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I. GENERALIZED LEAST SQUARES

Consider the linear model:

y = X3 + e ,

2
where e is N(0,cr z) and X is an txp matrix of rank p.

The ordinary least squares (OLS) estimate of for this

model is:

-1
= (X'X) X'y.

Furthermore, an estimate of Cov(0) is given by;

^ ^ -12
Cov(0) = (X'X) S ,

2 -1 -1
where S =(n-p) y'(I-X(X'X) X')y.

OLS is appropriate for the linear model presented

above if the covariance matrix of the error term (e)

conforms to particular patterns. The necessary

conditions are discussed in a paper published by Huynh

and Feldt (1970). According to Milliken and Johnson

(1984), the Huynh-Feldt (H-F) condition is equivalent to

specifying that the variances of the differences between

pairs of errors, such as e - e , are equal for all
i i'



i and i', i ^ 1'. If a model has more than one error

term, the covariance matrices of each error vector must

satisfy the H-F condition for OLS to be valid.

There are essentially 3 consequences associated

with using OLS when the H-F condition does not hold.

They are:

1. (3 is unbiased. E(0) = 3.

2. Cov(3) will be biased.

3. Ordinary least-squares will give inefficient
predictions.

Departures from the H-F condition can be remedied

using generalized least squares (GLS). The GLS estimate

of S is:

-1 -1 -1
3 = (X'z: X) X'E y,

which can be computed as a regression of Ay on AX, where

-1 •

E = A A .

An estimate of Cov(3) is given by:

A ^ -1 -1 2
cov(3) = (x'e: X) s ,

2 -1 -1 _1 _1 _1 _;l
where S = (n - p) y' (e - e x(X'e X) X'e )y.

According to Arnold (1981), the following are



properties of the GLS estimators }i (where ^ = X|3) and

2

" 2

1. (M,S ) is a complete sufficient statistic

2

2. p. and S are the minimum variance unbiased
2

estimators of }i and a .

2

3. fi and ((n - p)/n]S are the maximum likelihood

2

estimators of }i and a .

SIMPLE LINEAR REGRESSION MODEL
WITH AUTOREGRESSIVE ERRORS

To illustrate the problems that arise when serially

correlated disturbances exist, let us postulate the

following model:

Y=0+0x+e, k = 1, ,t,
k o Ik k

where we assume the error term e to be first-order
k

autoregressive and of the for

e = *e + e
k k - 1 k

m:

where * represents the coefficient of correlation and



hence -1 < * < 1. Furthermore, e satisfies the
k

following assumptions for all k:

E(e ) =

k

E(e e ) = a
k k + r e

=

r =

r ^

Given the above assumption's, the var iance-covariance

matrix for the serially correlated disturbances can be

written as:

2 2

E(eE •
) = a V = a

e e

•»

* *

«

t-1 t-2 t-3

t-1 ,

•»

t-2
. *

. 1

txt

2 2 2
where a = a / (1 - * ) for all t

e e



CONSEQUENCES OF AUTOCORRELATED ERRORS

In his book Econometric Methods (2nd ed . ) , Johnston

describes three consequences of applying ordinary least-

squares to a model with disturbances that are

autocorrelated. They are:

1. the estimates of |3 are unbiased,

2. the sampling variances of the regression
coefficients are likely to be seriously
underestimated, and

3. ordinary least-squares will give inefficient
predictions.

Because of the aforementioned concerns, any t or F

test performed on the parameters of the model will be

2
incorrect because cov(0) is biased and because SSE/a is

e

not distributed as a chi-square nor is it independent of

(b - 0), (where b is the OLS estimate of 0).

Given that the matrix L is known, the generalized

least squares estimator of and its corresponding

standard error can be computed so that the usual

confidence interval and hypothesis test of can be

constructed. The minimum variance unbiased estimator of

in this situation is provided by generalized least-

squares (GLS).



GLS ESTIMATES

Consider the matrix representation of the simple

linear regression model:

y = X0 + e

2
with E(e) = 0, E(ee' ) = a c.

e

Given that the error term is known to be

autoregressive and that * is known, GLS estimates for

this model can be obtained either directly or by a two-

stage procedure.

The direct GLS estimator of (3 is:

-1 -1 -1
= (X'E X ) X'E y.

The variance of this estimator is:

" " 2 -1 -1
VAR(0) = 3 (X'E X) ,

2-1
where s = (J'e d/(n - 2) and <5 = y - X3.

