleterious	Probably damaging	20
Pt26	PDHX	NM_003477.2:c.171T>G	p.lle57Met	Deleterious	Probably damaging	22
Pt27	WDFY4	NM_020945.1:c657G>T	p.Gln219His	Deleterious	Probably damaging	18
Pt28	СҮВВ	NM_000397.3:c.1102G>T	p.Ala368Ser	Deleterious	Probably damaging	25
Pt29	MECP2	NM_001110792.1:c851C>T	p.Pro284Leu	Deleterious	Probably damaging	27

Table 2: Rare, predicted damaging variants per patient in putative lupus causing (PLC) genes (GWAS and mouse models)

Supplementary appendix

Here is provided supplemental information by the authors.

1. Materials and methods	p2 - 4
2. Supplementary table S1	p5 - 10
3. Supplementary table S2	p11 - 55
4. Supplementary table S3	p57-60
5. Supplementary table S4	p61
6. Supplementary table S5	p62
7. Supplementary table S6	p63
8. Supplementary table S7	p64 - 65
	•

Materials and Methods

Patients

One hundred and seventeen unrelated probands were identified from the UK Juvenile-onset SLE (JSLE) Cohort Study (Watson et al., 2012) and French SLE GENIAL (Clinicaltrials.gov, NCT01992666) cohorts. All patients fulfilled American College of Rheumatology (ACR) criteria for lupus and were diagnosed before the age of 16 years. Linked clinical data were recorded in the two respective nationwide databases. The study was approved by the Sud-Est III ethics committee (#2013-011B), French Data Protection Authority (CNIL, #DR-2013-354), French Advisory Committee on Healthcare Research Data Processing (CCTIRS, #2013.223), the National Research Ethics Service North West, Liverpool East, UK (reference 06/Q1502/77) and the Leeds (East) Research Ethics Committee, UK (reference number 10/H1307/132). In agreement with the International Genome Sample resource (IGSR; http://www.internationalgenome.org) criteria for the classification of ethnicity, the combined cohort of pediatric onset SLE examined here was made up of the following ethnicities: European (50%), African (33%) and South Asian (16%) (Figure 1A).

Controls

Control data were derived from the 1000 Genomes Project (1000g)¹⁶. The healthy control cohort comprised 791 unrelated individuals demonstrating a similar ethnic distribution to the cSLE cohort (50% European, 33% African; 16% South Asian), built by random sampling among the 1000g sample set. Two additional control populations were ascertained through the FREX consortium, a French-specific database of 574 individuals of French ancestry and a UK control panel: 74 adults from the north west of England,

The FREX consortium exome database is a French-specific database containing the exome data of a reference control panel of individuals of French ancestry (n = 574). (Website: http://lysine.univ-brest.fr/FrExAC/). The FREX cohort is a federative project that aims at building such a database and giving access to the scientific community exome data that can serve as controls in association studies. A total of 574 healthy individuals sampled in 6 French regions have been sequenced using the Agilent V5+UTR exome capture kit and genotyped on Illumina Core Exome SNP-chip.

A cohort of 74 adults from the north west of England and were screened using an identical pipeline, arising from the CTD project (LEAP), led by Pr. Ian Bruce and funded by the BRC. The patients were sequenced and analysed using exactly the same targeted exon panel, sequencing platform and filtering strategy as employed in the lupus cohort.

Panel designation

We designed a next-generation sequencing panel selecting genes after a systematic search of Pubmed to January 2013, considering combinations of the following terms: "Mouse models of lupus; GWAS studies related to lupus; monogenic lupus".

DNA sequencing

Targeted enrichment and sequencing of our panel of 146 genes was undertaken using 200 ng of DNA extracted from peripheral blood. Enrichment was performed with the Sure Select Custom Target Enrichment Kit (Agilent Technologies, Santa Clara, CA, USA) for the Illumina HiSeq system following the manufacturer's protocols. Samples were paired-end sequenced on on a Illumina HiSeq 2500 sequencer (Illumina Inc, San Diego, CA, USA). More than 96% of targeted bases were sequenced to a read depth of greater than 30. Rare variants, defined here as a frequency on the Exome Aggregation Consortium (ExAC, 0.2) database of <0.1% for SNPs and <1% for indels, were selected for further analysis. Studied variants were confirmed by Sanger sequencing (primers available on request).

Variant discovery and annotation

Variant discovery analysis was performed following Genome Analysis Toolkit (GATK) best practice guidelines(Van der Auwera et al., 2013). Raw data (fastq files) were preliminarily split according to the number of reads for optimal base quality score recalibration. Reads were then aligned to the reference genome assembly GRCh37 with BWA-MEM (version 0.7.12), using appropriate read group annotations. Duplicate reads were marked using Picard (version 1.140). We utilized GATK (version 3.4) to realign reads around indels with the 1000 Genomes Project (1000g)(The 1000 Genomes Project Consortium, 2010) phase 1 indel call reference and 1000g gold standard indel sets. Same procedure was performed for the Frex consortium database and UK control population for SNPs only. Base quality scores were recalibrated using the two aforementioned indel sets and the dbSNP138 release. Analysis-ready reads belonging to the same sample, but with different lane number, were then merged. To increase the quality of the results, an additional round of duplicate read marking and realignment was performed on merged files.

Single nucleotide variants (SNV) and indels were called simultaneously on each sample via local reassembly using the GATK HaplotypeCaller tool to produce an intermediate variant set. Joint genotyping was then performed on the files from all 117 individuals. Variants were filtered using variant quality score recalibration, and low quality (GQ < 20) reads removed. Copy number variants (CNVs) were identified according to a read-depth approach. ExomeDepth v1.1.6(Plagnol et al., 2012) was applied to non-duplicate sequencing reads aligned to GRCh37. CNV calling was performed utilizing other samples generated through the same sequencing run and bioinformatics strategy. Variants were annotated using Ensembl Variant Effect Predictor (VEP) 83 and Annovar(Wang et al., 2010). We considered SIFT(Ng and Henikoff, 2003), Polyphen-2(Adzhubei et al., 2013) and Combined Annotation Dependent Depletion (CADD) v1.3(Kircher et al., 2014) scores for computational predictions of variant pathogenicity. For the UK control population, CADD>15 only was considered for the analysis.

Variant filtering

Variants extracted from the raw data in VCF files were filtered using the following steps: segregation into two subsets, insertions/deletions (indels) and SNVs; filtering of indels and SNVs according to their population frequencies within the ExAC dataset, where we employed 1% and 0.1% respectively in the case of putative biallelic mutations, or 0.01% and 0.001% in the case of heterozygous variants, as our thresholds (threshold (heterozygous) = threshold (homozygous)² i.e. 10^{-4} for indels and 10^{-6} for SNVs). Finally, we selected indels with a CADD score higher than 15, and SNVs according to the formula: CADD score ≥ 15 AND sift score ≤ 0.05 AND Polyphen 2 score ≥ 0.9 . A cartoon of the characterization of different sequence variants is given in Figure S1 in the Supplementary Appendix. For the UK control population, CADD>15 only was considered for the analysis.

cDNA cloning, expression and DNA binding studies

cDNA coding for IKZF1 was a kind gift from A. Liston (Leuven). cDNA was PCR amplified and cloned in a p3xFlagCMV vector (Sigma-Aldrich, France) that enables expression of IKAROS N-terminal Flag tagged protein. Directed mutagenesis was performed on this construct to obtain the IKZF1 c.A359T (p.D120V) variant. For IKAROS nuclear staining experiments, Flag-tagged human WT or D120V Ikaros plasmids were transfected into NIH3T3 cells using JetPEI transfection reagent (PolyPlus Transfection, France). Forty eight hours after transfection, cells were stained using primary mouse anti-Flag antibody (Sigma-Aldrich, France) and secondary anti-mouse AF488 antibody (Jackson ImmunoResearch, UK). Nuclei were stained using DAPI (Thermo Fisher Scientific, France). Images were collected on a LSM 710 confocal microscope (Zeiss, Germany) with a 63x immersion objective.

C1q Structure analysis

Structural analysis was performed using MacPymol 1.3 software and C1q structure PDB 1PK6(Gaboriaud et al., 2003).

IZKF1 functional data

Granta cell sample preparation

Granta cells were transduced with inducible lenti-vector pInducer21 (ORF-EG) (Addgene) expressing either wt-IKZF1 or D120V-IKZF1. Four days following transduction, GFP positive cells were sorted using a FACSAria Cell Sorter (Becton-Dickinson, San Jose, USA). For the IKZF1 transcriptomic study, cells were plated at 1.106 cells/ml in 6 well plate and treated or not with doxycycline at 0.5µg/ml during 6 hours. Cells were then pelleted and total RNA extracted using Direct-Zol RNA MicroPrep w/ Zymp-Spin Columns and following manufacturer's instructions (Ozyme). Total RNA was quantified using Quantifluor RNA system (Promega).

Library preparation and RNASeq and analysis: Libraries were generated from 1µg of total RNA from doxycycline induced or non induced Granta cell lines. Libraries were generated with SENSE[™] mRNA-Seg Library Prep Kit V2 (Lexogen) following the manufacturer's instructions. Tagged library quality was checked on D1000 screen tape and analysed on Tape station 4200 (Agilent). Libraries sequencing was performed by the GenomEast platform, a member of the "France Génomique" consortium (ANR-10-INBS- 0009). Cutadapt 1.10 (--adapter AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC --quality-cutoff 20,20 anywhere "Af100g" --minimum-length 40) was used for read preprocessing: adapter, poly-A tail and low-quality (Phred quality score below 20) base trimming, removal of reads shorter than 40 bp after trimming. Reads mapping to rRNA sequences were also discarded. Reads were then mapped onto the hg38 assembly of Homo sapiens genome using STAR (7) version 2.5.3a (--twopassMode Basic). Gene expression was quantified using htseq-count (8) release 0.6.1p1 (--mode union --minaqual 10) and gene annotations from Ensembl release 94. Statistical analysis was performed using R and DESeg2 1.16.1 Bioconductor library (9). Genes were selected as differentially expressed using the following thresholds: adjusted p-value lower than 0.05 and absolute value of log2 Fold-Change greater than 1.

Statistical analysis

Fisher's exact test was used to compare the frequencies of variants in the control and cSLE cohorts. Data normality was assessed using a Shapiro-Wilk test and quantile-quantile plots. The mean of SNPs per individual was compared between control and cSLE cohorts using a Mann-Whitney U test (Wilcoxon rank-sum test). P-values were adjusted using the Bonferroni correction where appropriate. Odd ratios were calculated using the standard formula, with S1/2 the number of variants that passed a filter and F1/2 those which failed for the two groups compared (OR = S1*F2 / F1*S2).

SKAT-O analysis was performed rare variants with a MAF of 1% or 0.1% within the selected genes to analyse the genes differentially distributed in the lupus patients compared to controls The SKAT-O method combines burden and variance component tests (Lee et al., 2012).

Supplemental table S1: Genotypes associated with putative monogenic SLE, known lupus-causing genes (KLC, also referred as Mendeliome) (n = 28)(defined as of 2013)

Gene	Pathogenesis	Kegg pat	hways	References
ACP5	Interferon	<u>ko00740</u>	Riboflavin	(An et al., 2016;
	signaling		metabolism	Briggs et al., 2011;
		<u>ko01100</u>	Metabolic pathways	Lausch et al., 2011)
		<u>ko04142</u>	Lysosome	
		<u>ko04380</u>	Osteoclast	
			differentiation	
		<u>ko05323</u>	Rheumatoid arthritis	
C1Q(A,B,C)	Complement	<u>ko04610</u>	Complement and	(Botto et al., 1998;
			coagulation	Martens et al., 2009)
		105000	cascades	
		<u>K005020</u>	Prion diseases	
		<u>K005133</u>	Pertussis	
		<u>K005142</u>	Chagas disease	
			(American trypanosomiasis)	
		ko05150	Stanhylococcus	
		1000100	aureus infection	
		ko05322	Systemic lupus	
			erythematosus	
C1R	Complement	ko04145	Phagosome	(Lee et al., 1978)
		ko04610	Complement and	
			coagulation	
			cascades	
		<u>ko05133</u>	Pertussis	
		<u>ko05150</u>	Staphylococcus	
			aureus infection	
		<u>ko05322</u>	Systemic lupus	
C18	Complement	1004040	erytnematosus	(Among at al. 2008;
015	Complement	<u>K004610</u>		Dragon-Durev et al.
			cascades	2001: Lee et al
		ko05133	Pertussis	1978)
		ko05150	Stanhylococcus	,
		1000100	aureus infection	
		ko05322	Systemic lupus	
			erythematosus	
C2	Complement			(Stern et al., 1976)
		<u>map0014</u>	O Steroid hormone	
			biosynthesis	
C3	Complement	<u>hsa04145</u>	Phagosome	(Tsukamoto et al.,
		<u>hsa04610</u>	Complement and	2005)
			coagulation	
		boo05400		
		hee05133		
		<u>IISaU5134</u>		
1		Insau5140		1

		hsa05142 Chagas disease	
		(American	
		hea05150 Staphylococcus	
		aureus infection	
		hsa05152 Tuberculosis	
		hsa05167 Kaposi sarcoma-	
		associated	
		herpesvirus	
		infection	
		hsa05203 Viral	
		carcinogenesis	
		hsa05322 Systemic lupus	
		erythematosus	
C4A	Complement	hsa04610 Complement and	(Chen et al., 2000;
		coagulation	Fischer et al., 1998;
		bea05133 Portugeis	r aui et al., 2002)
		hsa05150 Stanbylococcus	
		aureus infection	
		hsa05322 Systemic lupus	
		erythematosus	
C4B	Complement	hsa04610 Complement and	
		coagulation	(Hartung et al., 1992;
		cascades	rang et al., 2007)
C5	Complement	ko04610 Complement and	
00	Complement	coagulation	(Asghar et al., 1991)
		cascades	(
		ko05020 Prion diseases	
		ko05133 Pertussis	
		ko05150 Staphylococcus	
		aureus infection	
		ko05168 Herpes simplex	
		ko05322 Systemic lupus	
		erythematosus	
C6	Complement	ko04610 Complement and	
		coagulation	(Trapp et al., 1987)
		cascades	
		<u>ko05020</u> Prion diseases	
		ervthematosus	
C7	Complement	ko04610 Complement and	(Segurado et al
		coagulation	1992)
		cascades	
		ko05020 Prion diseases	
		ko05322 Systemic lupus	
1	1	erythematosus	

