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ABSTRACT  

Little is known about the functional relationship of delaying second-line treatment initiation for HIV-
positive patients and mortality, given a patient’s immune status. We included 7255 patients starting 
antiretroviral therapy between 2004-2017, from 9 South African cohorts, with virological failure and 
complete baseline data. We estimated the impact of switch time on the hazard of death using inverse 
probability of treatment weighting (IPTW) of marginal structural models. The non-linear relationship 
between month of switch and the 5-year survival probability, stratified by CD4 count at failure, was 
estimated with targeted maximum likelihood estimation (TMLE). We adjusted for measured time-
varying confounding by CD4 count, viral load and visit frequency.  5-year mortality was estimated as 
10.5% (2.2%; 18.8%) for immediate switch and as 26.6% (20.9%; 32.3%) for no switch (49.9% if CD4 
count<100 cells/mm3). The hazard of death was estimated to be 0.40 (95%CI: 0.33-0.48) times lower if 
everyone had been switched immediately compared to never. The shorter the delay in switching, the 
lower the hazard of death, e.g. delaying 30-60 days reduced the hazard 0.52 (0.41-0.65) times, and 60-
120 days 0.56 (0.47-0.66) times. Early treatment switch is particularly important for patients with low 
CD4 counts at failure. 
 
Keywords: HIV, treatment switching, second-line ART, causal inference, targeted learning 
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Introduction 

Anti-retroviral treatment (ART) was received by an estimated 4.4 million (61%) people living with HIV in 
South Africa in 20171. As the number of HIV-positive patients with access to ART has increased, so has 
the number of patients that have experienced failure of first-line ART. Patients with virological failure on 
first-line ART should, in principle, switch to second-line therapy as soon as possible, as a delay in 
switching treatment regimens has been shown to lead to increased mortality 2-7. South African 
guidelines recommend switching from two nucleoside reverse transcriptase inhibitors (NRTIs) and one 
non-nucleoside reverse transcriptase inhibitor (NNRTI) to two NRTIs and one protease inhibitor (PI) if 
two consecutive viral loads on first line therapy are greater than 1000 copies/mL.  However, in resource 
limited settings it is still common to delay the switch 8-10. Reasons for delays include doubts about 
adequate patient adherence, availability of viral load testing and the cost of second line regimens11,12.  

The estimated effect of delayed switch to second-line therapy on mortality has been investigated in 
several observational studies which adjusted for measured time-varying confounders using causal 
inference methods. Gsponer et al. 5 showed the drastic reduction in mortality for patients switching to 
second-line compared to no switch based on an immunological criteria of failing, as well as the benefit 
of switching early. Petersen et al.6  estimated the effect of delayed switch after confirmed virological 
failure on survival and quantified the relative benefit of earlier switch based on the assumption of a 
linear relationship between timing of switch and probability of death. Other studies have looked into the 
impact of delayed switch in South Africa7, the estimated effects of using different viral failure 
definitions2 and the relative efficacy of various monitoring strategies4. 

There have been few studies which have explored the functional relationship between time of switch 
and mortality13, and there is potential for further research into whether there may be a “breaking point” 
beyond which further delays could be particularly risky, especially for patients with an already 
compromised immune system. In particular, it would be of interest to know whether the estimated 
effect of delayed switch is modified by CD4 count at failure. Previous studies have looked at this, albeit 
in different contexts6,7. Moreover, from a programmatic perspective there may also be a benefit to 
minimising the time between first viral load greater than 1000 copies/mL and switch given that with 
new technologies like resistance testing, patients with adequate adherence and proven resistance could 
potentially be switched earlier. In addition, most of the studies to date had relatively small patient 
numbers and limited follow-up times.  

Our study aims at addressing these gaps. We assess the impact of delayed switch from first-line ART 
treatment to second-line ART treatment on mortality in 9 South African treatment programs; a large 
cohort with long follow-up. We use two related but distinct causal approaches; inverse probability of 
treatment weighting (IPTW) and targeted maximum likelihood estimation (TMLE), which allow us to 
present or findings on the hazard and incidence scales. The impact of delayed switch is flexibly modelled 
for patients with different disease severities based on CD4 count at time of viral load failure. We also 
investigate the importance of monitoring the delay between the first viral load (VL) measure over 1000 
copies/ml and confirmed failure (second VL measure >1000 copies /ml) as part of the delay in switch on 
mortality outcomes. 
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Methods 

Study setting and definitions 

We included 9 HIV treatment facilities in Southern Africa that took part in the IeDEA-SA collaboration 
(http://www.iedeasa.org/), namely Desmond Tutu HIV Centre Gugulethu, Hlabisa HIV Treatment and 
Care Programme, Tygerberg, McCord Hospital, 3 treatment facilities at the Khayelitsha ART Programme, 
Themba Lethu Clinic and Masiphumelele Clinic. The collaboration has been described in detail elsewhere 
14.  

Adult patients who that started treatment on a first-line treatment regime (2 NRTIs + 1 NNRTI) and 
failed first-line therapy after 1st January 2004, were included in the analysis. Failure was defined as two 
consecutive VL measurements greater than 1000 copies/mL and measured at least 4 weeks apart. If 
measures were taken less than 4 weeks apart the next measure was considered. We excluded patients 
without any record of receiving ART, those that experienced virological failure within 6 months of ART 
initiation, those that were not receiving ART at the time of first VL failure and those that switched before 
viral load failure.  In total, we included 7255 patients for the main complete case analysis, see Figure 1, 
and 8008 patients in the sensitivity analysis with multiple imputation for missing baseline data. Earliest 
entry date into our sample was 4th October 2004 and the database was closed on 16th August 2017. 

In the main analysis, baseline was defined at the time of first-line viral failure i.e. the date at which the 
second of the two consecutive viral loads were over 1000 copies per/ml. A secondary analysis was 
performed using the date at which the first of the two consecutive VLs was greater than 1000 copies 
per/mL as the baseline, which represents the earliest indication of viral failure. The sample of patients 
was the same regardless of the definition used because only patients with two elevated viral loads were 
included. A switch from first-line ART to second-line ART was broadly defined as a switch from 2 NRTIs 
and 1 NNRTI to 2 NRTIs and 1 PI. A detailed list of second-line regimens in our data is provided in Web 
Table 1. Patients were defined as being lost to follow-up if there was no visit or event for 9 months after 
their last recorded visit and before database closure.  

The primary endpoint was mortality which was recorded through clinic’s patient files and updated 
through data from the South African national vital registry where available (this approach is expected to 
give >96% completeness of mortality data 15).  

Analysis 

Analysis time started at the date of first-line failure, defined as 2 VL>1000 copies/mL in the main analysis 
and 1 VL>1000 in the secondary analysis, as described above. Our primary exposure was the timing of 
switch to second-line ART, measured in months since the respective date of failure and we used this to 
estimate the effect on both the hazard of death and 5-year survival.  

Measured and included baseline characteristics (at time of confirmed failure) are age, sex, highest and 
lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an indicator 
whether a patient was ever suppressed prior to failure, WHO clinical stage at time of ART initiation, year 

http://www.iedeasa.org/
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of ART start and treatment facility. Time-varying variables which potentially determined the decision to 
switch as well as mortality, and were affected by prior treatment regimes, were CD4 count, VL and 
treatment frequency (measured as number of visits within the past 6 months). It is possible to adjust for 
confounding of these variables using appropriate causal inference methods 16. 