The two-stage procedure consists of:

1. transforming the elements of the Y vector and
the X matrix by appropriate functions of *, and

2. applying OLS to the transformed data.



The model Is transformed by premultlplying the Y vector,

X matrix and error vector by a matrix A (Ay = AX0 + Ae)

2
such that E(Aee'A') = a I. The appropriate transform-

e

atlon matrix in the context of a simple linear

regression model with t observations and an AR(1) error

structure is:

A =

SQRTd - * )

- 10
- * 1

. .

. .

. - * 1

- * 1

txt

Ordinary least-squares is applied to the following

transformed data:

Ay =

1

SQRTd - * )Y

Y - *Y
2 1

Y - Y
3 2

Y - «Y
t t - 1



AX =

2 2
SQRTd - * ) SQRTd - * )X

1 - *

1 - *

X - *X
2 1

X - *X
t t - 1

The same transformation applied to the simple

linear regression can be extended to a repeated measures

experimental design for which the subplot errors are

serially correlated.

II. REPEATED MEASURES WITH AUTOREGRESSIVE
SUBPLOT ERRORS

A repeated measures model is similar to a split-

plot model, except for the assumptions inherent to the

respective models. The model is:

'=M+a +it +T + (aT) + e
^^^ i ij k ik ijk

i = l,...,a, j = l,...,n, k = l,...,t.

Where }i is the overall mean.

(1),

^ represents whole plot treatment effects



n Is the error term associated with the
Ij whole plots.

(aT) represents the whole plot treatment by
ik subplot treatment interaction.

T represents subplot treatment effects
j (usually time for a repeated measures

experimental design).

e is the error term associated with the
Ijk subplots.

The form of the covariance matrices associated with

the error terms determines the appropriate analysis of a

repeated measures experimental design. Two conditions

will be discussed in particular:

1. the case for which a split-plot analysis is
appropriate, and

2. the case where the covariance matrix of the
subplot errors is assumed to be autoregressive

SPLIT-PLOT ANALYSIS

A split-plot analysis of a repeated measures

experimental design is appropriate if the covariance

matrix for each error term in the model conforms to the

Huynh-Feldt (H-F) condition. An Analysis of Variance

table can be written as:
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Table_l ANOVA
Source of Variation df SS

« a - 1 SS(a)

Error(Whole Plot) a(n - 1) SSE(Whole Plot)

T t - 1 SS(T)

a * T (a - l)(t - 1) SS(a * T)

Error(Subplot) a(n - l)(t - 1) SSE(Subplot)

Source of Variation MS.
ANOVA

SS(a)/(a - 1) MS(a)
MSE(Wole Plot)

Error(Whole Plot)

Error (Subplot

)

SS(T)/(t - 1) MS(T)
MSE(Subplot)

a * T SS(a * T) HSioL * T)
(a -l)(t -1) MSE(Subplot)

AUTOREGRESSIVE REPEATED MEASURES

If the subplot error structure is autoregressive by

nature, the test statistics computed from a split-plot

analysis of the subplot treatment (T) and the whole plot

treatment by subplot treatment interaction (a * T) is
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erroneous. However, the whole plot tests still remain

valid even if the subplot error (e ) is not
ijk

independent.

Three methods are proposed to remedy the

shortcomings of ordinary least squares (split-plot

analysis) when the subplot error structure is

autoregressive. They are:

1. Box's adjusted degrees of freedom associated
with the subplot analysis,

2. generalized least squares (GLS), and

3. generalized linear model - generalized least
squares (GLM - GLS)

.

Following the introduction of each methodology, an

example will be presented to illustrate each concept.

BOX'S ADJUSTED DEGREES OF FREEDOM

According to Box [1954], an adjustment can be made

to the degrees of freedom of an experimental design with

2
an error structure of the form a E. The degrees of

freedom are multiplied by a constant which is computed

as follows:

2 - - 2

t (V - V )

aa ,_^,__
ab 2 a-2 2-

(t - 1) (E E V - 2t E V + t V
1 1 ab la.
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where (V ) = V is the covarlance matrix o£ the t
ab

observations on a subject. V is the mean of the
aa

diagonal elements of V, V is the mean of all elements

of V and V is the mean of the elements in row "a" of
a.

of V.

