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Summary

This paper presents the development of a discrete fracture model of fully

coupled compressible fluid flow, adsorption and geomechanics to investigate

the dynamic behaviour of fractures in coal. The model is applied in the study

of geological carbon dioxide sequestration and differs from the dual porosity

model developed in our previous work, with fractures now represented explic-

itly using lower-dimensional interface elements. The model consists of the

fracture-matrix fluid transport model, the matrix deformation model and the

stress-strain model for fracture deformation. A sequential implicit numerical

method based on Galerkin finite element is employed to numerically solve the

coupled governing equations, and verification is completed using published

solutions as benchmarks. To explore the dynamic behaviour of fractures for

understanding the process of carbon sequestration in coal, the model is used to

investigate the effects of gas injection pressure and composition, adsorption

and matrix permeability on the dynamic behaviour of fractures. The numerical

results indicate that injecting nonadsorbing gas causes a monotonic increase

in fracture aperture; however, the evolution of fracture aperture due to gas

adsorption is complex due to the swelling-induced transition from local swell-

ing to macro swelling. The change of fracture aperture is mainly controlled by

the normal stress acting on the fracture surface. The fracture aperture initially

increases for smaller matrix permeability and then declines after reaching a

maximum value. When the local swelling becomes global, fracture aperture

starts to rebound. However, when the matrix permeability is larger, the frac-

ture aperture decreases before recovering to a higher value and remaining con-

stant. Gas mixtures containing more carbon dioxide lead to larger closure of

fracture aperture compared with those containing more nitrogen.
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1 | INTRODUCTION

Fluid flow and storage in fractured geologic formations are complex, and a comprehensive understanding of the
coupled phenomena involved is of great interest in a wide range of geotechnical engineering applications, such as deep
geothermal energy exploitation and carbon dioxide (CO2) sequestration.1–3 However, many challenges remain
unsolved. For example, as a promising technique for reducing CO2 emissions to the atmosphere, sequestration of CO2

in deep coal seams presents a problem of loss of injectivity, especially at the early stage of injection.4,5 In fractured reser-
voirs, the fractures provide the most likely conduits for fluid flow; hence, the hydraulic behaviour in fractured rock
depends largely on the structure of the fracture network. On the other hand, the fluid flow is also able to induce the
dynamic redistribution of mechanical stress in the reservoir, leading to changes in the hydraulic properties of fractures.
It can therefore be said that the fluid flow and geomechanical behaviour of rock formations play an important role in
many fields of geoscience.

The characteristics of flow and transport processes in fractured porous media have been studied extensively. Three
typical modelling approaches have been proposed: the continuum model, the dual continuum model and the discrete
fracture model.6 Because of its realistic description, the discrete fracture model has received considerable attention over
the last few years.7–9 In a discrete fracture model, the fractures can be represented within the domain in a spatially
explicitly manner, and the effects of individual fractures on fluid flow and transport can be accounted for explicitly.10

Models have been introduced for single-phase flow7,11 and two-phase flow in a fractured media.8,12 However, most of
the works mentioned above do not take the geomechanical effects into account and focus on the hydraulic problem or
the energy production rate.

Generally, geologic materials contain pores and other cavities filled with fluids under saturated or unsaturated con-
ditions. The pore pressure of fluid existing in the void space of a geological formation and deformation is closely related.
The coupled flow-deformation problem has been studied in depth in recent decades based on the classical poroelastic
theory of Biot.13 The effective stress principle is one of the most fundamental contributions in this theory, which allows
the application of the quasi-static force balance law of continuum solid mechanics to coupled fluid flow and geo-
mechanics problems. Many historical studies existing in the literature analyse the stress-sensitivity in conventional
porous media by means of quasi-static poroelasticity.14,15 A number of works also use quasi-static poroelasticity to
investigate the coupled flow-deformation problem in fractured porous media with a dual porosity model, in which the
fracture deformation is described implicitly with a dynamic permeability defined for the fracture continuum.16,17

Coupled slightly compressible fluid flow and mechanical behaviour in fractured porous media have been studied
extensively. To represent the fracture deformation explicitly, the discrete fracture model has been more widely used
recently in coupled fluid flow and geomechanics problems. A fracture is defined as two surfaces in contact in the dis-
crete fracture model presented by Garipov et al,18 in which a mechanical model for the fractures is derived to describe
the changes in the stress and the displacement fields through the surfaces representing the fractures. Norbeck et al19

present the framework for a numerical model that is capable of calculating the coupled interaction of mass transfer
between fractures and the surrounding rock matrix, fracture deformation and fracture propagation. Instead of solving
the coupled system of equations, some works use in situ stress conditions to estimate the stress field within the reser-
voir, and utilize an experimental relation to compute the fracture aperture deformation due to the stress field.20–23 How-
ever, the study of compressible fluid transport and fracture deformation induced by extra physical or chemical
processes, other than the change of mechanical stress, is limited. For example, CO2 can adsorb onto the internal walls
of coal causing it to swell. Most previous works treat fracture properties as material parameters in the simulation
models of naturally fractured coal seams.24 Huang and Ghassemi20 present a poroelastic model to investigate coupled
desorption/diffusion-rock deformation phenomena including fracture deformation (both normal and shear deformation
with dilation) and its impact on gas flow in naturally fractured gas shale reservoirs. Simulation results show that the
time evolution of fracture aperture is strongly affected by gas desorption during production, especially in the near-
wellbore region. In general, coal seams contain a large number of fractures, and these fractures provide the major con-
duits for fluid flow. Therefore, an explicit and realistic description of the dynamic behaviour of preexisting fractures,
such as fracture opening or closure, is important and necessary to understand the flow characteristics during CO2

injection.
To understand the dynamic behaviour of fractures induced by variation of pressure, in situ stress and adsorption-