Complement	ko04610 ko05020 ko05146 ko05322	Complement and coagulation cascades Prion diseases Amoebiasis Systemic lupus erythematosus	(Jasin, 1977)
Complement	ko04610 ko05020 ko05146 ko05322	Complement and coagulation cascades Prion diseases Amoebiasis Systemic lupus erythematosus	(Jasin, 1977)
Complement	ko04610 ko05020 ko05146 ko05322	Complement and coagulation cascades Prion diseases Amoebiasis Systemic lupus erythematosus	(Kawai et al., 1989)
Interferon signaling			(Bodaño et al., 2006; Napirei et al., 2000; Yasutomo et al., 2001)
Interferon signaling			(Al-Mayouf et al., 2011; Ozçakar et al., 2013)
Central tolerance	ko01524 ko04010 ko04060 ko04115 ko04210 ko04217 ko04650 ko04668 ko04932 ko05010 ko05142	Platinum drug resistance MAPK signaling pathway Cytokine-cytokine receptor interaction p53 signaling pathway Apoptosis Necroptosis Natural killer cell mediated cytotoxicity TNF signaling pathway Non-alcoholic fatty liver disease (NAFLD) Type I diabetes mellitus Alzheimer disease Chagas disease (American trypanosomiasis)	(Adachi et al., 1993; Watson et al., 1992)
	Complement Complement Complement Interferon signaling Central tolerance	Complementko04610k005020k005146k005322Complementk004610k005020k005146k005322k005146complementk004610k005020k005146k005020k005146k005020k005146k005020k005146k005020k005146k005020k005146k005020k005146k005146k005322InterferonsignalingCentral tolerancek001524k004010k004010k004010k004060k004115k004217k004650k004650k004650k004668k004932k004932k004940k005010k005010k005142	Complementko04610Complement and coagulation cascadesko05020Prion diseasesko05146Amoebiasisko05222Systemic lupus erythematosusComplementko04610Complementko05146ko05146Amoebiasisko05146Amoebiasisko05146Amoebiasisko05146Amoebiasisko05322Systemic lupus erythematosusComplementko04610Complementko04610Complementko04610Complementko05322ko05322Systemic lupus erythematosusComplementko04610Complement and coagulation cascadesko05322Prion diseases ko0520ko05323Systemic lupus erythematosusInterferon signalingSystemic lupus erythematosusInterferon signalingKo01524Central toleranceko01524ko04010MAPK signaling pathway ko04210ko04217Necroptosis ko04217ko04650Natural killer cell mediated cytotoxicity ko04663ko04663TNF signaling pathway ko04932ko04664TNF signaling pathway ko04932ko04932Non-alcoholic fatty liver disease (NAFLD)ko04940Type I diabetes mellitus ko05114ko05114Alzheimer disease (American trypanosomiasis)ko05142Kagas disease (American trypanosomiasis)

			trypanosomiasis	
		<u>ko05161</u>	Hepatitis B	
		ko05162	Measles	
		ko05163	Human	
			cytomegalovirus infection	
		<u>ko05164</u>	Influenza A	
		<u>ko05165</u>	Human	
			papillomavirus infection	
		<u>ko05167</u>	Kaposi sarcoma- associated	
			herpesvirus infection	
		<u>ko05168</u>	Herpes simplex infection	
		<u>ko05200</u>	Pathways in cancer	
		<u>ko05205</u>	Proteoglycans in cancer	
		<u>ko05320</u>	Autoimmune thyroid	
		ko05330	Allograft rejection	
		ko05332	Graft-versus-host	
			disease	
FASLG	Central tolerance	<u>ko01524</u>	Platinum drug resistance	(Lynch et al., 1994; Takahashi et al.,
		<u>ko04010</u>	MAPK signaling	1994)
		ko04014	Ras signaling	
			pathway	
		<u>ko04060</u>	Cytokine-cytokine	
			receptor interaction	
		<u>ko04068</u>	FoxO signaling	
			pathway	
		<u>ko04151</u>	PI3K-Akt signaling	
		ko04210	Apontosis	
		<u>ko04210</u>	Apoptosis	
		ko04650	Netropiosis Natural killer cell	
		<u>K00+030</u>	mediated cytotoxicity	
		<u>ko04722</u>	Neurotrophin	
			signaling pathway	
		<u>ko04932</u>	Non-alcoholic fatty	
			liver disease (NAFLD)	
		<u>ko04940</u>	Type I diabetes mellitus	
		<u>ko05142</u>	Chagas disease	
		<u>ko05142</u>	Chagas disease (American	
		<u>ko05142</u>	Chagas disease (American trypanosomiasis)	
		<u>ko05142</u> <u>ko05143</u>	Chagas disease (American trypanosomiasis) African	

		ko05161 ko05162 ko05163 ko05163 ko05164 ko05165 ko05168 ko05200 ko05205 ko05320 ko05330 ko05332	Hepatitis B Measles Human cytomegalovirus infection Influenza A Human papillomavirus infection Herpes simplex infection Pathways in cancer Proteoglycans in cancer Autoimmune thyroid disease Allograft rejection Graft-versus-host	
IFIH1	Interferon signaling	ko04622 ko05161 ko05162 ko05164 ko05168	disease RIG-I-like receptor signaling pathway Hepatitis B Measles Influenza A Herpes simplex infection	(Robinson et al., 2011)
IKZF1	Central tolerance			(Hoshino et al. 2017)
MFGE8	Efferocytosis			(Hanayama et al., 2004; Hu et al., 2009; Yamaguchi et al., 2008)
PRKCD	Central tolerance	ko04062 ko04140 ko04270 ko04621 ko04625 ko04666 ko04722 ko04750 ko04912	Chemokine signaling pathway Autophagy - animal Vascular smooth muscle contraction NOD-like receptor signaling pathway C-type lectin receptor signaling pathway Fc gamma R- mediated phagocytosis Neurotrophin signaling pathway Inflammatory mediator regulation of TRP channels GnRH signaling pathway	(Belot et al., 2013; Mecklenbräuker et al., 2002; Miyamoto et al., 2002)

		<u>ko04915</u>	Estrogen signaling pathway	
		<u>ko04930</u>	Type II diabetes mellitus	
		<u>ko04931</u>	Insulin resistance	
		<u>ko04933</u>	AGE-RAGE	
			signaling pathway in	
			diabetic	
			complications	
RNASEH2A,	Interferon	<u>ko03030</u>	DNA replication	(Ramantani et al.,
RNASEH2B,	signaling			2010)
RNASEH2C				
TREX1	Interferon	ko04623	Cytosolic DNA-	(Lee-Kirsch et al.,
	signaling		sensing pathway	2007)

Supplemental table S2: Genes selected from GWAS or mouse models of SLE, putative lupus-causing genes (PLC) (n = 119) (defined as of 2013)

Gene	Kegg		Ascertainment	References
	patnways	•		
AFF1	ko05202	Transcriptional misregulation in cancer	GWAS	(Okada et al., 2012)
APCS			Mouse model	(Ehrenstein et al., 1998, 2000)
ATG5	ko04136	Autophagy - other	GWAS	(Harley et al., 2008)
	ko04137 ko04138 ko04140	Mitophagy - animal Autophagy - yeast Autophagy - animal		
	ko04140 ko04211	Autophagy - animal Longevity regulating pathway		
	ko04213	Longevity regulating pathway - multiple species		
	ko04216	Ferroptosis		
	ko04621 ko04622	NOD-like receptor signaling pathway RIG-I-like receptor signaling pathway		
	ko05131	Shigellosis		
BANK1			GWAS	(Kozyrev et al., 2008)
BCL2	ko01521	EGFR tyrosine kinase inhibitor resistance	Mouse model	(Kozyrev et al., 2008; Liphaus et al 2006)
	ko01522	Endocrine resistance		
	ko01524	Platinum drug resistance		
	ko04064	NF-kappa B signaling pathway		
	ko04066	HIF-1 signaling pathway		
	ko04071	Sphingolipid signaling pathway		
	ko04115	p53 signaling pathway		

		ko05	ko05	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	<u>ko05</u>	KUU2		KUUZ		<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	ko04	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2	<u>ko0</u> 2
0-+0	5418	5226	5222	5215	5210	5206	5200	5169	5161	5152	5145	5014	1933	200	876t	0000	<u>1915</u>	1725	1722	1630	1621	<u>4510</u>	1340	1261	1217	1215	1210	1151	1141	1140
	Fluid shear stress and atherosclerosis	Gastric cancer	Small cell lung cancer	Prostate cancer	Colorectal cancer	MicroRNAs in cancer	Pathways in cancer	Epstein-Barr virus infection	Hepatitis B	Tuberculosis	Toxoplasmosis	Amyotrophic lateral sclerosis (ALS)	complications	AGE-RAGE signaling pathway in diabetic	and action	Parathyroid hormone synthesis, secretion	Estrogen signaling pathway	Cholinergic synapse	Neurotrophin signaling pathway	JAK-STAT signaling pathway	NOD-like receptor signaling pathway	Focal adhesion	Hedgehog signaling pathway	Adrenergic signaling in cardiomyocytes	Necroptosis	Apoptosis - multiple species	Apoptosis	PI3K-Akt signaling pathway	Protein processing in endoplasmic reticulum	Autophagy - animal

ko01524Platinum drug resistanceko04012ErbB signaling pathwayko04066HIF-1 signaling pathwayko04068FoxO signaling pathwayko04110Cell cycleko04115p53 signaling pathwayko04151PI3K-Akt signaling pathwayko04218Cellular senescenceko04218Cellular senescence	CDKN1A <u>ko01522</u> Endocrine resistance GWAS; M	CD48 ko04650 Natural killer cell mediated cytotoxicity Mouse m	CD44ko04512ECM-receptor interactionGWASko04640Hematopoietic cell lineageko05131Shigellosisko05169Epstein-Barr virus infectionko05205Proteoglycans in cancerko05206MicroRNAs in cancerMicroRNAs in cancer	hsa04672Intestinal immune network for IgAhsa05144Malariahsa05145Toxoplasmosishsa05310Asthmahsa05320Autoimmune thyroid diseasehsa05321Systemic lupus erythematosushsa05330Allograft rejectionhsa05340Primary immunodeficiencyhsa05416Viral myocarditis
	GWAS; Mouse model	Mouse model	GWAS	
	(Balomenos et al., 2000; Kim et al., 2009)	(Kumar et al., 2006; Morel et al., 2001)	(Lessard et al., 2011)	

	CSF2	CRP		CR2		CORO1A	CLEC16A				CFLAR	
<u>ko04630</u> <u>ko04640</u> <u>ko04650</u> <u>ko04657</u> <u>ko04660</u>	ko04060		<u>ko04640</u> <u>ko04662</u> <u>ko05169</u>	ko04610	ko05152	ko04145		<u>ko04668</u> <u>ko05142</u>	ko04210 ko04217	ko04140	<u>ko04064</u>	<u>ko05225</u> ko05226
JAK-STAT signaling pathway Hematopoietic cell lineage Natural killer cell mediated cytotoxicity IL-17 signaling pathway T cell receptor signaling pathway	Cytokine-cytokine receptor interaction		Hematopoietic cell lineage B cell receptor signaling pathway Epstein-Barr virus infection	Complement and coagulation cascades	Tuberculosis	Phagosome		TNF signaling pathway Chagas disease (American trypanosomiasis)	Apoptosis Necroptosis	Autophagy - animal	NF-kappa B signaling pathway	Hepatocellular carcinoma Gastric cancer
	Mouse model	GWAS		Mouse model		Mouse model	GWAS				Mouse model	
	(Dranoff et al., 1994; Enzler et al., 2003)	(Edberg et al., 2008)		(Boackle et al., 2001; Chen et al., 2000)		(Haraldsson et al., 2008)	(Zhang et al., 2011)				(Qiao et al., 2010; Shenoy et al., 2001)	

	E2F2	DEF6				СҮВВ		CTLA4						
ko04110 ko04218	ko01522		<u>ko04670</u> <u>ko04933</u> <u>ko05140</u>	ko04217 ko04621	ko04145 ko04216	ko04066	<u>ko04660</u> <u>ko05320</u> <u>ko05323</u>	ko04514	<u>ko05221</u> ko05323	<u>ko05167</u> ko05202	<u>ko05166</u>	ko05132	ko04668	ko04664
Cell cycle Cellular senescence	Endocrine resistance		Leukocyte transendothelial migration AGE-RAGE signaling pathway in diabetic complications Leishmaniasis	Necroptosis NOD-like receptor signaling pathway	Phagosome Ferroptosis	HIF-1 signaling pathway	T cell receptor signaling pathway Autoimmune thyroid disease Rheumatoid arthritis	Cell adhesion molecules (CAMs)	Acute myeloid leukemia Rheumatoid arthritis	Transcriptional misregulation in cancer	Arribediasis HTLV-I infection	Salmonella infection	TNF signaling pathway	Fc epsilon RI signaling pathway
	Mouse model	Mouse model				Mouse model		GWAS; Mouse model						
	(Murga et al., 2001)	(Fanzo et al., 2006)				(Campbell et al., 2012)		(Barreto et al., 2009; Tivol et al., 1995)						