Wallenstein and Fleiss [1979] have extended Box's

idea to encompass situations where the subplot errors

are autoregressive by nature. For such a covarlance

structure, the degrees of freedom associated with the

subplot treatment, the Interaction between the whole

plot treatment and the subplot treatment, and the

subplot error are multiplied by the constant:

Y = R/B, where

2 t 2
R = (1 + *) {t(l - *)[t(l -*)-(!+ *)] + 2*(1 - * )}

and,

t t
B = (t - 1){4*(1 -*)(! + *)[*{! + *)(i - 4, )

2 t
+ t(l - *)(i + «) - t*(l - *)(i + * )]

2 22 2t 4 2t+l
- t (1 - ) [2# (1 - * )+(!+*) + 4(1 + *) * ]

3 3 2
+ t ( 1 -

) (1 + * ) ( 1 + ,^ )

}
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The degrees of freedom to be adjusted can be

obtained from the split-plot ANOVA table above. The

appropriate adjustments are presented in Table 2 below.

Table -J, Actual and Adjusted Degrees of Freedom

Source_of_Variation ^Actual_df ^Adjusted df
*

a a - 1 (a - 1)

Error(Whole Plot) a(n - 1) a(n - 1)

''' t - 1 Y(t - 1)

^ * "^ (a - l)(t - 1) Y[(a - l)(t -1)1

Error(Subplot) a(n - l)(t - 1) Y[a(n - l)(t -1)]

* Unchanged

The appropriate F - statistics can be computed once

the adjusted degrees of freedom have been computed for

the subplot. For example, assuming the subplot

treatment is time (T), the appropriate computation is:

F = MS(Time)/MS(Error(Time))

where MS(Time) = SS(Tlme)/Ad j . df Time, and

MS(Error(Time)) = SS(Error (Time) )/Adj . df Error(Time).

Since the numerator and denominator sums of squares

have been divided by degrees of freedom that have been

adjusted by the same factor, y, the F-statistic for the

time effect will be exactly the same as the F-statistic

given in the standard split-plot analysis above.
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However, the critical region used In the analysis

will differ from that of the standard split-plot

analysis.

Table 3 below gives values of Y for * = 0.05,

0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.50, 0.55,

0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and for

t = 3, 4, 5, 7, 10, 25, 50, and infinity.

Table -_3; values for gamma when the correlation matrix
HAS A SIMPLEX PATTERN

NUMBER OF TIME POINTS

3 4 5 7 10 25 50 <x>

0.05 0.999 0.998 0.997 0.997 0.996 0.995 0.995 0.995

0.10 0.996 0.992 0.990 0.987 0.985 0.982 0.981 0.980

0.15 0.991 0.983 0.977 0.971 0.966 0.960 0.958 0.956

0.20 0.985 0.971 0.961 0.949 0.940 0.929 0.926 0.923

0.25 0.977 0.956 0.941 0.923 0.909 0.892 0.887 0.882

0.30 0.968 0.940 0.919 0.892 0.872 0.848 0.841 0.835

0.35 0.958 0.921 0.893 0.858 0.831 0.799 0.790 0.782

0.40 0.948 0.901 0.866 0.822 0.787 0.745 0.734 0.724

0.45 0.936 0.880 0.838 0.783 0.740 0.688 0.674 0.663

0.50 0.925 0.859 0.809 0.743 0.692 0.692 0.613 0.600

0.55 0.912 0.837 0.779 0.703 0.643 0.568 0.550 0.536

0.60 0.900 0.814 0.749 0.663 0.594 0.507 0.486 0.471

0.65 0.887 0.791 0.719 0.623 0.546 0.446 0.423 0.406

0.70 0.875 0.769 0.689 0.584 0.449 0.387 0.360 0.342

0.75 0.862 0.747 0.660 0.546 0.454 0.330 0.299 0.280
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VALUES FOR GAMMA WHEN THE CORRELATION MATRIX
HAS A SIMPLEX PATTERN

NUMBER OF TIME POINTS

3 4 5 7 10 25 50 «

0.80 0.849 0.724 0.631 0.510 0.411 0.275 0.240 0.220

0.85 0.837 0.703 0.604 0.475 0.371 0.225 0.185 0.161

0.90 0.824 0.682 0.577 0.442 0.333 0.179 0.133 0.105

0.95 0.812 0.661 0.551 0.410 0.298 0.138 0.088 0.051

LOWER
BOUND 0.800 0.641 0.526 0.381 0.266 0.103 0.051

(T-1) 0.500 0.333 0.250 0.167 0.111 0.042 0.020

Source: REPEATED MEASUREMENTS ANALYSIS OF VARIANCE WHEN
THE CORRELATIONS HAVE A CERTAIN PATTERN By
Sylan Wallenstein & Joseph 1. Fleiss (1979: p. 231)

Table 3 is useful in determining whether an

adjustment is needed to the subplot analysis. Box's

recommended adjustment to the degrees of freedom does

not result in tests that are as powerful as tests

generated by generalized least squares (GLS). However,

GLS is time consuming. If the adjustment factor does

not change the degrees of freedom much, one need not

expend the time nor effort performing a GLS analysis on

a repeated measures experiment with an autoregressive

error structure.

