The Impact of Delayed Switch to Second-Line Antiretroviral Therapy on Mortality, Depending on Failure Time Definition and CD4 Count at Failure

Helen Bell-Gorrod, Matthew P. Fox, Andrew Boulle, Hans Prozesky, Robin Wood, Frank Tanser, Mary-Ann Davies and Michael Schomaker

The published version of this working paper can be cited as follows:
Helen Bell-Gorrod, Matthew P. Fox, Andrew Boulle, Hans Prozesky, Robin Wood, Frank Tanser, Mary-Ann Davies and Michael Schomaker
The Impact of Delayed Switch to Second-Line Antiretroviral Therapy on Mortality, Depending on Failure Time Definition and CD4 Count at Failure American Journal of Epidemiology, in press

[^0]
Abstract

Little is known about the functional relationship of delaying second-line treatment initiation for HIVpositive patients and mortality, given a patient's immune status. We included 7255 patients starting antiretroviral therapy between 2004-2017, from 9 South African cohorts, with virological failure and complete baseline data. We estimated the impact of switch time on the hazard of death using inverse probability of treatment weighting (IPTW) of marginal structural models. The non-linear relationship between month of switch and the 5 -year survival probability, stratified by CD4 count at failure, was estimated with targeted maximum likelihood estimation (TMLE). We adjusted for measured timevarying confounding by CD4 count, viral load and visit frequency. 5 -year mortality was estimated as $10.5 \% ~(2.2 \% ; 18.8 \%)$ for immediate switch and as 26.6% (20.9\%; 32.3\%) for no switch (49.9\% if CD4 count <100 cells $/ \mathrm{mm}^{3}$). The hazard of death was estimated to be 0.40 ($95 \% \mathrm{Cl}: 0.33-0.48$) times lower if everyone had been switched immediately compared to never. The shorter the delay in switching, the lower the hazard of death, e.g. delaying $30-60$ days reduced the hazard 0.52 (0.41-0.65) times, and 60120 days 0.56 ($0.47-0.66$) times. Early treatment switch is particularly important for patients with low CD4 counts at failure.

Keywords: HIV, treatment switching, second-line ART, causal inference, targeted learning

Introduction

Anti-retroviral treatment (ART) was received by an estimated 4.4 million (61\%) people living with HIV in South Africa in 2017^{1}. As the number of HIV-positive patients with access to ART has increased, so has the number of patients that have experienced failure of first-line ART. Patients with virological failure on first-line ART should, in principle, switch to second-line therapy as soon as possible, as a delay in switching treatment regimens has been shown to lead to increased mortality ${ }^{2-7}$. South African guidelines recommend switching from two nucleoside reverse transcriptase inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) to two NRTIs and one protease inhibitor (PI) if two consecutive viral loads on first line therapy are greater than 1000 copies/mL. However, in resource limited settings it is still common to delay the switch ${ }^{8-10}$. Reasons for delays include doubts about adequate patient adherence, availability of viral load testing and the cost of second line regimens ${ }^{11,12}$.

The estimated effect of delayed switch to second-line therapy on mortality has been investigated in several observational studies which adjusted for measured time-varying confounders using causal inference methods. Gsponer et al. ${ }^{5}$ showed the drastic reduction in mortality for patients switching to second-line compared to no switch based on an immunological criteria of failing, as well as the benefit of switching early. Petersen et al. ${ }^{6}$ estimated the effect of delayed switch after confirmed virological failure on survival and quantified the relative benefit of earlier switch based on the assumption of a linear relationship between timing of switch and probability of death. Other studies have looked into the impact of delayed switch in South Africa ${ }^{7}$, the estimated effects of using different viral failure definitions ${ }^{2}$ and the relative efficacy of various monitoring strategies ${ }^{4}$.

There have been few studies which have explored the functional relationship between time of switch and mortality ${ }^{13}$, and there is potential for further research into whether there may be a "breaking point" beyond which further delays could be particularly risky, especially for patients with an already compromised immune system. In particular, it would be of interest to know whether the estimated effect of delayed switch is modified by CD4 count at failure. Previous studies have looked at this, albeit in different contexts ${ }^{6,7}$. Moreover, from a programmatic perspective there may also be a benefit to minimising the time between first viral load greater than 1000 copies $/ \mathrm{mL}$ and switch given that with new technologies like resistance testing, patients with adequate adherence and proven resistance could potentially be switched earlier. In addition, most of the studies to date had relatively small patient numbers and limited follow-up times.

Our study aims at addressing these gaps. We assess the impact of delayed switch from first-line ART treatment to second-line ART treatment on mortality in 9 South African treatment programs; a large cohort with long follow-up. We use two related but distinct causal approaches; inverse probability of treatment weighting (IPTW) and targeted maximum likelihood estimation (TMLE), which allow us to present or findings on the hazard and incidence scales. The impact of delayed switch is flexibly modelled for patients with different disease severities based on CD4 count at time of viral load failure. We also investigate the importance of monitoring the delay between the first viral load (VL) measure over 1000 copies/ml and confirmed failure (second VL measure >1000 copies $/ \mathrm{ml}$) as part of the delay in switch on mortality outcomes.

Methods

Study setting and definitions

We included 9 HIV treatment facilities in Southern Africa that took part in the IeDEA-SA collaboration (http://www.iedeasa.org/), namely Desmond Tutu HIV Centre Gugulethu, Hlabisa HIV Treatment and Care Programme, Tygerberg, McCord Hospital, 3 treatment facilities at the Khayelitsha ART Programme, Themba Lethu Clinic and Masiphumelele Clinic. The collaboration has been described in detail elsewhere 14

Adult patients who that started treatment on a first-line treatment regime (2 NRTIs +1 NNRTI) and failed first-line therapy after $1^{\text {st }}$ January 2004, were included in the analysis. Failure was defined as two consecutive VL measurements greater than 1000 copies $/ \mathrm{mL}$ and measured at least 4 weeks apart. If measures were taken less than 4 weeks apart the next measure was considered. We excluded patients without any record of receiving ART, those that experienced virological failure within 6 months of ART initiation, those that were not receiving ART at the time of first VL failure and those that switched before viral load failure. In total, we included 7255 patients for the main complete case analysis, see Figure 1, and 8008 patients in the sensitivity analysis with multiple imputation for missing baseline data. Earliest entry date into our sample was $4^{\text {th }}$ October 2004 and the database was closed on $16^{\text {th }}$ August 2017.

In the main analysis, baseline was defined at the time of first-line viral failure i.e. the date at which the second of the two consecutive viral loads were over 1000 copies per/ml. A secondary analysis was performed using the date at which the first of the two consecutive VLs was greater than 1000 copies $\mathrm{per} / \mathrm{mL}$ as the baseline, which represents the earliest indication of viral failure. The sample of patients was the same regardless of the definition used because only patients with two elevated viral loads were included. A switch from first-line ART to second-line ART was broadly defined as a switch from 2 NRTIs and 1 NNRTI to 2 NRTIs and 1 PI. A detailed list of second-line regimens in our data is provided in Web Table 1. Patients were defined as being lost to follow-up if there was no visit or event for 9 months after their last recorded visit and before database closure.

The primary endpoint was mortality which was recorded through clinic's patient files and updated through data from the South African national vital registry where available (this approach is expected to give $>96 \%$ completeness of mortality data ${ }^{15}$).

Analysis

Analysis time started at the date of first-line failure, defined as $2 \mathrm{VL}>1000$ copies $/ \mathrm{mL}$ in the main analysis and $1 \mathrm{VL}>1000$ in the secondary analysis, as described above. Our primary exposure was the timing of switch to second-line ART, measured in months since the respective date of failure and we used this to estimate the effect on both the hazard of death and 5-year survival.

Measured and included baseline characteristics (at time of confirmed failure) are age, sex, highest and lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an indicator whether a patient was ever suppressed prior to failure, WHO clinical stage at time of ART initiation, year
of ART start and treatment facility. Time-varying variables which potentially determined the decision to switch as well as mortality, and were affected by prior treatment regimes, were CD4 count, VL and treatment frequency (measured as number of visits within the past 6 months). It is possible to adjust for confounding of these variables using appropriate causal inference methods ${ }^{16}$.

Figure 1: Flow diagram for inclusion of patients in our analysis

We estimated the effect of timing of switch on the hazard of death using inverse probability of treatment weighting (IPTW) of marginal structural models ${ }^{2}$. To estimate the effect of treatment switch, as well as the non-linear relationship between month since failure and month of switch on the probability of 5 -year mortality, stratified by CD4 count at failure, we used targeted maximum likelihood estimation (TMLE) for longitudinal marginal structural working models ${ }^{17}$.