	EP300	ELF1																	
ko04066 ko04110 ko04310 ko04330 ko04350 ko04520 ko04630	ko04024	ko04214	ko05226	ko05225	ko05223	ko05222	ko05220	ko05219	ko05218	ko05215	ko05214	ko05212	ko05206	ko05200	ko05167	ko05166	ko05163	ko05161	ko04934
HIF-1 signaling pathway FoxO signaling pathway Cell cycle Wnt signaling pathway Notch signaling pathway TGF-beta signaling pathway Adherens junction JAK-STAT signaling pathway	cAMP signaling pathway	Apoptosis - fly	Gastric cancer	Hepatocellular carcinoma	Non-small cell lung cancer Breast cancer	Small cell lung cancer	Chronic myeloid leukemia	Bladder cancer	Melanoma	Prostate cancer	Glioma	Pancreatic cancer	MicroRNAs in cancer	Pathways in cancer	Kaposi sarcoma-associated herpesvirus infection	HTLV-I infection	Human cytomegalovirus infection	Hepatitis B	Cushing syndrome
	Mouse model	GWAS																	
	(Forster et al., 2007; Shikama et	(Yang et al., 2007)																	
		Osteoclast differentiation Platelet activation	<u>ko04380</u> ko04611																
--	------	---	---------------------------	--------															
(Harley et al., 2008)	GWAS	Phagosome	ko04145	FCGR2A															
		Pathways in cancer Renal cell carcinoma	<u>ko05200</u> ko05211																
		HTLV-I infection	ko05166																
		Dorso-ventral axis formation	ko04320																
		Cellular senescence	ko04218																
		Ras signaling pathway	ko04014																
(Han et al., 2009; Yang et al., 2010)	GWAS	MAPK signaling pathway - fly	ko04013	ETS1															
		Prostate cancer	<u>ko05215</u>																
		Renal cell carcinoma	ko05211																
		MicroRNAs in cancer	ko05206																
		Viral carcinogenesis	ko05203																
		Pathways in cancer	ko05200																
		Epstein-Barr virus infection	ko05169																
		Herpes simplex infection	ko05168																
		Kaposi sarcoma-associated herpesvirus infection	ko05167																
		HTLV-I infection	ko05166																
		Human papillomavirus infection	ko05165																
		Influenza A	ko05164																
		Hepatitis B	ko05161																
		Tuberculosis	ko05152																
		Huntington disease	ko05016																
		Glucagon signaling pathway	ko04922																
		Thyroid hormone signaling pathway	ko04919																
		Melanogenesis	ko04916																
		Long-term potentiation	ko04720																

CGR3B	CGR3A	CGR2B	
<u>ko04145</u> <u>ko04380</u> <u>ko05140</u> <u>ko05150</u> <u>ko05152</u> <u>ko05322</u>	ko04145 ko04380 ko04650 ko05140 ko05150 ko05152 ko05322	<u>ko04145</u> <u>ko04380</u> <u>ko04662</u> <u>ko05150</u> <u>ko05152</u> <u>ko05162</u>	ko04666 ko05140 ko05150 ko05152 ko05322
Phagosome Osteoclast differentiation Natural killer cell mediated cytotoxicity Leishmaniasis Staphylococcus aureus infection Tuberculosis Systemic lupus erythematosus	Phagosome Osteoclast differentiation Natural killer cell mediated cytotoxicity Leishmaniasis Staphylococcus aureus infection Tuberculosis Systemic lupus erythematosus	Phagosome Osteoclast differentiation B cell receptor signaling pathway Fc gamma R-mediated phagocytosis Staphylococcus aureus infection Tuberculosis Measles	Fc gamma R-mediated phagocytosis Leishmaniasis Staphylococcus aureus infection Tuberculosis Systemic lupus erythematosus
GWAS	GWAS	GWAS	
2007, Nat. Genet	(Edberg et al., 2002) Eanciulli et al	(Bolland and Ravetch, 2000; Takai et al., 1996)	

ICMT	ICA1	GPR132																				GADD45A		FYB	FLI1
ko00900	ko04940		ko05226	ko05224	ko05223	ko05222	ko05220	ko05218	ko05217	ko05216	ko05214	ko05213	ko05212	ko05210	ko05202	ko05200	ko04218	ko04210	ko04115	ko04110	ko04068	ko04010		ko04015	ko05202
Terpenoid backbone biosynthesis	Type I diabetes mellitus		Gastric cancer	Breast cancer	Non-small cell lung cancer	Small cell lung cancer	Chronic myeloid leukemia	Melanoma	Basal cell carcinoma	Thyroid cancer	Glioma	Endometrial cancer	Pancreatic cancer	Colorectal cancer	Transcriptional misregulation in cancer	Pathways in cancer	Cellular senescence	Apoptosis	p53 signaling pathway	Cell cycle	FoxO signaling pathway	MAPK signaling pathway		Rap1 signaling pathway	Transcriptional misregulation in cancer
Mouse model	GWAS	Mouse model																				Mouse model		GWAS	GWAS; mouse model
(Doyle et al., 2003)	(Harley et al., 2008)	(Le et al., 2001)																				1999; Li et al., 2010)	(Hollander et al.,	(Addobbati et al., 2013)	(Morris et al., 2010; Zhang et al., 1995)

	IFNG		IFNA17
ko04060 ko04066 ko04217 ko04350 ko04612	<u>ko03050</u>	hsa04621 hsa04623 hsa04623 hsa04630 hsa04650 hsa05160 hsa05161 hsa05162 hsa05164 hsa05167 hsa05168 hsa05200 hsa05320	<u>ko01130</u> <u>hsa04060</u> <u>hsa04151</u> <u>hsa04217</u> <u>hsa04620</u>
Cytokine-cytokine receptor interaction HIF-1 signaling pathway Necroptosis TGF-beta signaling pathway Osteoclast differentiation Antigen processing and presentation	Proteasome	NOD-like receptor signaling pathway RIG-I-like receptor signaling pathway Cytosolic DNA-sensing pathway Jak-STAT signaling pathway Natural killer cell mediated cytotoxicity Tuberculosis Hepatitis C Hepatitis B Measles Human cytomegalovirus infection Influenza A Human papillomavirus infection Kaposi sarcoma-associated herpesvirus infection Herpes simplex infection Pathways in cancer Autoimmune thyroid disease	Biosynthesis of antibiotics Cytokine-cytokine receptor interaction PI3K-Akt signaling pathway Necroptosis Toll-like receptor signaling pathway
	Mouse model		GWAS; mouse model
	(Hirankarn et al., 2009; Seery et al., 1997)		(Li et al., 2005)

		RIG-I-like receptor signaling pathway Cytosolic DNA-sensing pathway	ko04622 ko04623	
		NOD-like receptor signaling pathway	<u>ko04621</u>	
(Wang et al., 2013)	GWAS	Toll-like receptor signaling pathway	ko04620	IKBKE
		Fluid shear stress and atherosclerosis	ko05418	
		Graft-versus-host disease	ko05332	
		Allograft rejection	ko05330	
		Rheumatoid arthritis	ko05323	
		Systemic lupus erythematosus	ko05322	
		Inflammatory bowel disease (IBD)	ko05321	
		Pathways in cancer	ko05200	
		Epstein-Barr virus infection	ko05169	
		Herpes simplex infection	ko05168	
		Influenza A	ko05164	
		Measles	ko05162	
		Tuberculosis	ko05152	
		Amoebiasis	ko05146	
		Toxoplasmosis	ko05145	
		Malaria	ko05144	
		African trypanosomiasis	ko05143	
		trypanosomiasis)	ko05142	
		Characterization Characterization	ko05140	
		Salmonella infection	ko05132	
		Type I diabetes mellitus	ko04940	
		T cell receptor signaling pathway	ko04660	
		Th17 cell differentiation	ko04659	
		Th1 and Th2 cell differentiation	ko04658	
		IL-17 signaling pathway	ko04657	
		Natural killer cell mediated cytotoxicity	ko04650	
		JAK-STAT signaling pathway	ko04630	

	IL10	IKZF3	
ko04068 ko04625 ko04630 ko04660 ko05133 ko05140 ko05143 ko05144 ko05144 ko05146 ko05150 ko05152	ko04060		ko04625 ko05160 ko05161 ko05162 ko05164 ko05165 ko05165
FoxO signaling pathway C-type lectin receptor signaling pathway JAK-STAT signaling pathway T cell receptor signaling pathway Intestinal immune network for IgA production Pertussis Leishmaniasis Chagas disease (American trypanosomiasis) African trypanosomiasis Malaria Toxoplasmosis Amoebiasis Staphylococcus aureus infection Tuberculosis Epstein-Barr virus infection	Cytokine-cytokine receptor interaction		C-type lectin receptor signaling pathway IL-17 signaling pathway Hepatitis C Hepatitis B Measles Influenza A Human papillomavirus infection Kaposi sarcoma-associated herpesvirus infection Herpes simplex infection
	GWAS	GWAS	
	(Wang et al., 2013; Yin et al., 2002)	(Lessard et al., 2012; Wang et al., 1998)	

	IL2RA		IL2	
<u>hsa04144</u> <u>hsa04151</u>	<u>hsa04060</u>	ko04151 ko04625 ko04630 ko04659 ko04659 ko04660 ko04672 ko05142 ko05162 ko05166 ko05166 ko05320 ko05321 ko05330 ko05332	ko04060	ko05310 ko05320 ko05321 ko05322 ko05330
Endocytosis PI3K-Akt signaling pathway	Cytokine-cytokine receptor interaction	PI3K-Akt signaling pathway C-type lectin receptor signaling pathway JAK-STAT signaling pathway Th1 and Th2 cell differentiation T cell receptor signaling pathway Intestinal immune network for IgA production Type I diabetes mellitus Chagas disease (American trypanosomiasis) Measles HTLV-I infection Pathways in cancer Autoimmune thyroid disease Inflammatory bowel disease (IBD) Allograft rejection Graft-versus-host disease	Cytokine-cytokine receptor interaction	Asthma Autoimmune thyroid disease Inflammatory bowel disease (IBD) Systemic lupus erythematosus Allograft rejection
	Mouse model		Mouse model	
	(Carr et al., 2009; Willerford et al., 1995)		(Crispín and Tsokos, 2009; Schorle et al.,	

	IL4		IL2RB	
ko04151 ko04630 ko04640 ko04657 ko04659 ko04659 ko04660 ko04664	ko04060	<u>hsa04658</u> <u>hsa04659</u> <u>hsa05162</u> <u>hsa05166</u> <u>hsa05200</u> hsa05202	hsa04060 hsa04144 hsa04151 hsa04630	<u>hsa04630</u> <u>hsa04640</u> <u>hsa04659</u> <u>hsa05162</u> <u>hsa05166</u> <u>hsa05200</u>
PI3K-Akt signaling pathway JAK-STAT signaling pathway Hematopoietic cell lineage IL-17 signaling pathway Th1 and Th2 cell differentiation Th17 cell differentiation T cell receptor signaling pathway Fc epsilon RI signaling pathway	Cytokine-cytokine receptor interaction	Th1 and Th2 cell differentiation Th17 cell differentiation Measles HTLV-I infection Pathways in cancer Transcriptional misregulation in cancer	Cytokine-cytokine receptor interaction Endocytosis PI3K-Akt signaling pathway Jak-STAT signaling pathway	Jak-STAT signaling pathway Hematopoietic cell lineage Th1 and Th2 cell differentiation Th17 cell differentiation Measles HTLV-I infection Pathways in cancer
	GWAS		Mouse model	
	(Erb et al., 1997; Wu et al., 2003; Yu et al., 2010)		(Lieberman and Tsokos, 2010; Suzuki et al., 1995)	

	IRF7	IRF5										IRAK1								
<u>hsa0462</u> <u>hsa0462</u> <u>hsa0462</u> <u>hsa0516</u>	hsa0462	ko04620	<u>ko05152</u> ko05162 ko05169	ko05145	ko05142	ko05140	ko05133	ko04722	ko04624	ko04620	ko04064	ko04010	ko05330	ko05321	ko05320	ko05310	ko05200	ko05162	ko05140	<u>ko04672</u>
 NOD-like receptor signaling pathway RIG-I-like receptor signaling pathway Cytosolic DNA-sensing pathway Hepatitis C 	DToll-like receptor signaling pathway	_ Toll-like receptor signaling pathway	_ Tuberculosis _ Measles _ Epstein-Barr virus infection	_ Toxoplasmosis	 Chagas disease (American trypanosomiasis) 	_ Leishmaniasis	_ Pertussis	Neurotrophin signaling pathway	Toll and Imd signaling pathway	Toll-like receptor signaling pathway	NF-kappa B signaling pathway	_ MAPK signaling pathway	_ Allograft rejection	Inflammatory bowel disease (IBD)	_ Autoimmune thyroid disease	_ Asthma	Pathways in cancer	Measles	Leishmaniasis	 Intestinal immune network for IgA production
	GWAS	GWAS										GWAS								
	(Fu et al., 2011; Harley et al., 2008)	(Sigurdsson et al., 2005)									2000)	(Jacob et al., 2007; Sawalha et al., 2008)								