Figure 1: Flow diagram for inclusion of patients in our analysis 
 

 
     All Adult Patients Within 9 IeDEA-SA 

Treatment Facilities, who Entered the 
Database After 1st January 2004 

 
(n = 113,107)  

(Deaths n = 13,583 (12%)) 

   

    

    

 

 

 

 

Not Eligible For The Trial 

Did not experience viral load (VL) failure  
(n = 102,576) 

Did not have any recorded ART drug data 
and/or experienced VL failure within 6 
months of initiation of ART (n = 796) 

Recorded to start ART treatment after VL 
failure and/or did not start treatment on a 
first-line regime (2 NRTIs + 1 NNRTI) (n = 905) 

Switched prior to first VL measure of 
confirmed VL failure (n = 546) 

Switched prior to second VL measure of 
confirmed  VL failure (n = 276) 

  
 

Eligible For The Trial (n = 8,008) 
         

 

(Deaths n = 973 (12%),  
Switches n = 3,910 (49%)) 

   
 

 

 

Missing Values 

Missing CD4 count at baseline, missing WHO 
stage at baseline and/or missing gender  
(n = 753) 

Complete-Case Sample (n = 7,255) 
  (Deaths n = 842 (12%),  

Switches n = 3,765 (52%)) 
   

 
 

We estimated the effect of timing of switch on the hazard of death using inverse probability of 
treatment weighting (IPTW) of marginal structural models 2. To estimate the effect of treatment switch, 
as well as the non-linear relationship between month since failure and month of switch on the 
probability of 5-year mortality, stratified by CD4 count at failure, we used targeted maximum likelihood 
estimation (TMLE) for longitudinal marginal structural working models 17. 
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For IPTW, we used 7 different switching delay strategies; no switch and delayed switch by <30 days, 30-
59 days, 60-119 days, 120-179 days, 180-359 days, and ≥ 360 days. We created 7 clones/replicates per 
patient, one for each treatment strategy, as described previously 7. A clone/replicate is censored after it 
ceases to follow the respective switching strategy. The remaining uncensored observations were 
weighted to represent what would have happened if the censored patients had continued to follow the 
respective switching strategy. We used pooled logistic regression models weighted by the stabilized 
inverse probabilities of treatment and censoring to estimate the effect of the different strategies on the 
hazard of death. The logistic regression models used to derive the weights contained the above-
mentioned time-dependent and baseline variables in the denominator, and baseline variables only in 
the numerator. The Web Appendix (Web table 2, Technical Appendix) contains a detailed description of 
implementation of the method and model specifications. In sensitivity analyses, missing baseline CD4 
count and WHO stage were imputed using multiple imputation by chained equations18. 

With TMLE, we first estimated 5-year mortality under immediate switch after confirmed failure and no 
switch using the R-package ltmle 19. The iterated outcome regressions, i.e. the relationship between 
mortality and the covariates at each point in time (based on 3-month intervals) were estimated using 
super learning. Super learning is a data-adaptive approach that combines different modelling 
approaches, such as logistic regression or other regression approaches, such that the expected 
prediction error (estimated via cross validation) is minimized, see the Web Appendix for more details. 
We then specified marginal structural working models to model the relationship between month since 
failure, month of switching, and survival, conditional on CD4 count at failure; see Web Appendix for 
more details. The fitted models, calculated based on the approach described in Petersen et al. 17, were 
then used to visualize the relationship. 
 
All analyses were conducted in Stata 13 20 and R 3.5.1 21. 
 
Ethics 
This IeDEA-SA collaboration study was approved by the University of Cape Town and University of Bern 
human research ethics committees. At most sites, the requirement for informed consent was waived, as 
only anonymized data that were already collected as part of routine monitoring contributed to the 
collaborative dataset. 
 

Results 
Median time from ART start to failure was 1218 days (about 3.3 years); median time from confirmed 
failure to switch was 121 days (1st quartile: 49 days; 3rd quartile: 288 days), with follow-up times from 
confirmed failure ranging between 1 and 4409 days (median 1835 days, IQR 1183-2470). During follow-
up 3765 patients (52%) switched, and 842 (12%) died. The included patients were mostly female (65%), 
and had advanced WHO stage at ART initiation (60%), see Tables 1 and 2 (further below). Among 
patients that never switched, a substantial proportion (19%) had a viral load >100.000 copies/mL at 
confirmed viral load failure.  
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The probability of being switched was higher among patients with low current CD4 count, high VL, and a 
higher visit frequency (Table 3). These variables also predicted the probability of death, confirming that 
they are likely time-varying confounders.  

Table 3: Predictors of switch from first-line to second-line ART and predictors of death*  
  Switch 

   Death 
 

 Dependent variables 
Odds 
Ratio 

P- 
value 

95% CI 
 

 

Odds 
Ratio 

P- 
value 

95% CI 
 

          Time dependent 
         CD4 cell count, per mm3 a          

        50 - 99 0.90 0.38 0.72, 1.14 
 

0.44 0.00 0.35, 0.55 
        100 - 199 0.83 0.10 0.66, 1.04 

 
0.21 0.00 0.16, 0.27 

        200 - 349 0.82 0.11 0.65, 1.04 
 

0.13 0.00 0.10, 0.18 
        350 - 499 0.95 0.71 0.72, 1.25 

 
0.06 0.00 0.04, 0.09 

        >=500 0.72 0.06 0.52, 1.02 
 

0.03 0.00 0.02, 0.06 
 
RNA, copies/ml b 

                250 - 499 0.68 0.21 0.37, 1.24 
 

1.09 0.69 0.71, 1.68 
       500 - 999 2.29 0.00 1.49, 3.54 

 
1.59 0.06 0.98, 2.57 

       1000 - 9999 12.56 0.00 9.26, 17.02 
 

2.40 0.00 1.73, 3.31 
       10000 - 99999 17.84 0.00 12.89, 24.69 

 
3.04 0.00 2.12, 4.37 

       >=100000 16.62 0.00 11.47, 24.08 
 

4.37 0.00 2.86, 6.66 
 
time-CD4 interaction 1.00 0.04 1.00, 1.00 

 
1.00 0.25 1.00, 1.00 

time-RNA interaction 1.00 0.53 1.00, 1.00 
 

1.00 0.01 1.00, 1.00 
number of visits within the past 6 months 1.27 0.00 1.26, 1.29 

