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Abstract—Previous work on the role of the demand side in 

imperfect electricity markets has demonstrated that its self-price 

elasticity reduces electricity producers’ ability to exercise market 

power. However, the concept of self-price elasticity cannot 

accurately capture consumers’ flexibility, as the latter mainly 

involves shifting of loads’ operation in time. This paper provides 

for the first time theoretical and quantitative analysis of the 

beneficial impact of demand shifting (DS) in mitigating market 

power by the generation side. Quantitative analysis is supported 

by a multi-period equilibrium programming model of the 

imperfect electricity market, accounting for the time-coupling 

operational constraints of DS as well as network constraints. The 

decision making process of each strategic producer is modeled 

through a bi-level optimization problem, which is solved after 

converting it to a Mathematical Program with Equilibrium 

Constraints (MPEC) and linearizing the latter through suitable 

techniques. The oligopolistic market equilibria resulting from the 

interaction of multiple independent producers are determined by 

employing an iterative diagonalization method. Case studies on a 

test market reflecting the general generation and demand 

characteristics of the GB system quantitatively demonstrate the 

benefits of DS in mitigating producers’ market power, by 

employing relevant indexes from the literature. 

 
Index Terms—Bi-level optimization, demand shifting, 

electricity markets, equilibrium programming, market power. 

I.  NOMENCLATURE 

A.  Indices and Sets 

𝑡 ∈ 𝑇  Index and set of time periods 

𝑛, 𝑚 ∈ 𝑀 Indexes and set of nodes 

𝑀𝑛 Set of nodes connected to node 𝑛  through a 

transmission line 

𝑖 ∈ 𝐼   Index and set of producers 

𝑖 −   Index of producers other than producer 𝑖 
𝑗 ∈ 𝐽   Index and set of demands 

𝐼𝑛, 𝐽𝑛  Set of producers and demands connected to node 𝑛 

𝑏 ∈ 𝐵  Index and set of generation blocks 

𝑐 ∈ 𝐶  Index and set of demand blocks 

𝑉𝐿𝐿   Set of decision variables of lower level problem 

𝑉    Set of decision variables of MPEC model 

B.  Parameters 

𝐹𝑛,𝑚   Capacity of transmission line (𝑛, 𝑚) (MW) 
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𝑥𝑛,𝑚   Reactance of transmission line (𝑛, 𝑚) (p.u.) 

𝜆𝑖,𝑏
𝐺  Marginal cost of block 𝑏 of producer 𝑖 (£/MWh) 

𝑔
𝑖,𝑏

 Maximum power output limit of block 𝑏 of producer 

𝑖 (MW) 

𝜆𝑗,𝑡,𝑐
𝐷  Marginal benefit of block 𝑐 of demand 𝑗 at period 𝑡 

(£/MWh) 

𝑑𝑗,𝑡,𝑐 Maximum power input limit of block 𝑐 of demand 𝑗 

at period 𝑡 (MW) 

𝛼𝑗   Load shifting limit of demand 𝑗 (%)  

C.  Variables 

𝜃𝑛,𝑡   Voltage angle at node 𝑛 and period 𝑡 (rad) 

𝑘𝑖,𝑡 Strategic offer variable of producer 𝑖 at period 𝑡 

𝑔𝑖,𝑡,𝑏 Power output of block 𝑏  of producer 𝑖  at period 𝑡 

(MW) 

𝑑𝑗,𝑡,𝑐 Power input of block 𝑐  of demand 𝑗 at period 𝑡 

(MW) 

𝑑𝑗,𝑡
𝑠ℎ Change of power input of demand 𝑗 at period 𝑡 due 

to load shifting (MW) 

𝜆𝑛,𝑡 Lagrangian multiplier associated with nodal 

demand-supply balance constraint or equivalently 

locational marginal price at node  𝑛  and period 𝑡 

(£/MWh) 

𝜇𝑖,𝑡,𝑏
− , 𝜇𝑖,𝑡,𝑏

+  Lagrangian multipliers associated with the power 

output constraints of block 𝑏 of producer 𝑖 at period 

𝑡 (£/MW) 

𝜈𝑗,𝑡,𝑐
− , 𝜈𝑗,𝑡,𝑐

+
 Lagrangian multipliers associated with the power 

input constraints of block 𝑐 of demand 𝑗 at period 𝑡 

(£/MW) 

