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INTRODUCTION

Particle movement in ecosystems is of interest to scientists,

engineers and investigators in many different disciplines. Examples

might include petroleiim spills, chemical reactions that occur over time,

or the dispersion of matter in the atmosphere.

Compartmental analysis has been used in ecosystem particle

dispersion modelling for a number of years (Bloom et al., 1971; Dahlman

et al., 1969; Eberhardt and Hanson, 1969; Hannon, 1973; Martin et al.,

1969; Gore and Olson, 1967; Kelly et al
.

, 1969; Gale, 1975; Finn, 1977).

For the most part these models have been deterministic where the random

or stochastic aspects of the process or ecosystem have been largely

ignored. The process of particulate matter subjected to dispersion in a

fluid environment is a random process. As such, its behavior is subject

to natural laws requiring probabilistic modelling and interpretation.

Stochastic models often provide an adequate description of such

processes over time.

In recent years interest has developed in stochastic models for

flow systems. Markov Ghains have been the principle modelling tool

employed (Barber, 1978 a, b; Horn, 1975; Kamota et al
.

, 1976).

This report investigates the application of a stochastic model in

describing the distribution of nitrogen particles in a perennial stream

of Kings Greek on the Konza Prairie in North Gentral Kansas.

One aspect of the model was suggested by Nassar et al., (1984) as a

methodology for modelling the concentration of particulate matter in a

filter system. In this report we extend the model and apply it to an

ecosystem that is traditionally viewed other than as a filter or a

conduit for moving particulate matter. The model seems adequate in



describing the observed nitrogen concentration over space and time,

assuming only those characteristics that were consistent with the

natural ecological system under observation.

The ecosystem system or stream is arbitrarily divided into 'n'

compartments. Nitrogen enters the stream into the first compartment.

Each chamber will be assumed to have its own uptake parameter, fi. (loss

of nitrogen molecules due to algae uptake or leaching) and there would

be an intensity, k^
^

associated with the transition of molecules

from compartment i to compartment i+1, (i - 1, 2 n) . The

interest is in predicting the molecular concentration over space and

time in the stream.

MODEL

Let

M^(t)At + o(At) - Pr(A particle or molecule in compartment i

at time t will vanish through uptake at

time t+At) . (]_)

^i i+1^^^^^
"*" °(^^) " Pr(A molecule in compartment i at

time t will move to state or compartment

i+1 downstream at time t+At)

.

(2)

1 -
^i,i+i(*^)^^

- M^(t)At + o(At) - Pr(A molecule in state

i at time will remain in the same state at

time t+At)

.

(3)



Further, define the transition probability,

P-.C'", t) - Pr (A molecule in state i at time r will be in

state j at time t,

ij - 1>2 n) (4)

The solution for P..(T,t) when the intensities u. and transitions

1^£ i + 1 ^^^ constant over time may be expressed (Nassar, 1986) as

IPj^(t-r)]

n (Pn-Pj
X m

m-1
i^m.

Where

^i "
'^^i,i+l

'^
^J>^ '

-«-1.2,...,n (6)

and

p^^(r,t) =. exp[p^(t - t)]. (7)

When M^Ct) and k^
, ^^-j^Ct) are continuous functions of time the solution

to the n X n matrix

P[^.t] - {Pij('-. t)

may be expressed as



P(r,t) - I +
1: J". I] K (O d? (8)

where I is the identity matrix and K a bidiagonal n x n matrix of the

form

K -
^11 ^2 ° ...

k22 ^23 . . .

0...0 k, -,k,
n-l,n-l n-l,n

... k
n,n

Equation (8) may be solved iteratively according to the matrix sequence,

G - I
-o -

-m+1
1+ r G K~ Jr -m-

K(?)d(C) (9)

If K(^) is constant over time, (8) reduces to the time homogeneous

solution of equation (5)

.