induced coal swelling during CO2 injection, and to overcome an inherent limitation of dual porosity model presented
in our previous work,25 this paper presents a discrete fracture model of fully coupled compressible fluid flow, adsorp-
tion and coal matrix/fracture deformation. The effect of fractures is represented explicitly with lower-dimensional
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interface element. The fluid flow in two interactive domains (matrix and fractures) is solved assuming flow continuity
between the two domains and using the principle of superposition. The dynamic correlation between the properties of
the equivalent porous medium and fracture aperture is established using matrix-fracture stress-strain models that relate
deformation of fracture to effective normal stress and shear stress changes. The numerical model is implemented in the
coupled thermal, hydraulic, chemical and mechanical (THCM) model, COMPASS, developed at the Geoenvironmental
Research Centre by Thomas et al.26–28 The accuracy of the new developments to the numerical model is tested against
results obtained from the literature. The developed model is then applied to investigate the temporal evolution of frac-
ture aperture during CO2 injection into coal seams and to quantify the influence of gas injection pressure and composi-
tion, adsorption and matrix permeability on the dynamic behaviour of the fracture aperture.

2 | GOVERNING EQUATIONS FOR DISCRETE FRACTURE MODEL

Compared with conventional porous media, models of fractured porous media must consider the influence of disconti-
nuities on the flow and deformation behaviour. The discrete fracture model is employed in this work, in which the
computational domain is segregated into two regions: discrete fractures as hydraulic conduits and the rock matrix as
the bulk porous medium. Discrete fractures can be idealized as lower-dimensional geometric objects, for example, a 1D
entity is employed to represent fractures in 2D problems, as shown in Figure 1. The whole domain Ω is

Ω=Ωm[
X
d

wd ×Ω f ,d, ð1Þ

in which Ω represents the entire domain, Ωm represents the domain occupied by matrix, Ωf,d is the domain occupied by
the d-th fracture fracture and wd is the aperture of the d-th fracture.

In this section, the theory and governing equations for fluid flow and mechanical deformation are presented for
each subdomain. By modelling the fracture system and porous matrix as distinct regions within the computational
domain, each has its own flow variable, namely, the gas concentrations in the fractures (Cf) and porous matrix (Cm).
The subscript f denotes the matrix, and the subscript f denotes the fractures. The displacements vector (u) is defined as
the primary variable for mechanical behaviour. The model assumptions are as follows: (1) the gas is free phase in the
natural fractures; (2) the gas may be free or adsorbed phase in the rock matrix; (3) the rock matrix is homogenous and
isotropic and the deformation is linearly elastic; (4) no phase change occurs.

2.1 | Matrix flow model

The rock matrix without fractures is represented as a continuum and flow through the matrix is governed by mass
conversation. Under isothermal conditions, the general form of the Eulerian continuity equation can be expressed as28

∂

∂t
nmc

i
m + cis

� �
= −r� cimvm

� �
+r� Di

effrcim
� �

+ qism + qifm, i=1…nc, ð2Þ

where nm is the matrix porosity, cim is the concentration of the i-th gas component, cis is the adsorption mass term for
the i-th component per unit volume of medium, vm is the flow velocity of fluid, Deff is the effective diffusion coefficient,

FIGURE 1 Schematic representation of the discrete fracture

model
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qism are the sink terms, qifm represent the leakoff flow between fracture and matrix and nc is the number of gas
components.

By ignoring the effect of gravity, the velocity vm can be given using Darcy's law as

vm = −
km
μg

rum, ð3Þ

where km is the intrinsic permeability of matrix and μg is the gas mixture viscosity. um is the gas pressure, which can
be expressed in terms of the sum of the concentrations of the gas components in the gas phase using the real gas law,
given by

um =ZmRT
Xnc

i=1
cim, ð4Þ

where R is the universal gas constant, T is the temperature and Zm is the compressibility factor of fluid in matrix, which
in this work is calculated using the Peng-Robinson equation of state.29

Multicomponent gas adsorption can generally be described by the extended Langmuir. Taking this approach, the
amount of each gas per unit volume of medium is described as

cis = ρcV
i, ð5Þ

where ρc is coal density, V
i is the adsorbed concentration, given as

Vi =
Vi

LZmRTb
i
Lc

i
m

ZmRT
Pnc

i b
i
Lc

i
m +1

, ð6Þ

where Vi
L is the Langmuir volume constant of ith gas component and biL is the Langmuir pressure constant of ith gas

component.
The effective diffusion coefficient, Di

eff , in Equation 1 considers the effect of the porous medium on fluid diffusion,
which can be derived from the free fluid coefficient Di

m as28:

Di
eff =nmτD

i
m, ð7Þ

where τ is the tortuosity factor, related to the porosity, which is calculated using widely used relation provided by
Millington and Quirk.30

Substitution of Equations 3–7 into the mass balance Equation 2 yields:

nm +
∂cis
∂c jm

δij

� 	
∂cim
∂t

+ cim
∂nm

∂t
=r�

Xnc

j=1
cim

km
μg

ZmRT +Di
eff δij

 !
rc jm

" #
+ qism + qifm, ð8Þ

where δij is Kronecker's delta tensor with δij = 1 for i = j, δij = 0 for i 6¼ j.

2.2 | Fracture flow model

During gas injection into coal seams, coupled gas flow and deformation lead to changes in fracture aperture and thus
fracture permeability, with the stress-dependence of fracture properties influencing the fluid flow. Thus, an indepen-
dent gas mixture flow model is required for the fractures, the mass balance equation for which can be written as31
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∂

∂t
wcif n f

� �
= −

∂

∂l
cif v f w
� �

+ qisf + qimf , ð9Þ

where nf is porosity of the fracture system, identified as unity in this work, w is the fracture aperture, cif is the concen-
tration of the i-th gas component in the fractures and l is the dimension along the fractures. vf is the average gas velocity
through the fracture, qsf is the sink term and qimf is the leakage flux from the sides of the fracture surface to the sur-
rounding porous media.