GLS ESTIMATES

An alternative expression for the split-plot model
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which emphasizes the nature of the whole plots is

Y = p. + T + (aT) + e (2),
ijk ij k ik ijk

i = l,...,a, j = l,...,b, k = l,...,t.

where p. is a block effect for the whole plot
ij

experimental units and is equal Ji + a + n . The
i ij

blocks average out the effect of the autoregressive

subplot disturbances, validating the whole plot analysis

of a split-plot model.

Model two above can be represented in matrix

notation as:

y = X0 + e ,

where y is an (ant)xl response vector whose members
consist of y ,

ijk

X is an (ant)x[a(n+t) + t)] design matrix, and

is an [a(n+t) + t]xl vector of parameter
estimates. 3' = t^', T', aT'] ,

where W = [}i , n , . . . , p. ]•
,

11 12 an

T' = [T , T , . . . , T ]• , and12 t

aT' = [aT , aT , . . . , aT 1
'

11 12 at
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E Is an (ant)xl error vector whose members consist
of e

ijk

To illustrate what the design matrix for such a

model looks like, let us look at the simplest case

(a=n=t=2). Assume an experiment was conducted to

monitor the effect of a drug on the heart rate of a

patient. The experiment was designed so that two

patients (n=2) were randomly assigned to each of the two

drugs (a=2) tested. The heart rates per minute were

obtained for each of two weeks (t=2). The design matrix

for this scenario is:

X =

1 1 1
1 1 1

10 1 1
10 1 1

10 1 1
10 1 1

1 1 1
1 1 1

where the first partition consists of indicator

variables representing the whole plots, the second

partition represents time, and the final partition of

indictor variables represents the drug by time

interaction.

Since the design matrix for the split-plot model is

not full column rank, a generalized inverse needs to be

used to estimate 0. For example, given that e is
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2

N(0,a I):
E

= (X'X) X'y

Given that e is autoregressive, the covariance matrix

for the subplot error is:

2 2

E(E'E) = a E = a (I ® V)
E £ an

The following steps should be taken to achieve an

appropriate analysis of a repeated measures experimental

design with autoregresslve subplot disturbances:

1. Perform a split-plot analysis using OLS. The

F-statistics for the whole-plot analysis will

be correct, however, the subplot analysis will

give erroneous F-statistics. The next two

steps are needed to correct the subplot

analysis

.

2. The second step consists of premultiplying

the design matrix, X, and the response vector,

y, by the matrix Z, where Z = I ®A .

an

2

3. Because var(ZE) = cr I , one can obtain GLS
E

2

estimators of (3 and a by running OLS on the
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variables o£ the model:

* * *

y = X + £

*

where y = Zy,

*

X = zx,

*

e = ze

The output from regressing Zy on ZX will

provide appropriate F-statistics for the

subplot part of the analysis.

The OLS estimator of (3 (GLM estimator of (3 for

the split-plot model) is:

• -1 - • -1 II _ I I

=(XE X) XE y=(XZZX) XZZy

Recall that GLS produces minimum variance unbiased

estimators of the mean vector and covariance matrix.

However, the design matrix, X, needs to be constructed to

implement this procedure. This is time consuming.

GLM-GLS

The procedures and properties for the generalize

linear model - general least squares (GLM-GLS) method is

similar to that of the regular GLS analysis presented
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above. However, GLM-GLS is less time consuming,

Consider the transformation:

+

y =(l-*)y , k=l
ijk ijk

ijk ij(k-l)

In terms of the split-plot model, this translates into:

+ + + + +

y = ]x +T+aT +e (3),
ijk ij k ik ijk

+
where )k = (1 - *)^ , k = 1, ..., t

ij ij

+

T=(1-*)T , k=l
k k

= T - ? , k = 2, ..., t.
k k-1

+

aT = (1 - *) aT , k = 1
ik ik

= aT - *aT , k = 2, ..., t,
ik i(k-l)

+

e =(l-»)e ,k=l
ijk ijk

ijk

The errors from this transformed model are now
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Independent, but do not have constant variance

Var(E )

ijk

(1 - i)

1 - *
k = 1

cr , k = 2, . . ., t.
e

However, a nonconstant variance can easily be dealt with

by most computer packages.