Let the concentration of nitrogen in the stream at the point of

entry into compartment 1 (i.e., i = 1) be denoted by

C (s) ; s > T > 0.
o

It is seen that the expected nitrogen concentration in compartment j

(j - 1,2, ... ,n) at t is

E[Cj(t)]

t-«o

=
Jj

C^(s)P]^j(s,t)kjsj^^ ds, j=l,2,...,n-l. (10)



Here t approaches infinity since we assume that the nitrogen

concentration in the perennial stream has reached a 'limiting

distribution.

DATA SOURCE

The data employed in this study were collected by Tate (1985).

Measurements of nitrogen concentration (^g/liter) were collected at

selected sites along a perennial reach of the King's Creek in the Konza

Prairie Preserve (Fig. 1). Collection commenced in October 1983 and

continued weekly through October 1984.

A "reach" is a continuous expanse of moving surface water, that is,

a creek. A perennial reach is a creek that flows throughout the year.

Water enters a reach in the form of runoff from rain fall, snow fall,

and seepage from underground water sources. A "seep" is a point where

underground water courses intersect the creek and become a part of the

input water source. If the number of seeps is sufficient, and if their

flow is continuous, the waterway will maintain a year-round current

flow.

Nitrogen is introduced into the creek carried by input water

sources, that is as solutes in both runoff water and underground

seepage. Ground water washes nitrogen formed by decaying organic

material on the surface of the drainage area. Underground water

collects nitrogen while percolating through the soil. After seeping

through porous soil, percolation water may encounter a non-porous

stratum such as clay or bedrock, in which case flow commences laterally

through the last porous stratum. When a water bearing gravel or sand



channel encounters a creek, the water and its captive nitrogen enters

the stream as part of the input cycle

.

Runoff water is more transient in nature and could contribute

significantly to observed perturbations in the nitrogen content. This

source of moisture is available any time the drainage area receives

rain. Entry to the reach is effected by way of tributaries and down

banks. Rainfall water sources quickly exhaust themselves. Water

flowing through the soil takes much longer to reach the stream than the

surface runoff. Depending on the topography of the drainage area,

underground water may require weeks, months or many years to exit.

Concentrations of nitrogen from such sources are functions of previously

existing organic matter and the length of time from rain to exit. This

introduces a variable time lag from rainfall to stream contribution and

is responsible for cyclical patterns in the measurements.

King's Creek ranges over a three kilometer long area before it

finally sinks into the ground. The point at which the stream disappears

is defined as the discharge location or sink. Progressing upstream from

the sink, the farthest seep location that exhibited year round flow was

located, and thus defined as the "source". All other input water

sources between the "source" and the final sink were referenced by

distance downstream from the "source". Using this technique, the sink

is located 578.7 meters from the source.

There were several small tributaries (none perennial) and several

identifiable seeps downstream from the source. Observations were

collected at each of these ancilliary sources, and at a short distance

downstream.



MODEL FITTING

To simplify the model equations, modelling was begun at the first

point downstream from the last source of water input. This insured that

the continuous nitrogen input entered the stream flow through the first

compartment only. Thus, the original compartment boundary was for

measurements taken at distance 292. Measurements were also recorded at

345, 429, 474 and 578 meters from the source. These points were defined

as the end points of our arbitrary compartments.

Since the stream is perennial with continuous flow it is clear that

time, in terms of the model, must be taken as infinite. With constant

input rate and intensities, one expects that nitrogen concentration

attains a limit at each point or compartment down the stream. If either

the input rate or the intensities are functions of time, namely cyclic

in nature, it follows that the limiting nitrogen concentrations would

not be constant but rather cyclic. Plots of the nitrogen concentrations

at the compartment boundaries suggest that the data is cyclic with a

primary phase of twelve months and that the stream is at a steady state.

Spectral analysis for each compartment boundary suggested that the

cyclical patterns were very likely the only discemable components in

the data. A backward elimination procedure was used to select those

components that best fit the data. The models were thus obtained using

the General Linear Models Procedure (SAS, 1982) and residual plots

generated. Removal of the significant cyclical components yielded

random appearing error plots

.