For IPTW, we used 7 different switching delay strategies; no switch and delayed switch by <30 days, 3059 days, $60-119$ days, 120-179 days, 180-359 days, and ≥ 360 days. We created 7 clones/replicates per patient, one for each treatment strategy, as described previously ${ }^{7}$. A clone/replicate is censored after it ceases to follow the respective switching strategy. The remaining uncensored observations were weighted to represent what would have happened if the censored patients had continued to follow the respective switching strategy. We used pooled logistic regression models weighted by the stabilized inverse probabilities of treatment and censoring to estimate the effect of the different strategies on the hazard of death. The logistic regression models used to derive the weights contained the abovementioned time-dependent and baseline variables in the denominator, and baseline variables only in the numerator. The Web Appendix (Web table 2, Technical Appendix) contains a detailed description of implementation of the method and model specifications. In sensitivity analyses, missing baseline CD4 count and WHO stage were imputed using multiple imputation by chained equations ${ }^{18}$.

With TMLE, we first estimated 5-year mortality under immediate switch after confirmed failure and no switch using the R-package ltmle ${ }^{19}$. The iterated outcome regressions, i.e. the relationship between mortality and the covariates at each point in time (based on 3-month intervals) were estimated using super learning. Super learning is a data-adaptive approach that combines different modelling approaches, such as logistic regression or other regression approaches, such that the expected prediction error (estimated via cross validation) is minimized, see the Web Appendix for more details. We then specified marginal structural working models to model the relationship between month since failure, month of switching, and survival, conditional on CD4 count at failure; see Web Appendix for more details. The fitted models, calculated based on the approach described in Petersen et al. ${ }^{17}$, were then used to visualize the relationship.

All analyses were conducted in Stata $13{ }^{20}$ and $\mathrm{R} 3 \cdot 5 \cdot 1^{21}$.

Ethics

This leDEA-SA collaboration study was approved by the University of Cape Town and University of Bern human research ethics committees. At most sites, the requirement for informed consent was waived, as only anonymized data that were already collected as part of routine monitoring contributed to the collaborative dataset.

Results

Median time from ART start to failure was 1218 days (about 3.3 years); median time from confirmed failure to switch was 121 days ($1^{\text {st }}$ quartile: 49 days; $3^{\text {rd }}$ quartile: 288 days), with follow-up times from confirmed failure ranging between 1 and 4409 days (median 1835 days, IQR 1183-2470). During followup 3765 patients (52%) switched, and 842 (12\%) died. The included patients were mostly female (65%), and had advanced WHO stage at ART initiation (60\%), see Tables 1 and 2 (further below). Among patients that never switched, a substantial proportion (19\%) had a viral load >100.000 copies $/ \mathrm{mL}$ at confirmed viral load failure.

The probability of being switched was higher among patients with low current CD4 count, high VL, and a higher visit frequency (Table 3). These variables also predicted the probability of death, confirming that they are likely time-varying confounders.

Table 3: Predictors of switch from first-line to second-line ART and predictors of death*

	Switch			Death		
Dependent variables	Odds Ratio	Pvalue	95\% CI	Odds Ratio	Pvalue	95\% CI
Time dependent						
CD4 cell count, per mm3 ${ }^{\text {a }}$						
50-99	0.90	0.38	0.72, 1.14	0.44	0.00	0.35, 0.55
100-199	0.83	0.10	0.66, 1.04	0.21	0.00	0.16, 0.27
200-349	0.82	0.11	0.65, 1.04	0.13	0.00	0.10, 0.18
350-499	0.95	0.71	0.72, 1.25	0.06	0.00	0.04, 0.09
>=500	0.72	0.06	0.52, 1.02	0.03	0.00	0.02, 0.06
RNA, copies/ml ${ }^{\text {b }}$						
250-499	0.68	0.21	0.37, 1.24	1.09	0.69	0.71, 1.68
500-999	2.29	0.00	1.49, 3.54	1.59	0.06	0.98, 2.57
1000-9999	12.56	0.00	9.26, 17.02	2.40	0.00	1.73, 3.31
10000-99999	17.84	0.00	12.89, 24.69	3.04	0.00	2.12, 4.37
>=100000	16.62	0.00	11.47, 24.08	4.37	0.00	2.86, 6.66
time-CD4 interaction	1.00	0.04	1.00, 1.00	1.00	0.25	1.00, 1.00
time-RNA interaction	1.00	0.53	1.00, 1.00	1.00	0.01	1.00, 1.00
number of visits within the past 6 months	1.27	0.00	1.26, 1.29	0.94	0.00	0.91, 0.97
Baseline						
CD4 cell count, per mm3 ${ }^{\text {c }}$						
50-99	1.31	0.04	1.01, 1.69	1.02	0.88	0.78, 1.34
100-199	1.49	0.00	1.16, 1.91	0.97	0.80	0.73, 1.27
200-349	1.70	0.00	1.30, 2.22	1.05	0.76	0.77, 1.44
350-499	1.50	0.01	1.11, 2.04	1.31	0.18	0.88, 1.95
$>=500$	1.58	0.01	1.10, 2.27	1.73	0.05	1.00, 3.01
RNA, copies/ml ${ }^{\text {d }}$						
5000-9999	1.10	0.07	0.99, 1.22	0.98	0.88	0.76, 1.27
10000-49999	0.92	0.12	0.82, 1.02	1.13	0.27	0.91, 1.40
50000-99999	0.99	0.95	0.85, 1.16	1.31	0.06	0.99, 1.71
>=100000	0.90	0.24	0.77, 1.07	1.40	0.01	1.09, 1.81
pre-failure VL suppression	1.03	0.86	0.71, 1.51	1.23	0.66	0.48, 3.15
WHO Stage III/IV at ART initiation	0.91	0.02	0.85, 0.99	1.18	0.05	1.00, 1.40
age	1.00	0.02	1.00, 1.01	1.02	0.00	1.01, 1.03
gender	1.07	0.10	0.99, 1.15	0.91	0.20	0.78, 1.05

* The analysis was adjusted for follow-up time using restricted cubic splines. Other controls include pre-failure highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and year of failure. ${ }^{\text {a }}$ Reference category 0 49 per mm3, ${ }^{b}$ Reference category 0-249 copies/ml, ${ }^{\text {c }}$ Reference category 0-49 per mm3, ${ }^{\text {d }}$ Reference category 0 4999 copies/ml. WHO - World Health Organisation, ART - ART- Antiretroviral therapy

The effect of immediate switch compared to no switch on mortality, if confirmed failure was used as failure definition, was estimated as 0.49 ($95 \% \mathrm{Cl}: 0.42-0.58$) in a crude analysis, and as 0.37 (0.30-0.46) using IPTW. Results with multiple imputation were 0.47 (0.40-0.54) in a crude analysis, and 0.36 (0.300.44) using IPTW. If first VL>1000 copies/mL was used as definition of failure the estimates were 0.52 ($0.45-0.61$) and 0.42 ($0.34-0.52$) respectively. After imputation the results were 0.50 ($0.43-0.58$) and 0.41 (0.34-0.51) (Web Table 3). Figure 2 shows that the shorter the delay in switching, the lower the hazard of death. There are stronger benefits of early switch when considering one VL>1000 copies/mL as failure definition. Similar results are obtained after multiple imputation of baseline CD4 count and WHO stage (Web Table 3). Sensitivity analyses show that truncation of the stabilized weights at the $1^{\text {st }}$ and $99^{\text {th }}$ quantile yields the most stable results (Web Table 4).

Figure 2: Hazard ratio of each switching delay duration subgroup vs no switch using IPW of MSM.
Figure 2 part A) shows the main analysis - Baseline: confirmed failure (Second viral load (VL) >1000), Figure 2 part B) shows the secondary analysis - Baseline: First VL >1000. Delay strategy refers to the 0-6 strategies that describe that duration of switching delay: Strategy 0: no switch (reference category), Strategy 1: Less than 30 days, Strategy 2: Greater than or equal to 30 and less than 60 days, Strategy 3: Greater than or equal to 60 and less than 120 days, Strategy 4: Greater than or equal to 120 and less than 180 days, Strategy 5: Greater than or equal to 180 and less than 360 days, Strategy 6: Greater than or equal to 360 days.