Expanding the term on the left hand side of Equation 9 yields

w
∂

∂t
cif n f

� �
+ cif n f

∂w
∂t

= −
∂

∂l
cif v f w
� �

+ qisf + qimf : ð10Þ

Due to the sequential implicit numerical method used in this work (details given in Section 3), the fracture aperture is
updated in each time step, and the temporal derivative of fracture aperture in the second term on the left hand of equa-
tion 10 has not be considered; thus, the mass balance equation for flow in fractures is reduced to

w
∂

∂t
cif n f

� �
= −

∂

∂l
cif v f w
� �

+ qisf + qimf : ð11Þ

It is assumed that the fluid flow along the fracture obeys Poiseuile's law, so that the flow rate obeys the well-known
cubic law and, hence, vf is given as32

v f = −
w2

12μg

∂u f

∂l
, ð12Þ

where uf is the gas pressure, expressed as

u f =Z f RT
Xnc

i = 1
cif , ð13Þ

where Zf is the compressibility factor of fluid in fractures.

2.3 | Mechanical model

2.3.1 | Mechanical behaviour in the porous matrix

The mechanical response of a poroelastic medium with fluid flow is described by Biot's theory. Under the assumption
of small deformation, the stress equilibrium equation is

σij,j + Fi =0, ð14Þ

where σij is the total stress tensor and Fi is the component of the body force vector. Based on the principle of effective
stress, the relationship between the total stress and the effective stress can be written as

σ0ij = σij + αumδij, ð15Þ

where σ0ij is the effective stress tensor, α = 1 − K/Ks is the Biot coefficient, K = E/3(1 − 2v) and Ks are the bulk moduli
of matrix and solid skeleton respectively, E is Young's modulus of coal and v is Poisson's ratio of coal. In keeping with
the usual convention in geotechnics, the stresses (total and effective) are taken as tensile positive, whereas fluid pres-
sure is taken as positive in compression.
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The deformation of the porous matrix is assumed here to be segregated into two components: (1) due to mechanical
stress and (2) due to sorption in the presence of adsorptive fluids. Therefore, strain can be expressed as

εij = εeij +
1
3
εadδij: ð16Þ

The stress-strain constitutive relation is defined as

σ0ij =2Gεeij + λεevδij, ð17Þ

where G = E/2(1+v) is shear modulus, λ = Ev/(1+v)(1 − 2v) is the Lamé constant and εev = εeii is the elastic volumetric
strain of the bulk porous medium.

The strain-displacement relation is expressed as

εij =
1
2

ui,j + u j,i
� �

, ð18Þ

where εij is the strain tensor and ui is the solid displacement vector. εad is the sorption-induced volumetric strain, which
is generally described by Langmuir-type equation as

εad =
Xn

i
εiad =

Xn

i

εiLZmRTb
i
Lc

i
m

ZmRT
Pnc

i b
i
Lc

i
m +1

, ð19Þ

where εiL is the Langmuir adsorption strain constant of i-th component.
From Equations 16 and 17, the incremental volumetric strain can be expressed as

Δεv =
Δ �σ+ αumð Þ

K
+Δεad, ð20Þ

where �σ= σii=3 is the mean normal stress or confining pressure.
Using the definition of porosity, the porosity change of a deforming rock matrix can be expressed as33

Δnm =nm
1
Kp

−
1
K

� 	
Δ�σ+Δumð Þ, ð21Þ

where Kp is the bulk modulus of pores. The volumetric variation of the porous medium satisfies the Betti-Maxwell
reciprocal theorem:

Kp =
nm
α
K: ð22Þ

Transformation of Equation 20 yields

Δ �σ+ umð Þ= −K Δεv +
Δum
Ks

−Δεad

� 	
: ð23Þ

Substituting Equations 22 and 23 into Equation 21 produces the change of matrix porosity:

Δnm = α−nmð Þ Δεv +
Δum
Ks

−Δεad

� 	
ð24Þ
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Hence. the porosity can be expressed as

nm =
1

1+Δεeff
nm0 + αΔεeff
� �

, ð25Þ

where Δεeff =Δεv +
Δum
Ks

−Δεad is the total effective volumetric strain.
Because the total effective volumetric strain Δεeff is very small, generally Δεeff � 1 and α

nm0
� 1, Equation 25 can be

simplified to give34

nm

nm0
=1+

α

nm0
Δεef f , ð26Þ

where nm0 is the initial porosity.
The temporal evolution of porosity is then given by

∂nm

∂t
= α

∂εef f
∂t

: ð27Þ

The permeability varies with porosity, which can be described by the widely used cubic relationship between perme-
ability and porosity,33 given as

km
km0

=
nm
nm0

� 	3

, ð28Þ

where km0 is the initial permeability of the matrix system.

2.3.2 | Mechanical behaviour in discrete fractures

The fracture system properties depend largely on the reservoir stress field. Two distinct mechanisms are generally
applied to describe the variation of fracture aperture, the first being the variation of normal effective stress acting on
the surface of the fracture and resulting in relative displacements between the surfaces of the fracture, directly altering
the fracture aperture as shown in Figure 2A. The second is the shear stress acting along the fracture, which is likely to
make the fracture walls slide relative to each other and may cause a change in the fracture aperture through normal
dilation, as shown in Figure 2B.20,22 Fracture initiation as well as the propagation and mechanisms related to rock fail-
ure are not addressed in this work.