Model three can be represented in matrix notation as:

+ + +

y = X|3 + E

where.
+

=

aT

+

M = (1 - *) M'

DT'

aT = (I X D) aT'
a



where.

D =

(1 - *)

- * 1

- * 1

, .

' . .

The GLS estimator of 3 is given by:

^+ - +

3 = (X'WX) X'Wy

where W = I ® G , and
an

- *

22

1

* 1

txt

G =

2

1 -
- *

2

. .

(1 -- )
1 . .

1 . .

10
1

txt
Now, D is a non-singular invertible matrix with inverse:
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-1

(1

t

*)

(1 ) 1

JL

>

«

• • •

(1 - )

t-1 t-2 t-3 t-4
J6 * * * »

(1 - *)

txt

so that a test of H : T = is the same as testing
o

H : T =0, and a test of H : aT = is the same as
o o

testing H : aT =0. As with GLS, the whole-plot
o

F-tests produced by a standard split-plot analysis will

be correct.

A statistical package such as SAS will construct

the design matrix, X, and the matrix of weights, W.

One need only specify the weights along the diagonal of

the matrix W and construct y , which is relatively

easy.
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Presented below is an example of the SAS code

needed to yield an appropriate analysis of the subplots

for the simplest case presented above (a=n=t=2):

DATA EXAMPLES-
INPUT PERSON TIME DRUG Y;
/* COEFFICIENT OF CORRELATION IS ASSUMED*/;
/* FOR ILLUSTRATIVE PURPOSES TO EQUAL 0.6 */;
RHO =0.6;
/* THE WEIGHTS FOR THE MATRIX W NEED TO BE */;
/* SPECIFIED AND ARE ASSUMED TO BE 4 FOR */;
/* TIME PERIOD 1 AND 1 FOR TIME PERIOD 2 */;

IF TIME = 1 THEN
W=(l - RH0"2)/(1 - RH0)"2;

ELSE W=l;
LAGY = LAG(Y);
IF TIME = 1 THEN

YPLUS = (1 - RHO)*Y;
ELSE YPLUS = Y - RHO*LAGY;

CARDS;

data

PROC GLM DATA=EXAMPLE;
CLASSES PERSON TIME DRUG;

MODEL YPLUS = PERSON (DRUG) TIME DRUG*TIME/
NOINT SOLUTION SSI;

WEIGHT W;

CONTRASTS

The GLM-GLS parameter estimates of the subplot

treatment, usually time, are linear functions of the

GLM parameter estimates of the subplot treatment. The

relationship Is given by:
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+

T = DT.

+
Conversely, T is a function of T . The relationship is

given by:

-1 +

T = D T .

Given the relationship that exists between T and

+

T , any contrasts of the form CT, where C is a matrix of

desired contrasts, can be estimated alternatively as

-1 +

CD T .

RECOMMENDED STRATEGY

The following strategy is recommmended for experimental

designs with autoregressive subplot errors:

1. Fit the model by OLS . From this analysis:

- test the whole plot,

- estimate with the residuals obtained
from OLS (Albohali, 1983), and

- consult Table 3 above to see if a GLS or
GLM-GLS analysis needs to be performed
on the subplot. If the adjustment
factor, Y, is close to one, a standard
split-plot analysis will be appropriate
for both the whole plot and the subplot.

2. Do the necessary transformations. Keep in
mind that with a GLM-GLS analysis one need
not produce the design matrix, X.
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III. EXAMPLE

BOX'S ADJUSTED DEGREES OF FREEDOM

To illustrate Box's adjustment to the subplot

degrees of freedom, consider an experiment in which the

effect of a dose of a drug on the growth of rats is

monitored. Presented below in Table 4 are growth

measurements of 50 rats, where 10 rats were randomly

assigned to each of of the five doses. The weights

where monitored and collected for 11 weeks.