Using TMLE, 5-year mortality was estimated as 10.5% (2.2%; 18.8\%) if everyone had been switched immediately, and as 26.6% (20.9%; 32.3%) if everyone had stayed on their failing regimen. The corresponding risk difference was -16.1% ($-26.1 \% ;-6.1 \%$), and the odds ratio was 0.32 ($0.13 ; 0.82$). The working MSM's, fitted with TMLE, are visualized in Figure 3. The black dashed line shows that the estimated 5-year mortality (i.e. 60 months after failure) to be about 25% under no switching (month of switch $=60$). However, this varies considerably by immune status at failure. Almost 51% would have died among those who had a CD4 count <100 at failure (red line), but only a small proportion (17.5\%) among those with a CD4 count > 200 cells $/ \mathrm{mm}^{3}$ (green line). Moreover, the effect of delaying treatment was estimated to be more severe (i.e. steeper ascent) among patients failing with CD4 count < 100
cells $/ \mathrm{mm}^{3}$. Similar results are obtained when evaluating probabilities of death <5 years (Web Figure 1). Overall, the estimated relationship between switch time and mortality was non-linear, as visualized in Figure 3. This is because the estimated coefficients of the non-linear switch time terms in the working MSMs were important, and also significant at the 5% level.

Figure 3: Probability of death 5 years after virologic failure, for different CD4 count categories at time of failure, and depending on month of switch (i.e. extent of delay). Estimates are based on working marginal models estimated with longitudinal targeted maximum likelihood estimation, as specified in the technical appendix. Note that the causal quantity of interest is defined as a projection of the true causal dose-response curve, i.e. the true relationship between time/switch time and mortality, onto the specified working model.

Discussion

Statement of principal findings

Our study highlights that it often takes a long time to switch patients to second line treatment in Southern Africa. We have shown that an early switch of regimen is highly beneficial in terms of reduced mortality. Patients with low CD4 counts at time of failure are at particularly high risk of increased mortality, whereas a moderate delay in healthy patients comes with a comparatively lower risk.

Strengths and limitations

Our study is based on a large data set, with a multitude of different treatment regimens and long followup, which allowed us to model the relationships in the data in a flexible and robust way. Since our patients have relatively regular viral load measurements for the setting, we have been able to evaluate the estimated effect of switching based on viral failure, rather than immunological failure; which is of great interest given that viral load monitoring is typically not available in public sector programs in resource limited settings, though it is currently being expanded. Another strength is the use of causal inference methods to adjust for time-dependent confounding affected by prior treatment, which would not be possible with traditional regression analyses ${ }^{16}$. This helped us to contrast switching strategies under different viral failure definitions. We also used TMLE, which has desirable statistical properties (double robustness), to confirm and extend the MSM analysis. In contrast to previous studies, we have even been able to implement this method for a marginal structural model that postulated non-linear relationships between treatment strategies and survival.

Our study has some limitations. Our analysis is based on routine data from South African treatment programs. It may well be possible that patients defined to be lost to follow-up are in fact cycling in and out of care, possibly in different provinces ${ }^{22}$; or that the complication of capturing start and stop dates of different drugs may lead to inaccuracies that could potentially also affect our ability to accurately define switch dates. The diagnostics further suggested that there could be some positivity violations in our data which means that individuals may not have a positive probability of continuing to receive treatment according to a specific treatment rule, given that they have done so thus far and irrespective of the covariate history (Web Table 5, Web Figure 2). This could have affected our estimates. Another limitation is the unavailability of patient-level adherence data.

There are additional limitations associated with the first VL>1000 at baseline (secondary) analysis, which occur due to the definition of the sample. Eligibility for the sample is based on confirmed failure. After first VL>1000, those included cannot switch or die until after their next VL measurement, thus creating a period of immortal time. Table 1 indicates that the period of time between first VL>1000 and confirmed failure is greater, on average, for those with longer delays between confirmed failure and switch. Hence, this may cause some bias in the comparisons of delay strategies. Furthermore, the restriction of the first

VL>1000 sample to patients that attained confirmed failure (VL>1000) at next VL measurement means that the secondary analysis can only be interpreted in reference to the confirmed-failure population, and therefore is not generalizable to the wider population.

Interpretation of findings

It is no surprise that delayed treatment switch may affect patient's health. However, according to our results, earlier switch is of particular benefit when switching after the first sign of failure, i.e. the first viral load > 1000 copies $/ \mathrm{mL}$, for those that go on to confirmed failure. HIV specialists may be reluctant to switch patients that have adherence problems or are unstable, but for stable patients who fail because of resistance or toxicities, early switching after a first elevated viral load could be of benefit.

Our results confirm that switching is partly determined by visit frequency, which may relate to clinician concern for patients based on health status, but also strongly relates to patient's engagement in care and adherence. To reduce the risk of failure of another regimen, patients on second-line treatment should be adherent. We have shown the benefit of switching even under imperfect adherence, but ideally patients should be psychologically prepared to adhere to their new treatment regimen.

Results in context

Our results comparing immediate switch to no switch yield similar conclusions to other studies which used other definitions of failure, which were done in different patient populations, for different followup times, and used different methodological approaches ${ }^{5-7,17}$. Like Rohr et al. ${ }^{7}$ we show the that the effectiveness of switching strategies depends on disease severity, though in a more refined way given that we modelled the relationship non-linearly for different patient groups. Similar to other studies we have shown that remaining on first-line therapy leads to an increase in mortality compared to switching, and that earlier switch is beneficial in terms of survival ${ }^{6,17}$. Our marginal structural working models were more complex than the MSMs in these studies, which makes a more refined interpretation of the doseresponse relationship between delay in switching and mortality possible; however, both previous studies ${ }^{13}$ and current research ${ }^{23}$ suggests that it may be important to allow for even more flexible approaches to model specification and fitting than ours. Nevertheless, whatever methodological approach is chosen, it is important to note that the benefitassociated with switching can be observed for different definitions of treatment failure ${ }^{5,6}$.

Our results have two direct implications for current programme guidance. Firstly, for stable virologically suppressed patients, it is no longer recommended in South Africa that they receive regular CD4 counts. However, once a patient is viraemic, our results demonstrate the critical importance of CD4 count in further risk stratifying patients. The value of dropping routine CD4 count testing in the interests of costsaving, needs to be considered alongside the benefits of the additional information it provides on disease severity and mortality risk, and could be used to highlight groups that are in more urgent need of early switch.

In patients who subsequently fail virologically, we have demonstrated that the delay between the first and second elevated viral load contribute to the non-linear early increase in mortality resulting from
delayed switching, especially in patients with low CD4 counts. This points to the importance of either accelerating confirmation of virological failure in patients with advanced immunological suppression, or to consider switching at the first evidence of viraemia if cost and regimen-sparing are no longer important considerations driving the need to confirm virologic failure.

Further research

In the South-African context, and according to WHO guidelines, switching is permitted after confirmed failure. Hence, our analyses were restricted to a subgroup of patients with 2 consecutive VL>1000. The wider dataset, indicated in figure 1, shows that some patients switch onto second-line treatment prior to confirmed virologic failure. It would be interesting to investigate the impact of time to switch from first elevated VL using a sample defined with the eligibility criteria of one VL>1000. In this larger sample, the additional complication of the competing risk of virologic re-suppression would need to be considered in the analysis, as re-suppressing patients would no-longer be eligible for switch.

Conclusions

Our study highlights the importance of early treatment switch, particularly for patients with low CD4 counts at failure.

Acknowledgements: This project was supported by Grant Number U01AI069924 from NIH (NIAID, NICHD, NCI, NIDA, NIMH), (PI: Egger and Davies). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. We thank Dr. Maya Petersen for feedback on an earlier version of our targeted maximum likelihood estimation (TMLE) analysis and Dr. Julia Rohr for feedback on our inverse probability of treatment weighting (IPTW) analysis.