The fracture opening or closure in the normal direction is controlled by the normal effective stress and normal frac-
ture stiffness. A hyperbolic model developed by Bandis et al35 and Barton et al36 is widely used to describe the relation
between normal effective stress and the response of fracture aperture in normal closure. Figure 3 shows the relationship
between normal stress and fracture aperture, formulated as

Δwn =
σ0nwnmax

σ0n +Kn0wnmax
, ð29Þ

where wnmax is the maximum closure of the fracture aperture, Kn0 is the initial normal fracture stiffness and σ0n is the
effective normal stress acting on the fracture. Normal fracture stiffness is a measure of the fracture's sensitivity to
normal stress and can be calculated as35

Kn =
dσ0n
dwn

=Kn0 1−
σ0n

Kn0wnmax + σ0n


 �−2

: ð30Þ
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The effective normal stress acting at the fracture surface is defined as31

σ0n = σn + αu f : ð31Þ

The shear dilation induced normal displacement of fractures has been observed in experiments36; however, shear
dilation does not always occur when shear stress is applied to the fracture. Before reaching the shear strength, τc, only
tangential displacement caused by shear stress occurs and no normal displacement is observed. Shear dilation starts to
trigger normal dilation when the shear stress reaches the shear strength, τc, as shown in Figure 4. When the shear stress
reaches the peak shear stress, τp, the plastic deformation of fractured rock is generated. The rock failure is not consid-
ered in this study, and the details about shear dilation after failure can be found in literature.22,23 The shear dilation, ds,
induced by an associated shear displacement, us,a, is given as23

ds = us,atanφ, ð32Þ

where φ is the dilation angle.

FIGURE 2 Fracture

deformation, (A) normal

displacement by effective

normal stress and (B) normal

displacement by shear dilation20

FIGURE 3 Fracture aperture evolution under normal stress
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From Figure 4, the tangential displacement that generates shear dilation is a function of shear stress and shear stiff-
ness of the fractures, as follows:

us,a =
τj j−τc
Kt

, ð33Þ

where Kt is the shear stiffness of fractures.
The final aperture of the fractures is then calculated by

w=

w0−
σ0nwnmax

σ0n +Kn0wnmax
τ≤ τc

w0−
σ0nwnmax

σ0n +Kn0wnmax
+
τ−τc
Kt

tanφ τc < τ

8>>><
>>>:

: ð34Þ

The fracture is usually represented using a local coordinate system, as illustrated in Figure 5. In order to update the
fracture aperture, the stress field calculated in the global coordinate system should be converted into the local coordi-
nate system along the fracture, as

FIGURE 4 Normal dilation displacement of a fracture under shear stress

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Transformation between the x0-y0 local coordinate system
(dash line) and x-y global coordinate system (solid line)
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σn = σxxsin
2θ−2σxysinθcosθ+ σyycos2θ, ð35aÞ

τn = − σxx−σyy
� �

sinθcosθ+ σxycos2θ, ð35bÞ

where θ is the orientation of the fracture.

2.4 | Coupled field equations

Substituting the partial derivatives of matrix porosity nm with respect to time from Equation 27 into the mass balance
Equation 8 and substituting Equations 12–13 into Equation 9 yields the final gas flow equations:

Ccici,m
∂cim
∂t

+Ccu,m
∂u
∂t

=r� Σnc
j=1 Kcici,mrc jm

� �
+ qism + qifm

Ccici,m =nm +
α

Ks
cimZmRT – cim α

∂εad
∂cim

+
∂c1s
∂cim

Cciu,m = cimαm
TP

Kcici,m = cim
km
μg

ZmRT +Di
eff δij,

ð36Þ

C
cici,f ??c?if

� � ∂cif
∂t

=
∂

∂l
Σnc

j=1Kcici,f

∂c jf
∂l

 !
+ qisf + qimf

Ccici,f =w

Kcici,f
w3

12μg
cif Z f RT,

ð37Þ

where P represents the strain matrix and the mapping vector mT = (1,1,1,0).
For convenience, the governing equation for mechanical behaviour is rewritten in incremental form:

Cucidc
i
m +Cuudu+ dF=0

Cuci = αZmRT PTm –PTD
∂εad
∂cim

Cuu =PTDP:

ð38Þ

Therefore, Equations 33–(35) define a model for fully coupled adsorptive gas flow and mechanical deformation. It can
be seen that the mechanical and mass transfer coupling terms naturally exist in the equilibrium and flow continuity
equations.

3 | NUMERICAL APPROACH AND SOLUTION PROCEDURE

In this work, the Galerkin variation method with finite element discretization is used to solve the above model of all
partial differential equations with certain initial and boundary conditions. The unknown variables, in this case, the
matrix gas concentration, Cm, fracture gas concentration, Cf, and displacements, u, are approximated by interpolating
the variables at nodes in each element through the following functions:

ĉ jm x, tð Þ=
X

Im∈Nm

NIm xð Þc jIm tð Þ, ð39aÞ
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ĉ jf x, tð Þ=
X

I f∈N f

NI f xð Þc jI f
tð Þ, ð39bÞ

û x, tð Þ=
X

Im∈Nm

NIm xð ÞuIm tð Þ, ð39cÞ

where NIm and NI f are the standard finite element shape functions of node Im and If for the discretized porous domain
and fracture domain, respectively. Nm and N f are the set of all nodes in the discretized porous domain and fracture
domain, respectively, and the symbol d̂enotes the approximate value of the primary variable.