ITPR3		ITGAM	IRF8	
<u>hsa04020</u> <u>hsa04022</u> <u>hsa04070</u> <u>hsa04114</u>	hsa04145 hsa04514 hsa04610 hsa04640 hsa04670 hsa05133 hsa05133 hsa05134 hsa05140 hsa05150 hsa05152 hsa05202	<u>hsa04015</u>	hsa05133	hsa05161 hsa05162 hsa05164 hsa05167 hsa05168 hsa05203
Calcium signaling pathway cGMP-PKG signaling pathway Phosphatidylinositol signaling system Oocyte meiosis	Phagosome Cell adhesion molecules (CAMs) Complement and coagulation cascades Hematopoietic cell lineage Leukocyte transendothelial migration Regulation of actin cytoskeleton Pertussis Legionellosis Leishmaniasis Amoebiasis Staphylococcus aureus infection Tuberculosis Transcriptional misregulation in cancer Acute myeloid leukemia	Rap1 signaling pathway	Pertussis	Hepatitis B Measles Influenza A Kaposi sarcoma-associated herpesvirus infection Herpes simplex infection Viral carcinogenesis
GWAS		GWAS	GWAS	
(Oishi et al., 2008)		(Harley et al., 2008; Nath et al., 2008)	(Lessard et al., 2012)	

hsa04730	hsa04728	hsa04726	hsa04725	hsa04724	hsa04723	hsa04720	hsa04713	hsa04625	hsa04621	hsa04611	hsa04540	hsa04371	hsa04270	hsa04218	hsa04210	
Long-term depression	Dopaminergic synapse	Serotonergic synapse	Cholinergic synapse	Glutamatergic synapse	Retrograde endocannabinoid signaling	Long-term potentiation	Circadian entrainment	C-type lectin receptor signaling pathway	NOD-like receptor signaling pathway	Platelet activation	Gap junction	Apelin signaling pathway	Vascular smooth muscle contraction	Cellular senescence	Apoptosis	

	hsa04742	Taste transduction		
	hsa04750	Inflammatory mediator regulation of TRP channels		
	hsa04911	Insulin secretion		
	hsa04912	GnRH signaling pathway		
	hsa04915	Estrogen signaling pathway		
	hsa04918	Thyroid hormone synthesis		
	hsa04921	Oxytocin signaling pathway		
	hsa04922	Glucagon signaling pathway		
	hsa04924	Renin secretion		
	hsa04925	Aldosterone synthesis and secretion		
	hsa04927	Cortisol synthesis and secretion		
	hsa04928	Parathyroid hormone synthesis, secretion and action		
	hsa04934	Cushing syndrome		
	hsa04970	Salivary secretion		
	hsa04971	Gastric acid secretion		
	hsa04972	Pancreatic secretion		
	hsa05010	Alzheimer disease		
	hsa05163	Human cytomegalovirus infection		
	hsa05167	Kaposi sarcoma-associated herpesvirus		
	hsa05205	Proteoglycans in cancer		
JAZF1	H00409	Type II diabetes mellitus	GWAS	(Gateva et al., 2009)
JUNB	ko04380	Osteoclast differentiation	Mouse model	(Meixner et al., 2008; Pflegerl et
	ko04668	TNF signaling pathway		al., 2009)
KLK1	hsa04614	Renin-angiotensin system	GWAS	(Liu et al., 2009)
	hsa04961	Endocrine and other factor-regulated		

		calcium reabsorption		
KRAS	hsa01521	EGFR tyrosine kinase inhibitor resistance	Mouse model	(Quaio et al., 2012)
	hsa01522	Endocrine resistance		
	hsa04010	MAPK signaling pathway		
	hsa04012	ErbB signaling pathway		
	hsa04014	Ras signaling pathway		
	hsa04015	Rap1 signaling pathway		
	hsa04062	Chemokine signaling pathway		
	hsa04068	FoxO signaling pathway		
	hsa04071	Sphingolipid signaling pathway		
	hsa04072	Phospholipase D signaling pathway		
	hsa04137	Mitophagy - animal		
	hsa04140	Autophagy - animal		
	hsa04150	mTOR signaling pathway		
	hsa04151	PI3K-Akt signaling pathway		
	hsa04210	Apoptosis		
	hsa04211	Longevity regulating pathway		
	hsa04213	Longevity regulating pathway - multiple species		
	hsa04218	Cellular senescence		
	hsa04360	Axon guidance		
	hsa04370	VEGF signaling pathway		
	hsa04371	Apelin signaling pathway		
	hsa04540	Gap junction		
	hsa04550	Signaling pathways regulating pluripotency of stem cells		
	hsa04625	C-type lectin receptor signaling pathway		
	hsa04650	Natural killer cell mediated cytotoxicity		
	hsa04660	I cell receptor signaling pathway		
			_	

hsa04664	Fc epsilon RI signaling pathway
hsa04720	Long-term potentiation
hsa04722	Neurotrophin signaling pathway
hsa04725	Cholinergic synapse
hsa04726	Serotonergic synapse
hsa04730	Long-term depression
hsa04810	Regulation of actin cytoskeleton
hsa04910	Insulin signaling pathway
hsa04912	GnRH signaling pathway
hsa04914	Progesterone-mediated oocyte maturation
hsa04915	Estrogen signaling pathway
hsa04916	Melanogenesis
hsa04917	Prolactin signaling pathway
hsa04919	Thyroid hormone signaling pathway
hsa04921	Oxytocin signaling pathway
hsa04926	Relaxin signaling pathway
hsa04933	AGE-RAGE signaling pathway in diabetic
hsa04960	Aldosterone-regulated sodium reabsorption
hsa05034	Alcoholism
hsa05160	Hepatitis C
hsa05161	Hepatitis B
hsa05163	Human cytomegalovirus infection
hsa05165	Human papillomavirus infection
hsa05166	HTLV-I infection
hsa05167	Kaposi sarcoma-associated herpesvirus infection
hsa05200	Pathways in cancer
hsa05203	Viral carcinogenesis
hsa05205	Proteoglycans in cancer

(Yang et al., 2010)	GWAS			LRRC18
(Yu et al., 2013)	GWAS			LBH
		Rap1 signaling pathway NF-kappa B signaling pathway Natural killer cell mediated cytotoxicity Th1 and Th2 cell differentiation Th17 cell differentiation T cell receptor signaling pathway Fc epsilon RI signaling pathway Fc gamma R-mediated phagocytosis	<u>hsa04015</u> <u>hsa04064</u> <u>hsa04650</u> <u>hsa04658</u> <u>hsa04660</u> <u>hsa04664</u> <u>hsa04666</u>	
(Aguado et al., 2002; Sommers et	Mouse model	Ras signaling pathway	hsa04014	LAT
		Colorectal cancer Renal cell carcinoma Pancreatic cancer Endometrial cancer Glioma Prostate cancer Thyroid cancer Melanoma Bladder cancer Chronic myeloid leukemia Acute myeloid leukemia Non-small cell lung cancer Breast cancer Hepatocellular carcinoma Gastric cancer Central carbon metabolism in cancer	hsa05210 hsa05211 hsa05212 hsa05213 hsa05214 hsa05216 hsa05218 hsa052210 hsa05221 hsa05221 hsa05223 hsa05223 hsa05223	
		MicroRNAs in cancer	hsa05206	

	ko04120Ubiquitin mediated proteolysisko04530Tight junctionko04622RIG-I-like receptor signaling pathwayko04722Neurotrophin signaling pathwayko04912GnRH signaling pathwayko05161Hepatitis Bko05166Human T-cell leukemia virus 1 infection	MAP3K1 ko04010 MAPK signaling pathway	MAN2A1 hsa00510 N-Glycan biosynthesis Mouse model hsa01100 Metabolic pathways Mouse model Mouse model	LYNkc04062Chemokine signaling pathwayGWAS, Mouse modelkc04061NF-kappa B signaling pathwaykc04611Platelet activationkc04662B cell receptor signaling pathwayFc epsilon RI signaling pathwaykc04666Fc gamma R-mediated phagocytosiskc04730kc04730Long-term depressionEpithelial cell signaling in Helicobacter pylorikc05167infectionKaposi sarcoma-associated herpesviruskc05169Epstein-Barr virus infectionkc05203Viral carcinogenesis	LY9 Mouse model
			se model	,S, Mouse model	se model
(Rogers et al.,	al., 2000)	(Cedeño et al., 2003; Sawalha et	(Chui et al., 1997)	(narrey et al., 2008; Hibbs et al., 1995)	2006; Morel et al., 2001)

		PDCD1 <u>hsa04514</u> Cell adhesion molecules (CAMs) GWAS <u>hsa04660</u> T cell receptor signaling pathway	ko04080 Neuroactive ligand-receptor interaction ko04621 NOD-like receptor signaling pathway	P2RX7 <u>ko04020</u> Calcium signaling pathway Mouse model	ko04212Longevity regulating pathway - wormko05200Pathways in cancerko05225Hepatocellular carcinomako05418Fluid shear stress and atherosclerosis	NFE2L2 <u>ko04141</u> Protein processing in endoplasmic reticulum GWAS; mouse m	MTA2 Mouse model	MERTK Mouse model	MECP2 Mouse model	hsa04610 Complement and coagulation cascades hsa05150 Staphylococcus aureus infection	MBL2 hsa04145 Phagosome GWAS GWAS	MARK2 Mouse model
on molecules (CAMs)	athways	on molecules (CAMs) tor signaling pathway	ligand-receptor interaction ceptor signaling pathway	naling pathway	egulating pathway - worm h cancer Ilar carcinoma stress and atherosclerosis	cessing in endoplasmic reticulum				t and coagulation cascades		
Mouse model	GWAS	GWAS		Mouse model		GWAS; mouse model	Mouse model	Mouse model	Mouse model		GWAS	Mouse model
אי וועוו זסטו כר מו.,	(Lessard et al., 2011)	(Nishimura et al., 1999; Prokunina et al., 2002)		(Elliott et al., 2005; Portales- Cervantes et al., 2010)		(Córdova et al., 2010; Li et al., 2004)	(Lu et al., 2008)	(Scott et al., 2001; Wu et al., 2011)	(Sawalha et al., 2008)		(Font et al. 2007)	(Hurov et al., 2001)

	ko05418	Fluid shear stress and atherosclerosis		
PHRF1			GWAS	(Harley et al., 2008)
PPARD	ko03320	PPAR signaling pathway	Mouse model	(Mukundan et al., 2009)
	ko04310	Wnt signaling pathway		
	ko05200 ko05221	Pathways in cancer Acute myeloid leukemia		
				(Oxer et al., 2011;
PPARG	<u>ko03320</u>	PPAR signaling pathway	Mouse model	Rosner et al., 2011; Yeh et al., 2008)
	ko04152	AMPK signaling pathway		
	ko04380	Osteoclast differentiation		
	ko04714	Thermogenesis		
	ko05016	Huntington disease		
	ko05200	Pathways in cancer		
	ko05216	Thyroid cancer		
PRDM1			GWAS	(Gateva et al., 2009)
PRKCB	ko01521	EGFR tyrosine kinase inhibitor resistance	GWAS	(Sheng et al., 2011)
	ko04010	MAPK signaling pathway		
	ko04012	ErbB signaling pathway		
	ko04015	Rap1 signaling pathway		
	ko04020	Calcium signaling pathway		
	ko04062	Chemokine signaling pathway		
	ko04064	NF-kappa B signaling pathway		
	KOU4Ubb	HIF-1 signaling pathway		

ko04070	Phosphatidylinositol signaling system
ko04071	Sphingolipid signaling pathway
ko04270	Vascular smooth muscle contraction
ko04310	Wnt signaling pathway
ko04370	VEGF signaling pathway
ko04510	Focal adhesion
ko04540	Gap junction
ko04650	Natural killer cell mediated cytotoxicity
ko04662	B cell receptor signaling pathway
ko04666	Fc gamma R-mediated phagocytosis
ko04670	Leukocyte transendothelial migration
ko04713	Circadian entrainment
ko04720	Long-term potentiation
ko04723	Retrograde endocannabinoid signaling
ko04724	Glutamatergic synapse
ko04725	Cholinergic synapse
ko04726	Serotonergic synapse
ko04727	GABAergic synapse
ko04728	Dopaminergic synapse
ko04730	Long-term depression
ko04750	Inflammatory mediator regulation of TRP channels
ko04911	Insulin secretion
ko04912	GnRH signaling pathway
ko04916	Melanogenesis
ko04918	Thyroid hormone synthesis
ko04919	Thyroid hormone signaling pathway
ko04921	Oxytocin signaling pathway
ko04925	Aldosterone synthesis and secretion
ko04928	Parathyroid hormone synthesis, secretion

		FoxO signaling pathway Phosphatidylinositol signaling system Sphingolipid signaling pathway	<u>ko04050</u> ko04070 ko04071	
		EGFR tyrosine kinase inhibitor resistance	ko01521	
(Di Cristofano et al., 1998, 1999)	Mouse model	Inositol phosphate metabolism	ko00562	PTEN
		Choline metabolism in cancer	ko05231	
		Hepatocellular carcinoma	ko05225	
		Non-small cell lung cancer	ko05223	
		Glioma	ko05214	
		MicroRNAs in cancer	ko05206	
		Proteoglycans in cancer	ko05205	
		Pathways in cancer	ko05200	
		Human cytomegalovirus infection	ko05163	
		Hepatitis B	ko05161	
		Amoebiasis	ko05146	
		African trypanosomiasis	ko05143	
		Leishmaniasis	ko05140	
		Morphine addiction	ko05032	
		Amphetamine addiction	ko05031	
		Carbohydrate digestion and absorption	ko04973	
		Pancreatic secretion	ko04972	
		Gastric acid secretion	ko04971	
		Salivary secretion	ko04970	
		Endocrine and other factor-regulated calcium reabsorption	ko04961	
		Aldosterone-regulated sodium reabsorption	ko04960	
		Complications	ko04933	
		Insulin resistance	ko04931	
		and action		

	PTPN6	PTPN22																				
ko04630 ko04650 ko04660 ko04662	ko04520		ko05230	ko05225	ko05224	ko05222	ko05218	ko05215	ko05214	ko05213	ko05206	ko05200	ko05165	ko05161	ko04931	ko04510	ko04218	ko04212	ko04151	ko04150	ko04140	ko04115
JAK-STAT signaling pathway Natural killer cell mediated cytotoxicity T cell receptor signaling pathway B cell receptor signaling pathway	Adherens junction		Central carbon metabolism in cancer	Hepatocellular carcinoma	Breast cancer	Small cell lung cancer	Melanoma	Prostate cancer	Glioma	Endometrial cancer	MicroRNAs in cancer	Pathways in cancer	Human papillomavirus infection	Hepatitis B	Insulin resistance	Focal adhesion	Cellular senescence	Longevity regulating pathway - worm	PI3K-Akt signaling pathway	mTOR signaling pathway	Autophagy - animal	p53 signaling pathway
	Mouse model	GWAS; mouse model																				
	(Green and Shultz, 1975; Shultz et al., 1993; Tsui et al., 1993)	(Kyogoku et al., 2004; Zikherman et al., 2009)																				

RXRA	RC3H1	hsa04015Rap1 signaling pathwayhsa04218Cellular senescencehsa04670Leukocyte transendothelial mihsa05200Pathways in cancerhsa05223Non-small cell lung cancer	RASSF5 <u>hsa04014</u> Ras signaling pathway	RASGRP3	hsa04014Ras signaling pathwayhsa04015Rap1 signaling pathwayhsa04662B cell receptor signaling pathwhsa05200Pathways in cancer	RASGRP1 hsa04010 MAPK signaling pathway	РХК	hsa04114 Oocyte meiosis hsa05166 HTLV-I infection	PTTG1 <u>hsa04110</u> Cell cycle	ko04660T cell receptor signaling pathwko04666Fc gamma R-mediated phagoko05340Primary immunodeficiency	PTPRC ko04514 Cell adhesion molecules (CAN	ko05140 Leishmaniasis ko05205 Proteoglycans in cancer
Mouse model	Mouse model	5	Mouse model	GWAS		Mouse model	GWAS		GWAS	<u>s</u>	Mouse model	
(Núñez et al., 2010; Rosner et	(Vinuesa et al., 2005)		(Katagiri et al., 2004, 2011)	(Han et al., 2009)		(Priatel et al., 2007)	(Harley et al., 2008)		(Harley et al., 2008)		(Jury et al., 2007; Majeti et al., 2000)	