References

1. UNAIDS. UNAIDS Data report 2018, https://www.unaids.org/sites/default/files/media asset/unaids-data-2018 en.pdf.
2. Cain LE, Saag MS, Petersen M, et al. Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy. Int J Epidemiol. 2016;45(6):2038-2049.
3. Cain LE, Sterne JAC, May MT, et al. When to Switch Cart: Novel Methods for the Comparison of Switching Strategies Using Observational Data. Am J Epidemiol. 2012;175:S117-S117.
4. Ford D, Robins JM, Petersen ML, et al. The Impact of Different CD4 Cell-Count Monitoring and Switching Strategies on Mortality in HIV-Infected African Adults on Antiretroviral Therapy: An Application of Dynamic Marginal Structural Models. Am J Epidemiol. 2015;182(7):633-643.
5. Gsponer T, Petersen M, Egger M, et al. The causal effect of switching to second-line ART in programmes without access to routine viral load monitoring. AIDS. 2012;26(1):57-65.
6. Petersen ML, Tran L, Geng EH, et al. Delayed switch of antiretroviral therapy after virologic failure associated with elevated mortality among HIV-infected adults in Africa. AIDS. 2014;28(14):2097-2107.
7. Rohr JK, Ive P, Horsburgh CR, et al. Marginal Structural Models to Assess Delays in Second-Line HIV Treatment Initiation in South Africa. PLoS One. 2016;11(8):e0161469.
8. Fox MP, Cutsem GV, Giddy J, et al. Rates and predictors of failure of first-line antiretroviral therapy and switch to second-line ART in South Africa. J Acquir Immune Defic Syndr. 2012;60(4):428-437.
9. Levison JH, Orrell C, Losina E, Lu Z, Freedberg KA, Wood R. Early outcomes and the virological effect of delayed treatment switching to second-line therapy in an antiretroviral roll-out programme in South Africa. Antivir Ther. 2011;16(6):853-861.
10. Madec Y, Leroy S, Rey-Cuille MA, Huber F, Calmy A. Persistent difficulties in switching to secondline ART in sub-saharan Africa--a systematic review and meta-analysis. PLoS One. 2013;8(12):e82724.
11. Group A-LoIS, Keiser O, Tweya H, et al. Switching to second-line antiretroviral therapy in resource-limited settings: comparison of programmes with and without viral load monitoring. AIDS. 2009;23(14):1867-1874.
12. Long L, Fox M, Sanne I, Rosen S. The high cost of second-line antiretroviral therapy for HIV/AIDS in South Africa. AIDS. 2010;24(6):915-919.
13. Petersen ML, van der Laan MJ, Napravnik S, Eron JJ, Moore RD, Deeks SG. Long-term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification AIDS. 2008;22(17):2408-2408.
14. Egger M, Ekouevi DK, Williams C, et al. Cohort Profile: the international epidemiological databases to evaluate AIDS (IeDEA) in sub-Saharan Africa. Int J Epidemiol. 2012;41(5):1256-1264.
15. Johnson LF, Dorrington RE, Laubscher R, et al. A comparison of death recording by health centres and civil registration in South Africans receiving antiretroviral treatment. J Int AIDS Soc. 2015;18(1):20628.
16. Daniel RM, Cousens SN, De Stavola BL, Kenward MG, Sterne JA. Methods for dealing with timedependent confounding. Stat Med. 2013;32(9):1584-1618.
17. Petersen M, Schwab J, Gruber S, Blaser N, Schomaker M, van der Laan M. Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models. J Causal Inference. 2014;2(2):147-185.
18. White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011;30(4):377-399.
19. Lendle SD, Petersen ML, Schwab J, van der Laan MJ. Itmle: An R Package Implementing Targeted Minimum Loss-Based Estimation for Longitudinal Data. Journal of Statistical Software. 2017;81(1):1-21.
20. Stata Statistical Software: Release 13 [computer program]. College Station, TX: StataCorp LP2013.
21. R-Core-Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. 2018.
22. Kaplan SR, Oosthuizen C, Stinson K, et al. Contemporary disengagement from antiretroviral therapy in Khayelitsha, South Africa: A cohort study. PLoS Med. 2017;14(11):e1002407.
23. Kennedy EH, Ma Z, McHugh MD, Small DS. Nonparametric methods for doubly robust estimation of continuous treatment effects. J R Stat Soc Series B Stat Methodol. 2017;79(4):1229-1245.

Table 1: Summary of patient characteristics at confirmed viral load failure* using data from the leDEA-SA collaboration (2004-2017)

Categories	Never switch$\text { (} \mathrm{n}=3490 \text {) }$		Switch 0-29 days$(\mathrm{n}=627)$		Switch 30-59 days(n=619)		Switch 60-119 days$(n=624)$		Switch 120-179 days(n=442)		Switch 180-359 days ($\mathrm{n}=701$)		$\begin{aligned} & \text { Switch }>360 \text { days } \\ & \quad(\mathrm{n}=752) \end{aligned}$		$\begin{gathered} \text { Total } \\ (\mathrm{n}=7255) \end{gathered}$	
	No.	\%														
number of switches	0	0	627	100	619	100	624	100	442	100	701	100	752	100	3765	52
number of deaths	475	14	61	10	63	10	59	9	46	10	76	11	62	8	842	12
Gender female)	2247	64	378	60	420	68	394	63	282	64	471	67	509	68	4701	65
Age at failure																
<30	624	18	101	16	124	20	117	19	76	17	144	21	209	28	1395	19
31-40	1611	46	265	42	264	43	293	47	205	46	337	48	344	46	3319	46
>40	1255	36	261	42	231	37	214	34	161	36	220	31	199	26	2541	35
WHO at ART initiation																
I/II	1334	38	324	52	317	51	263	42	165	37	267	38	228	30	2898	40
IIIIIV	2156	62	303	48	302	49	361	58	277	63	434	62	524	70	4357	60
CD4 count at failure																
0-49	337	10	67	11	45	7	45	7	31	7	39	6	37	5	601	8
50-99	334	10	56	9	64	10	46	7	34	8	54	8	51	7	639	9
100-199	753	22	151	24	131	21	156	25	124	28	165	24	185	25	1665	23
200-349	1076	31	221	35	211	34	218	35	151	34	262	37	303	40	2442	34
350-499	567	16	77	12	110	18	99	16	61	14	115	16	126	17	1155	16
$>=500$	423	12	55	9	58	9	60	10	41	9	66	9	50	7	753	10
RNA measure at failure																
1000-4999	1152	33	154	25	214	35	212	34	159	36	235	34	308	41	2434	34
5000-99999	457	13	97	25	88	14	79	13	69	16	130	19	127	17	1047	14
10000-49999	913	26	199	32	168	27	207	33	121	27	195	28	194	26	1997	28
50000-999999	306	9	62	10	54	9	49	8	44	10	54	8	52	7	621	9
>=100000	662	19	115	18	95	15	77	12	49	11	87	12	71	9	1156	16
RNA suppression prior to failure	2652	76	432	69	436	70	469	75	315	71	534	76	578	77	5416	75

*Second consecutive viral load measure greater than 1000 copies/mI. ART- Antiretroviral therapy, leDEA-SA - International epidemiology to Evaluate AIDS Southern Africa

Table 2: Summary of patient characteristics using data from the leDEA-SA collaboration (2004-2017), displayed as median (interquartile range)

Categories	Never switch (n=3490)	$\begin{aligned} & \text { Switch } 0-29 \text { days } \\ & \quad(\mathrm{n}=627) \end{aligned}$	Switch 30-59 days ($\mathrm{n}=619$)	Switch 60-119 days ($\mathrm{n}=624$)	Switch 120-179 days ($\mathrm{n}=442$)	Switch 180-359 days $(n=701)$	$\begin{aligned} & \text { Switch }>360 \text { days } \\ & \quad(\mathrm{n}=752) \end{aligned}$	$\begin{gathered} \text { Total } \\ (n=7255) \end{gathered}$
Median days IQR)								
time from confirmed failure* to switch	-	28 (21-28)	49 (36-56)	85 (77-106)	145 (132-162)	245 (210-292)	638 (481-940)	121 (49-288)
time from ART start to confirmed failure*	1456 (893-165)	1021 (569-1679)	964 (568-1597)	986 (589-1678)	1107 (631-1724)	1064 (696-1728)	1028 (678-1516)	1218 (730-1916)
time from RNA>1000 to confirmed failure*	141 (91-257)	84 (56-113)	91 (58-127)	90 (56-136)	112 (78-157)	115 (84-171)	134 (84-185)	115 (83-190)
time from ART start to last contact	2425 (1686-3108)	2762 (1884-3564)	2762 (1811-3447)	2808 (1995-3564)	2929 (2211-3661)	3009 (2266-3665)	3316 (2727-3981)	2688 (1898-3431)
time from confirmed failure* to last contact	592.5 (294-1175)	1435 (777-2080)	1306 (722-2008)	1481 (749-2132)	1538 (1013-21426)	1653 (1087-2109)	2110 (1556-2664)	1095 (481-1885)
number of CD4A measures from failure* to last contact	1 (0-3)	2 (1-5)	3 (1-5)	3 (1-6)	3 (2-6)	4 (2-6)	6 (3-9)	2 (1-5)
number of RNA measures from failure* to last contact	3 (1-5)	5 (3-9)	5 (3-8)	6 (3-9)	7 (5-10)	7 (5-10)	9 (7-13)	4 (2-8)