 
0.94 0.00 0.91, 0.97 

 
Baseline 

         CD4 cell count, per mm3 c 
                50 - 99 1.31 0.04 1.01, 1.69 

 
1.02 0.88 0.78, 1.34 

       100 - 199 1.49 0.00 1.16, 1.91 
 

0.97 0.80 0.73, 1.27 
       200 - 349 1.70 0.00 1.30, 2.22 

 
1.05 0.76 0.77, 1.44 

       350 - 499 1.50 0.01 1.11, 2.04 
 

1.31 0.18 0.88, 1.95 
       >=500 1.58 0.01 1.10, 2.27 

 
1.73 0.05 1.00, 3.01 

 
RNA, copies/ml d 

                5000 - 9999 1.10 0.07 0.99, 1.22 
 

0.98 0.88 0.76, 1.27 
       10000 - 49999 0.92 0.12 0.82, 1.02 

 
1.13 0.27 0.91, 1.40 

       50000 - 99999 0.99 0.95 0.85, 1.16 
 

1.31 0.06 0.99, 1.71 
       >=100000 0.90 0.24 0.77, 1.07 

 
1.40 0.01 1.09, 1.81 

 
pre-failure VL suppression 1.03 0.86 0.71, 1.51 

 
1.23 0.66 0.48, 3.15 

WHO Stage III/IV at ART initiation 0.91 0.02 0.85, 0.99 
 

1.18 0.05 1.00, 1.40 
age  1.00 0.02 1.00, 1.01 

 
1.02 0.00 1.01, 1.03 

gender 1.07 0.10 0.99, 1.15 
 

0.91 0.20 0.78, 1.05 
* The analysis was adjusted for follow-up time using restricted cubic splines. Other controls include pre-failure 
highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and year of failure. a Reference category 0-
49 per mm3, b Reference category 0-249 copies/ml, c Reference category 0-49 per mm3, d Reference category 0-
4999 copies/ml. WHO – World Health Organisation, ART - ART- Antiretroviral therapy 
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The effect of immediate switch compared to no switch on mortality, if confirmed failure was used as 
failure definition, was estimated as 0.49 (95% CI: 0.42-0.58) in a crude analysis, and as 0.37 (0.30-0.46) 
using IPTW. Results with multiple imputation were 0.47 (0.40-0.54) in a crude analysis, and 0.36 (0.30-
0.44) using IPTW. If first VL>1000 copies/mL was used as definition of failure the estimates were 0.52 
(0.45-0.61) and 0.42 (0.34-0.52) respectively. After imputation the results were 0.50 (0.43-0.58) and 0.41 
(0.34-0.51) (Web Table 3). Figure 2 shows that the shorter the delay in switching, the lower the hazard 
of death. There are stronger benefits of early switch when considering one VL>1000 copies/mL as failure 
definition. Similar results are obtained after multiple imputation of baseline CD4 count and WHO stage 
(Web Table 3). Sensitivity analyses show that truncation of the stabilized weights at the 1st and 99th 
quantile yields the most stable results (Web Table 4).  

Figure 2: Hazard ratio of each switching delay duration subgroup vs no switch using IPW of MSM. 

Figure 2 part A) shows the main analysis – Baseline: confirmed failure (Second viral load (VL) >1000), Figure 2 part 
B) shows the secondary analysis – Baseline: First VL >1000. Delay strategy refers to the 0-6 strategies that describe 
that duration of switching delay: Strategy 0: no switch (reference category), Strategy 1: Less than 30 days, Strategy 
2: Greater than or equal to 30 and less than 60 days, Strategy 3: Greater than or equal to 60 and less than 120 
days, Strategy 4: Greater than or equal to 120 and less than 180 days, Strategy 5: Greater than or equal to 180 and 
less than 360 days, Strategy 6: Greater than or equal to 360 days. 
 

      
 

 

Using TMLE, 5-year mortality was estimated as 10.5% (2.2%; 18.8%) if everyone had been switched 
immediately, and as 26.6% (20.9%; 32.3%) if everyone had stayed on their failing regimen. The 
corresponding risk difference was -16.1% (-26.1%; -6.1%), and the odds ratio was 0.32 (0.13; 0.82). The 
working MSM’s, fitted with TMLE, are visualized in Figure 3. The black dashed line shows that the 
estimated 5-year mortality (i.e. 60 months after failure) to be about 25% under no switching (month of 
switch = 60). However, this varies considerably by immune status at failure. Almost 51% would have 
died among those who had a CD4 count <100 at failure (red line), but only a small proportion (17.5%) 
among those with a CD4 count > 200 cells/mm3 (green line). Moreover, the effect of delaying treatment 
was estimated to be more severe (i.e. steeper ascent) among patients failing with CD4 count < 100 
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cells/mm3. Similar results are obtained when evaluating probabilities of death <5 years (Web Figure 1). 
Overall, the estimated relationship between switch time and mortality was non-linear, as visualized in 
Figure 3. This is because the estimated coefficients of the non-linear switch time terms in the working 
MSMs were important, and also significant at the 5% level. 

Figure 3: Probability of death 5 years after virologic failure, for different CD4 count categories at time of 
failure, and depending on month of switch (i.e. extent of delay). Estimates are based on working 
marginal models estimated with longitudinal targeted maximum likelihood estimation, as specified in 
the technical appendix. Note that the causal quantity of interest is defined as a projection of the true 
causal dose–response curve, i.e. the true relationship between time/switch time and mortality, onto the 
specified working model. 
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Discussion 

Statement of principal findings 

Our study highlights that it often takes a long time to switch patients to second line treatment in 
Southern Africa. We have shown that an early switch of regimen is highly beneficial in terms of reduced 
mortality. Patients with low CD4 counts at time of failure are at particularly high risk of increased 
mortality, whereas a moderate delay in healthy patients comes with a comparatively lower risk. 

 

Strengths and limitations  

Our study is based on a large data set, with a multitude of different treatment regimens and long follow-
up, which allowed us to model the relationships in the data in a flexible and robust way. Since our 
patients have relatively regular viral load measurements for the setting, we have been able to evaluate 
the estimated effect of switching based on viral failure, rather than immunological failure; which is of 
great interest given that viral load monitoring is typically not available in public sector programs in 
resource limited settings, though it is currently being expanded. Another strength is the use of causal 
inference methods to adjust for time-dependent confounding affected by prior treatment, which would 
not be possible with traditional regression analyses 16. This helped us to contrast switching strategies 
under different viral failure definitions. We also used TMLE, which has desirable statistical properties 
(double robustness), to confirm and extend the MSM analysis. In contrast to previous studies, we have 
even been able to implement this method for a marginal structural model that postulated non-linear 
relationships between treatment strategies and survival.  

Our study has some limitations. Our analysis is based on routine data from South African treatment 
programs. It may well be possible that patients defined to be lost to follow-up are in fact cycling in and 
out of care, possibly in different provinces  22; or that the complication of capturing start and stop dates 
of different drugs may lead to inaccuracies that could potentially also affect our ability to accurately 
define switch dates. The diagnostics further suggested that there could be some positivity violations in 
our data which means that individuals may not have a positive probability of continuing to receive 
treatment according to a specific treatment rule, given that they have done so thus far and irrespective 
of the covariate history (Web Table 5, Web Figure 2). This could have affected our estimates. Another 
limitation is the unavailability of patient-level adherence data. 

There are additional limitations associated with the first VL>1000 at baseline (secondary) analysis, which 
occur due to the definition of the sample. Eligibility for the sample is based on confirmed failure. After 
first VL>1000, those included cannot switch or die until after their next VL measurement, thus creating a 
period of immortal time. Table 1 indicates that the period of time between first VL>1000 and confirmed 
failure is greater, on average, for those with longer delays between confirmed failure and switch. Hence, 
this may cause some bias in the comparisons of delay strategies. Furthermore, the restriction of the first 
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VL>1000 sample to patients that attained confirmed failure (VL>1000) at next VL measurement means 
that the secondary analysis can only be interpreted in reference to the confirmed-failure population, 
and therefore is not generalizable to the wider population.  

Interpretation of findings 

It is no surprise that delayed treatment switch may affect patient’s health. However, according to our 
results, earlier switch is of particular benefit when switching after the first sign of failure, i.e. the first 
viral load > 1000 copies/mL, for those that go on to confirmed failure. HIV specialists may be reluctant to 
switch patients that have adherence problems or are unstable, but for stable patients who fail because 
of resistance or toxicities, early switching after a first elevated viral load could be of benefit.  