	STAT1	SLC15A4	SLAMF6	SLAMF1	SH2D2A		SELP	SCUBE1	
hsa04217 hsa04380 hsa04620 hsa04621 hsa04625 hsa04658 hsa04659 hsa04917 hsa04919 hsa04913 hsa04933	hsa04062				hsa04370	<u>hsa05144</u> <u>hsa05150</u>	hsa04514		
Necroptosis Osteoclast differentiation Toll-like receptor signaling pathway NOD-like receptor signaling pathway C-type lectin receptor signaling pathway Jak-STAT signaling pathway Th1 and Th2 cell differentiation Th17 cell differentiation Prolactin signaling pathway AGE-RAGE signaling pathway in diabetic complications Leishmaniasis	Chemokine signaling pathway				VEGF signaling pathway	Malaria Staphylococcus aureus infection	Cell adhesion molecules (CAMs)		
	GWAS	GWAS	GWAS	Mouse model	Mouse model		GWAS	GWAS	
	(Remmers et al., 2007)	(Han et al., 2009)	(Kumar et al., 2006; Morel et al., 2001; Wandstrat et al., 2004)	(Keszei et al., 2011)	(Drappa et al., 2003)		(Jacob et al., 2007)	(Harley et al., 2008)	al., 2011)

ko04060 Cytokine-cytokine receptor interaction ko04068 FoxO signaling pathway ko04110 Cell cycle ko04118 Cellular senescence	TGFB1 <u>ko04010</u> MAPK signaling pathway Mouse mode	STRA13 <u>ko03460</u> Fanconi anemia pathway Mouse mode	ko05200 Pathways in cancer ko05321 Inflammatory bowel disease (IBD)	ko05161 Hepatitis B	ko04630 JAK-STAT signaling pathway	STAT4 ko04217 Necroptosis GWAS	hsa05321 Inflammatory bowel disease (IBD)	hsa05212 Pancreatic cancer	hsa05200 Pathways in cancer	hsa05168 Herpes simplex infection	hsa05167 Kaposi sarcoma-associated herpesvirus	hsa05165 Human papillomavirus infection	hsa05164 Influenza A	hsa05162 Measles	hsa05161 Hepatitis B	hsa05160 Hepatitis C	hsa05152 Tuberculosis	hsa05145 Toxoplasmosis
ar interaction	Mouse model	Mouse model	se (IBD)		vay	GWAS	se (IBD)				ed herpesvirus	ection						
	(Dang et al., 1995; Geiser et al., 1993)	(Sun et al., 2001)				(Remmers et al., 2007)												

	TLR7																									
<u>ko05162</u> <u>ko05164</u>	ko04620	ko05414	ko05410	ko05323	ko05321	ko05226	ko05225	ko05220	ko05212	ko05211	ko05210	ko05205	ko05200	ko05166	ko05161	ko05152	ko05146	ko05145	ko05144	ko05142	ko05140		ko04933	ko04932	ko04926	ko04672
Measles Influenza A	Toll-like receptor signaling pathway	Dilated cardiomyopathy (DCM)	Hypertrophic cardiomyopathy (HCM)	Rheumatoid arthritis	Inflammatory bowel disease (IBD)	Gastric cancer	Hepatocellular carcinoma	Chronic myeloid leukemia	Pancreatic cancer	Renal cell carcinoma	Colorectal cancer	Proteoglycans in cancer	Pathways in cancer	HTLV-I infection	Hepatitis B	Tuberculosis	Amoebiasis	Toxoplasmosis	Malaria	criagas disease (Antierican trypanosomiasis)		complications	AGE-RAGE signaling pathway in diabetic	Non-alcoholic fatty liver disease (NAFLD)	Relaxin signaling pathway	Intestinal immune network for IgA production
	GWAS; mouse model																									
	(Fairhurst et al., 2008; Pisitkun et al., 2006)																									

TNFSF13B	<u>1</u>	<u></u>		TNFRSF13C h	<u>h</u>	<u>द</u>	TNFRSF13B	<u>k</u>					<u>k</u>	TNFAIP3	TMEM39A	<u>ku</u>			<u>k</u>				TLR9
sa04060	sa05166 sa05340	sa04672	sa04064	sa04060	sa05340	sa04672	sa04060	005169	005162	004668	004657	004621	004217	004064		005168	005162	005152	005144	005143	005142		04620
Cytokine-cytokine receptor interaction	HTLV-I infection Primary immunodeficiency	Intestinal immune network for IgA production	NF-kappa B signaling pathway	Cytokine-cytokine receptor interaction	Primary immunodeficiency	Intestinal immune network for IgA production	Cytokine-cytokine receptor interaction	Epstein-Barr virus infection	Measles	TNF signaling pathway	IL-17 signaling pathway	NOD-like receptor signaling pathway	Necroptosis	NF-kappa B signaling pathway		Herpes simplex infection	Measles	Tuberculosis	Malaria	African trypanosomiasis	trypanosomiasis)	Charlas disease (American	Toll-like receptor signaling pathway
GWAS; mouse model				Mouse model			Mouse model							GWAS	GWAS								GWAS; mouse model
(Mackay et al.,				(Jurv et al., 2007)			(Seshasayee et al., 2003)							(Graham et al., 2008)	(Lessard et al., 2012)							2012)	(Christensen et al., 2005; Huang et al., 2012)

		Osteoclast differentiation NOD-like receptor signaling pathway	<u>hsa04380</u> hsa04621	
(Sigurdsson et al., 2005)	GWAS	Necroptosis	hsa04217	ТҮК2
(Schulte-Pelkum e al., 2009; Xue et al., 2003)	Mouse model	Systemic lupus erythematosus	<u>hsa05322</u>	TROVE2
(Espinosa et al., 2009; Frank et al., 1993)	Mouse model	Systemic lupus erythematosus	<u>hsa05322</u>	TRIM21
(Perricone et al., 2013)	Mouse model			TRAF3IP2
		Focal adhesion ECM-receptor interaction Human papillomavirus infection MicroRNAs in cancer	<u>hsa04510</u> <u>hsa04512</u> <u>hsa05165</u> <u>hsa05206</u>	
(Kamatani et al., 2008)	GWAS	PI3K-Akt signaling pathway	hsa04151	TNXB
(Gateva et al., 2009; Han et al., 2009)	GWAS			TNIP1
(Cunninghame Graham et al., 2008)	GWAS	Cytokine-cytokine receptor interaction	hsa04060	TNFSF4
(Wang et al., 2001)	GWAS	Cytokine-cytokine receptor interaction NF-kappa B signaling pathway Herpes simplex infection	<u>hsa04060</u> <u>hsa04064</u> <u>hsa05168</u>	TNFSF14
1999)		NF-kappa B signaling pathway Intestinal immune network for IgA production Rheumatoid arthritis	<u>hsa04064</u> <u>hsa04672</u> <u>hsa05323</u>	

XKR6	WDFY4	UHRF1BP1		UBE2L3												
			<u>hsa05012</u>	hsa04120	<u>hsa05169</u>	hsa05168	hsa05167		hsa05165	hsa05164	hsa05162	hsa05160	hsa05145	hsa04659	hsa04658	hsa04630
			Parkinson disease	Ubiquitin mediated proteolysis	Epstein-Barr virus infection	Herpes simplex infection	infection	Kaposi sarcoma-associated herpesvirus	Human papillomavirus infection	Influenza A	Measles	Hepatitis C	Toxoplasmosis	Th17 cell differentiation	Th1 and Th2 cell differentiation	Jak-STAT signaling pathway
GWAS	GWAS	GWAS		GWAS												
(Budarf et al., 2011)	(Yang et al., 2010)	(Gateva et al., 2009)		(Harley et al., 2008)												

an intron of the Fas antigen gene of lpr mice. Proc. Natl. Acad. Sci. U.S.A. 90, 1756-1760. Adachi, M., Watanabe-Fukunaga, R., and Nagata, S. (1993). Aberrant transcription caused by the insertion of an early transposable element in

Aguado, E., Richelme, S., Nuñez-Cruz, S., Miazek, A., Mura, A.-M., Richelme, M., Guo, X.-J., Sainty, D., He, H.-T., Malissen, B., et al. (2002). Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040.

Al-Mayouf, S.M., Sunker, A., Abdwani, R., Abrawi, S.A., Almurshedi, F., Alhashmi, N., Al Sonbul, A., Sewairi, W., Qari, A., Abdallah, E., et al. (2011). Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188.

alternative splicing of normal C1s gene. Molecular Immunology 45, 1693–1702. C.S., Jensenius, J.C., et al. (2008). Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights Amano, M.T., Ferriani, V.P.L., Florido, M.P.C., Reis, E.S., Delcolli, M.I.M.V., Azzolini, A.E.C.S., Assis-Pandochi, A.I., Sjöholm, A.G., Farah,

Asghar, S.S., Venneker, G.T., van Meegen, M., Meinardi, M.M.H.M., Hulsmans, R.-F.H.J., and de Waal, L.P. (1991). Hereditary deficiency of C5 in association with discoid lupus erythematosus. Journal of the American Academy of Dermatology 24, 376–378.

suppression. Nat. Genet. 19, 348–355. Di Cristofano, A., Kotsi, P., Peng, Y.F., Cordon-Cardo, C., Elkon, K.B., and Pandolfi, P.P. (1999). Impaired Fas response and autoimmunity in coupling of Ras guanine nucleotide exchange factor hSos to adapter protein Grb2 in lupus T cells. Clin. Immunol. *106*, 41–49. Chen, Z., Koralov, S.B., and Kelsoe, G. (2000). Complement C4 inhibits systemic autoimmunity through a mechanism independent of Bodaño, A., González, A., Ferreiros-Vidal, I., Balada, E., Ordi, J., Carreira, P., Gómez-Reino, J.J., and Conde, C. (2006). Association of a non-synonymous single-nucleotide polymorphism of DNASEI with SLE susceptibility. Rheumatology (Oxford) *45*, 819–823. Di Cristofano, A., Pesce, B., Cordon-Cardo, C., and Pandolfi, P.P. (1998). Pten is essential for embryonic development and tumour syndrome-like lymphoproliferation in TGF-beta knockout mice. J. Immunol. 155, 3205–3212. Dang, H., Geiser, A.G., Letterio, J.J., Nakabayashi, T., Kong, L., Fernandes, G., and Talal, N. (1995). SLE-like autoantibodies and Sjögren's Genet. 40, 83-89. Behrens, T.W., et al. (2008). Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Cunninghame Graham, D.S., Graham, R.R., Manku, H., Wong, A.K., Whittaker, J.C., Gaffney, P.M., Moser, K.L., Rioux, J.D., Altshuler, D., Crispín, J.C., and Tsokos, G.C. (2009). Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev 8, 190–195. in childhood-onset systemic lupus erythematosus. Lupus 19, 1237–1242. Córdova, E.J., Velázquez-Cruz, R., Centeno, F., Baca, V., and Orozco, L. (2010). The NRF2 gene variant, -653G/A, is associated with nephritis Chui, D., Oh-Eda, M., Liao, Y.F., Panneerselvam, K., Lal, A., Marek, K.W., Freeze, H.H., Moremen, K.W., Fukuda, M.N., and Marth, J.D. autoantibody production in murine lupus. J. Exp. Med. 202, 321-331. Christensen, S.R., Kashgarian, M., Alexopoulou, L., Flavell, R.A., Akira, S., and Shlomchik, M.J. (2005). Toll-like receptor 9 controls anti-DNA complement receptors CR1 and CR2. J. Exp. Med. 192, 1339-1352. mitogen-activated protein kinases in peripheral blood T lymphocytes from patients with systemic lupus erythematosus: potential role of altered Cedeño, S., Cifarelli, D.F., Blasini, A.M., Paris, M., Placeres, F., Alonso, G., and Rodriguez, M.A. (2003). Defective activity of ERK-1 and ERK-2 Contrasting genetic association of IL2RA with SLE and ANCA-associated vasculitis. BMC Med. Genet. 10, 22. targeted association study in systemic lupus erythematosus identifies multiple susceptibility alleles. Genes Immun. *12*, 51–58. Carr, E.J., Clatworthy, M.R., Lowe, C.E., Todd, J.A., Wong, A., Vyse, T.J., Kamesh, L., Watts, R.A., Lyons, P.A., and Smith, K.G.C. (2009) Budarf, M.L., Goyette, P., Boucher, G., Lian, J., Graham, R.R., Claudio, J.O., Hudson, T., Gladman, D., Clarke, A.E., Pope, J.E., et al. (2011). A C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genetics *19*, 56–59. Briggs, T.A., Rice, G.I., Daly, S., Urquhart, J., Gornall, H., Bader-Meunier, B., Baskar, K., Baskar, S., Baudouin, V., Beresford, M.W., et al. Botto, M., Agnola, C.D., Bygrave, A.E., Thompson, E.M., Cook, H.T., Petry, F., Loos, M., Pandolfi, P.P., and Walport, M.J. (1998). Homozygous Arthritis Rheum. 65, 2161–2171. Belot, A., Kasher, P.R., Trotter, E.W., Foray, A.-P., Debaud, A.-L., Rice, G.I., Szynkiewicz, M., Zabot, M.-T., Rouvet, I., Bhaskar, S.S., et al (1997). Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Cell 90 Nature Genetics 43, 127–131. (2013). Protein kinase co deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. 157-167. (2011). Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature.