In fitting the stochastic model to the data it is logical to assume

that the nitrogen input rate is a cyclical function of time, since it

depends to a large extent on seasonal environmental conditions. It is

possible that nitrogen uptake in the stream (intensity parameter fi.) is

a function of time due to the growth of algae which is seasonal . The

data collected, however, did not have any measurement on algae growth or

concentration in the stream, nor on the flow rate of the stream from

which one might discern the transition intensities (K..) over time. It

seemed to us that the data did not warrant fitting complicated models

where the input rate and intensities are taken to be a cyclical function

of time. As a start we considered the case where only the input rate of

nitrogen is a cyclical function of time with the u.'s and k. 's held

constant.

For a general cyclical function we considered the model,

C (t) - a + 2 B.Cos(ut + 9 .) + e

- a + S /3^Cos(^^)Cos(wt) - S y3.Sin(5 . )Sin(«t) + e (11)

where a = The intercept

P^ = The ith amplitude,

t - The time in days

,

w^ - The phase angle - 27ri/375, i-1, 2 , . . . ,n,

Sj = The shifts in the phase angle, assumed to be

independent and uniformly distributed over (0, 2n)

.

e - N(0,cr^)



Equation (11) was fitted to the observed concentration C (t) using

multiple regression and estimates of the p.'s and d.'s were obtained.

From equations (10) and (11) , assuming k. ... to be independent of
J > J

"''-'

time, one may obtain the predicted concentration, E[C.(t)], by

integration, for each of the locations downstream from the source. The

integral in (10) with C (s) as given in (11) may be expressed in general

as

E[C (t)] - A + S D^. . Sin(w^t) + S E^. • Cos(w.t), (12)

where A
, D. and E. . are constants which can be expressed as functions

J -J J

of the intensities (;i k. . ) of the model and the constants a, 3. and
1 1 , 1+1 "^i

9^ of expression (11). For instance, we can write

ak
12

^t^^^^^ -e^TT"?12

a).k^^;3.^Cos(g.) - k^^fi^Sinje ^) (k^^ + fi^)

2 2

12

+ 2
1

(k
12

'*'

/^i)k;^2^i^°^^^i^ "^ k^^;9^Sin(gi)'

2 2

[\2 "* ^1^ "^
'^i

Cos(w.t)
1

Sin(w.t)
1

(13)

It is interesting to note that E[C.(t)] has the same functional form as

^^(t) and is also cyclical. From the coefficients in (12) one may

estimate the intensities. Further, one may derive the autocovariance

function [a. (h)] of nitrogen concentration at any compartment j, in the



10

limit. This may be expressed as

aj(h) - {E^ ;[2y3^Cos(«^t + 9^)T>^^(t - s)k^ j^^]-

t-KX>

[S^ Cos(w t + w h + ^.)p..(t + h - s)k ..Jds) (14)
X J. J. X 1 IJ J ,J+1

where

E - Expectation with regard to 8 which has a uniform

distribution on the interval (0, lit).

This leads to the general form of the expression for the autocorrelation

function, p.(h).

.j(h)
r exp(-A h)
y i

i-1 A„

2
/3.k. . ,Cos(w.h)
"^1

1 . 1+1 1
^

2 2 2

1 '^i J ,j+l e

(15)

where

r - j(j + l)/2.

2A^, k^, and /9. are constants and a is the error variance in (11)

For example, if j - 1

^^(h)
expr-Ah) f: ^i^2^°^^^^i>

° 2^ ^-^ 2 2 2

Fi^2 ^
'^e

(16)

It is seen from (15) that p (h) is a linear combination of sinusoidal
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oscillations dampened over time by the exponential terms.

RESULTS AND CONCLUSIONS

The model in (12) was fitted to the observed nitrogen

A

concentrations C.(t). The model selected for distance 292 (entry into

compartment one) was fitted for each subsequent downstream location.