Our results confirm that switching is partly determined by visit frequency, which may relate to clinician 
concern for patients based on health status, but also strongly relates to patient’s engagement in care 
and adherence. To reduce the risk of failure of another regimen, patients on second-line treatment 
should be adherent. We have shown the benefit of switching even under imperfect adherence, but 
ideally patients should be psychologically prepared to adhere to their new treatment regimen.  

Results in context 

Our results comparing immediate switch to no switch yield similar conclusions to other studies which 
used other definitions of failure, which were done in different patient populations, for different follow-
up times, and used different methodological approaches5-7,17. Like Rohr et al.7 we show the that the 
effectiveness of switching strategies depends on disease severity, though in a more refined way given 
that we modelled the relationship non-linearly for different patient groups. Similar to other studies we 
have shown that remaining on first-line therapy leads to an increase in mortality compared to switching, 
and that earlier switch is beneficial in terms of survival 6,17. Our marginal structural working models were 
more complex than the MSMs in these studies, which makes a more refined interpretation of the dose-
response relationship between delay in switching and mortality possible; however, both previous 
studies13 and current research23 suggests that it may be important to allow for even more flexible 
approaches to model specification and fitting than ours. Nevertheless, whatever methodological 
approach is chosen, it is important to note that the benefitassociated with switching can be observed for 
different definitions of treatment failure 5,6. 

Our results have two direct implications for current programme guidance. Firstly, for stable virologically 
suppressed patients, it is no longer recommended in South Africa that they receive regular CD4 counts. 
However, once a patient is viraemic, our results demonstrate the critical importance of CD4 count in 
further risk stratifying patients. The value of dropping routine CD4 count testing in the interests of cost-
saving, needs to be considered alongside the benefits of the additional information it provides on 
disease severity and mortality risk, and could be used to highlight groups that are in more urgent need 
of early switch.  

In patients who subsequently fail virologically, we have demonstrated that the delay between the first 
and second elevated viral load contribute to the non-linear early increase in mortality resulting from 
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delayed switching, especially in patients with low CD4 counts. This points to the importance of either 
accelerating confirmation of virological failure in patients with advanced immunological suppression, or 
to consider switching at the first evidence of viraemia if cost and regimen-sparing are no longer 
important considerations driving the need to confirm virologic failure. 

Further research 

In the South-African context, and according to WHO guidelines, switching is permitted after confirmed 
failure. Hence, our analyses were restricted to a subgroup of patients with 2 consecutive VL>1000. The 
wider dataset, indicated in figure 1, shows that some patients switch onto second-line treatment prior 
to confirmed virologic failure. It would be interesting to investigate the impact of time to switch from 
first elevated VL using a sample defined with the eligibility criteria of one VL>1000. In this larger sample, 
the additional complication of the competing risk of virologic re-suppression would need to be 
considered in the analysis, as re-suppressing patients would no-longer be eligible for switch. 

Conclusions 

Our study highlights the importance of early treatment switch, particularly for patients with low CD4 
counts at failure.  
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Table 1: Summary of patient characteristics at confirmed viral load failure* using data from the IeDEA-SA collaboration (2004-2017) 

Categories 
Never switch 

(n=3490) 
Switch 0-29 days 

(n=627) 
Switch 30-59 days 

(n=619) 
Switch 60-119 days 

(n=624) 
Switch 120-179 days 

(n=442) 
Switch 180-359 days 

(n=701) 
Switch >360 days 

(n=752) 
Total 

(n=7255) 

 No. % No. % No. % No. % No. % No. % No. % No. % 

number of switches 0 0 627 100 619 100 624 100 442 100 701 100 752 100 3765 52 

number of deaths 475 14 61 10 63 10 59 9 46 10 76 11 62 8 842 12 

Gender female) 2247 64 378 60 420 68 394 63 282 64 471 67 509 68 4701 65 

Age at failure 
  

  
            

         <30 624 18 101 16 124 20 117 19 76 17 144 21 209 28 1395 19 

         31 - 40 1611 46 265 42 264 43 293 47 205 46 337 48 344 46 3319 46 

         >40 1255 36 261 42 231 37 214 34 161 36 220 31 199 26 2541 35 

WHO at ART initiation 
  

  
            

         I/II 1334 38 324 52 317 51 263 42 165 37 267 38 228 30 2898 40 

         III/IV 2156 62 303 48 302 49 361 58 277 63 434 62 524 70 4357 60 

CD4 count at failure   
            

         0 - 49 337 10 67 11 45 7 45 7 31 7 39 6 37 5 601 8 

         50 – 99 334 10 56 9 64 10 46 7 34 8 54 8 51 7 639 9 

         100 - 199 753 22 151 24 131 21 156 25 124 28 165 24 185 25 1665 23 

         200 - 349 1076 31 221 35 211 34 218 35 151 34 262 37 303 40 2442 34 

         350 - 499 567 16 77 12 110 18 99 16 61 14 115 16 126 17 1155 16 

         >=500 423 12 55 9 58 9 60 10 41 9 66 9 50 7 753 10 

RNA measure at failure 
  

  
            

         1000 - 4999 1152 33 154 25 214 35 212 34 159 36 235 34 308 41 2434 34 

         5000 - 99999 457 13 97 25 88 14 79 13 69 16 130 19 127 17 1047 14 

         10000 - 49999 913 26 199 32 168 27 207 33 121 27 195 28 194 26 1997 28 

         50000 - 999999 306 9 62 10 54 9 49 8 44 10 54 8 52 7 621 9 

         >=100000 662 19 115 18 95 15 77 12 49 11 87 12 71 9 1156 16 

RNA suppression prior to failure 2652 76 432 69 436 70 469 75 315 71 534 76 578 77 5416 75 

*Second consecutive viral load measure greater than 1000 copies/ml. ART- Antiretroviral therapy, IeDEA-SA - International epidemiology to Evaluate AIDS Southern Africa 
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Table 2: Summary of patient characteristics using data from the IeDEA-SA collaboration (2004-2017), displayed as median (interquartile range) 

Categories 
Never switch 

(n=3490) 
Switch 0-29 days 

(n=627) 
Switch 30-59 days 

(n=619) 
Switch 60-119 days 

(n=624) 
Switch 120-179 days 

(n=442) 

Switch 180-359 days 
(n=701) 

Switch >360 days 
(n=752) 

Total 
(n=7255) 

Median days IQR)         

time from confirmed failure* to switch - 28 (21-28) 49 (36-56) 85 (77-106) 145 (132-162) 245 (210-292) 638 (481-940) 121 (49-288) 

time from ART start to confirmed failure* 1456 (893-165) 1021 (569-1679) 964 (568-1597) 986 (589-1678) 1107 (631-1724) 1064 (696-1728) 1028 (678-1516) 1218 (730-1916) 

time from RNA>1000 to confirmed failure* 141 (91-257) 84 (56-113) 91 (58-127) 90 (56-136) 112 (78-157) 115 (84-171) 134 (84-185) 115 (83-190) 

time from ART start to last contact 2425 (1686-3108) 2762 (1884-3564) 2762 (1811-3447) 2808 (1995-3564) 2929 (2211-3661) 3009 (2266-3665) 3316 (2727-3981) 2688 (1898-3431) 

time from confirmed failure* to last contact 592.5 (294-1175) 1435 (777-2080) 1306 (722-2008) 1481 (749-2132) 1538 (1013-21426) 1653 (1087-2109) 2110 (1556-2664) 1095 (481-1885) 

number of CD4A measures from failure* to last contact 1 (0-3) 2 (1-5) 3 (1-5) 3 (1-6) 3 (2-6) 4 (2-6) 6 (3-9) 2 (1-5) 

number of RNA measures from failure* to last contact 3 (1-5) 5 (3-9) 5 (3-8) 6 (3-9) 7 (5-10) 7 (5-10) 9 (7-13) 4 (2-8) 