𝜉𝑗  Lagrangian multiplier associated with the energy 

neutrality constraint of demand 𝑗 (£/MW) 

𝜋𝑗,𝑡
− , 𝜋𝑗,𝑡

+
 Lagrangian multipliers associated with the 

constraints of the change of power input of demand 

𝑗 at period 𝑡 due to load shifting (£/MW) 

𝜌𝑛,𝑚,𝑡
− , 𝜌𝑛,𝑚,𝑡

+  Lagrangian multipliers associated with the capacity 

constraints of transmission line (𝑛, 𝑚) (£/MW) 

𝜎𝑛,𝑡
− , 𝜎𝑛,𝑡

+
 Lagrangian multipliers associated with the voltage 

angle constraints at node 𝑛 and period 𝑡 (£/rad) 

𝜑𝑡  Lagrangian multiplier associated with the voltage 

angle value at the reference node (£/rad) 

D.  Functions 

𝐺𝑃𝑖,𝑡   Profit of producer 𝑖 at period 𝑡 (£/h) 

𝐷𝑈𝑗,𝑡   Utility of demand 𝑗 at period 𝑡 (£/h) 

𝑆𝑊𝑡   Social welfare at period 𝑡 (£/h) 
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II.  INTRODUCTION 

A.  Background and Motivation 

FTER the deregulation of the energy sector, electricity 

markets are better described in terms of imperfect instead 

of perfect competition. In this setting, market participants do 

not necessarily act as price takers. Electricity producers 

owning a large share of the market or units at strategic 

locations of the transmission network are able to influence the 

electricity prices and increase their profits beyond the 

competitive equilibrium levels, through strategic bidding. This 

market power exercise results in increased price levels and 

consumers’ payments as well as loss of social welfare [1]. 

Previous works [1]-[3] have identified various measures to 

mitigate producers’ market power, such as a) promoting the 

separation of dominant producers in order to limit the market 

share of each producer; b) encouraging the entry of new 

participants in order to foster competition; and c) imposing 

price caps and bidding restrictions on producers. 

Furthermore, enhancing demand side responsiveness is also 

regarded as a very promising measure towards more 

competitive markets. Previous work has demonstrated that the 

self-price elasticity of demand reduces electricity producers’ 

ability to exercise market power, as demand is reduced at high 

market prices and thus limits the volume of electricity sold by 

strategic producers [4]-[9]. A theoretical explanation of this 

effect is presented in [4]-[5]. Authors in [6]-[7] employ a 

Supply Function Equilibrium (SFE) model to determine the 

market equilibria with different levels of demand’s self-price 

elasticity and define a number of market power indexes in 

order to quantitatively analyze the impact of elasticity. In [8], 

the same authors model the effect of two demand response 

programs, namely time-of-use pricing and economic load 

response program, on the self-price elasticity of demand and 

subsequently on the extent of market power exercised by 

strategic producers. Finally, an agent-based electricity market 

model is employed in [9] to assess the benefits of different 

self-price elasticity levels in mitigating market power. 

However, a large number of researchers have stressed that 

consumers’ flexibility regarding electricity use cannot be fully 

captured through the concept of self-price elasticity. Instead of 

simply avoiding using their loads at high price levels, 

consumers are more likely to shift the operation of their loads 

from periods of higher prices to periods of lower prices [4]. In 

other words, load reduction during certain periods is 

accompanied by a load recovery effect during preceding or 

succeeding periods. This shift of energy demand from high- to 

low-priced periods drives a demand profile flattening effect. 

Although numerous studies have investigated the impacts of 

demand shifting (DS) on various aspects of power system 

operation and planning [10]-[15], its impact in imperfect 

electricity markets has not been comprehensively explored 

yet. Paper [16] is the first piece of work that includes the DS 

flexibility in an imperfect electricity market model through 

also considering the cross-price elasticity of the demand side. 

However, no theoretical or quantitative analysis of the specific 

impacts of demand shifting on strategic producers’ market 

power is provided. Furthermore, the imperfect electricity 

market is modeled through an agent-based approach which is 

not capable of determining oligopolistic market equilibrium 

solutions and thus the actual value of demand flexibility. On 

the other hand, although authors in [6]-[8], [17]-[25], [28] 

adopt mathematically rigorous equilibrium programming 

models, their single-period setting is not suitable for 

investigating the impact of DS, as it cannot capture the 

relevant time-coupling characteristics of the demand side. 