*Second consecutive viral load measure greater than 1000 copies/ml. ART- Antiretroviral therapy, leDEA-SA - International epidemiology to Evaluate AIDS Southern Africa

Web Appendix

The Impact of Delayed Switch to Second-Line Antiretroviral Therapy on Mortality, Depending on Failure Time Definition and CD4 Count at Failure

Helen Bell-Gorrod, Matthew P. Fox, Andrew Boulle, Hans Prozesky, Robin Wood, Frank Tanser, MaryAnn Davies and Michael Schomaker

Table of Contents

Technical appendix 2
Web Table 1: Drug regimens for second-line treatment 8
Web Table 2: Output from the treatment and censoring models 9
Web Table 3: Complete case analysis 10
Web Table 4: stabilized weights diagnostics for the switch versus no switch analysis 11
Web Table 5: LTMLE truncation. 11
Web Figure 1: Probability of death 5 years after virologic failure 12
Web Figure 2: Kernel density plots of the distribution of cumulative fitted probabilities 14
References 15

Technical appendix

Notation: Let Y_{t} be the binary survival outcome measured at time $t, L_{t}=\left(L^{1}{ }_{t}, \ldots, L_{t}{ }^{q}\right)$ the vector of timevarying covariates at time t (CD4 count, $\log _{10}$ viral load, visit frequency [number of visits within the past 6 months]), C_{t} a censoring indicator at time t, and A_{t} (antiretroviral) treatment at time t. The follow-up time is $t=0,1,3,6,9, \ldots, 60$ months. L_{0} is the vector of baseline covariates which contains are age, sex, highest and lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an indicator whether a patient was ever suppressed prior to failure, WHO clinical stage, year of ART start and treatment facility, CD4 count, visit frequency and viral load. We are interested in the intervention vector $A=\left(a_{0}, a_{1}, a_{3}, a_{6}, \ldots, a_{60}\right)$ which is a multiple-time point intervention where at each time point antiretroviral therapy may be given or not. More generally, we refer to the intervention history (up to and including time t) as $\bar{A}_{t}=\left(a_{0}, a_{1}, a_{3}, a_{6}, \ldots, a_{60}\right)$. For example, immediate treatment initiation refers to \bar{A}_{60} $=(1,1,1, \ldots, 1)$ and no treatment initiation to $\bar{A}_{60}=(0,0,0, \ldots ., 0)$. With the superscript we denote counterfactuals. For example, $Y_{t}{ }^{\overline{A t}}=(1,1, \ldots, 1)$ is the outcome that would have been observed at time t had everyone received (possibly contrary to the fact) immediate treatment initiation, i.e. ART at all time points. A rule d assigns treatment A_{t} such that it starts at a specific time point (and therefore determines the amount of delay in treatment initiation). Since the rule effectively determines the switch time (st) we write $Y^{s t}$ to refer to the outcome that would have been observed under a rule that assigns treatment in line with a certain switch time.

Target Quantities: We are interested in estimating
i) how the counterfactual probability of death 60 months after first-line failure varies as a function of the assigned switch time ($s t$); where switch time based on rule d determines how the treatment vector A looks like. That is, we are interested in
a) $\mathrm{P}\left(\mathrm{Y}_{60}=1\right)^{\text {st }}$
where switch time st varies between 0 and 60 months; and
b) a marginal structural working model to summarize how the counterfactual probability of death at follow-up time t varies as a function of t and assigned switch time (st) [and therefore treatment vector A]; see below for the model specification.
ii) We are also interested in summarizing the effect of the delay strategy d on (the hazard λ of) mortality with marginal structural Cox models of the form
$\lambda^{\text {st }}\left(t \mid L_{0}\right)=\lambda_{0}(t) \exp \left(\beta_{1} d+L_{0} \beta_{2}\right)$

The Cox model is approximated with a pooled logistic regression model containing (splines of) follow-up time and the (above mentioned) baseline variables \mathbf{L}_{0}. The exact model specification is given further below.

Structural assumptions: As Petersen et al. ${ }^{1}$, we assume that CD4 count, HIV RNA (viral load) and clinic visit frequency influence decisions whether and when to switch therapy, as well as mortality; since these variables are affected by prior switching decisions and mediate the effect of exposure to failing first-line therapy on mortality, standard regression adjustment methods are not suitable, see below for our estimation approaches. We speculate that (unmeasured) patient adherence also affects decisions of when to switch, as well as mortality.

Observed data \& Identification: Our data contains $\mathrm{O}=(\mathrm{L}, \mathrm{A}, \mathrm{Y}, \mathrm{C})$ as defined above under "notation". The target quantities above [listed under i) and ii)] can be identified under the assumptions of sequential randomization ("no unmeasured confounders"), consistency ("well-defined intervention") and positivity ${ }^{2,3}$. With positivity we mean that a patient who has not already switched should have some positive probability of both switching and not switching (regardless of his covariate history). With no unmeasured confounding, we essentially mean that those variables that affect the decision of when to switch and mortality, and are themselves affected by prior treatment decisions, are all contained in $\mathbf{L}_{\mathbf{t}}$ (see above point on adherence). More formal definitions of the above assumptions are given in Petersen et al. ${ }^{4}$ and Schomaker et al. ${ }^{5}$.

Estimation:

To estimate the target quantities listed in i) we use longitudinal targeted maximum likelihood estimation as described in Petersen et al. ${ }^{4}$ and implemented in the R-package ltmle and for ii) we use inverse probability weighting of marginal structural models following the approach in Rohr et al. ${ }^{6}$, see also Cain et al. ${ }^{7}$ for more details.

For estimation of the targeted quantities in i), we follow exactly the approach described in detail in Petersen et al. ${ }^{4}$. Briefly, we estimate $P\left(Y_{t}=1 \mid L_{0}\right)^{\text {st }}$ for all possible switch times (i.e. delay strategies d that delay treatment by $s t=0,1,3,6,9, \ldots, 60$ months) and follow-up times $t=0,1,3,6,9, \ldots, 60$ and summarize the dose-response relationship between Y and t and $s t$ in two different working models:

Model 1: Irrespective of CD4 count: logit $\left(P\left(Y_{t}^{s t}=1\right)\right)=b_{0}+b_{1} \log (t)+b_{2}(s t-t)+b_{3}\left([s t-t]^{2}\right)+b_{4}\left([s t-t]^{3}\right)+b_{5}$ $(\log (t) *[s t-t])+b_{6}\left(\log (t)^{*}[s t-t]^{2}\right)$

Model 2: Conditional on CD4 count: logit $\left(P\left(Y_{t}^{s t}=1 / C D 4\right)\right)=b_{0}+b_{1} \log (t)+b_{2}(s t-t)+b_{3}\left([s t-t]^{2}\right)+b_{4}\left([s t-t]^{3}\right)$ $+b_{5}(\log (t) *[s t-t])+b_{6} I(101<C D 4<200)+b_{7} I(C D 4>200)+b_{8} I(101<C D 4<200) *(s t-t)+b_{9} I(C D 4>200) *(s t-t)$ $+b_{10} I(C D 4<100) * v t+b_{11} I(101<C D 4<200) * v t+b_{12} I(C D 4>200) * v t$

Model 1 summarizes the dose-response relationship independent of CD4 count at time of viral failure; model 2 summarizes the relationship conditional on CD4 count (at time of failure). The transformations for follow-up time have been chosen such that the working MSM yields similar results as the (non-MSM) estimates for the probability of death at 5 years under $\bar{A}_{60}=(1,1,1, \ldots, 1)$ and $\bar{A}_{60}=(0,0,0, \ldots ., 0)$ respectively. The working models allow for an inflection point in the survival curve with respect to time of switch due to the inclusion of a cubic polynomial of difference in switch time and follow-up time. Unfortunately, more complex working models that include switch time in a way that is more sophisticated could not be
fitted due to technical constraints. Figure 3 and Web Figure 1 have been produced based on the estimates of the above working MSMs.

To estimate the above target quantity i)a), we have used the Itmle() function in the package Itmle. With this we estimated that 5 -year mortality was $10.5 \%(2.2 \% ; 18.8 \%)$ if everyone had been switched immediately, and as 26.6% ($20.9 \% ; 32.3 \%$) if everyone had stayed on their failing regimen. The corresponding risk difference was $-16.1 \% ~(-26.1 \% ;-6.1 \%)$, and the odds ratio was $0.32(0.13 ; 0.82)$.