*Second consecutive viral load measure greater than 1000 copies/ml. ART- Antiretroviral therapy, IeDEA-SA - International epidemiology to Evaluate AIDS Southern Africa
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Technical appendix 

Notation: Let Yt be the binary survival outcome measured at time t, Lt=(L1
t,…,Lq

t) the vector of time-
varying covariates at time t (CD4 count, log10 viral load, visit frequency [number of visits within the past 
6 months]), Ct a censoring indicator at time t, and At (antiretroviral) treatment at time t. The follow-up 
time is t=0,1,3,6,9,…,60 months. L0 is the vector of baseline covariates which contains are age, sex, 
highest and lowest CD4 count prior to failure, highest and lowest log VL measure prior to failure, an 
indicator whether a patient was ever suppressed prior to failure, WHO clinical stage, year of ART start 
and treatment facility, CD4 count, visit frequency and viral load.  We are interested in the intervention 
vector A=(a0,a1,a3,a6,…,a60) which is a multiple-time point intervention where at each time point 
antiretroviral therapy may be given or not. More generally, we refer to the intervention history (up to 
and including time t) as A�t = (a0,a1,a3,a6,…,a60). For example, immediate treatment initiation refers to A�60 

=(1,1,1,…,1) and no treatment initiation to A�60 =(0,0,0,…..,0). With the superscript we denote 
counterfactuals. For example, Yt

A�t =(1,1,…,1) is the outcome that would have been observed at time t had 
everyone received (possibly contrary to the fact) immediate treatment initiation, i.e. ART at all time 
points. A rule d assigns treatment At such that it starts at a specific time point (and therefore determines 
the amount of delay in treatment initiation). Since the rule effectively determines the switch time (st) 
we write Yst to refer to the outcome that would have been observed under a rule that assigns treatment 
in line with a certain switch time. 

Target Quantities: We are interested in estimating  

i) how the counterfactual probability of death 60 months after first-line failure varies as a 
function of the assigned switch time (st); where switch time based on rule d determines how 
the treatment vector A looks like. That is, we are interested in  
 
a) P(Y60=1)st 

where switch time st varies between 0 and 60 months; and 

b) a marginal structural working model to summarize how the counterfactual probability of 
death at follow-up time t varies as a function of t and assigned switch time (st) [and 
therefore treatment vector A]; see below for the model specification. 
 

ii) We are also interested in summarizing the effect of the delay strategy d on (the hazard λ of) 
mortality with marginal structural Cox models of the form 
 
λst(t|L0)= λ0(t)exp(β1 d + L0β2) 
 
The Cox model is approximated with a pooled logistic regression model containing (splines 
of) follow-up time and the (above mentioned) baseline variables L0. The exact model 
specification is given further below. 
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Structural assumptions: As Petersen et al.1, we assume that CD4 count, HIV RNA (viral load) and clinic 
visit frequency influence decisions whether and when to switch therapy, as well as mortality; since these 
variables are affected by prior switching decisions and mediate the effect of exposure to failing first-line 
therapy on mortality, standard regression adjustment methods are not suitable, see below for our 
estimation approaches. We speculate that (unmeasured) patient adherence also affects decisions of 
when to switch, as well as mortality.  

Observed data & Identification: Our data contains O=(L,A,Y,C) as defined above under “notation”. The 
target quantities above [listed under i) and ii)] can be identified under the assumptions of sequential 
randomization (“no unmeasured confounders”), consistency (“well-defined intervention”) and 
positivity2,3. With positivity we mean that a patient who has not already switched should have some 
positive probability of both switching and not switching (regardless of his covariate history). With no 
unmeasured confounding, we essentially mean that those variables that affect the decision of when to 
switch and mortality, and are themselves affected by prior treatment decisions, are all contained in Lt 

(see above point on adherence). More formal definitions of the above assumptions are given in Petersen 
et al. 4 and Schomaker et al. 5. 

Estimation: 

To estimate the target quantities listed in i) we use longitudinal targeted maximum likelihood estimation 
as described in Petersen et al. 4 and implemented in the R-package ltmle and for ii) we use inverse 
probability weighting of marginal structural models following the approach in Rohr et al.6, see also Cain 
et al.7 for more details.  

For estimation of the targeted quantities in i), we follow exactly the approach described in detail in 
Petersen et al. 4. Briefly, we estimate P(Yt=1|L0)st for all possible switch times (i.e. delay strategies d that 
delay treatment by st = 0,1,3,6,9,…,60 months) and follow-up times t=0,1,3,6,9,…,60 and summarize the 
dose-response relationship between Y and t and st in two different working models: 

Model 1: Irrespective of CD4 count: logit(P(Yt
st=1)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 

(log(t) * [st-t]) + b6 (log(t) * [st-t]2)  

Model 2: Conditional on CD4 count: logit(P(Yt
st=1|CD4)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) 

+ b5 (log(t) * [st-t]) + b6 I(101<CD4<200) + b7 I(CD4>200) + b8 I(101<CD4<200)*(st-t)+ b9 I(CD4>200)*(st-t) 
+ b10 I(CD4<100)*√t + b11 I(101<CD4<200) *√t + b12 I(CD4>200)* √t 

Model 1 summarizes the dose-response relationship independent of CD4 count at time of viral failure; 
model 2 summarizes the relationship conditional on CD4 count (at time of failure). The transformations 
for follow-up time have been chosen such that the working MSM yields similar results as the (non-MSM) 
estimates for the probability of death at 5 years under A�60 =(1,1,1,…,1) and A�60 =(0,0,0,…..,0) respectively. 
The working models allow for an inflection point in the survival curve with respect to time of switch due 
to the inclusion of a cubic polynomial of difference in switch time and follow-up time. Unfortunately, 
more complex working models that include switch time in a way that is more sophisticated could not be 
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fitted due to technical constraints.  Figure 3 and Web Figure 1 have been produced based on the 
estimates of the above working MSMs.  

To estimate the above target quantity i)a), we have used the ltmle() function in the package ltmle. With 
this we estimated that 5-year mortality was 10.5% (2.2%; 18.8%) if everyone had been switched 
immediately, and as 26.6% (20.9%; 32.3%) if everyone had stayed on their failing regimen. The 
corresponding risk difference was -16.1% (-26.1%; -6.1%), and the odds ratio was 0.32 (0.13; 0.82).  

To estimate the target quantity i)b), we used the function ltmleMSM() in ltmle. To estimate the 
conditional (nested) outcome expectations needed for both a) and b), as well as the treatment and 
censoring models/mechansism, we used super learning as recommended previously8. In more detail, we 
used the following learners: the arithmetic mean, (generalized linear) regression models with all main 
terms [GLM], GLMs based on an EM-algorithm-Bayesian model fitting, GLMs chosen by stepwise 
variable selection with Akaikes Information Criterion [AIC], GLMs containing interaction terms, as well as 
additive models; these learners have been partly fitted on the whole set of covariates as well as subsets 
based on screening with Cramer’s V 9 and Lasso estimation 10. 