Tabl^ - ,4 Body Weights of Rats

WEEK

DOSE RAT 1 2 3 4 5 6 7 8 9 10 11

10

1 54 60 63 74 77 89 93 100 108 114 124

2 69 75 81 90 97 120 114 119 126 138 143

3 77 81 87 94 101 110 117 124 134 141 151

4 64 69 77 83 88 96 104 109 120 123 131

5 51 58 62 71 74 81 88 93 99 103 113

64 71 77 89 90 100 106 114 122 134 139

7 80 91 97 101 111 119 129 131 137 147 154

8 79 85 89 99 104 105 116 121 132 139 147

9 77 82 88 92 101 109 119 127 135 144 158

79 84 91 98 107 114 119 131 137 146 155

6
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Week

DOSE RAT 123456789 10 11

•5 1 62 71 75 79 87 91 100 105 111 121 124

2 68 73 81 89 94 101 110 114 123 132 139

3 94 102 109 110 128 133 147 151 153 171 184

4 81 90 95 102 109 120 128 137 141 154 160

5 64 69 72 76 84 89 97 103 108 114 124

6 67 74 81 81 84 95 100 109 119 128 130

7 73 80 86 89 97 101 110 116 117 135 141

8 71 74 82 84 93 97 102 113 119 124 131

9 69 74 79 89 94 100 107 113 124 134 139

10 60 62 67 74 78 85 92 103 112 121 130

1 1 59 63 66 75 80 87 99 104 110 115 124

2 56 66 70 81 77 88 96 100 113 l20 130

3 71 77 84 80 97 106 111 109 128 133 140

4 59 64 69 76 85 88 96 104 110 119 126

5 65 70 73 77 85 92 96 101 111 118 121

6 61 69 77 81 89 92 107 111 118 127 132

7 80 86 95 99 106 113 127 131 142 150 160

8 74 80 84 90 99 101 108 117 126 133 140

9 71 79 88 90 98 102 116 121 127 139 142

10 69 75 80 86 96 97 104 113 122 129 138

4 1 64 71 79 82 85 94 103 110 113 122 125

2 53 57 61 72 74 76 81 91 99 100 105

3 64 69 76 85 89 96 104 108 116 120 128



28

Week

DOSE RAT 123456789 10 11

4 68 69 78 82 91 97 104 108 115 122 132

5 69 74 80 85 90 99 104 114 123 129 133

6 85 91 98 100 105 104 118 121 130 141 141

7 75 82 85 92 99 107 112 125 130 137 146

8 57 61 65 68 77 81 87 91 95 101 107

9 69 72 77 80 84 91 96 103 109 116 125

10 66 68 76 81 88 95 103 106 112 119 130

1 57 64 70 76 80 90 93 99 105 113 118

2 62 67 74 83 87 93 104 108 114 124 129

3 60 68 73 80 83 94 101 106 112 122 131

4 64 66 76 81 91 100 102 111 120 128 136

5 57 60 67 73 67 64 75 85 89 98 105

6 78 83 89 99 105 113 117 128 132 139 149

7 81 81 92 100 108 119 120 133 138 149 157

8 46 47 51 55 63 65 68 74 78 85 90

9 69 72 74 76 77 82 82 90 95 101 103

10 67 77 83 83 92 99 104 108 114 118 129

Source: Analysis of Messy Data Volumn I: Designed
Experiments by Milliken & Johnson (1984: p. 371-372)

The appropriate model for this analysis is:

Y = }i + OL + K +T+(aT) +e
i:Jk I ij k ik ijk

i = 1,...,5, j = l,...,io, k = 1,...,10.
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Where }i Is the overall mean.

a represents dose effect,
1

Tt is the animal error term,
ij

T represents time effect,
J

(aT) represent the dose by time interaction,
ik

e is the time interval error term and is
ijk considered to be autoregressive

.

A split-plot analysis of the data yields the

following Analysis of Variance table:

Tablg_? ANOVA
Source of Var. df gS MS

Dose 4 10295.72 2573.93 1.53

Error(Rat) 45 75668.30 1681.52

Week 10 243381.13 24338.13 1783.51

Dose * Week 40 1517.88 37.95 2.78

Error(Week) 450 6140.80 13.65

The adjustment in this case is made to the degrees

of freedom associated with week, the interaction between

dose and week, and the subplot error. Each is multi-

plied by the constant:

Y = 467.6421/811.1840 = 0.57649 (* = 0.60).
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The adjusted degrees of freedom are given below;

Table - 6 Actual and Adjusted Degrees of Freedom

Source of Var. Actual df Adiusted d£

Dose 4

*

4
*

Error(Rat) 45 45

Week 10 5.7649

Dose * Week 40 23.0596

Error (Week) 450 259.4205

* Unchanged (between rat comparison).