To estimate the target quantity i)b), we used the function ItmleMSM() in ltmle. To estimate the conditional (nested) outcome expectations needed for both a) and b), as well as the treatment and censoring models/mechansism, we used super learning as recommended previously ${ }^{8}$. In more detail, we used the following learners: the arithmetic mean, (generalized linear) regression models with all main terms [GLM], GLMs based on an EM-algorithm-Bayesian model fitting, GLMs chosen by stepwise variable selection with Akaikes Information Criterion [AIC], GLMs containing interaction terms, as well as additive models; these learners have been partly fitted on the whole set of covariates as well as subsets based on screening with Cramer's $V{ }^{9}$ and Lasso estimation ${ }^{10}$.

For estimation of the targeted quantities in ii), we estimated the effect of immediate switch compared to no switch on mortality, if confirmed failure was used as failure definition, as 0.37 ($0.30-0.46$) using IPTW. If first VL>1000 copies $/ \mathrm{mL}$ was used as definition of failure the estimates were 0.42 ($0.34-0.52$) respectively. For both analyses we needed models for the treatment and censoring mechanisms to calculate weights, for each patient at each time period. We applied stabilised weights (as defined and explained below) which require estimation of a numerator and a denominator. The models we need are as follows:

- Models for the treatment (and artificial censoring in the delay analysis) mechanism:

Denominator (M1): $\operatorname{logit}\left(\mathrm{P}_{\operatorname{Td}}\left(\mathrm{A}_{\mathrm{t}}=\mathrm{a}_{\mathrm{t}} \mid \overline{\mathrm{A}}_{\mathrm{t}-1}=\overline{\mathrm{a}}_{\mathrm{t}-1}, \overline{\mathrm{C}}_{\mathrm{t}-1}=\mathbf{O}, \bar{Y}_{\mathrm{t}-1}=\mathbf{O}, \mathrm{L}_{\mathrm{L}}, \boldsymbol{L}_{\mathrm{t}}\right)\right)$
Numerator (M2): $\quad \operatorname{logit}\left(P_{T N}\left(\mathrm{~A}_{\mathrm{t}}=\mathrm{at}_{\mathrm{t}} \mid, \overline{\mathrm{C}}_{\mathrm{t}-1}=0, \bar{Y}_{\mathrm{t}-1}=\mathbf{0}, \mathrm{L} 0\right)\right.$)
Model specification: Baseline covariates Lo included in the model were binary indicators of baseline CD4 ($>=50 \&<100,>=100 \&<200,>=200 \&<350,>=350 \&<500,>=500$) and binary indicators of baseline viral load ($>250 \&<500,>=500 \&<1000,>=1000 \&<10000,>=10000 \&<100000,>=100000$) as well as age, gender, clinic, and binary indicators for calendar year of failure (2003-2006, 20072009, 2010-2012, 2013-2017). We also included a binary indicator of pre-failure VL suppression and categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA. Time dependent variables L_{t} included binary indicators of categorical CD4 and viral load, linear CD4-time and viral load-time interactions, and number of visits within the past 6 months. Web Table 2 lists the fitted models in detail.

- Models for the loss-to-follow censoring mechanism:

Denominator (M3): $\left.\operatorname{logit}\left(\mathrm{Pco}^{\left(\mathrm{C}_{\mathrm{t}}=0 \mid\right.} \overline{\mathrm{A}}_{\mathrm{t}-1}, \overline{\mathrm{C}}_{\mathrm{t}-1}=\mathbf{0}, \bar{Y}_{\mathrm{t}-1}=\mathbf{0}, \mathrm{L}, \boldsymbol{L}_{\mathrm{t}}\right)\right)$

Numerator (M4): $\quad \operatorname{logit}\left(\mathrm{PcN}_{\mathrm{cn}}\left(\mathrm{C}_{\mathrm{t}}=0 \mid \overline{\mathrm{C}}_{\mathrm{t}-1}=0, \bar{Y}_{\mathrm{t}-1}=\mathbf{0}, \mathrm{L} 0\right)\right)$
Model specification: The model specifications for the censoring mechanisms included L_{0} and L_{t} as described above in the treatment models, except that we excluded the (linear) time-CD4 and timeRNA interactions. Web Table 2 lists the fitted models in detail.

- Stabilised weights:

For the simple "switch versus no switch" analysis (presented in manuscript text and in Web tables 3 and 4), treatment and censoring stabilised weights were derived from denominator and numerator of the treatment and loss-to-follow-up censoring models M1-M4. These weights were combined, as follows, to create a combined treatment and censoring stabilised weight, for each person, at each time point.

$$
S W_{i t}=\left(\prod_{t=0}^{60} \frac{P_{T N}}{1-P_{T D}}\right) \cdot\left(\prod_{t=0}^{60} \frac{P_{C N}}{P_{C D}}\right)
$$

For the "delay in switch versus no switch" analysis (presented in Figure 2), we followed the approach in Rohr et al. ${ }^{6}$ (and Cain et al. ${ }^{7}$) and described in the manuscript. Again, models for the treatment and censoring mechanisms were required and fitted in line with the model specifications given above. Treatment and censoring weights were estimated prior to the expansion and artificial censoring of the dataset.

The dataset was expanded by replicating each person-time observation 6 times to create a set of 7 clones; one clone to represent each of the 7 delay regimes. Within each regime, person time was artificially censored according to adherence to the delay regime. For instance, a person that switched at 75 days from baseline would be censored at 30 days in the switch within 30 days regime, would be censored at 60 days in the 30-59 days regime, would not be censored in the 60119 days regime, and would be censored at 75 days in the 120-179 days, 180-359 days, greater than 360 days and never switch regimes. The cloning allowed one person to follow multiple regimes simultaneously, therefore estimates become more efficient, ${ }^{7}$.

For the treatment weights, probabilities from the treatment models were used to generate weights for each person-time-regime observation. First, probabilities were assigned to each observation based on the following rules, where P_{T} represents the probabilities derived from the numerator/denominator treatment model;

- Treatment rules; P_{T} at time of switch, 1 after switch, and 1- P_{T} before switch
- Artificial censoring rules; 1- P_{T} if at time of artificial censoring if it is also time of switch, and P_{T} at time of artificial censoring if it is not also time of switch.

Second, cumulative probabilities for numerator and denominator were calculated for each person over time within each regime. Third, stabilised treatment weights were estimated using the
cumulative numerator and denominator probabilities for each person at time point, for each regime. This follows the approach described in the Web materials of Cain, et al ${ }^{26}$.

For loss-to-follow-up censoring, stabilised censoring weights were created using cumulative probabilities from the numerator and denominator lost-to-follow-up censoring models. Treatment and loss-to-follow-up stabilised weights were combined to create a combined treatment and censoring stabilised weight, for each person, at each time point, within each regime.

Stabilized weight summaries are given in Web Table 4.

- Marginal structural Cox models were fitted in line with the model specification given in ii) under the above heading "Target quantities", based on weighted pooled logistic regression.

For the "switch versus no switch analysis";
Marginal Structural Cox model: $\quad \operatorname{logit}\left(P\left(Y_{t}=1 \mid A_{t}, L_{0}\right)\right)$
For the "delay in switch versus no switch analysis";
Marginal Structural Cox model: $\quad \operatorname{logit}\left(\mathrm{P}\left(\mathrm{Y}_{\mathrm{t}}=1 \mid \mathrm{d}_{\mathrm{t}}, \mathrm{L} \mathbf{L}\right)\right)$
d_{t} indicates a set of binary variables which represent the delay strategies/regimes. Baseline covariates L_{0} included in the two models above were binary indicators of baseline CD4 ($>=50 \&<100,>=100 \&<200$, $>=200 \&<350,>=350 \&<500,>=500$) and binary indicators of baseline viral load (>250 \& <500, >=500 \& $<1000,>=1000 \&<10000,>=10000 \&<100000,>=100000$) as well as age, gender, clinic, and binary indicators for calendar year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). We also included a binary indicator of pre-failure VL suppression and categorical variables for pre-failure highest and prefailure lowest CD4 and RNA. Confidence intervals were calculated using cluster robust standard error estimators.

Diagnostics:

The diagnostics for IPTW of marginal structural models are summarized in Web Table 4.
For the LTMLE analyses we provide the percentage of truncated cumulative inverse treatment and censoring probabilities. We used a truncation level of 1%. Large percentages of truncation suggest limited data support for these interventions and possible positivity violations ${ }^{5}$. The working MSM is meant to extrapolate well for interventions where there is little data support ${ }^{4}$. The summary (rounded percentages) is as shown in Web table 5.