For estimation of the targeted quantities in ii), we estimated the effect of immediate switch compared 
to no switch on mortality, if confirmed failure was used as failure definition, as 0.37 (0.30-0.46) using 
IPTW.  If first VL>1000 copies/mL was used as definition of failure the estimates were 0.42 (0.34-0.52) 
respectively. For both analyses we needed models for the treatment and censoring mechanisms to 
calculate weights, for each patient at each time period. We applied stabilised weights (as defined and 
explained below) which require estimation of a numerator and a denominator. The models  we need are 
as follows: 

• Models for the treatment (and artificial censoring in the delay analysis) mechanism: 

Denominator (M1):  logit(PTD(At=at | A�t-1=a̅t-1 , C�t-1=0, 𝑌𝑌t-1=0, L0, 𝑳̅𝑳t)) 

Numerator (M2): logit(PTN(At=at | , C� t-1=0, 𝑌𝑌t-1=0, L0)) 

Model specification: Baseline covariates L0 included in the model were binary indicators of baseline 
CD4 (>=50 & <100, >=100 & <200, >=200 & <350, >=350 & <500, >=500) and binary indicators of 
baseline viral load (>250 & <500, >=500 & <1000, >=1000 & <10000, >=10000 & <100000, >=100000) 
as well as age, gender, clinic, and binary indicators for calendar year of failure (2003-2006, 2007-
2009, 2010-2012, 2013-2017). We also included a binary indicator of pre-failure VL suppression and 
categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA. Time dependent 
variables Lt included binary indicators of categorical CD4 and viral load, linear CD4-time and viral 
load-time interactions, and number of visits within the past 6 months. Web Table 2 lists the fitted 
models in detail.  

• Models for the loss-to-follow censoring mechanism: 

Denominator (M3): logit(PCD(Ct=0 | A� t-1, C� t-1=0, 𝑌𝑌t-1=0, L0, 𝑳𝑳𝑳t)) 



5 
 

Numerator (M4): logit(PCN(Ct=0 | C� t-1=0, 𝑌𝑌t-1=0, L0)) 

Model specification: The model specifications for the censoring mechanisms included L0 and  Lt as 
described above in the treatment models, except that we  excluded the (linear) time-CD4 and time-
RNA interactions. Web Table 2 lists the fitted models in detail. 

• Stabilised weights: 

For the simple “switch versus no switch” analysis (presented in manuscript text and in Web tables 3 
and 4), treatment and censoring stabilised weights were derived from denominator and numerator 
of the treatment and loss-to-follow-up censoring models M1-M4. These weights were combined, as 
follows, to create a combined treatment and censoring stabilised weight, for each person, at each 
time point.   

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = �∏ 𝑃𝑃𝑇𝑇𝑇𝑇
1−𝑃𝑃𝑇𝑇𝑇𝑇

 60
𝑡𝑡=0 �. �∏ 𝑃𝑃𝐶𝐶𝐶𝐶

𝑃𝑃𝐶𝐶𝐶𝐶
 60

𝑡𝑡=0 � 

For the “delay in switch versus no switch” analysis (presented in Figure 2), we followed the 
approach in Rohr et al.6 (and Cain et al.7) and described in the manuscript. Again, models for the 
treatment and censoring mechanisms were required and fitted in line with the model specifications 
given above. Treatment and censoring weights were estimated prior to the expansion and artificial 
censoring of the dataset.  

The dataset was expanded by replicating each person-time observation 6 times to create a set of 7 
clones; one clone to represent each of the 7 delay regimes. Within each regime, person time was 
artificially censored according to adherence to the delay regime. For instance, a person that 
switched at 75 days from baseline would be censored at 30 days in the switch within 30 days 
regime, would be censored at 60 days in the 30- 59 days regime, would not be censored in the 60-
119 days regime, and would be censored at 75 days in the 120-179 days, 180-359 days, greater than 
360 days and never switch regimes. The cloning allowed one person to follow multiple regimes 
simultaneously, therefore estimates become more efficient,7.  

For the treatment weights, probabilities from the treatment models were used to generate weights 
for each person-time-regime observation. First, probabilities were assigned to each observation 
based on the following rules, where PT represents the probabilities derived from the 
numerator/denominator treatment model; 

• Treatment rules; PT at time of switch, 1 after switch, and 1- PT before switch 

• Artificial censoring rules; 1- PT if at time of artificial censoring if it is also time of switch, 
and PT at time of artificial censoring if it is not also time of switch. 

Second, cumulative probabilities for numerator and denominator were calculated for each person 
over time within each regime. Third, stabilised treatment weights were estimated using the 



6 
 

cumulative numerator and denominator probabilities for each person at time point, for each 
regime.  This follows the approach described in the Web materials of Cain, et al26. 

For loss-to-follow-up censoring, stabilised censoring weights were created using cumulative 
probabilities from the numerator and denominator lost-to-follow-up censoring models. Treatment 
and loss-to-follow-up stabilised weights were combined to create a combined treatment and 
censoring stabilised weight, for each person, at each time point, within each regime. 

Stabilized weight summaries are given in Web Table 4. 

• Marginal structural Cox models were fitted in line with the model specification given in ii) under the 
above heading “Target quantities”, based on weighted pooled logistic regression. 
 
For the “switch versus no switch analysis”; 

Marginal Structural Cox model: logit(P(Yt=1| At, L0)) 

For the “delay in switch versus no switch analysis”; 

Marginal Structural Cox model: logit(P(Yt=1 | dt, L0)) 

dt indicates a set of binary variables which represent the delay strategies/regimes. Baseline covariates L0 
included in the two models above were binary indicators of baseline CD4 (>=50 & <100, >=100 & <200, 
>=200 & <350, >=350 & <500, >=500) and binary indicators of baseline viral load (>250 & <500, >=500 & 
<1000, >=1000 & <10000, >=10000 & <100000, >=100000) as well as age, gender, clinic, and binary 
indicators for calendar year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). We also included 
a binary indicator of pre-failure VL suppression and categorical variables for pre-failure highest and pre-
failure lowest CD4 and RNA. Confidence intervals were calculated using cluster robust standard error 
estimators. 

Diagnostics: 

The diagnostics for IPTW of marginal structural models are summarized in Web Table 4. 

For the LTMLE analyses we provide the percentage of truncated cumulative inverse treatment and 
censoring probabilities. We used a truncation level of 1%. Large percentages of truncation suggest 
limited data support for these interventions and possible positivity violations5. The working MSM is 
meant to extrapolate well for interventions where there is little data support4. The summary (rounded 
percentages) is as shown in Web table 5. 

One can see the limited data support for intervention strategies that delay switching by 12-57 month. 
Note however that these interventions have a lower impact on the fitted working MSM 16. It is however 
important to stress that even under an MSM approach estimates remain vulnerable to positivity 
violations11. A particular concern is that standard errors may be anti-conservative, though recent 
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developments suggest that it is possible to construct estimators that are somewhat more robust with 
respect to positivity violations.12 
 
The distributions of the fitted cumulative inverse treatment and censoring probabilities after 5 years of 
follow-up are visualized in Web Figure 2.  One can again see the limited data support for intervention 
strategies that delay switching by 12-57 month. 
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Web Table 1: Drug regimens for second-line treatment 

Regime at switch Frequency Percent Cum. 
    