The F-statistics in the split-plot Anova table

should be compared to the critical regions corresponding

to the F distribution with the appropriately adjusted

degrees of freedom.

The appropriate critical regions to use to test

for a significant week effect and to test for a

significant dose by week interaction, respectively, are:

a = 0.05
F = 2.15917

(5.77,259.42)

a = 0.05
F = 1.57059

(23.06,259.42)

For the rat data above, the adjustment factor (v)
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Is substantially below an adjustment factor of one (see

table 3). Hence a GLS analysis or a variant thereof is

in order. The magnitude of the adjustment factor needed

before a GLS analysis be done is a subjective question.

GLS

To illustrate GLS, let us take another look at the

^
rat data presented above. The first step involves

running a split-plot analysis of the data using a

procedure such as SAS's PROC GLM. The F-statistic from

this analysis will be correct for the whole plot

treatment, dose (see split-plot table above).

The next step requires the creation of a split-plot

design matrix (X). The design matrix for the rat data

contains 121 variables, five for dose, fifty for whole

plot error - which is a nested error structure

consisting of rat nested within dose, eleven for week,

and fifty-five for the dose by week interaction. A no

intercept model was used.

The design matrix (X) and response vector (y) is

premultiplied by the matrix Z = I ® A, where,
an
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A =

0.8

0.6 1

- 0.6 1

... - 0.6 1

. . . - 0.6 1

11x11

Note: The transformation matrix, Z, is a 550 x 550

matrix.

The final step involves running OLS on the 121

transformed variables. The F-statistic from this

analysis will be correct for the subplot treatment,

week, and for the interaction term, dose * week.

However, the whole plot part of the analysis is

erroneous. Combining the whole plot part of the split-

plot analysis with the subplot part of the GLS analysis

produces the following ANOVA table:

Table 7

Source r> f Var . d f

Dose 4

Error(Rat) 45

Week 10

Dose * Week 40

Error(Week) 450

ANOVA
SS

10295.72

75668.30

78626.58

787.88

4182.06

MS

2573.93

1681.52

7862.66

19.70

9.29

- E.

1.53

846.04

2.12
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The conclusions supported by the GLS analysis in

this case do not differ from the conclusions supported

by a standard split-plot analysis. In either case there

is a significant dose by week interaction at a 0.05

level of significance. However, it is worth noting that

the week sums of squares dropped substantially from

1783.51 to 846.04 .

To do this analysis a 550 x 121 design matrix had

to be produced. A laborious task to say the least. The

final proposed method eliminates the need to produce the

design matrix and is therefore advocated. SAS's

generalized linear model (GLM), for example, will

produce the design matrix.

GLM-GLS

To illustrate GLM-GLS, let us review the rat data

once more. As with GLS, the first step involves running

a split-plot analysis of the data using a procedure such

as SAS's PROC GLM. The F-statistic from this analysis

will be correct for the whole plot treatment, dose (see

table 5 above )

.

+
The next step involves converting y to y by

^^^ i^k
a direct transformation.

The final step involves running a weighted least

squares (WLS) on the 121 variables of the split-plot
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design matrix (X) created, for example, by SAS's GLM

procedure and on the variable of the transformed
+

response vector, y . The matrix of weights to apply to

WLS is of the form W = I G , where,
an

4

10
1

10
1

11x11

The F-statistics from this analysis will be correct

for the subplot treatment, week, and for the interaction

term, dose * week. However, the whole plot part of the

analysis is erroneous. Combining the whole plot part of

the split-plot analysis with the subplot part of the GLS

analysis produces the following ANOVA table:

Table 8 ANOVA
Source of Var

.

df SS MS F

Dose 4 10295.72 2573.93 1.53

Error (Rat) 45 75668.30 1681.52

Week 10 78626.58 7862.66 846.04

Dose * Week 40 787.88 19.70 2.12

Error(Week) 450 4182.06 9.29



35

Note: there is no difference in the ANOVA table

presented from the GLS analysis versus the table

presented from the GLM-GLS analysis. However, the

parameters (0) that are estimated by the respective

methods differ drastically.