B.  Scope and Contributions 

This paper aims to fill this knowledge gap by providing 

both theoretical and quantitative analysis of the beneficial 

impact of DS in mitigating market power by the generation 

side. Theoretical analysis is supported through a simplified 

two-period example without network constraints. Quantitative 

analysis is supported by a multi-period equilibrium 

programming model of the imperfect electricity market. Each 

strategic producer’s decision making is modeled through a bi-

level optimization problem. The upper level represents the 

profit maximization problem of the producer and the lower 

level represents endogenously the market clearing process, 

accounting for the time-coupling operational constraints of DS 

as well as network constraints. This bi-level problem is solved 

after converting it to a Mathematical Program with 

Equilibrium Constraints (MPEC), and linearizing the latter 

through suitable techniques. The oligopolistic market 

equilibria resulting from the interaction of multiple 

independent producers are determined by employing an 

iterative diagonalization method. 

Case studies on a test market with day-ahead horizon and 

hourly resolution operating over a 16-node transmission 

network quantitatively demonstrate the benefits of DS in 

mitigating producers’ market power, by employing relevant 

indexes from the literature. It should be noted that although 

existence of and convergence to oligopolistic market equilibria 

are not generally guaranteed, an equilibrium has been reached 

within a relatively small number of iterations in every 

examined case study. 

More specifically, the novel contributions of this paper are 

the following: 

- A multi-period equilibrium programming model of 

imperfect electricity markets is formulated, accounting for the 

time-coupling operational characteristics of DS as well as 

network constraints. In contrast to the agent-based model 

employed in [16], this approach determines oligopolistic 

market equilibria in a mathematically rigorous fashion. 

- Theoretical analysis of the beneficial impact of DS in 

mitigating market power by strategic producers is provided 

through a simplified two-period example without network 

constraints. This example demonstrates that DS reduces the 

extent of exercised market power at peak periods and 

increases it at off-peak periods, with the former reduction 

dominating the latter increase and resulting in an overall 

positive impact. 

- Quantitative analysis of this beneficial impact is provided 

through case studies with the developed equilibrium 

programming model on a test market reflecting the general 
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characteristics of the GB system. The results provide evidence 

of the beneficial impact of DS through the quantification of 

relevant market power indexes. 

- In cases where the network over which the market 

operates is congested, the extent of the beneficial impact of 

DS on the overall market efficiency as well as the impact on 

producers and demands at different areas are demonstrated to 

depend on the location of DS in the network. 

C.  Paper Structure 

The rest of this paper is organised as follows. Section III 

details the developed equilibrium programming model. 

Section IV provides a theoretical example of the beneficial 

impact of DS on electricity producers’ market power. Case 

studies and quantitative results are presented in Section V. 

Finally, Section VI discusses conclusions and future 

extensions of this work. 

III.  MODELING IMPERFECT ELECTRICITY MARKET WITH 

DEMAND SHIFTING 

A.  Modeling Assumptions 

For clarity reasons, the main assumptions behind the 

proposed model are outlined below: 

1) The considered market is a pool-based energy-only 

market, which is cleared by the market operator through 

the solution of a social welfare maximization problem. 

2) In order to account for the effect of the transmission 

network, the market clearing process incorporates a DC 

power flow model and yields locational marginal prices 

(LMP) 𝜆𝑛,𝑡 for each node 𝑛 and time period 𝑡. 

3) For presentation clarity reasons and without loss of 

generality, we assume that each producer 𝑖 owns a single 

generation unit. Each producer submits to the market an 

increasing step-wise offer curve, consisting of a number 

of blocks. 

4) Following the model employed in [6], [18], [20], [22], the 

strategic behavior of producer 𝑖  at period 𝑡  is expressed 

through a decision variable 𝑘𝑖,𝑡 ≥ 1. If 𝑘𝑖,𝑡 = 1, producer 

𝑖  behaves competitively and offers its actual marginal 

costs 𝜆𝑖,𝑏
𝐺 , ∀𝑏  to the market at 𝑡 . If 𝑘𝑖,𝑡 > 1 , producer 𝑖 

behaves strategically and offers higher than its actual 

marginal costs (𝑘𝑖,𝑡 ∗ 𝜆𝑖,𝑏
𝐺 , ∀𝑏) to the market at 𝑡. Producer 

𝑖 should determine the value of 𝑘𝑖,𝑡 by accounting for the 

trade-off between higher market clearing price and lower 

clearing quantity. More specifically, a higher 𝑘𝑖,𝑡 will tend 

to increase market prices at 𝑡, but at the same time it will 

tend to decrease the quantity sold by producer 𝑖 at 𝑡, since 

producers with lower submitted offers may replace 𝑖  in 

the merit order and / or the demand side may reduce 

demand at 𝑡. 