3TC KLT TDF 1,232 31.51 99.92 
3TC AZT KLT 932 23.84 57.11 
AZT DDI KLT 760 19.44 20.2 
3TC AZT KLT TDF 125 3.20 61.05 
AZT KLT RTV 92 2.35 22.92 
3TC D4T KLT 83 2.12 65.52 
3TC D4T EFV KLT TDF 77 1.97 63.38 
3TC AZT EFV KLT TDF 74 1.89 33.22 
KLT RTV TDF 67 1.71 27.11 
3TC ABC KLT 51 1.3 28.67 
FTC KLT TDF 36 0.92 24.78 
3TC D4T KLT NVP TDF 29 0.74 66.29 
3TC AZT KLT NVP TDF 24 0.61 57.85 
3TC KLT SQV 22 0.56 68.41 
3TC AZT D4T EFV KLT 21 0.54 30.36 
KLT RTV SQV 18 0.46 25.4 
AZT KLT TDF 17 0.43 23.35 
3TC D4T KLT TDF 15 0.38 66.68 
3TC EFV KLT TDF 14 0.36 67.26 
3TC ATV AZT 11 0.28 28.98 
ABC KLT RTV 10 0.26 0.33 
3TC ATV TDF 10 0.26 29.64 
3TC D4T EFV KLT NVP TDF 10 0.26 61.41 
3TC KLT RTV 10 0.26 67.85 
Other* 170 4.00 100 
    
Total 3,910 100  
*Includes combinations of drugs that include 3TC, ATV NVP, D4T, DDI, EFV, TDF, ABC, FTC, RTV, DRV, RGV, KLT, ETV, NFV, SQV.  
Treatment abbreviations by drug type: nucleoside reverse transcriptase inhibitors (NRTIs): 3TC (Lamivudine), ABC (Abacavir), AZT (Zidovudine), 
D4T (Stavudine), DDC (Zalcitabine), DDI (Didanosine), FTC (Emtricitabine), TDF (Tenofovir), NRTI/NNRTI: ATP (Atripla), non-nucleoside reverse 
transcriptase inhibitors (NNRTIs):  EFV (Efavirenz), ETV (Etravirine), NVP (Nevirapine), RPV (Rilpivirine), PIs: ATV/r (Atazanavir/Ritonavir), DRV 
(Darunavir), LPV/r (Lopinavir/Ritonavir), NFV (Nelfinavir), RTV (Ritonavir), SQV (Saquinavir), TPR (Tipranavir), CCR 5 antagonist: MVC 
(Maraviroc), InSTI: RGV (Raltegravir)  
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Web Table 2: Output from the treatment and censoring models 

  Treatment – 2 VL>1000  Censor – 2 VL>1000 Treatment – VL>1000  Censor – VL>1000 

 denominator  numerator  denominator  numerator denominator  numerator  denominator  numerator 

  
Odds 
Ratio 

P- 
value 

 Odds 
Ratio 

P- 
value 

 

Odds 
Ratio 

P- 
value  Odds 

Ratio 
P- 

value 
 Odds 

Ratio 
P- 

value  Odds 
Ratio 

P- 
value 

 Odds 
Ratio 

P- 
value  Odds 

Ratio 
P- 

value 

   
   

   
               

Time dependent 
  

   
   

               
 
CD4 cell count, per mm3 

  

   

   

               

50 - 99 0.90 0.38  - - 
 

1.23 0.01  - -  1.07 0.52  - -  1.17 0.03  - - 
100 - 199 0.83* 0.10  - - 

 
1.25 0.00  - -  0.94 0.54  - -  1.21 0.00  - - 

200 - 349 0.82 0.11  - - 
 

1.37 0.00  - -  0.98 0.85  - -  1.33 0.00  - - 
349 - 499 0.95 0.71  - - 

 
1.37 0.00  - -  1.09 0.46  - -  1.33 0.00  - - 

>=500 0.72* 0.06  - - 
 

1.43 0.00  - -  0.81 0.14  - -  1.33 0.00  - - 
 
RNA, copies/ml 

  

   

 
  

    
  

    
  

   

250 - 499 0.68 0.21  - - 
 

0.92 0.08  - -  0.72 0.28  - -  0.93 0.17  - - 
500 - 999 2.29*** 0.00  - - 

 
0.82 0.00  - -  2.30 0.00  - -  0.85 0.01  - - 

1000 - 9999 12.56*** 0.00  - - 
 

0.71 0.00  - -  12.01 0.00  - -  0.78 0.00  - - 
10000 - 99999 17.84*** 0.00  - - 

 
0.67 0.00  - -  16.67 0.00  - -  0.74 0.00  - - 

>=100000 16.62*** 0.00  - - 
 

0.69 0.00  - -  15.18 0.00  - -  0.78 0.00  - - 
 
time-CD4 interaction 1.00** 0.04 

   

 
  

    
1.00 0.04 

         

time-RNA interaction 1.00 0.53  - - 
 

- -  - -  1.00 0.92  - -  - -  - - 
number of visits within the 
past 6 months 1.27*** 0.00 

  
- 

 
- 

 

 
- 

 
- 

  
- 

 
- 

 
1.33 0.00 

  
- 

 
- 

  
- 

 
- 

  
- 

 
- 

 
Baseline 

  

   

 
  

    
  

    
  

   

CD4 cell count, per mm3 
  

   
 

                 
50 - 99 1.31** 0.04  1.09 0.38 

 
1.01 0.85  1.08 0.30  0.95 0.66  0.89 0.21  0.99 0.88  1.03 0.74 

100 - 199 1.49*** 0.00  1.32 0.00 
 

0.98 0.82  1.08 0.25  1.14 0.21  1.02 0.81  0.91 0.16  0.97 0.69 
200 - 349 1.70*** 0.00  1.51 0.00 

 
1.04 0.61  1.19 0.01  1.17 0.17  1.08 0.39  0.94 0.41  1.05 0.48 

350 - 499 1.50*** 0.01  1.42 0.00 
 

1.03 0.73  1.20 0.01  0.99 0.95  0.94 0.55  0.90 0.16  1.01 0.94 
>=500 1.58*** 0.01  1.21 0.09 

 
0.90 0.21  1.07 0.41  1.08 0.62  0.80 0.05  0.78 0.00  0.88 0.11 

 
RNA, copies/ml 

  

 
  

 
  

 
  

 
  

 
  

 
  

 
  

5000 - 9999 1.10* 0.07  1.21 0.00 
 

0.99 0.74  0.97 0.47  0.90 0.04  1.03 0.59  1.05 0.19  1.04 0.34 
10000 - 49999 0.92 0.12  1.26 0.00 

 
1.06 0.07  1.03 0.34  0.89 0.02  1.08 0.07  1.02 0.66  1.00 0.97 

50000 - 99999 0.99 0.95  1.35 0.00 
 

1.03 0.53  1.00 0.93  0.78 0.00  0.97 0.70  1.00 0.98  0.98 0.65 
>=100000 0.90 0.24  1.12 0.07 