One can see the limited data support for intervention strategies that delay switching by 12-57 month. Note however that these interventions have a lower impact on the fitted working MSM ${ }^{16}$. It is however important to stress that even under an MSM approach estimates remain vulnerable to positivity violations ${ }^{11}$. A particular concern is that standard errors may be anti-conservative, though recent
developments suggest that it is possible to construct estimators that are somewhat more robust with respect to positivity violations. ${ }^{12}$

The distributions of the fitted cumulative inverse treatment and censoring probabilities after 5 years of follow-up are visualized in Web Figure 2. One can again see the limited data support for intervention strategies that delay switching by 12-57 month.

Web Table 1: Drug regimens for second-line treatment

Regime at switch	Frequency	Percent	Cum.
3TC KLT TDF	1,232	31.51	99.92
3TC AZT KLT	932	23.84	57.11
AZT DDI KLT	760	19.44	20.2
3TC AZT KLT TDF	125	3.20	61.05
AZT KLT RTV	92	2.35	22.92
3TC D4T KLT	83	2.12	65.52
3TC D4T EFV KLT TDF	77	1.97	63.38
3TC AZT EFV KLT TDF	74	1.89	33.22
KLT RTV TDF	67	1.71	27.11
3TC ABC KLT	51	1.3	28.67
FTC KLT TDF	36	0.92	24.78
3TC D4T KLT NVP TDF	29	0.74	66.29
3TC AZT KLT NVP TDF	24	0.61	57.85
3TC KLT SQV	22	0.56	68.41
3TC AZT D4T EFV KLT	21	0.54	30.36
KLT RTV SQV	18	0.46	25.4
AZT KLT TDF	17	0.43	23.35
3TC D4T KLT TDF	15	0.38	66.68
3TC EFV KLT TDF	14	0.36	67.26
3TC ATV AZT	11	0.28	28.98
ABC KLT RTV	10	0.26	0.33
3TC ATV TDF	10	0.26	29.64
3TC D4T EFV KLT NVP TDF	10	0.26	61.41
3TC KLT RTV	10	0.26	67.85
Other*	400	100	
Total			

*Includes combinations of drugs that include 3TC, ATV NVP, D4T, DDI, EFV, TDF, ABC, FTC, RTV, DRV, RGV, KLT, ETV, NFV, SQV.
Treatment abbreviations by drug type: nucleoside reverse transcriptase inhibitors (NRTIs): 3TC (Lamivudine), ABC (Abacavir), AZT (Zidovudine), D4T (Stavudine), DDC (Zalcitabine), DDI (Didanosine), FTC (Emtricitabine), TDF (Tenofovir), NRTI/NNRTI: ATP (Atripla), non-nucleoside reverse transcriptase inhibitors (NNRTIs): EFV (Efavirenz), ETV (Etravirine), NVP (Nevirapine), RPV (Rilpivirine), PIs: ATV/r (Atazanavir/Ritonavir), DRV (Darunavir), LPV/r (Lopinavir/Ritonavir), NFV (Nelfinavir), RTV (Ritonavir), SQV (Saquinavir), TPR (Tipranavir), CCR 5 antagonist: MVC (Maraviroc), InSTI: RGV (Raltegravir)

Web Table 2: Output from the treatment and censoring models

Treatment - 2 VL>1000				Censor - 2 VL>1000				Treatment - VL>1000				Censor - VL>1000			
denominator		numerator		denominator		numerator		denominator		numerator		denominator		numerator	
Odds Ratio	Pvalue	Odds Ratio	Pvalue	Odds Ratio	Pvalue										

Time dependent

CD4 cell count, per mm3																
50-99	0.90	0.38	-	-	1.23	0.01	-	-	1.07	0.52	-	-	1.17	0.03	-	-
100-199	0.83*	0.10	-	-	1.25	0.00	-	-	0.94	0.54	-	-	1.21	0.00	-	-
200-349	0.82	0.11	-	-	1.37	0.00	-	-	0.98	0.85	-	-	1.33	0.00	-	-
349-499	0.95	0.71	-	-	1.37	0.00	-	-	1.09	0.46	-	-	1.33	0.00	-	-
>=500	0.72*	0.06	-	-	1.43	0.00	-	-	0.81	0.14	-	-	1.33	0.00	-	-
RNA, copies/ml																
250-499	0.68	0.21	-	-	0.92	0.08	-	-	0.72	0.28	-	-	0.93	0.17	-	-
500-999	2.29***	0.00	-	-	0.82	0.00	-	-	2.30	0.00	-	-	0.85	0.01	-	-
1000-9999	12.56***	0.00	-	-	0.71	0.00	-	-	12.01	0.00	-	-	0.78	0.00	-	-
10000-99999	17.84***	0.00	-	-	0.67	0.00	-	-	16.67	0.00	-	-	0.74	0.00	-	-
>=100000	16.62***	0.00	-	-	0.69	0.00	-	-	15.18	0.00	-	-	0.78	0.00	-	-
time-CD4 interaction	1.00**	0.04							1.00	0.04						
time-RNA interaction number of visits within the	1.00	0.53	-	-	-	-	-	-	1.00	0.92	-	-	-	-	-	-
past 6 months	1.27***	0.00	-	-	-	-	-	-	1.33	0.00	-	-	-	-	-	-
Baseline																
CD4 cell count, per mm3																
50-99	1.31**	0.04	1.09	0.38	1.01	0.85	1.08	0.30	0.95	0.66	0.89	0.21	0.99	0.88	1.03	0.74
100-199	1.49***	0.00	1.32	0.00	0.98	0.82	1.08	0.25	1.14	0.21	1.02	0.81	0.91	0.16	0.97	0.69
200-349	1.70***	0.00	1.51	0.00	1.04	0.61	1.19	0.01	1.17	0.17	1.08	0.39	0.94	0.41	1.05	0.48
350-499	1.50***	0.01	1.42	0.00	1.03	0.73	1.20	0.01	0.99	0.95	0.94	0.55	0.90	0.16	1.01	0.94
>=500	1.58***	0.01	1.21	0.09	0.90	0.21	1.07	0.41	1.08	0.62	0.80	0.05	0.78	0.00	0.88	0.11
RNA, copies/ml																
5000-9999	1.10*	0.07	1.21	0.00	0.99	0.74	0.97	0.47	0.90	0.04	1.03	0.59	1.05	0.19	1.04	0.34
10000-49999	0.92	0.12	1.26	0.00	1.06	0.07	1.03	0.34	0.89	0.02	1.08	0.07	1.02	0.66	1.00	0.97
50000-99999	0.99	0.95	1.35	0.00	1.03	0.53	1.00	0.93	0.78	0.00	0.97	0.70	1.00	0.98	0.98	0.65
>=100000	0.90	0.24	1.12	0.07	0.99	0.87	0.97	0.51	0.64	0.00	0.77	0.00	1.04	0.34	1.02	0.65
pre-failure VL suppression	1.03	0.86	1.01	0.96	1.06	0.69	1.02	0.88	1.21	0.33	1.06	0.77	1.00	0.98	1.00	0.97
WHO Stage III/IV	0.91**	0.02	0.96	0.29	1.06	0.03	1.05	0.12	0.90	0.00	0.94	0.12	1.06	0.05	1.04	0.16
age	1.00**	0.02	1.00	0.15	1.00	0.56	1.00	0.99	1.00	0.03	1.00	0.08	1.00	0.82	1.00	0.40
gender	1.07*	0.10	1.07	0.07	1.04	0.19	1.06	0.04	1.08	0.03	1.09	0.03	1.07	0.03	1.08	0.01

All models were adjusted for follow-up time using restricted cubic splines, and included binary categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and
binary indicator of year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). VL suppression was defined as RNA below 400 copies per ml

Web Table 3: Complete case analysis and results after multiple imputation of missing baseline data of WHO stage at ART initiation and CD4 count