5) Each demand submits to the market a decreasing 

(capturing the effect of demand’s self-price elasticity) 

step-wise bid curve, consisting of a number of blocks [9]. 

The price / quantity bids are time-specific parameters, 

capturing the differentiated preferences of consumers 

across different time periods. 

6) A generic, technology-agnostic model is employed for the 

representation of DS flexibility. According to this model, 

demand at each time period can be reduced / increased 

within certain limits, and DS is energy neutral within the 

market horizon i.e. the total size of demand reductions is 

equal to the total size of demand increases (load 

recovery), assuming without loss of generality that DS 

does not involve energy gains or losses. 

7) Demand participants are assumed competitive entities 

revealing their true characteristics to the market, as the 

focus of this paper is on the impact of DS on the market 

power potential of the generation side, and not on the 

market power potential of the demand side. 

B.  Bi-level Optimization Model of Strategic Producer 

Following the approach employed in [17]-[28], the decision 

making process of each strategic producer  𝑖 is modeled 

through the bi-level optimization model (1)-(12). The upper 

level (UL) problem determines the optimal offering strategies 

maximizing the profit of the producer and is subject to the 

lower level (LL) problem representing the market clearing 

process. These two problems are coupled, since the offering 

strategies determined by the UL problem affect the objective 

function of the LL problem while the LMP and generation 

dispatch determined by the LL problem affect the objective 

function of the UL problem. 

(Upper level) 

max
{𝑘𝑖,𝑡}

∑ [(𝜆(𝑛:𝑖∈𝐼𝑛),𝑡 − 𝜆𝑖,𝑏
𝐺 )𝑔𝑖,𝑡,𝑏]𝑡,𝑏  (1) 

subject to: 

𝑘𝑖,𝑡 ≥ 1, ∀𝑡 (2) 

(Lower level) 

min
𝑉𝐿𝐿

 ∑ 𝑘𝑖,𝑡𝜆𝑖,𝑏
𝐺 𝑔𝑖,𝑡,𝑏𝑡,𝑏 + ∑ 𝑘𝑖−,𝑡𝜆𝑖−,𝑏

𝐺 𝑔𝑖−,𝑡,𝑏𝑖−,𝑡,𝑏 −

∑ 𝜆𝑗,𝑡,𝑐
𝐷 𝑑𝑗,𝑡,𝑐𝑗,𝑡,𝑐  (3) 

where: 

𝑉𝐿𝐿 ={𝑔𝑖,𝑡,𝑏, 𝑑𝑗,𝑡,𝑐, 𝑑𝑗,𝑡
𝑠ℎ, 𝜃𝑛,𝑡} (4) 

subject to: 

∑ 𝑑𝑗,𝑡,𝑐(𝑗∈𝐽𝑛),𝑐 + ∑ 𝑑𝑗,𝑡
𝑠ℎ

𝑗∈𝐽𝑛
− ∑ 𝑔𝑖,𝑡,𝑏(𝑖∈𝐼𝑛),𝑏 +

∑
𝜃𝑛,𝑡−𝜃𝑚,𝑡

𝑥𝑛,𝑚
𝑚∈𝑀𝑛

= 0: 𝜆𝑛,𝑡 , ∀𝑛, ∀𝑡  (5) 

0 ≤ 𝑔𝑖,𝑡,𝑏 ≤ 𝑔
𝑖,𝑏

: 𝜇𝑖,𝑡,𝑏
− , 𝜇𝑖,𝑡,𝑏

+ , ∀𝑖, ∀𝑡, ∀𝑏  (6) 

0 ≤ 𝑑𝑗,𝑡,𝑐 ≤ 𝑑𝑗,𝑡,𝑐: 𝜈𝑗,𝑡,𝑐
− , 𝜈𝑗,𝑡,𝑐

+ , ∀𝑗, ∀𝑡, ∀𝑐  (7) 