 
0.99 0.87  0.97 0.51  0.64 0.00  0.77 0.00  1.04 0.34  1.02 0.65 

 
pre-failure VL suppression 1.03 0.86 

 
1.01 0.96 

 
1.06 0.69 

 
1.02 0.88 

 
1.21 0.33 

 
1.06 0.77 

 
1.00 0.98 

 
1.00 0.97 

WHO Stage III/IV 0.91** 0.02  0.96 0.29 
 

1.06 0.03  1.05 0.12  0.90 0.00  0.94 0.12  1.06 0.05  1.04 0.16 
age  1.00** 0.02  1.00 0.15 

 
1.00 0.56  1.00 0.99  1.00 0.03  1.00 0.08  1.00 0.82  1.00 0.40 

gender 1.07* 0.10  1.07 0.07 
 

1.04 0.19  1.06 0.04  1.08 0.03  1.09 0.03  1.07 0.03  1.08 0.01 
All models were adjusted for follow-up time using restricted cubic splines, and included binary categorical variables for pre-failure highest and pre-failure lowest CD4 and RNA, binary indicator of clinic, and 
binary indicator of year of failure (2003-2006, 2007-2009, 2010-2012, 2013-2017). VL suppression was defined as RNA below 400 copies per ml
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Web Table 3: Complete case analysis and results after multiple imputation of missing baseline data of 
WHO stage at ART initiation and CD4 count 

Baseline 

Main analysis 
Second VL measurement 

of Confirmed failure 
 

 

Secondary analysis 
First VL measurement 
of Confirmed failure 

 
Time from baseline to switch*  HR 95% CIs  HR 95% CIs 

Results from complete case analysis  
Crude (switch vs no switch) 0.49 (0.42-0.58) 

 
0.52 (0.45-0.61) 

IPTW (switch vs no switch) 0.37 (0.30-0.46) 
 

0.42 (0.34-0.52) 
      
IPW (delay in switch vs no switch): 

     No switch (reference category) 1 -  1 - 
Less than 30 days 0.45 (0.35-0.58)  0.28 (0.16-0.52) 
Greater than or equal to 30 and less than 60 days 0.53 (0.43-0.65)  0.37 (0.25-0.53) 
Greater than or equal to 60 and less than 120 days 0.58 (0.49-0.69)  0.49 (0.38-0.63) 
Greater than or equal to 120 and less than 180 days 0.66 (0.58-0.76)  0.54 (0.44-0.66) 
Greater than or equal to 180 and less than 360 days 0.76 (0.67-0.86)  0.67 (0.58-0.79) 
Greater than or equal to 360 days 0.86 (0.82-0.91)  0.86 (0.81-0.91) 

      Results after multiple imputation of missing variables 
 Crude (switch vs no switch) 0.47 (0.40-0.54) 

 
0.50 (0.43-0.58) 

IPTW (switch vs no switch) 0.36 (0.30-0.44) 
 

0.41 (0.34-0.51) 
      
IPW (delay in switch vs no switch):   

   No switch (reference category) 1 - 
 

1 - 
Less than 30 days 0.43 (0.34-0.55) 

 
0.33 (0.18-0.62) 

Greater than or equal to 30 and less than 60 days 0.51 (0.42-0.61) 
 

0.39 (0.26-0.58) 
Greater than or equal to 60 and less than 120 days 0.58 (0.50-0.68) 

 
0.50 (0.39-0.63) 

Greater than or equal to 120 and less than 180 days 0.64 (0.56-0.73) 
 

0.51 (0.42-0.62) 
Greater than or equal to 180 and less than 360 days 0.72 (0.64-0.81) 

 
0.65 (0.56-0.76) 

Greater than or equal to 360 days 0.88 (0.83-0.92) 
 

0.87 (0.83-0.91) 
            

*Note that in the first VL measurement analysis, an additional 30 days from baseline to the upper and lower limits of each delay category were 
included to account for the fact that patients in our sample were not permitted to switch until 4 weeks after first VL measure >1000copies/ml. 
Crude refers to a switch vs no switch analysis without inverse probability weighting.  
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Web Table 4: stabilized weights diagnostics for the switch versus no switch analysis 

    
Estimated weights for the outcome Death  

  Estimates of effect of 
switch on Death       

Truncation 
percentiles 

  
Mean (SD) 

   
Minimum/maximum   Hazard/Odds 

ratio 
Standard 
Error 

        

            
Baseline: Confirmed failure (Main analysis)        
100   1.07 (1.82)   0.04/119.75   0.31 0.05 
99.5   1.02 (0.99)   0.04/10.71   0.37 0.04 
99   0.98 (0.68)   0.04/5.36   0.37 0.04 
97.5   0.94 (0.47)   0.04/2.67   0.38 0.04 
95   0.91 (0.38)   0.04/1.82   0.38 0.04 
90   0.88 (0.32)   0.04/1.43   0.39 0.04 
      
Baseline: First VL>1000 copies/mL (Secondary analysis) 
100   5692.25 (3940592)   0.02/3.247e+09   + + 
99.5   1.00 (1.03)   0.02/11.01   0.42 0.05 
99   0.97 (0.78)   0.02/6.75   0.42 0.05 
97.5   0.91 (0.44)   0.02/2.57   0.42 0.04 
95   0.88 (0.36)   0.02/1.75   0.42 0.04 
90   0.85 (0.31)   0.02/1.35   0.42 0.04 
                 

+ indicates that the outcome model did not converge. 

 

 

Web Table 5: LTMLE truncation 

Delay (months) 0 1 3 6 9 12 15 18 21 24 27 
% truncation 2 0 0 1 4 12 11 8 11 23 14 
Delay (months) 30 33 36 39 42 45 48 51 54 57 60 
% truncation 27 22 28 13 16 25 29 18 25 75 1 
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Web Figure 1: Probability of death 5 years after virologic failure, for different CD4 count categories at 
time of failure, and depending on month after failure and month of switch.  

Estimates are based on a working MSM as specified in the technical appendix and under the footnote*. 
Panel a) visualizes the results in a contour plot where the probability of death is represented by colours 
and panel b) plots the probability of death in a third dimension, on the z-axis. Note that for both a) and 
b) the curves at 60 months after failure equate to the results plotted in Figure 3 in the main text. Red 
colours refer to higher probabilities of death. 

a)  
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b)  

 

*Footnote: Model specifications of the marginal structural working model. The working MSM’s specify the assumed 
relationship between the probability of death and time (t), switch time (st) and CD4 count at failure (CD4). 

Model 1: Irrespective of CD4 count: logit(P(Ytst=1)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) * [st-
t]) + b6 (log(t) * [st-t]2)  

Model 2: Conditional on CD4 count: logit(P(Ytst=1|CD4)) = b0 + b1 log(t) + b2 (st-t) + b3 ([st-t]2) + b4 ([st-t]3) + b5 (log(t) 
* [st-t]) + b6 I(101<CD4<200) + b7 I(CD4>200) + b8 I(101<CD4<200)*(st-t)+ b9 I(CD4>200)*(st-t) + b10 I(CD4<100)*√t + 
b11 I(101<CD4<200) *√t + b12 I(CD4>200)* √t 

Note that the causal quantity of interest is defined as a projection of the true causal dose–response curve, i.e. the 
true relationship between time/switch time and mortality, onto the specified working model. The working model 
has been specified as flexible as possible though computational and numerical constraints make an even more 
flexible approach unfeasible to estimate. 
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Web Figure 2: Kernel density plots of the distribution of cumulative fitted probabilities (after 60 
months of follow-up) for the different switch strategies.
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