Parameter estimates for each of the five locations appear in tables (1-

5) in the appendix of this report. After the generalized model was fit,

residual errors were estimated at each location. The plots of the

prediction equations appear to fit the data, and the residuals generally

lack any significant trend or pattern (Fig. 2-6).

Coefficients for some of the four sine and cosine terms in the

model were not significant for certain locations. This may be due to

A

local perturbations in the observed C.(t) concentrations due to runoff

water, or it may suggest that the fi. and k. . parameters are functions of

time, changing according to existing physical and environmental

conditions. An experimental situation designed to measure time changes

in nitrogen uptake and changes in stream flow rates could lead to a

better fit of the model to the data.

No attempt was made to fit the autocorrelation function in (16) to

the data. The S.A.S. autoregressive integrated moving average (ARIMA)

procedure was employed to estimate correlations for up to 46 lags (Figs.

7 - 11). It is clear from these figures that the observed auto-

correlation exhibited sinusoidal oscillations dampened over time as

predicted by the model.
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The model is both general and flexible. It has the capability of

estimating many more parameters than are used in this report. For

instance, flow intensities (k. . .) and uptake parameters (p.) can be

modelled as either constants or as functions of time.

It would be of interest to extend the model to the whole stream

where nitrogen enters at several compartments downstream from the source

also to consider the concentration of nitrogen entering the streams as

a random variable . Measurements of nitrogen concentrations , uptake by

algae and volumetric flow rates at different sections of the stream,

over a time period longer than one year would be desirable for a better

understanding of the dynamics of the process and a better fit of the

model to the data.
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TABLE 1. Estimated coefficients of equation (12), filled nitrogen

concentrations at a distance of 292 meters.

C2 * CGS(^*PI*r/375) + S2 * 3 1,SiU*f> I* F/ 37^

)

+ CV * LGS(d--::PI*r/375) + S^ =:= ilN ( 5*P I=:=T/37p ) ,

K-SQUA/^E: 0.7377 MEAN SQUAK5 ERROR: ^J.56 uJS: 5j

!1^^!!!I£5 f£ll!;flf STA.Ni.JARU ERRQK

^\ - l.24f5
9^ - 0.'V453

L .3ulo

i .2t>9i^3 - ^.2226

^^ l.2d9v> L.3^7 3

TABLE 2o Estimated coefficients of equation (12), filled nitrogen

concentrationa at a distance of 345 neterc

.NJG3 - bO + CL * COS(2*Pr*T/375) + SI * ^ IN( 2=:=P !=:= T/3 7 ^ ;+ C2 y CaS(4*PI^r/375) + 32 * SI,N(4=:--Pl:.-=r/3 7t)+ L3 =^- Cu3{6*PI=.^r/375) + S3 * SI.^i( 6::=P [* 7/ 375+ C4 * COS(3*Pi*T/373) ^ S4 =:= ^ 1>A :i^P Ux/iHi

MEAN SwUARE ERROR: ^o.&ii J3i: i,.j

tS^T^MATE STm'jJARD ER^UR

I3.d772 0.90oo"
11.072'* 1.256D

- Q. Id 74 1.3 00 2

- ^'Oin 1.2796
- ^.3919 1.2699-

i'2^.^^ 1.2 350
- 3.7370 l./'350
- O.0G21 L.322I

R--SwUARE: .72

PARAME ThR

BO
CI
SI
C2
S2
C3
S3
C4
S4
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TABLE 3. Estimated coefficients of equation (12), filled to nitrogen

concentrations at a distance of 429 meters.