Baseline	Main analysis Second VL measurement of Confirmed failure		Secondary analysis First VL measurement of Confirmed failure	
Time from baseline to switch*	HR	95\% Cls	HR	95\% Cls
Results from complete case analysis				
Crude (switch vs no switch)	0.49	(0.42-0.58)	0.52	(0.45-0.61)
IPTW (switch vs no switch)	0.37	(0.30-0.46)	0.42	(0.34-0.52)
IPW (delay in switch vs no switch):				
No switch (reference category)	1	-	1	-
Less than 30 days	0.45	(0.35-0.58)	0.28	(0.16-0.52)
Greater than or equal to 30 and less than 60 days	0.53	(0.43-0.65)	0.37	(0.25-0.53)
Greater than or equal to 60 and less than 120 days	0.58	(0.49-0.69)	0.49	(0.38-0.63)
Greater than or equal to 120 and less than 180 days	0.66	(0.58-0.76)	0.54	(0.44-0.66)
Greater than or equal to 180 and less than 360 days	0.76	(0.67-0.86)	0.67	(0.58-0.79)
Greater than or equal to 360 days	0.86	(0.82-0.91)	0.86	(0.81-0.91)
Results after multiple imputation of missing variables				
Crude (switch vs no switch)	0.47	(0.40-0.54)	0.50	(0.43-0.58)
IPTW (switch vs no switch)	0.36	(0.30-0.44)	0.41	(0.34-0.51)
IPW (delay in switch vs no switch):				
No switch (reference category)	1	-	1	-
Less than 30 days	0.43	(0.34-0.55)	0.33	(0.18-0.62)
Greater than or equal to 30 and less than 60 days	0.51	(0.42-0.61)	0.39	(0.26-0.58)
Greater than or equal to 60 and less than 120 days	0.58	(0.50-0.68)	0.50	(0.39-0.63)
Greater than or equal to 120 and less than 180 days	0.64	(0.56-0.73)	0.51	(0.42-0.62)
Greater than or equal to 180 and less than 360 days	0.72	(0.64-0.81)	0.65	(0.56-0.76)
Greater than or equal to 360 days	0.88	(0.83-0.92)	0.87	(0.83-0.91)

[^1]Web Table 4: stabilized weights diagnostics for the switch versus no switch analysis

	Estimated weights for the outcome Death		Estimates of effect of switch on Death	
Truncation percentiles	Mean (SD)	Minimum/maximum	Hazard/Odds ratio	Standard Error
Baseline: Confirmed failure (Main analysis)				
100	1.07 (1.82)	0.04/119.75	0.31	0.05
99.5	1.02 (0.99)	0.04/10.71	0.37	0.04
99	0.98 (0.68)	0.04/5.36	0.37	0.04
97.5	0.94 (0.47)	0.04/2.67	0.38	0.04
95	0.91 (0.38)	0.04/1.82	0.38	0.04
90	0.88 (0.32)	0.04/1.43	0.39	0.04
Baseline: First VL>1000 copies/mL (Secondary analysis)				
100	5692.25 (3940592)	0.02/3.247e+09	+	+
99.5	1.00 (1.03)	0.02/11.01	0.42	0.05
99	0.97 (0.78)	0.02/6.75	0.42	0.05
97.5	0.91 (0.44)	0.02/2.57	0.42	0.04
95	0.88 (0.36)	0.02/1.75	0.42	0.04
90	0.85 (0.31)	0.02/1.35	0.42	0.04

+ indicates that the outcome model did not converge.

Web Table 5: LTMLE truncation

Delay (months)	0	1	3	6	9	12	15	18	21	24	27
\% truncation	2	0	0	1	4	12	11	8	11	23	14
Delay (months)	30	33	36	39	42	45	48	51	54	57	60
\% truncation	27	22	28	13	16	25	29	18	25	75	1

Web Figure 1: Probability of death 5 years after virologic failure, for different CD4 count categories at time of failure, and depending on month after failure and month of switch.

Estimates are based on a working MSM as specified in the technical appendix and under the footnote*. Panel a) visualizes the results in a contour plot where the probability of death is represented by colours and panel b) plots the probability of death in a third dimension, on the z-axis. Note that for both a) and b) the curves at 60 months after failure equate to the results plotted in Figure 3 in the main text. Red colours refer to higher probabilities of death.
a)

b)

*Footnote: Model specifications of the marginal structural working model. The working MSM's specify the assumed relationship between the probability of death and time (t), switch time (st) and CD4 count at failure (CD4).

Model 1: Irrespective of CD4 count: logit $\left(P\left(Y Y^{s t}=1\right)\right)=b_{0}+b_{1} \log (t)+b_{2}(s t-t)+b_{3}\left([s t-t]^{2}\right)+b_{4}\left([s t-t]^{3}\right)+b_{5}(\log (t) *[s t-$ $t])+b_{6}\left(\log (t) *[s t-t]^{2}\right)$

Model 2: Conditional on CD4 count: $\operatorname{logit}\left(P\left(Y_{t}^{s t}=1 / C D 4\right)\right)=b_{0}+b_{1} \log (t)+b_{2}(s t-t)+b_{3}\left([s t-t]^{2}\right)+b_{4}\left([s t-t]^{3}\right)+b_{5}(\log (t)$ * $[s t-t])+b_{6} I(101<C D 4<200)+b_{7} I(C D 4>200)+b_{8} I(101<C D 4<200) *(s t-t)+b_{9} I(C D 4>200) *(s t-t)+b_{10} I(C D 4<100) * v t+$ $b_{11} l(101<C D 4<200) * v t+b_{12} l(C D 4>200) * v t$

Note that the causal quantity of interest is defined as a projection of the true causal dose-response curve, i.e. the true relationship between time/switch time and mortality, onto the specified working model. The working model has been specified as flexible as possible though computational and numerical constraints make an even more flexible approach unfeasible to estimate.

Web Figure 2: Kernel density plots of the distribution of cumulative fitted probabilities (after 60 months of follow-up) for the different switch strategies.

Distribution of cumulative fitted probabilities at 60 months

References

1. Petersen ML, Tran L, Geng EH, et al. Delayed switch of antiretroviral therapy after virologic failure associated with elevated mortality among HIV-infected adults in Africa. AIDS. 2014;28(14):2097-2107.
2. Daniel RM, Cousens SN, De Stavola BL, Kenward MG, Sterne JA. Methods for dealing with timedependent confounding. Stat Med. 2013;32(9):1584-1618.
3. Robins J, Hernan MA. Estimation of the causal effects of time-varying exposures. In: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G, eds. Longitudinal Data Analysis. CRC Press; 2009:553-599.
4. Petersen M, Schwab J, Gruber S, Blaser N, Schomaker M, van der Laan M. Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models. J Causal Inference. 2014;2(2):147-185.
5. Schomaker M, Luque Fernandez MA, Leroy V, Davies MA. Using Longitudinal Targeted Maximum Likelihood Estimation in Complex Settings with Dynamic Interventions. Stat Med. 2019;38:48884911.
6. Rohr JK, Ive P, Horsburgh CR, et al. Marginal Structural Models to Assess Delays in Second-Line HIV Treatment Initiation in South Africa. PLoS One. 2016;11(8):e0161469.
7. Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA. When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data. The International Journal of Biostatistics. 2010;6(2).
8. Tran L, Yiannoutsos C, Wools-Kaloustian K, Siika A, van der Laan M, Petersen M. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study. Int J Biostat. 2019.
9. Heumann C, Schomaker M, Shalabh. Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in R. Heidelberg: Springer; 2016
10. Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B-Methodological. 1996;58(1):267-288.
11. Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res. 2012;21(1):31-54.
12. Tran L, Petersen M, Schwab J, Van der Laan M. Robust variance estimation and inference for causal effect estimation. Arxiv eprints. 2018;https://arxiv.org/abs/1810.03030.

[^0]: Author affiliations: Health Economics and Decision Science, University of Sheffield, United Kingdom (Helen Bell-Gorrod), Center for Global Health and Development, Boston University, Boston, MA, USA (Matthew P. Fox), Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa (Andrew Boulle, Mary-Ann Davies and Michael Schomaker), Division of Infectious Diseases, Department of Medicine, University of Stellenbosch (Hans Prozesky), Tygerberg Hospital, Cape Town, South Africa (Hans Prozesky), Desmond Tutu HIV Centre, Cape Town, South Africa (Robin Wood), Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa (Robin Wood), Africa Health Research Institute, KwaZulu-Natal, South Africa (Frank Tanser), Lincoln Institute for Health, University of Lincoln, Lincoln, UK (Frank Tanser), School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa (Frank Tanser), Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, South Africa (Frank Tanser), Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria (Michael Schomaker)

 Correspondence to Dr. Michael Schomaker, Institute of Public Health, Medical Decision Making and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria and Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa (email:
 michael.schomaker@uct.ac.za)

[^1]: *Note that in the first VL measurement analysis, an additional 30 days from baseline to the upper and lower limits of each delay category were included to account for the fact that patients in our sample were not permitted to switch until 4 weeks after first VL measure $>1000 \mathrm{copies} / \mathrm{ml}$. Crude refers to a switch vs no switch analysis without inverse probability weighting.