To reduce the dimension of fractures, we assume the fluid concentration should be continuous at the matrix-
fracture interface, that is, ĉ jIm = ĉ jI f

= c j, and the discrete fracture elements must be located on the edges of porous matrix
elements, sharing the same nodes as shown in Figure 6. The coupling between the two flow systems is achieved by
using the principle of superposition, which has been applied in many works.7,9,37 By using the principle of superposi-
tion, the mass exchange term between the two systems can balance off, and no explicit calculation for mass exchange is
required. Before superimposition of two discretized flow equations, the local coordinate system should be transformed
into the global coordinate system. The transformation relation between the two sets of coordinate systems is achieved
by rotation matrix:

R=
cosθ sinθ

−sinθ cosθ


 �
, ð40Þ

where θ is the angle between the positive x-axis in the global coordinate and the positive x0-axis local coordinate, as
shown in Figure 5.

If the unknown variables in the above field equations (34–36) are replaced with the approximate values of Equa-
tion 37, the superimposed discretized flow and deformation equations can be obtained after multiplying the test shape
function and integration by parts. The global system equation is given as

Cm
c jc j

+C f
c jc j

h id c jf g
dt

+ Cc ju
� �d uf g

dt
+ Km

c jc j
+K f

c jc j

h i
c j
� 

= f c j

� 
, ð41aÞ

Cu,c j

� �
d c j
� 

+ Cuu½ �d uf g= fuf g, ð41bÞ

where

Cm
cjcj = Σ

ne,m

e= 1

ð
Ωm

NT
mCcjcj,mNmdΩm

Cf
cjcj = Σ

ne, f

e=1

ð
Γ
NT

f R
TCcjcj, f RNf dΓ

Ccju = Σ
ne,m

e=1

ð
Ω
NT

mCcju,mdΩm

Cucj = Σ
ne,m

e=1

ð
Ω
NT

mCucjNmdΩ

Cuu = Σ
ne,m

e=1

ð
Ω
NT

mCuuNmdΩ

Km
cjcj = Σ

ne, f

e=1

ð
Ωm

rNT
mKcjcj,mrNmdΩm

Kf
cjcj = Σ

ne, f

e=1

ð
Γ
rNT

f R
TKcjcj, f RrNf dΓ

fcj =
Ð
ΩmN

T
mq�

i
mdΩm + q�fj

– NT
f jL2L1 fu =

Ð
ΩN

T
mFdΩm +

Ð
Γt
NT

mt�dΓt
– ,
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where �t is the external traction forces on the boundary Γt, and �qim and �qfj are the fluid flux normal to the boundary sur-
face of the porous matrix and at the fracture inflow or outflow points, respectively. In this discrete fracture model, the
assembly process of the matrix and fracture equations into the stiffness matrix is shown in Figure 7.

The aforementioned numerical formulation has been incorporated into the numerical code, COMPASS, which is
a finite element-based simulator of coupled thermo-hydro-chemo-mechanical behaviour in porous media. For tem-
poral discretization, an implicit midinterval backward difference time-stepping algorithm is employed. This has
been found as a suitable solution for the highly non-linear class of equations such as the current application
problem.26,38

Figure 8 presents the numerical implementation procedure for this coupling model of fluid flow and deformation. A
sequential implicit numerical approach is used to couple the fluid flow and geomechanics problem in fractured media.
After specifying the initial information, such as initial and boundary conditions for the primary variables, material
parameters and fracture-related information (fracture location, initial aperture and orientation), both systems of equa-
tions are simultaneously solved by iteration until convergence is achieved. Time-dependent matrix and fracture proper-
ties are updated in each time step based on the numerical results of the previous time step. The process continues until
the specified simulation time is reached.

FIGURE 7 Assembly process of the matrix and fracture equations into the stiffness matrix [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Mesh schematics of discrete fractured model:

Matrix is discretized with the 2D element and fracture is discretized

with line element

1738 CHEN ET AL.

http://wileyonlinelibrary.com


4 | VERIFICATION

To present the fluid-solid coupling process and assess the performance of the numerical model, a verification test is
presented comparing the numerical results with those published in the literature.22,23 A horizontal well-pair pattern
with one producer and one injector is simulated. Four separate fractures are located between the two wells, as follows:
(a) fracture length is 200 m, interconnecting the two well bores; (b) fracture length is 100 m, connected with the injec-
tion wellbore; (c) fracture length is 100 m, connected with the production wellbore; and (d) fracture length is 100 m
without a connection to either wellbore, as shown in Figure 9. The displacements at the left and bottom sides are con-
strained in the both horizontal directions, respectively. Isotropic in situ stresses of 20 MPa are applied on the top and
the right sides, the initial pressure is 10 MPa, and the injection and production wells operate at constant pressure of
20 and 10 MPa, respectively. It is assumed that the four fractures have the same properties initially. The no-load aper-
ture of fractures is set to 0.25 mm, and the maximum normal fracture closure is 0.24 mm. A single component fluid
with a compressibility of 5.39e-9 Pa−1 is selected. The input data used for the verification are listed in Table 1, which
are chosen from work of Moradi et al.22 The numerical results at steady state flow are compared with those obtained
from Gu et al23 and Moradi et al.22

A comparison of fracture apertures at the steady state condition obtained in the present work and in the
works by Gu et al23 and Moradi et al22 is shown in Figure 10. The variation in each fracture aperture along the
width of the domain is almost linear due to the fact that the pressure change between the injection and produc-
tion wells is approximately linear. This test verifies the interaction between the pressure field and the fracture
deformation field. It can be seen that there is a good agreement between the two results, demonstrating that the
theoretical model of fracture deformation developed in this work has been accurately implemented in the numeri-
cal model.