:NiU3 = 30 + CI * COS ( 2-P I*r/3 75 J t SI * S IM( 2=:=? I* r/373 )

+ C2 * COS(^=:=PI-T/373) + S2 - 3 1 :^{^=:=P 1=:= T/ 373

)

-•• C3 * CaS(6-PI--^r/373) + S3 * SI\(o=?PI*T/373>
+ C^ =^ COS(8=^-PI*T/375) + S4 * 3 I N( d=:=P I* 7/ j75 ) ,

K-SQUARE: 0.3541 MEAN SQUARE EKRUR: 42.96 UiiS: iu

S TA.iiUARL) EkKuk

J.9 3C3
I .29lo
1.3365
1.3110
1.3162
1.305 3
I .3209
l.2a75
I .3540

TABLE 4. Estimated coefficients of equation (12), filled to nitrogen

concentrations at a distance of 429 meters.

N.J3 = dO + CI * COS(2*PI-T/375) + SI * ol -J( 2=:=P 1- T/ 3 7 t <

+ C2 * CJS(4*PI-T/375) > S2 - S I \ ( V-P I- T/ 3 ." - '

C3 =:= COS(6-PI=;=T/375) + S3 - SIi^i( 6-P i=:=T/3T > >

+ Cf <= C0S(3*PI*T/375) + S4 * Si M ( a*P I* T/ 37 5 )

PARAMETER ESTIMATE

30 a. 0853
CI 3.6280
SI 3.6579
C2 - 2.0135
SZ 1.7707
C3 - 1. 8 3^3 7
S3 - 1.0454
C4 - 1.2661
S4 0.6257

R-SyUARt: 0.3952 MEAN SQUARE ERROR: 31.34 03.

PARAMETER ESTIMATE STa.\OARD ERROR

feO 6.5011 0.7902
t-l 2.4698 l.GSdT
SI 4.O101 1.1411
C2 - 2.1084 1.1335
^i 1.9840 1.1231
C3 - 1.3046 1.0:^80
^3 1.0240 1.127^
Cf - J. 9040 1.0675
^'t - 0.0630 l.loOl

:»u



TABLE 5. Estimated coefficients of equation (12, filled to nitrogen

concentrations at a distance of 578 meters.

18

NG3 = 33 + CI - COS(2-Pr-T/375 ) + SI * i I 'U 2'-^ I- T/ 37:^ ;

+ Ci ^ CaS(^*PI*T/375 ) + SZ < Si\(^=;=PI*r/37'i)
+ C3 * C3S(6*PI*T/375) + 33 * il.\( o-P I- T/ 3 75 )

+ C^ - Ca3(d*PI*r/375) + S^ - ilM(a--:-PI-T/i75).

R-SQUARt: 0.^20^ MEAN SQUARE ERROR: 3^^.51 G33: +

1

PARAMETEK ESTIMATE STANjAKD ERRuR

00 10.1292 I. 6051
CI 7.3t75 2.339 1

SI ^.^731 2.2^oi
C2 3.212U 2.0^20
SZ U9J73 2. '933
C3 2.1^69 Z.iS'fb
S3 l.l2^d 2.3lo2
C-t 1.1232 2-0'i76
3^ 0. b003 u .2 y-j Z
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Figure 1. King's Creek and Konza Prairie drainage area.
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FIGURE 7. Observed autocorrelations for distance 292.
25

AUTOCORRELAT IONS

LAG COVARIANCE CORRELAriON -19 8 7 6
156.652 1.00000

I 122.22 0.78020
2 105.31* 0.67228
3 86.0117 0.5*906
«f 73.*55 0.*6891
5 60.292<» 0.38*88
6 3'..0777 0.2175*
7 18. '.779 0.11795
a 9.01*49 0.0575*
9 5.53015 0.03530