47

of the TGF-beta 1 null mouse phenotype. Proc. Natl. Acad. Sci. U.S.A. 90, 9944-9948. controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis Gateva, V., Sandling, J.K., Hom, G., Taylor, K.E., Chung, S.A., Sun, X., Ortmann, W., Kosoy, R., Ferreira, R.C., Nordmark, G., et al. (2009). A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. Harley, J.B., et al. (2011). Association of a functional IRF7 variant with systemic lupus erythematosus. Arthritis Rheum. 63, 749–754. gene to human chromosome 11, and its polymorphisms. Am. J. Hum. Genet. 52, 183–191. patients with systemic lupus erythematosus. Rheumatology (Oxford) 46, 76–80. Font, J., Ramos-Casals, M., Brito-Zerón, P., Nardi, N., Ibañez, A., Suarez, B., Jiménez, S., Tàssies, D., García-Criado, A., Ros, E., et al. (2007). the Impaired Immune Response in C3-Deficient Mice. The Journal of Immunology 160, 2619–2625. pathway. J. Exp. Med. 206, 1661–1671. Fairhurst, A.-M., Hwang, S., Wang, A., Tian, X.-H., Boudreaux, C., Zhou, X.J., Casco, J., Li, Q.-Z., Connolly, J.E., and Wakeland, E.K. (2008) al. (2009). Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 Espinosa, A., Dardalhon, V., Brauner, S., Ambrosi, A., Higgs, R., Quintana, F.J., Sjöstrand, M., Eloranta, M.-L., Ní Gabhann, J., Winqvist, O., et autoimmune-type disorders in mice. J. Exp. Med. 185, 329-339. Erb, K.J., Rüger, B., von Brevern, M., Ryffel, B., Schimpl, A., and Rivett, K. (1997). Constitutive expression of interleukin (IL)-4 in vivo causes hypothesis and comparison of murine allelic products. Arthritis Res. Ther. 7, R468-475. Elliott, J.I., McVey, J.H., and Higgins, C.F. (2005). The P2X7 receptor is a candidate product of murine and human lupus susceptibility loci: a autoantibodies. J. Exp. Med. 191, 1253-1258. Ehrenstein, M.R., Cook, H.T., and Neuberger, M.S. (2000). Deficiency in serum immunoglobulin (Ig)M predisposes to development of IgG Ehrenstein, M.R., O'Keefe, T.L., Davies, S.L., and Neuberger, M.S. (1998). Targeted gene disruption reveals a role for natural secretory IgM in the maturation of the primary immune response. Proc. Natl. Acad. Sci. U.S.A. *95*, 10089–10093. Drappa, J., Kamen, L.A., Chan, E., Georgiev, M., Ashany, D., Marti, F., and King, P.D. (2003). Impaired T cell death and lupus-like autoimmunity in T cell-specific adapter protein-deficient mice. J. Exp. Med. *198*, 809–821. Molecular Basis of a Selective C1s Deficiency Associated with Early Onset Multiple Autoimmune Diseases. The Journal of Immunology 166, Pten+/- mice. Science 285, 2122-2125. Graham, R.R., Cotsapas, C., Davies, L., Hackett, R., Lessard, C.J., Leon, J.M., Burtt, N.P., Guiducci, C., Parkin, M., Gates, C., et al. (2008) Geiser, A.G., Letterio, J.J., Kulkarni, A.B., Karlsson, S., Roberts, A.B., and Sporn, M.B. (1993). Transforming growth factor beta 1 (TGF-beta 1) 41, 1228–1233. Fu, Q., Zhao, J., Qian, X., Wong, J.L.H., Kaufman, K.M., Yu, C.Y., Hwee Siew Howe, Tan Tock Seng Hospital Lupus Study Group, Mok, M.Y., Frank, M.B., Itoh, K., Fujisaku, A., Pontarotti, P., Mattei, M.G., and Neas, B.R. (1993). The mapping of the human 52-kD Ro/SSA autoantigen Association of mannose-binding lectin gene polymorphisms with antiphospholipid syndrome, cardiovascular disease and chronic damage in Fischer, M.B., Ma, M., Hsu, N.C., and Carroll, M.C. (1998). Local Synthesis of C3 Within the Splenic Lymphoid Compartment Can Reconstitute Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur. J. Immunol. 38, 1971–1978. 7612-7616. Dragon-Durey, M.-A., Quartier, P., Frémeaux-Bacchi, V., Blouin, J., Barace, C. de, Prieur, A.-M., Weiss, L., and Fridman, W.-H. (2001).

Green, M.C., and Shultz, L.D. (1975). Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J. Hered. *66*, 250–258. Han, J.-W., Zheng, H.-F., Cui, Y., Sun, L.-D., Ye, D.-Q., Hu, Z., Xu, J.-H., Cai, Z.-M., Huang, W., Zhao, G.-P., et al. (2009). Genome-wide Jury, E.C., Flores-Borja, F., and Kabouridis, P.S. (2007). Lipid rafts in T cell signalling and disease. Semin. Cell Dev. Biol. 18, 608–615. Kamatani, Y., Matsuda, K., Ohishi, T., Ohtsubo, S., Yamazaki, K., Iida, A., Hosono, N., Kubo, M., Yumura, W., Nitta, K., et al. (2008). Solomon, A., et al. (2007). Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum. *56*, 4164–4173. polymorphism in Chinese patients with systemic lupus erythematosus in Taiwan. Rheumatol. Int. 32, 2105–2109. is associated with systemic lupus erythematosus in human. Lupus 18, 676–681. Huang, C.-M., Huang, P.-H., Chen, C.-L., Lin, Y.-J., Tsai, C.-H., Huang, W.-L., and Tsai, F.-J. (2012). Association of toll-like receptor 9 gene Hu, C.Y., Wu, C.S., Tsai, H.F., Chang, S.K., Tsai, W.I., and Hsu, P.N. (2009). Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J. Allergy Clin. Immunol. 140, 223–231 Hoshino, A., Okada, S., Yoshida, K., Nishida, N., Okuno, Y., Ueno, H., Yamashita, M., Okano, T., Tsumura, M., Nishimura, S., et al. (2017). study. J Clin Invest 90, 1346-1351. Hartung, K., Baur, M.P., Coldewey, R., Fricke, M., Kalden, J.R., Lakomek, H.J., Peter, H.H., Schendel, D., Schneider, P.M., and Seuchter, S.A. variants in ITGAM, PXK, KIAA1542 and other loci. Nature Genetics 40, 204–210. Harley, J.B., Genetics (SLEGEN), T.I.C. for S.L.E., Alarcón-Riquelme, M.E., Criswell, L.A., Jacob, C.O., Kimberly, R.P., Moser, K.L., Tsao, B.P., uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150. association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat. Genet. 41, 1234-Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat. Genet. 40, 1059–1061. Katagiri, K., Ohnishi, N., Kabashima, K., Iyoda, T., Takeda, N., Shinkai, Y., Inaba, K., and Kinashi, T. (2004). Crucial functions of the Rap1 population. J. Hum. Genet. 53, 64–73. Jasin, H.E. (1977). Absence of the eighth component of complement in association with systemic lupus erythematosus-like disease. J. Clin Jacob, C.O., Reiff, A., Armstrong, D.L., Myones, B.L., Silverman, E., Klein-Gitelman, M., McCurdy, D., Wagner-Weiner, L., Nocton, J.J., Hurov, J.B., Stappenbeck, T.S., Zmasek, C.M., White, L.S., Ranganath, S.H., Russell, J.H., Chan, A.C., Murphy, K.M., and Piwnica-Worms, H Hibbs, M.L., Tarlinton, D.M., Armes, J., Grail, D., Hodgson, G., Maglitto, R., Stacker, S.A., and Dunn, A.R. (1995). Multiple defects in the (1992). Major histocompatibility complex haplotypes and complement C4 alleles in systemic lupus erythematosus. Results of a multicenter Vyse, T.J., and Langefeld, C.D. (2008). Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility Hanayama, R., Tanaka, M., Miyasaka, K., Aozasa, K., Koike, M., Uchiyama, Y., and Nagata, S. (2004). Autoimmune disease and impaired Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese Invest. 60, 709–715. (2001). Immune system dysfunction and autoimmune disease in mice lacking Emk (Par-1) protein kinase. Mol. Cell. Biol. 21, 3206–3219. immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301–311.

effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat. Immunol. 5, 1045–1051. Katagiri, K., Ueda, Y., Tomiyama, T., Yasuda, K., Toda, Y., Ikehara, S., Nakayama, K.I., and Kinashi, T. (2011). Deficiency of Rap1-binding

1067. 911-923. are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J. Clin. Invest. 119, 261-272. replication study. Am. J. Hum. Genet. 90, 648-660. Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracia locus at 11p13 between PDHX and CD44 in a multiethnic study. Am. J. Hum. Genet. *88*, 83–91. Lessard, C.J., Adrianto, I., Ice, J.A., Wiley, G.B., Kelly, J.A., Glenn, S.B., Adler, A.J., Li, H., Rasmussen, A., Williams, A.H., et al. (2012). Lee-Kirsch, M.A., Gong, M., Chowdhury, D., Senenko, L., Engel, K., Lee, Y.-A., de Silva, U., Bailey, S.L., Witte, T., Vyse, T.J., et al. (2007). complement. c1r and c1s associated with a lupus erythematosus-like disease. Arthritis & Rheumatism 21, 958–967. Lee, S.L., Wallace, S.L., Barone, R., Blum, L., and Harvey Chase, P. (1978). Familial deficiency of two subunits of the first component of Genet. 43, 132–137. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat. 504-507. Kyogoku, C., Langefeld, C.D., Ortmann, W.A., Lee, A., Selby, S., Carlton, V.E.H., Chang, M., Ramos, P., Baechler, E.C., Batliwalla, F.M., et al. (2004). Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am. J. Hum. Genet. 75, Keszei, M., Latchman, Y.E., Vanguri, V.K., Brown, D.R., Detre, C., Morra, M., Arancibia-Carcamo, C.V., Arancibia, C.V., Paul, E., Calpe, S., et al. (2011). Auto-antibody production and glomerulonephritis in congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/-Kawai, T., Katoh, K., Narita, M., Tani, K., and Okubo, T. (1989). Deficiency of the 9th component of complement (C9) in a patient with systemic protein RAPL causes lymphoproliferative disorders through mislocalization of p27kip1. Immunity 34, 24–38 Lynch, D.H., Watson, M.L., Alderson, M.R., Baum, P.R., Miller, R.E., Tough, T., Gibson, M., Davis-Smith, T., Smith, C.A., and Hunter, K. (1994) Component Mta2 Causes Abnormal T Cell Activation and Lupus-like Autoimmune Disease in Mice. J. Biol. Chem. 283, 13825–13833 Lu, X., Kovalev, G.I., Chang, H., Kallin, E., Knudsen, G., Xia, L., Mishra, N., Ruiz, P., Li, E., Su, L., et al. (2008). Inactivation of NuRD Liu, K., Li, Q.-Z., Delgado-Vega, A.M., Abelson, A.-K., Sánchez, E., Kelly, J.A., Li, L., Liu, Y., Zhou, J., Yan, M., et al. (2009). Kallikrein genes Immunity. J Biomed Biotechnol 2010. Li, J., Stein, T.D., and Johnson, J.A. (2004). Genetic dissection of systemic autoimmune disease in Nrf2-deficient mice. Physiol. Genomics 18 behalf of the BIOLUPUS and GENLES Networks, Anaya, J.-M., et al. (2011). Identification of a systemic lupus erythematosus susceptibility Lessard, C.J., Adrianto, I., Kelly, J.A., Kaufman, K.M., Grundahl, K.M., Adler, A., Williams, A.H., Gallant, C.J., Marta E. Alarcón-Riquelme on Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065-Lausch, E., Janecke, A., Bros, M., Trojandt, S., Alanay, Y., De Laet, C., Hübner, C.A., Meinecke, P., Nishimura, G., Matsuo, M., et al. (2011). Kumar, K.R., Li, L., Yan, M., Bhaskarabhatla, M., Mobley, A.B., Nguyen, C., Mooney, J.M., Schatzle, J.D., Wakeland, E.K., and Mohan, C. (2006). Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science *312*, 1665–1669. lupus erythematosus. J. Rheumatol. 16, 542–543. Lieberman, L.A., and Tsokos, G.C. (2010). The IL-2 Defect in Systemic Lupus Erythematosus Disease Has an Expansive Effect on Host [BALB/c.129] mice. Int. Immunol. 23, 149–158.

(2011). PPARy expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus 20, 575–587.
Oxer, D.S., Godoy, L.C., Borba, E., Lima-Salgado, T., Passos, L.A., Laurindo, I., Kubo, S., Barbeiro, D.F., Fernandes, D., Laurindo, F.R., et al.
Oishi, T., Iida, A., Otsubo, S., Kamatani, Y., Usami, M., Takei, T., Uchida, K., Tsuchiya, K., Saito, S., Ohnisi, Y., et al. (2008). A functional SNP in the NKX2.5-binding site of ITPR3 promoter is associated with susceptibility to systemic lupus erythematosus in Japanese population. J. Hum. Genet. <i>53</i> . 151–162.
X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression. Proc. Natl. Acad. Sci. U.S.A. 107, 10626–10631.
gene encoding an ITIM motif-carrying immunoreceptor. Immunity <i>11</i> , 141–151. Niñez V. Alameda D. Rico D. Mota R. Gonzalo P. Cedenilla M. Fischer T. Roscá I. Glass C.K. Arrovo A.G. et al. (2010). Retinoid
Genet. 40, 152–154.
Nath, S.K., Han, S., Kim-Howard, X., Kelly, J.A., Viswanathan, P., Gilkeson, G.S., Chen, W., Zhu, C., McEver, R.P., Kimberly, R.P., et al. (2008). A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat.
Napirei, M., Karsunky, H., Zevnik, B., Stephan, H., Mannherz, H.G., and Moroy, T. (2000). Features of systemic lupus erythematosus in Dnase1-deficient mice. Nature Genetics 25, 177–181.
Awakuni, J.U.H., et al. (2009). PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15, 1266–
is a cluster of functionally related genes. Proc. Nati. Acad. Sci. U.S.A. <i>98</i> , 1787–1792. Mukundan, L., Odegaard, J.L., Morel, C.R., Heredia, J.E., Mwangi, J.W., Ricardo-Gonzalez, R.R., Goh, Y.P.S., Eagle, A.R., Dunn, S.E.,
Morel, L., Blenman, K.R., Croker, B.P., and Wakeland, E.K. (2001). The major murine systemic lupus erythematosus susceptibility locus, Sle1,
Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cdelta. Nature 416, 865-869.
Miyamoto, A., Nakayama, K., Imaki, H., Hirose, S., Jiang, Y., Abe, M., Tsukiyama, T., Nagahama, H., Ohno, S., Hatakeyama, S., et al. (2002).
Meixner, A., Zenz, R., Schonthaler, H.B., Kenner, L., Scheuch, H., Penninger, J.M., and Wagner, E.F. (2008). Epidermal JunB represses G-
tolerance. Nature <i>416</i> , 860–865.
Mecklenbräuker, L. Saiio, K., Zheng, NY., Leitges, M., and Tarakhovsky, A. (2002). Protein kinase Cdelta controls self-antigen-induced B-cell
(2009). Analysis of C1q polymorphisms suggests association with systemic lupus erythematosus, serum C1q and CH50 levels and disease severity Ann Rheum Dis 68 715–720
Martens, H.A., Zuurman, M.W., de Lange, A.H.M., Nolte, I.M., van der Steege, G., Navis, G.J., Kallenberg, C.G.M., Seelen, M.A., and Bijl, M.
Majeti, K., Xu, Z., Parslow, T.G., Olson, J.L., Daikn, D.I., Killeen, N., and Weiss, A. (2000). An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell <i>103</i> , 1059–1070.
for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710.
Mackay, F., Woodcock, S.A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., Tschopp, J., and Browning, J.L. (1999). Mice transgenic
The mouse Fas-ligand gene is mutated in ald mice and is part of a TNF family gene cluster. Immunity 1. 131–136.