CONTRASTS

SAS uses set-to-zero restrictions to compute the

GLM and GLM-GLS parameter estimates. Therefore, the GLS

parameter estimates outputted by SAS is of the following

form:

CT =

T - T
1 t

T - T
2 t

T - T
3 t

T - T
t-1 t

To illustrate the procedure for obtaining GLS

contrasts from the GLM-GLS parameter estimates, let us

take one last look at the rat data. Table 9 below shows
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the parameter estimates for both GLS and GLM-GLS for the

rat data. These are estimates for the subplot

treatment, week.

Table 9: GLS and GLM-GLS Parameter Estimates

4 11

5 11

T - T = - 36.18
6 11

T - T = - 29.06
7 11

GLS GLM-GLS

+ " +
T - T = - 66.20 T - T = - 30.788
1 11 1 11

T - T = - 60.72 T - T = - 25.308
2 11 2 11

+ '• +
T - T = - 54.80 T - T = - 22.676
3 11 3 11

T - T = - 49.14 T - T = - 20.568
4 11

+ " +
T - T = - 42.88 T - T = - 17.704

5 11

+ " f

T - T = - 14.760
6 11

+ ^ +

T - T = - 11.660
7 11

+ " +
T^ - T - - 22.52 T - T = - 9.392
8 11 8 11
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GLS and GLM-GLS Parameter Estimates

GLS

T - T = - 15.32
9 11

GLM-GLS

+ '^ +

T - T = - 6.116
9 11

T - T = - 7.18
10 11

+ " +

T - T = - 2.296
10 11

0.00 0.00

The desired contrasts, CT , for the subplot

treatment, week, can be obtained by premultlplying the

*+ -1
GLM-GLS estimate, T , by CD For example.

the contrast T - T can be obtained by multiplying;
1 2

-[CT =1-1 000000000

- 66.21

- 60.72

- 54.80

- 49.14

- 42.88

- 36.18

- 29.06

- 22.52

- 15.32

- 7.18
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-1
= CD T = - 5.49 where.

-1

2.5

1.5 10
0.9 0.6 10
0.54 0.36 0.6 10
0.32 0.22 0.36 0.6 1

0.19 0.13 0.22 0.36 0.6 1

0.12 0.08 0.13 0.22 0.36 0.6 1

0.07 0.05 0.08 0.13 0.22 0.36 0.6 1

0.04 0.03 0.05 0.08 0.13 0.22 0.36 0.6 1

0.03 0.02 0.03 0.05 0.08 0.13 0.22 0.36 0.6 1

0.02 0.01 0.02 0.03 0.05 0.08 0.13 0.22 0.36 0.6 1

- 30.788

- 25.308

- 22.676

- 20.568

T =

- 17.704

- 14.760

- 11.660

- 9.392

- 6.116

- 2.296
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-1 " +

Note: CT may not exactly equal CD T due to rounding

error

.

In summary, three techniques were presented for

analyzing the subplot of a repeated measures experi-

mental design with an autoregressive error structure.

The first technique, proposed by Box (1954), involved

adjusting the degrees of freedom associated with the

subplot treatment, whole plot treatment by subplot

treatment interaction, and the subplot error.

The second technique, GLS, involved transforming

the design matrix and the response vector. The

transformed response vector is then regressed on the

transformed design matrix.

The third and final technique, GLM-GLS, requires

regressing a transformed response vector on the

original design matrix.

In deciding on which technique to use, it is

helpful to note that GLS provides tests that are more

powerful than Box's proposed technique. However, the

design matrix needs to be constructed to do a GLS

analysis. This is time consuming. However, one can

avoid the laborious task of creating the design matrix

and still retain the nice properties of GLS by

performing A GLM-GLS analysis.
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Several statistical computer packages exist that

have a generalized linear model procedure with a

weighted least squares option. Such packages can be

used to perform a modified generalized least squares

subplot analysis of a repeated measures experimental

design with autoregressive subplot disturbances. One

need only regress an appropriately transformed response

vector on the repeated measures design matrix using the

weighted least squares option. The weights need to be

specified

.

The modified generalized least squares estimators

retain all the properties of the standard generalized

least squares estimators. However, a standard

generalized least squares analysis requires the

specification of a design matrix. Computer packages

with the generalized linear model-weighted least squares

option produce the design matrix at a considerable time

savings to the analyst.

Contrasts can be constructed for the modified

generalized least squares technique by taking advantage

of the linear relationship that exist between the

modified generalized least squares estimators and the

standard generalized least squares estimators.