FIGURE 8 Numerical implementation procedure of coupled

model in COMPASS
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5 | MODEL APPLICATION AND DISCUSSION

5.1 | Simulation conditions

Coal is a fractured rock with a clearly defined natural cleat system. The interconnected fracture network provides the
major conduits for the flow of pore fluids because of its higher permeability; therefore, the fracture opening and closure
has a significant effect on the fluid flow behaviour. However, the cleats run perpendicular to the bedding plane, and
the permeability of coal parallel to the bedding plane is significantly larger than in the direction perpendicular to the
bedding plane.39 To investigate fracture opening and closure in the direction parallel to bedding plane, simulation is
restricted to two dimensional problems, and plain strain condition is considered here. In this section, a set of simulation
examples of the developed model aim to illustrate the effects of coupled gas flow, adsorption and deformation in frac-
tured coal. Figure 11 presents a schematic of the model geometry used for the simulations. The reservoir dimension is
considered to be 20 m× 20 m, with the injection well located at the centre with a diameter of 0.1 m, as shown in
Figure 11A. Using symmetry to reduce the computational expense and complexity, only a quarter of the reservoir is
simulated, as shown in Figure 11B. The fractures near the wellbore have a direct and significant effect on the well
injectivity; four fractures near the wellbore are taken into account, as shown in Figure 11C, two of which run in x

FIGURE 9 Domain of the 2D problem used for model

verification [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Parameters used for verification

Parameters Value Unit

Matrix permeability, km 5.0e-14 m2

Matrix porosity, nm 0.15 -

Biot's coefficient, α 0.83 -

Young's modulus, E 5.8 GPa

Possoin's ratio,v 0.3 -

Internal friction angle, Φ 24.9 �

Shear dilation angle, φ 5 �

Shear strength, τc 5 MPa

Initial normal stiffness, Kn0 120 GPa

Shear stiffness, Kt 120 GPa

No-load fracture aperture, w0 2.5e-4 m

Maximum fracture aperture closure, wnmax 2.4e-4 m

Fluid viscosity, μ 1.8e-4 Pa�s
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direction with the other two being y direction. It is assumed that the coal seam is located at an average depth of 1250 m
and the average overburden rock density is 2300 kg/m3. The initial isotropic in situ horizontal stresses can be calculated
as Fy = Fx = − 12MPa, which are assigned to the outer boundaries. The displacement constraints are assigned normal
to the inner symmetric boundaries. The initial reservoir pressure is approximately 0.1 MPa. In the simulation, this pres-
sure is assumed to be induced by a small quantity of the gas that will be injected, that is, CO2, N2 or CO2/N2 mixture.
For gas flow, zero-flux boundaries are applied at the outer boundaries. Two measuring points are set to monitor the var-
iations of fracture aperture, that is, point A (0.40, 0.25) and point B (0.65, 0.50). The parameters for the simulations are
listed in Table 2. Many of these parameters were chosen from the literature.40–42 A constant loading speed is assumed,
and the characteristic time for reaching the specified injection pressure is set 0.5 h.

A series of simulations under different injection conditions are performed, as listed in Table 3, to investigate the
dynamic behaviour of fractures in coalbeds. The numerical simulation results are presented in terms of (1) the impact
of injection pressure and adsorption-induced coal swelling, (2) the impact of different CO2/N2 mixture injection and
(3) the impact of matrix permeability.

5.2 | Results and discussions

5.2.1 | Impact of injection pressure and adsorption induced swelling

To investigate the impact of injection pressure and adsorption-induced swelling on the evolution of the fracture aper-
ture, four simulation tests are conducted, at different injection pressures of 4, 6 and 8 MPa, the pure CO2 is selected as
injected gas in these four simulations. In order to understand the effects of adsorption-induced swelling, a simulation
scenario without adsorption is presented. In each of these simulations, a single gas component is selected, and the ini-
tial matrix permeability is set to km0=1.0e-17 m2. Figure 12 shows the variation of fracture aperture at detection points
A and B at the different injection pressures with adsorption induced swelling effect considered. In order to analyse the
influence of changing stress field on the variation of fracture aperture, the time evolutions of the stress field at

FIGURE 10 Comparison of fracture apertures predicted by the current numerical model with the published data22,23 [Colour figure

can be viewed at wileyonlinelibrary.com]
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measuring points A and B at the 6 MPa injection pressure are shown in Figures 13 and 14. Simulation results regarding
the influence of adsorption-induced swelling are presented in Figure 15.

It can be seen from Figure 12 that, although different injection pressures are used, the variation in fracture aperture
at both measuring points follows a similar trend. Compared with the variations of fluid pressure and stress at measur-
ing points A and B, shown in Figures 13 and 14, it can be observed that the change of fracture aperture depends mainly
on the normal stress acting on the fracture surface. At the early stage, there is an increase in fracture aperture. The frac-
ture pressure increases rapidly to reach the same as the injection pressure due to the higher permeability of fractures,
leading to the decrease of effective stress normal to the fracture surfaces in fracture domain. At this stage, although the
gas pressure remains very low and there is little swelling occurring in coal matrix, the effective stress normal to the frac-
ture surfaces has a dominant role in changing the fracture aperture. The fracture aperture starts to decline rapidly after
reaching a maximum value. This occurs as gas flows rapidly into the rock matrix from the fractures, with matrix swell-
ing being localized to the vicinity of the fractured zone, especially for the higher injection pressure, because there is
higher pressure gradient formed in the area closed to fractures. Gas pressure in the matrix beyond this swelling area
still remains very low because no gas has reached that area, and the external boundary stays unmoved. This swelling
stage is referred to as local swelling.43,44 During local swelling, the stress field in the vicinity of the fractures behaves
volumetrically, and local stress concentration results in the compression of fractures. The evolution of fracture aperture
is similar to the case of a constant volume boundary. When gas diffuses into the matrix far away from the fractures and
the gas pressure in the matrix continues to increase, the swelling area induced by gas adsorption extends. As the swell-
ing area propagates to a certain size, the swelling becomes macro-swelling, the external boundary starts to move out-
wards, and the stress field around the fractures is controlled by the external boundary condition and behaves
nonvolumetrically.44 At this stage, the fracture aperture stops declining and starts to rebound, as shown in Figure 12.