Ozçakar, Z.B., Foster, J., Diaz-Horta, O., Kasapcopur, O., Fan, Y.-S., Yalçınkaya, F., and Tekin, M. (2013). DNASE1L3 mutations in

hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum. 65, 2183–2189. Paul, E., Pozdnyakova, O.O., Mitchell, E., and Carroll, M.C. (2002). Anti-DNA autoreactivity in C4-deficient mice. European Journal of Immunology 32, 2672–2679.

Perricone, C., Ciccacci, C., Ceccarelli, F., Di Fusco, D., Spinelli, F.R., Cipriano, E., Novelli, G., Valesini, G., Conti, F., and Borgiani, P. (2013) 703-709. TRAF3IP2 gene and systemic lupus erythematosus: association with disease susceptibility and pericarditis development. Immunogenetics 65

Pflegerl, P., Vesely, P., Hantusch, B., Schlederer, M., Zenz, R., Janig, E., Steiner, G., Meixner, A., Petzelbauer, P., Wolf, P., et al. (2009)

Epidermal loss of JunB leads to a SLE phenotype due to hyper IL-6 signaling. PNAS *106*, 20423–20428. Pisitkun, P., Deane, J.A., Difilippantonio, M.J., Tarasenko, T., Satterthwaite, A.B., and Bolland, S. (2006). Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672.

erythematosus and rheumatoid arthritis. Hum. Immunol. 71, 818-825. Amaro, R., and Portales-Pérez, D. (2010). Expression and function of the P2X(7) purinergic receptor in patients with systemic lupus Portales-Cervantes, L., Niño-Moreno, P., Doníz-Padilla, L., Baranda-Candido, L., García-Hernández, M., Salgado-Bustamante, M., González-

RasGRP1 results in CD4 T cell immune activation and exhaustion. J. Immunol. 179, 2143–2152. Priatel, J.J., Chen, X., Zenewicz, L.A., Shen, H., Harder, K.W., Horwitz, M.S., and Teh, H.-S. (2007). Chronic immunodeficiency in mice lacking

32, 666–669. G., et al. (2002). A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat. Genet Prokunina, L., Castillejo-López, C., Oberg, F., Gunnarsson, I., Berg, L., Magnusson, V., Brookes, A.J., Tentler, D., Kristjansdóttir, H., Gröndal,

Quaio, C.R.D.C., Carvalho, J.F., da Silva, C.A., Bueno, C., Brasil, A.S., Pereira, A.C., Jorge, A.A.L., Malaquias, A.C., Kim, C.A., and Bertola, D.R. (2012). Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am. J. Med. Genet. A 158A, 1077–1082.

Ramantani, G., Kohlhase, J., Hertzberg, C., Innes, A.M., Engel, K., Hunger, S., Borozdin, W., Mah, J.K., Ungerath, K., Walkenhorst, H., et al (2010). Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome. Arthritis Rheum. 62, 1469–1477.

Remmers, E.F., Plenge, R.M., Lee, A.T., Graham, R.R., Hom, G., Behrens, T.W., de Bakker, P.I.W., Le, J.M., Lee, H.-S., Batliwalla, F., et al. (2007). STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. *357*, 977–986. Robinson, T., Kariuki, S.N., Franek, B.S., Kumabe, M., Kumar, A.A., Badaracco, M., Mikolaitis, R.A., Guerrero, G., Utset, T.O., Drevlow, B.E., et

al. (2011). Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients. J. Immunol. 187, 1298–1303.

systemic lupus erythematosus development via failure to clear apoptotic cells. J. Immunol. 182, 1982–1990. Rogers, N.J., Lees, M.J., Gabriel, L., Maniati, E., Rose, S.J., Potter, P.K., and Morley, B.J. (2009). A defect in Marco expression contributes to

encoded ligands. J. Immunol. 186, 2156-2163. Rosner, C., Kruse, P.H., Hermes, M., Otto, N., and Walter, L. (2011). Rhesus macaque inhibitory and activating KIR3D interact with Mamu-A-

Sawalha, A.H., Webb, R., Han, S., Kelly, J.A., Kaufman, K.M., Kimberly, R.P., Alarcón-Riquelme, M.E., James, J.A., Vyse, T.J., Gilkeson, G.S.

et al. (2008a). Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS ONE 3, e1727. Sawalha, A.H., Jeffries, M., Webb, R., Lu, Q., Gorelik, G., Ray, D., Osban, J., Knowlton, N., Johnson, K., and Richardson, B. (2008b). Defective

Takahashi, T., Tanaka, M., Brannan, C.I., Jenkins, N.A., Copeland, N.G., Suda, T., and Nagata, S. (1994). Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell *76*, 969–976. Trapp, R.G., Fletcher, M., Forristal, J., and West, C.D. (1987). C4 binding protein deficiency in a patient with atypical Behçet's disease. J motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454. Sigurdsson, S., Nordmark, G., Göring, H.H.H., Lindroos, K., Wiman, A.-C., Sturfelt, G., Jönsen, A., Rantapää-Dahlqvist, S., Möller, B., Kere, J., Communications 330, 298–304 Molecular analysis of a novel hereditary C3 deficiency with systemic lupus erythematosus. Biochemical and Biophysical Research Rheumatol 14, 135–138. Suzuki, H., Kündig, T.M., Furlonger, C., Wakeham, A., Timms, E., Matsuyama, T., Schmits, R., Simard, J.J., Ohashi, P.S., and Griesser, H. (1995). Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science *268*, 1472–1476. Sun, H., Lu, B., Li, R.Q., Flavell, R.A., and Taneja, R. (2001). Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat discoid lesion of systemic lupus erythematosus. Arthritis & Rheumatism 19, 517–522. Stern, R., Fu, S.M., Fotino, M., Agnello, V., and Kunkel, H.G. (1976). Hereditary C2 deficiency. Association with skin lesions resembling the A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043. Sommers, C.L., Park, C.-S., Lee, J., Feng, C., Fuller, C.L., Grinberg, A., Hildebrand, J.A., Lacaná, E., Menon, R.K., Shores, E.W., et al. (2002) erythematosus. Am. J. Hum. Genet. 76, 528-537. et al. (2005). Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus Shultz, L.D., Schweitzer, P.A., Rajan, T.V., Yi, T., Ihle, J.N., Matthews, R.J., Thomas, M.L., and Beier, D.R. (1993). Mutations at the murine two novel susceptibility loci PRKCB and 8p11.21 for systemic lupus erythematosus. Rheumatology (Oxford) 50, 682–688. Sheng, Y.-J., Gao, J.-P., Li, J., Han, J.-W., Xu, Q., Hu, W.-L., Pan, T.-M., Cheng, Y.-L., Yu, Z.-Y., Ni, C., et al. (2011). Follow-up study identifies autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity 18, 279–288. Seshasayee, D., Valdez, P., Yan, M., Dixit, V.M., Tumas, D., and Grewal, I.S. (2003). Loss of TACI causes fatal lymphoproliferation and Combined total deficiency of C7 and C4B with systemic lupus erythematosus (SLE). Clinical & Experimental Immunology 87, 410-414. Segurado, O.G., Arnaiz-Villena, A., Iglesias-Casarrubios, P., Martinez-Laso, J., Vicario, J.L., Fontan, G., and Lopez-Trascasa, M. (1992) clearance of apoptotic cells is mediated by MER. Nature 411, 207–211. Schulte-Pelkum, J., Fritzler, M., and Mahler, M. (2009). Latest update on the Ro/SS-A autoantibody system. Autoimmun Rev *8*, 632–637. Scott, R.S., McMahon, E.J., Pop, S.M., Reap, E.A., Caricchio, R., Cohen, P.L., Earp, H.S., and Matsushima, G.K. (2001). Phagocytosis and deficient by gene targeting. Nature 352, 621-624. Schorle, H., Holtschke, T., Hünig, T., Schimpl, A., and Horak, I. (1991). Development and function of T cells in mice rendered interleukin-2 Genes Immun. 9, 368-378. cell phosphatase gene. Nat. Genet. 4, 124–129. Immunol. 2, 1040–1047. T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients Tsui, H.W., Siminovitch, K.A., de Souza, L., and Tsui, F.W. (1993). Motheaten and viable motheaten mice have mutations in the haematopoietic Tsukamoto, H., Horiuchi, T., Kokuba, H., Nagae, S., Nishizaka, H., Sawabe, T., Harashima, S., Himeji, D., Koyama, T., Otsuka, J., et al. (2005)

Wandstrat, A.E., Nguyen, C., Limaye, N., Chan, A.Y., Subramanian, S., Tian, X.-H., Yim, Y.-S., Pertsemlidis, A., Garner, H.R., Morel, L., et al A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 Vinuesa, C.G., Cook, M.C., Angelucci, C., Athanasopoulos, V., Rui, L., Hill, K.M., Yu, D., Domaschenz, H., Whittle, B., Lambe, T., et al. (2005).

(2004). Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769–780.

Wang, C., Ahlford, A., Laxman, N., Nordmark, G., Eloranta, M.-L., Gunnarsson, I., Svenungsson, E., Padyukov, L., Sturfelt, G., Jönsen, A., et al

and autoimmunity by T cell-derived LIGHT. J. Clin. Invest. *108*, 1771–1780. Wang, J.H., Avitahl, N., Cariappa, A., Friedrich, C., Ikeda, T., Renold, A., Andrikopoulos, K., Liang, L., Pillai, S., Morgan, B.A., et al. (1998). (2013). Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility. Genes Immun. *14*, 217–222. Wang, J., Lo, J.C., Foster, A., Yu, P., Chen, H.M., Wang, Y., Tamada, K., Chen, L., and Fu, Y.X. (2001). The regulation of T cell homeostasis

Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553.

1645-1656. analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci. J. Exp. Med. 176 Watson, M.L., Rao, J.K., Gilkeson, G.S., Ruiz, P., Eicher, E.M., Pisetsky, D.S., Matsuzawa, A., Rochelle, J.M., and Seldin, M.F. (1992). Genetic

Blood 100, 184–193. Wilkinson, R., Lyons, A.B., Roberts, D., Wong, M.-X., Bartley, P.A., and Jackson, D.E. (2002). Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) acts as a regulator of B-cell development, B-cell antigen receptor (BCR)-mediated activation, and autoimmune disease.

content of the peripheral lymphoid compartment. Immunity 3, 521–530. Willerford, D.M., Chen, J., Ferry, J.A., Davidson, L., Ma, A., and Alt, F.W. (1995). Interleukin-2 receptor alpha chain regulates the size and

Wu, J., Ekman, C., Jönsen, A., Sturfelt, G., Bengtsson, A.A., Gottsäter, A., Lindblad, B., Lindqvist, E., Saxne, T., and Dahlbäck, B. (2011). Increased plasma levels of the soluble Mer tyrosine kinase receptor in systemic lupus erythematosus relate to disease activity and nephritis. Arthritis Res. Ther. 13, R62.

systemic lupus erythematosus in Taiwan. Lupus 12, 21–25. Wu, M.C., Huang, C.M., Tsai, J.J.P., Chen, H.Y., and Tsai, F.J. (2003). Polymorphisms of the interleukin-4 gene in chinese patients with

Xue, D., Shi, H., Smith, J.D., Chen, X., Noe, D.A., Cedervall, T., Yang, D.D., Eynon, E., Brash, D.E., Kashgarian, M., et al. (2003). A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. PNAS *100*, 7503–7508.

Yamaguchi, H., Takagi, J., Miyamae, T., Yokota, S., Fujimoto, T., Nakamura, S., Ohshima, S., Naka, T., and Nagata, S. (2008). Milk fat globule

e1000841. association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet. 6, EGF factor 8 in the serum of human patients of systemic lupus erythematosus. J. Leukoc. Biol. 83, 1300–1307. Yang, W., Shen, N., Ye, D.-Q., Liu, Q., Zhang, Y., Qian, X.-X., Hirankarn, N., Ying, D., Pan, H.-F., Mok, C.C., et al. (2010). Genome-wide

Copy-Number Variation and Associated Polymorphisms of Complement Component C4 in Human Systemic Lupus Erythematosus (SLE): Low Copy Number Is a Risk Factor for and High Copy Number Is a Protective Factor against SLE Susceptibility in European Americans. The American Journal of Human Genetics 80, 1037–1054. Yang, Y., Chung, E.K., Wu, Y.L., Savelli, S.L., Nagaraja, H.N., Zhou, B., Hebert, M., Jones, K.N., Shu, Y., Kitzmiller, K., et al. (2007). Gene

Yasutomo, K., Horiuchi, T., Kagami, S., Tsukamoto, H., Hashimura, C., Urushihara, M., and Kuroda, Y. (2001). Mutation of DNASE1 in people
with systemic lupus erythematosus. Nature Genetics 28, 313–314.

Yeh, C.-S., Chung, F.-Y., Chen, C.-J., Tsai, W.-J., Liu, H.-W., Wang, G.-J., and Lin, S.-R. (2008). PPARgamma-2 and BMPR2 genes were differentially expressed in peripheral blood of SLE patients with osteonecrosis. DNA Cell Biol. *27*, 623–628. Yin, Z., Bahtiyar, G., Zhang, N., Liu, L., Zhu, P., Robert, M.E., McNiff, J., Madaio, M.P., and Craft, J. (2002). IL-10 regulates murine lupus. J.