10 -13.1526 -0.08396
11 -18.8925 -0.12060
12 -27.3*32 -0.17*55
13 -26.3536 -0.16823
1* -27.*555 -0.17526
15 -32.19** -0.20552
16 -36.9371 -0.23579
17 -*1.2ll -0.26307
18 -*3.33*3 -0.27663
19 -*2.95*3 -0.27*20
iO -*7.716 -0.30*60
21 -*7.2867 -0.30186
22 -*6.6025 -0.297*9
23 -*6.2 3 65 -0.29515
2<r -*5.2597 -0.28892
25 -*3.*665 -0.277*7
26 -*2.16*l -0.26916
27 -39.2225 -0.25038
28 -33.2276 -0.21211
29 -29.5716 -0.18877
30 -19.8238 -0.12655
31 -20.375 -0.13007
32 -10.3035 -0.06577
33 -*. 69667 -0.02998
3* 2.6*623 0.01689
35 10.7201 0.068*3
36 16.2358 0.1036*
37 19.3891 0.12377
38 17.0061 0.10856
39 18.57*6 0.11857
HO I*. 5*29 0.0928*
*l 22.2732 0.1*218
<t2 15.8753 0.1013*M 17.5333 0.11193
%4 18.7679 0.11980

5 * 3210123*567891

FIGURE 8. Observed autocorrelations for distance 345.

AUTOCORRELAT IONS

LAG COVARIANCE CORRELATION -19 8 7 S
123.53* 1.00000

I 87.5276 0.70853
2 7*. 328* 0.60168
3 77.*32* 0.62681
« *8.7798 0.39*87
5 33.8193 0.27377
6 2 7.*6 99 0.22237
7 17.0*83 0.13801
B 3.372*5 0.02730
9 -*.6313 -0.037*9
10 -10.6021 -0.08582U -17.1351 -0.13871
12 -21.1523 -0.17123
13 -21.*5*8 -0.17368
1* -2 3.86 3 5 -0.19317
15 -26.2073 -0.21215
16 -29.*299 -0.23323
17 -32.*596 -0.26276
18 -37.2977 -0.30192
19 -36.962* -0.29921
20 -3*. 8682 -0.28226
21 -36.9719 -0.29929
ZZ -3*. 88*8 -0.28239
23 -3*. 3662 -0.27819
2* -31.97*6 -0.25883
25 -23.87*3 -0.2337*
26 -27.2581 -0.22065
27 -26.398* -0.21369
28 -22.3983 -0-18131
29 -20.5289 -0.16618
30 -16.5876 -0.13*28
Jl -11.7605 -0.09520
32 -7.2337 -0.05856
33 0.082993* 0.00067
3* 3.10799 0.02516
35 10.11*9 0.08188
36 18.2966 0.1*811
37 18.29*9 0.1*810
38 17.5887 0. 1*238
39 21.7397 0. 17598
*0 18.0238 0.1*590
*l 16.5866 0.13*27
*2 12.822 0.10379
*J 9.56809 0.077*5
** 12.0285 0.09737

5*3210123*567891



FIGURE 9. Observed autocorrelations for distance 429. 26

AUTOCORRELAT IONS

.AG COVARIANCE CORRELATION
54.8033 1.00000

I 9.59464 0.17489
i 7.39906 0.13501
3 24.4315 0.44580
* 13.5518 0.24728
5 7.21569 0.13167
6 10.4872 0.19136
1 10.3087 0.18810
a 4.24591 0.07748
9 3.26742 0.05962

10 -0.339022 -0.00619
tl -1.32735 -0.02422
i;: -2.62467 -0.04789
13 2.73683 0.04994
14 -4.77667 -0.08716
15 -4.82121 -0.08797
16 -6.07714 -0.11089
1/ -5.96565 -0.10886
18 -9.21497 -0.16815
19 -8.44869 -0.15416
20 -3.00628 -0.05486
Z\. -4.87046 -0.08887
Zl -6.25366 -0.11411
23 -6.46309 -0.11793
i"* -3.16065 -0.05767
25 -1.20245 -0.02194
26 -4.03936 -0.07371
27 -6.63391 -0.12105
2U 2.70853 0.04942
29 -3.02247 -0.05515
30 -3.46351 -0.06320
31 0.118389 0.00216
32 -1.53332 -0.02798
33 1.11295 0.02031
3<t 3.38148 0.07083
35 -2.23115 -0.04071
36 -2.76139 -0.05039
37 0.677007 0.01235
38 1.23057 0.02245
39 -5.04911 -0.09213
SO -7.13388 -0.13017
41 3.60446 0.06577
42 -7.8906 -0.14398
43 -8.26478 -0.15081
44 -0.506998 -0.00925

198765432101234567891
COO .

FIGURE 10. Observed autocorrelations for distance 474.