FIGURE 11 Schematic of the geometric model and boundary conditions for simulations
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However, there are some differences apparent in Figure 12 that can be highlighted for discussion. Higher injection
pressures induce a more rapid increase of fracture aperture at the early stage, as well as leading to a larger opening of
the fractures. The recovery of fracture aperture for higher injection pressure takes place earlier due to faster diffusion
into the rock matrix, causing the transition of local swelling to macro swelling to occur earlier. Although the change in
fracture aperture in different orientations is different, the redounding process for fractures is almost same, which
implies that the stress variation is not uniform at the early period; however, it is the same when the swelling transits
from local swelling to macro swelling.

As described above, fracture closure or opening is strongly dependent on the stress normal to the fracture surfaces.
However, the stress change in the direction normal and parallel to the fracture is different, as shown in Figures 13 and
14. The x direction and y direction are normal and parallel to the fracture where measurement point A is located,

TABLE 2 Parameters used for simulations

Parameters Value Unit

Young's modulus of coal, E 2.45 GPa

Biot coefficient, α 0.9 -

Poisson's ratio, v 0.3 -

Initial permeability of matrix, km0 1.0e-17 m2

Initial porosity of matrix, nm0 0.025 -

Diffusion coefficient, Dm 1.1e-5 m2/s

Density of coal, ρc 1250 kg/m3

Viscosity of gas, μg 1.84e-5 Pa�s
CO2 Langmuir volume constant, VL 2.13 mol/kg

CO2 Langmuir pressure constant, uL 1.38 MPa

N2 Langmuir volume constant, VL 0.38 mol/kg

N2 Langmuir volume constant, uL 1.86 MPa

CO2 Langmuir strain constant, εL 2.4 %

N2 Langmuir strain constant, εL 0.75 %

Formation temperature, T 313 K

Gas constant, R 8.314 J/mol/K

Internal friction angle, Φ 24 �

Shear dilation angle, φ 6 �

Shear strength, τc 2.5 MPa

Initial normal stiffness, Kn0 5 GPa/m

Shear stiffness, Kt 50 GPa/m

No-load fracture aperture, w0 5.0e-4 m

Maximum fracture aperture closure, wnmax 4.9e-4 m

TABLE 3 Simulation cases for the investigation of fracture aperture responses to injection under different conditions

Case 1: Impact of injection pressure and adsorption induced swelling uin = 6MPa, εad = 0; uin = 8MPa, εad 6¼ 0
uin = 6MPa, εad 6¼ 0; uin = 4MPa, εad 6¼ 0

Case 2: Impact of different CO2/N2 mixture injection 100%CO2: 0% N2; 25%CO2: 75%N2

50%CO2: 50%N2; 75%CO2: 25%N2

0% CO2: 100%N2

Case 3: Impact of matrix permeability km0=1.0e-17 m2; km0=1.0e-15 m2

km0=1.0e-14 m2
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FIGURE 12 Time

evolution of fracture aperture at

measuring points A and B for

the case of different injection

pressures [Colour figure can be

viewed at wileyonlinelibrary.

com]

FIGURE 13 Time

evolution of fluid pressure,

horizontal stress in x and y

direction, shear stress and

normal effective stress at

detection point A at an

injection pressure of 6 MPa

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 14 Time

evolution of fluid pressure,

horizontal stress in x and y

direction, shear stress and

normal effective stress at

detection point B at an injection

pressure of 6 MPa [Colour

figure can be viewed at

wileyonlinelibrary.com]
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respectively, whereas x direction and y direction are parallel and normal to the fracture containing measurement point
B. The effect of CO2 adsorption-induced swelling on stress change is considered. At the early stage, the compressive
stress parallel to fracture increases. Fractures are quick to be filled with the injected fluid due to their higher permeabil-
ity, which leads to a larger swelling area in the direction parallel to the fractures compared with the direction normal to
the fractures; the local stress concentration in the direction parallel to fractures takes place earlier. It is interesting to
note that when the local stress concentration in the direction normal to fractures occurs and normal compressive stress
increases, the compressive stress parallel to the fracture starts to decrease. During local swelling, the shear stress also
shows a graduate increase, even exceeding the shear strength. However, due to larger magnitude of shear stiffness, the
shear dilation makes little contribution to normal displacement of fracture. The maximum shear stress at detection
point A is about 7 MPa, at the same time, the normal stress reaches about 16 MPa. If Mohr-Coulomb criterion is
selected as failure determination,23 even though cohesion strength is assumed to be zero, the calculated peak shear
stress is still larger than the maximum. It can be concluded that the coal deformation remains elastic in these simula-
tions. After the transition from local swelling to macro swelling, the compressive stress in both directions reaches the
same value, and there is almost no shear stress at both measuring points. This implies that the stress field after reaching
macro swelling varies uniformly.

The impact of adsorption-induced swelling on the variation in fracture aperture is illustrated in Figure 15. For the
simulation without adsorption, the fracture aperture increases with time as expected with effective stress dependency.
The evolutions of fracture aperture at both detection points show similar patterns. Conversely, the variation of fracture
aperture involving adsorption is relatively complex, as described above.

5.2.2 | Impact of different CO2/N2 mixture injection

To investigate the role of the injected gas component on the variation of fracture aperture, a selection of CO2/N2 gas
mixture is made with different compositions, namely, pure CO2, 25%CO2:75%N2, 50%CO2:50%N2, 75%CO2:25%N2 and
pure N2. The injection pressure is kept constant at 6 MPa for each simulation scenario and the initial matrix permeabil-
ity is set to be km0=1.0e-17 m2. Simulation results showing the evolution of fracture aperture at measuring points A and
B are shown in Figures 16 and 17, respectively.