Immunol. *169*, 2148–2155. Yu, H.-H., Liu, P.-H., Lin, Y.-C., Chen, W.J., Lee, J.-H., Wang, L.-C., Yang, Y.-H., and Chiang, B.-L. (2010). Interleukin 4 and STAT6 gene

polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus *19*, 1219–1228. Yu, Z.-Y., Lu, W.-S., Zuo, X., Hu, J., Yao, S., Li, Y., Han, J.-W., Sun, L.-D., Cheng, Y.-L., Xu, Q., et al. (2013). One novel susceptibility locus associate with systemic lupus erythematosus in Chinese Han population. Rheumatol. Int. *33*, 2079–2083.

allele Zikherman, J., Hermiston, M., Steiner, D., Hasegawa, K., Chan, A., and Weiss, A. (2009). PTPN22 deficiency cooperates with the CD45 E613R đ break tolerance on ھ non-autoimmune background. <u>ب</u> Immunol. 182, 4093-4106

Pt23	Pt22	Pt21	Pt20	Pt19	Pt18	Pt17	Pt16	Pt15	Pt14	Pt13	Pt12	Pt11	Pt10	Pt9	Pt8	Pt7	Pt6	Pt5	Pt4	Pt3	Pt2	Pt1			
CBLB, TMEM39A	CD19	PHRF1	JAZF1	PDHX	TRAF3IP2,	CLEC16A, NFE2L2, TBX	IRF7	C3 het	C9 het	C8B het	C9 het	RNASEH2C	ACP5, RASGRP3	TREX1	IKZF1, LYN	DNASE1L3 hom	C2 hom	C2 hom	C2 hom	C1QA hom	C1QC Het compounds, CD19, CLEC16A,	C1QC hom		and II)	Gene filtered (variants details in table I
Male	Female	Female	Female	Female	Female	Female	Female	Male	Male	Male	Female	Female	Male	Female	Female	Male	Female	Female	Female	Male	Male	Male			Gender
16	10	8	6	7	10	10	8	2	۲	11	11	8	4	۲	14	4	15	4	11	4	3	6			Age at onset
1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	history	Famili	SLE Past
0	1	0	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1			Mucocut aneous
1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1	0	1	1	1			Musculo skeletal
1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1		ory	Cardior espirat
0	0	1	0	0	1	1	1	1	1	0	1	1	1	1	1	1	0	0	1	0	1	1			Lupus Nephritis
0	0	0	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0			Neurological
1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1			Haemat ological
0	1	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0			anti-dsDNA
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1			anti-Sm
0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	1	0	0	ц	0	0			anti-phospholipid
1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1			ANA

Supplementary table S3 : Clinical data of the 117 patients

Pt51	Pt50	Pt49	Pt48	Pt47	Pt46	Pt45	Pt44	Pt43	Pt42	Pt41	Pt40	Pt39	Pt38	Pt37	Pt36	Pt35	Pt34	Pt33	Pt32	Pt31	Pt30	Pt29	Pt28	Pt27	Pt26	Pt25	Pt24
																						MECP2	СҮВВ	WDFY4	PDHX	PTPN22	TNXB
Female	Female	Female	Female	Male	Female	Female	Male	Male	Female	Female	Female	Female	Female	Female	Male	Female	Female	Male	Female	Female	Female	Male	Male	Female	Male	Female	Female
10	4	л	10	2	8	7	10	8	3	6	11	2	9	8	6	8	10	2	8	11	11	14	10	10	10	6	2.5
0	0	0	1	1	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	1	0
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	0	0	1	0
1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1
1	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
1	1	1	1	0	1	0	1	1	1	1	0	0	1	1	0	1	1	1	0	1	0	0	0	1	0	1	1
0	0	0	1	0	1	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1	1	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1
1	0	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	1	0	1	1	0	1	0	1	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1		1	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0	1
1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1

Pt79	Pt78	Pt77	Pt76	Pt75	Pt74	Pt73	Pt72	Pt71	Pt70	Pt69	Pt68	Pt67	Pt66	Pt65	Pt64	Pt63	Pt62	Pt61	Pt60	Pt59	Pt58	Pt57	Pt56	Pt55	Pt54	Pt53	Pt52
Female	Female	Female	Female	Female	Male	Female	Female	Female	Female	Male	Female	Female	Female	Male	Female												
11	11	12	8	8	6	11	10	4	13	10	3	16	4	11	10	9	7	10	11	4	8	6	8	10	10	11	10
0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	0
1	1	1	1	1	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	0	1	0	0	1	1	0	0	0	1	1	1	0	0	1	1	1	1	1	1	0	1	1	1
1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0
0	0	1	0	0	0	1	0	0	0	0	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	1
0	1	1	1	0	0	0	0	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	0	1	0	0	1	1	0	0	0	1	0	1	1	0	1	1	1	0	1	1
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	1	1	0	1	1	1	1	1	0	0	1	1

Pt107	Pt106	Pt105	Pt104	Pt103	Pt102	Pt101	Pt100	Pt99	Pt98	Pt97	Pt96	Pt95	Pt94	Pt93	Pt92	Pt91	Pt90	Pt89	Pt88	Pt87	Pt86	Pt85	Pt84	Pt83	Pt82	Pt81	Pt80
Female	Female	Female	Female	Male	Female	Female	Female	Female	Female	Female	Male	female	Female	Male	Female	Female	Female	Male	Female								
16	13	14	6	8	4	16	14	16	12	6	6	14	5	11	12	9	11	16	ΝA	6	10	13	10	13	13	11	11
0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	NA	0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	0	0	1	0	1	1	0	0	1	1	1	0	NA	1	0	0	1	1	0	1	1
1	0	0	0	0	0	1	0	1	1	0	1	1	0	0	0	1	0	1	NA	1	1	1	1	1	1	0	1
0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	0	NA	0	0	0	1	0	0	0	0
1	1	1	0	1	1	1	0	0	0	1	1	0	1	0	1	1	0	1	NA	0	0	0	1	0	1	0	0
0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	AN	0	0	1	0	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1	1	1	0	0	1	1	1	0	NA	1	1	1	0	1	0	0	0
1	1	1	0	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1	NA	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	AN	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	1	1	NA	1	0	1	1	0	1	0	1	1	NA	0	0	0	0	0	0	0	1
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	NA	1	1	1	1	1	1	1	1

Pt117	Pt116	Pt115	Pt114	Pt113	Pt112	Pt111	Pt110	Pt109	Pt108
Female	Female	Female	Female	Male	Female	Female	Female	Female	Female
14	13	11	9	8	10	8	13	13	10
0	0	0	0	0	0	0	1	0	0
0	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	0	0	1
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	1	0
0	0	0	1	1	1	0	1	0	0
1	0	1	1	1	0	1	1	1	0
1	1	1	0	0	0	1	0	1	1
0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	1	0	1	0	0
1	1	0	1	1	1	1	0	1	1

Supplemental Table S4: Targeted versus Exome sequencing coverage and depth of the panel geneset

N	Panel Lupu	IS				1000g data-	-Bed			
	coverage	mean(%)	median(%)	min(%)	max(%)	coverage	mean	median	min	max
	1x	-	1	5666 ⁷¹ 0	L	1x	0 <mark>.</mark> 9339	0 <mark></mark> 9466	0 <mark>, 8</mark> 353	0 <mark>,</mark> 9683
	5x	6666 0	6666 ⁻¹ 0	1666 ⁷¹ 0	L	5x	0 <mark>,.</mark> 8924	0 <mark>, 9</mark> 055	0 <mark>,</mark> .7498	0 <mark>,</mark> 9577
	10x	8666 0	6666 ^{*-} 0	5866 0	L	10x	0 <mark>, </mark> 8592	0 <u>-</u> 8696	0 <mark>,.</mark> 7251	0 <u>,</u> 9471
	20x	0 <u></u> 9996	0 <u>-</u> 9998	0 <u>-</u> 9959	1	20x	0 <u>-,</u> 7905	0 , ,7946	0 , _5403	0 <mark>,</mark> .9295

FrEx-Bed				
coverage	Mean	Median	Min	Max
1x	9866 ⁷¹ 0	6866 ⁷⁴ 0	0 <u>, </u> 9824	6666 ⁷⁻ 0
5x	0 <mark>, 9</mark> 914	0 <u>, 9933</u>	0 <u>, </u> 9332	0 <u>-</u> 9991
10x	0 <mark></mark> 9764	0 <u>-</u> 9797	0 <u>-</u> 8872	0766 ⁷⁻ 0
20x	0 <u>-</u> 9243	0 <mark>.,</mark> 9265	0 <u>-</u> 8083	0 <u>-</u> 9920

		×	×	19	19	16	16	11	11	11	11	10	8	7	6	5	З	2		-	Mutations	
		153296464	37663334	11688054	6693047	28948790	11063059	65487277	34952961	613556	605628	49933991	56866526	50444429	111887757	08688262	105470408	33749115	114401155	22974028		
		MECP2	СҮВВ	ACP5	C3	CD19	CLEC16A	RNASEH2C	PDHX	IRF7	PHRF1	WDFY4	LYN	IKZF1	TRAF3IP2	60	CBLB	RASGRP3	PTPN22	C1QC		
% of individuals	Mean of individuals	c851C>T	c.1102G>T	c.79C>A	c.3278T>G	c.1318G>A	c.385C>G	c.472C>G	c.171T>G	c.926A>T	c.1355C>T	c657G>T	c.773T>C	c.199A>T	c.1366G>A	c.1490C>T	c.621T>G	c.686C>G	c.314C>T	c.490G>A		
0.89	706.15	782	791	773	779	785	625	781	732	487	674	328	790	674	791	791	768	669	606	791	20X	1000g covere (n=791)
0.82	649.94	715	768	989	802	748	525	726	605	291	663	299	387	659	791	882	752	658	407	774	30X	ed individuals
96.0	554.26	574	574	574	574	574	565	574	574	569	574	574	564	574	574	569	574	574	228	574	20X	FREX covere (n=574)
0.91	525.94	574	550	574	574	574	515	574	571	479	574	567	406	574	574	561	573	574	31	574	30X	d individuals

Supplemental Table S5: Coverage and depth of rare SNP variants filtered in the panel in 1000g and Frex control database

Supplemental Table S6: Mean of filtered variants from the jSLE panel and UK healthy controls (adults, n=74). Processing of samples and bioinformatic filtering were identical within the two groups. Rare variants, defined here as a frequency on the Exome Aggregation Consortium (ExAC) database of <0.1% for SNPs and <1% for indels, were selected for further analysis. CADD>15 was considered for the pathogenic score.

		SNNS		
Filtering		JSLE	Cont	rols
AII	KLC		69.39316239	65.43835616
	PLC		322.2478632	314.1780822
ExAc	KLC		0.341880342	0.383561644
	PLC		2.564102564	7.835616438
CADD	KLC		0.057591623	0.041884817
	PLC		0.35078534	0.261780105

Supplemental Table S7: SKAT-O test for genes filtered in by the algorithm. Frequency of 0.1% and 1% in Exac were tested.

gene	chr	pos	ExAC Fq	pSKAT-O
ACP5	19	11687884	0 <u>,</u> 10%	0 <u>, 1166</u>
ACP5	19	11687884	1%	0 <u>,.</u> 1166
C1QC	1	22973915	0 <u>,.</u> 10%	<mark>0, 0057</mark>
C1QC	1	22973915	1%	0_0057
C2	6	31896638	0,.10%	0,_6901
C2	6	31896638	1%	0 <u>,</u> 6901
C3	19	6680256	0,.10%	0 ₇ .0667
C3	19	6680256	1%	0 ₇ .0607
C8B	1	57409469	0,.10%	1,_0000
C8B	1	57409469	1%	1,.0000
C9	5	39288980	0,.10%	0,.1171
C9	5	39288980	1%	02263
CBLB	3	105378034	010%	05063
CBLB	3	105378034	1%	05063
CD19	16	28948667	010%	0.0109
CD19	16	28948667	1%	0 0109
CLEC16A	16	11051758	0-10%	0- 1743
CI EC16A	16	11051758	1%	0-4079
CYBB	X	37658219	0-10%	0-6885
CYBB	X	37658219	1%	0-6885
DNASE11.3	3	58179089	0-10%	0-6531
DNASE1L3	3	58179089	1%	0,.0001
IK7E1	7	50444387	0_ 10%	0, <u>1164</u>
IKZE1	7	50444387	1%	0,1164
IRE7	11	613097	0.10%	0 4161
IRF7	11	613097	1%	0,4161
	7	27872484	0.10%	0.5070
JAZE1	7	27872484	1%	0,5979
	8	56863106	0_ 10%	0,_0070
	8	56863106	1%	0-2587
MECP2	X	153296464	0-10%	0.0256
MECP2	X	153296464	1%	0.0256
NFF2L2	2	178096309	0-10%	0- 5976
NFE2L2	2	178096309	1%	0,0732
PDHX	11	34938246	0-10%	1-0000
PDHX	11	34938246	1%	1-0000
PHRE1	11	591436	0_ 10%	0_0527
PHRF1	11	587372	1%	0-1683
PTPN22	1	114372222	0-10%	0-2984
PTPN22	1	114372222	1%	0,_2004
RASGRP3	2	33740227	0_ 10%	0,_2004
RASCRP3	2	33740227	1%	0, 1167
RNASEH2C	11	65487277	0.10%	0,0252
RNASEH2C	11	65/87277	1%	0.0252
	3	110165065	0.10%	0.5048
	3	119165965	1%	0_ 5948
	6	32000134	0.10%	0,1250
TNXB	6	32009134	1%	0 1060
	6	111887757	0.10%	0, 1163
	6	111887757	1%	0.2599
	3	48508607	0 10%	0,5067
	3	4000007	0 <u>7-</u> 1070	0,5067
	3	4000007	1 70	0,2907

WDFY4	10	49933991	0 <u>,.</u> 10%	0 <u>,</u> 2680
WDFY4			1%	0 ,_ 6425

Figure 1

Figure 1

Figure 2

Figure 3

A. Mendelian Lupus (n=8)

B. Patients carrying variants in KLC genes (n=7)

C. Patients carrying variants in PLC genes (n=14)