LAG COVARIANCE C ORRELATIOf
42.8552 1.00000

I 7.86821 0.18360
2 6.6243 0.15457
3 24.7671 0.57793
4 9.54198 0.22266
5 8.27919 0.19319
6 9.58172 0.22358
7 9.55234 0.22290
8 5.38096 0.13723
9 4.43004 0.10337

10 3.98511 0.09299
11 -0.678492 -0.01563
12 0.860935 0.02009
13 0.962196 0.02245
14 -1.16507 -0.02719
15 -2.15319 -0.05024
16 -2.66226 -0.06212
17 -2.02232 -0.04719
18 -5.42168 -0.12651
19 -4.57232 -0.10669
20 -2.889 -0.06741
21 -4.53278 -0.10577
22 -4.8855 -0.11400
Ih -5.1159 -0.11938
24 -3.05053 -0.07118
25 -2.37208 -0.05535
26 -3.07789 -0.07182
27 -4.67388 -0.10906
28 -2.44294 -0.05700
29 -3.37218 -0.07869
30 -3.25066 -0.07585
31 -4.023 -0.09387
32 -4.82677 -0.11263
33 -1.12115 -0.02616
34 -1.5539 -0.03626
35 -5.45595 -0.12731
3o -4.25678 -0.09933
37 -3.52681 -0.08230
38 -1.17147 -0.02734
39 -6.14585 -0.14341
40 -6.20402 -0.14477
41 1.7283 0.04033
42 -6.40915 -0.14955
43 -4.74024 -0.11061
44 -0.841161 -0.01963
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FIGURE 11. Observed autocorrelations for distance 578, 27

LAG COVARIANCE CORRELATION
113. 802 1.00000

1 27.1772 0.23881
2 *9.5836 0.*3570
i 15.386'r 0.13520
<t *3.061 0.37838
5 21.2875 0.18706
b 15.9757 0.1*038
T 10.6«<><> 0.09353
8 21.7861 0.191**
9 16.«8«'> 0.1**85

10 7.7902 0.068*5
11 1.26613 0.01113
12 1.01616 0.00893
13 -1.65268 -0.01*52
l<i -1.16133 -0.01020
15 -5.86176 -0.05151
lb -3.5235 -0.03096
17 -10.6265 -0.09338
la -*. 61302 -0.0*05*
19 -10.512'« -0.09237
20 -13.3112 -0.11697
21 -13.'f726 -0.11839
22 -18.238 -0.16026
23 -1-^.7506 -0.12962
2i> -19.0252 -0.16718
2"} -l*.'.7'»7 -0.12719
26 -I8.0«0l -0.15852
27 -15.13*7 -0.13299
28 -19.1502 -0. 16828
29 -6.57172 -0.05775
30 -12. '973 -0.10932
31 -19.0728 -0.16760
32 -16.178 -0.1*216
33 -l<».0368 -0.1233*
3* -l.*2289 -0.01250
35 -13.*069 -0.11781
36 -7.77871 -0.06835
37 -10.3273 -0.09075
38 5.80905 0.05105
39 -3.0111* -0.026*6
^0 -6.31662 -0.05551
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ABSTRACT

This report investigates the application of a stochastic model to

characterize and predict the dynamics of nitrogen concentration in an

ecosystem. The model is derived and adapted to describe a steady state,

cyclical system. Tests of adequacy are performed by fitting the model

to the data and generating residual plots . A general form of the

autocorrelation function is derived and found to be consistent with the

observed autocorrelations in the data.