It can be seen that the fracture aperture at both locations shows a similar variation for each CO2/N2 mixture
injected. The effects of adsorption on fracture aperture are again illustrated. Where the gas mixture contains more CO2,
a smaller increase of fracture aperture occurs at the early stage because its growth is supressed by the larger swelling
induced by CO2 than by N2, resulting in a larger local stress concentration. The change in fracture aperture caused by
pure N2 injection is close to that without adsorption, shown in Figure 15. The gas mixture containing more N2 can also
lead to a small decrease in fracture aperture, although the minimum value of aperture surpasses the initial aperture,
which is different to the injection of pure CO2.

FIGURE 15 Time

evolution of the fracture

aperture at measuring points A

and B, with and without the

adsorption-induced swelling

effect at an injection pressure of

6 MPa [Colour figure can be

viewed at wileyonlinelibrary.

com]
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5.2.3 | Impact of matrix permeability

Three simulations with pure CO2 injection at 6 MPa are presented that investigate the impacts of transport behav-
iour in the rock matrix on the evolution of fracture aperture. Three different matrix permeabilities are used, that
is, km0=1.0e-17 m2, km0 = 1.0e-15 m2, and km0 = 1.0e-14 m2, and the simulation results are shown in Figure 18.

FIGURE 16 Time

evolution of the fracture

aperture at measuring point A

for the case of different CO2/N2

injection compositions [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 17 Time

evolution of the fracture

aperture at measuring point B

for the case of different CO2/N2

injection compositions [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 18 Time

evolution of the fracture

aperture at measuring points A

and B for the case of different

initial matrix permeabilities

[Colour figure can be viewed at

wileyonlinelibrary.com]
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It can be seen that the transport behaviour in the porous matrix has a significant effect on the evolution of the
fracture aperture. Compared with a lower matrix permeability, there is no opening of fracture occurring for the
simulation with a higher matrix permeability at the early stage. Conversely, the fracture aperture decreases at the
early stage and then starts to recover to a higher value and keep constant. The flow rate in the higher-
permeability matrix is larger, and the swelling area enlarges quickly; the local swelling plays a controlled role in
the aperture variation over the normal effective stress from the beginning in the early period. In addition, the
recovery process of fracture aperture for a higher matrix permeability occurs earlier than that for lower matrix
permeability. Furthermore, the time taken to reach the final steady state is less for a higher matrix permeability.
This is also because the area of matrix swelling induced by gas adsorption expands quickly, reducing the time
required for transition from local swelling to macro swelling. In addition, the fracture aperture at two detection
points displays no difference for high permeability medium. It is worth pointing out that although the both simu-
lation cases with matrix permeability of 1.0e-15 and 1.0e-14 m2 have reached the equilibrium state at the late
stage, the eventual apertures of fractures at measurement point are slightly different whereas this difference is
acceptable, which can be attributed to the calculation error, especially the superposition of swelling strain incre-
ment in each loop. Different time steps in each loop were used for these two simulation cases to achieve conver-
gence of numerical solution.

6 | CONCLUSIONS

Naturally occurring fractures are commonly important features in candidate rock formations for carbon dioxide seques-
tration and unconventional gas exploration. To understand the effect of adsorptive gas injection on fracture deforma-
tion, a discrete fracture model of fully coupled compressible fluid flow, adsorption and geomechanics is presented in
this work, which consists of a matrix-fracture fluid transport model, a matrix deformation model and a stress-strain
model for fracture deformation. A sequential implicit discrete fracture model is presented and implemented into an
existing coupled numerical modelling platform based on the Galerkin finite element method. The effect of fractures is
represented explicitly through the use of lower-dimensional interface elements. The model is verified using previously
obtained solutions as benchmarks. Based on the model developed in this work, the effects of injection pressure, adsorp-
tion, different CO2/N2 mixture injection and rock matrix permeability are analysed. The major findings are summarized
as follows:

1 The change of fracture aperture is mainly controlled by the normal stress acting on the fracture surface. Although
the injection pressure may be different, the variation in fracture aperture follows a similar trend. The fracture aper-
ture increases at the early stage due to the decrease of effective stress, after which the adsorption-induced local swell-
ing can cause a local stress concentration, resulting in the compression of fractures. As the gas diffuses into the
region far away from the fracture, the swelling area extends and the local swelling becomes macro swelling, with the
fracture aperture starting to rebound. A higher injection pressure can induce a more rapid increase of fracture aper-
ture at the early stage, as well as leading to a larger opening of the fractures. The recovery of fracture aperture at
higher injection pressures also occurs earlier.

2 Compared with the complex evolution of fracture aperture involving adsorption, the impact of injecting an
adsorption-free gas on the fracture aperture is monotonously increasing. The fracture aperture increases with time as
expected with effective stress dependency.

3 The fracture aperture shows a similar variation at both measuring points for each CO2/N2 mixture considered for
injection. The gas mixture containing more CO2 causes a smaller increase of fracture aperture at the early stage due
to the fact that CO2 adsorption can induce larger swelling than that by N2. The gas mixture containing more N2 can
also lead to a small decrease in fracture aperture, although the minimum value of aperture surpasses the initial
aperture.

4 The transport behaviour in the porous matrix has a significant effect on the evolution of fracture aperture. Compared
with a lower matrix permeability, no opening of fractures occurs for the simulation with a higher matrix permeability
at the early stage. Conversely, the fracture aperture decreases and then starts to recover to a higher value and keep
constant. The recovery process of the fracture aperture for a higher matrix permeability occurs earlier than that for a
lower matrix permeability. In addition, the time taken to reach the final steady state is less for a higher matrix
permeability.
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