∑ 𝑑𝑗,𝑡
𝑠ℎ

𝑡 = 0: 𝜉𝑗 , ∀𝑗  (8) 

−𝛼𝑗 ∑ 𝑑𝑗,𝑡,𝑐𝑐 ≤ 𝑑𝑗,𝑡
𝑠ℎ ≤ 𝛼𝑗 ∑ 𝑑𝑗,𝑡,𝑐𝑐 : 𝜋𝑗,𝑡

− , 𝜋𝑗,𝑡
+ , ∀𝑗, ∀𝑡 (9) 

−𝐹𝑛,𝑚 ≤
𝜃𝑛,𝑡−𝜃𝑚,𝑡

𝑥𝑛,𝑚
≤ 𝐹𝑛,𝑚: 𝜌𝑛,𝑚,𝑡

− , 𝜌𝑛,𝑚,𝑡
+ , ∀𝑛, ∀𝑚 ∈ 𝑀𝑛, ∀𝑡 (10) 

−𝜋 ≤ 𝜃𝑛,𝑡 ≤ 𝜋: 𝜎𝑛,𝑡
− , 𝜎𝑛,𝑡

+ , ∀𝑛, ∀𝑡 (11) 

𝜃1,𝑡 = 0: 𝜑𝑡 , ∀𝑡  (12) 

The objective function (1) of the UL problem constitutes 

the profit of producer 𝑖. This problem is subject to the limits of 

the strategic offer variables (2) and the LL problem (3)-(12). 

The latter represents the market clearing process, maximizing 

the perceived social welfare (since the producers do not 

generally offer their actual marginal costs) or quasi social 

welfare [22] (3), subject to nodal demand-supply balance 
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constraints (5) (the Lagrangian multipliers of which constitute 

the LMP), the operational constraints of the generation side 

(6) and the demand side (7)-(9), and network constraints (10)-

(12). 

The time-shifting flexibility of demand 𝑗 is expressed by 

(8)-(9). The variable 𝑑𝑗,𝑡
𝑠ℎ  represents the change of demand 

with respect to the baseline level ∑ 𝑑𝑗,𝑡,𝑐𝑐  at period 𝑡 due to 

load shifting, taking negative / positive values when demand is 

moved away from / towards 𝑡. Constraint (8) ensures that DS 

is energy neutral within the market horizon (Section III-A). 

Constraint (9) expresses the limits of demand change at each 

period due to load shifting as a ratio 𝛼𝑗  (0 ≤ 𝛼𝑗 ≤ 1) of the 

baseline demand; 𝛼𝑗 = 0  implies that demand 𝑗 does not 

exhibit any time-shifting flexibility, while 𝛼𝑗 = 1 implies that 

the whole load of demand 𝑗 can be shifted in time. The utility 

of demand 𝑗 at period 𝑡 is given by (13). 

𝐷𝑈𝑗,𝑡 = ∑ 𝜆𝑗,𝑡,𝑐
𝐷 𝑑𝑗,𝑡,𝑐𝑐 − 𝜆(𝑛:𝑗∈𝐽𝑛),𝑡(∑ 𝑑𝑗,𝑡,𝑐𝑐 + 𝑑𝑗,𝑡

𝑠ℎ) (13) 

While the energy payment (second term) depends on the 

final demand after any potential load shifting, the benefit (first 

term) is assumed to depend only on the baseline demand (a 

reduction in the baseline demand reduces the perceived 

benefit). This assumption expresses the flexibility of the 

consumers to shift the operation of some of their loads without 

compromising the satisfaction they experience. 

C.  MPEC Model of Strategic Producer 

In order to solve the above bi-level optimization problem, 

the LL problem is replaced by its Karush-Kuhn-Tucker (KKT) 

optimality conditions, which is enabled by the continuity and 

convexity of the LL problem. This converts the bi-level 

problem to an MPEC which is formulated as: 

max
𝑉

∑ [(𝜆(𝑛:𝑖∈𝐼𝑛),𝑡 − 𝜆𝑖,𝑏
𝐺 )𝑔𝑖,𝑡,𝑏]𝑡,𝑏  (14) 

where: 

𝑉 = {𝑘𝑖,𝑡, 𝑉𝐿𝐿, 𝜆𝑛,𝑡, 𝜇𝑖,𝑡,𝑏
− , 𝜇𝑖,𝑡,𝑏

+ , 𝜈𝑗,𝑡,𝑐
− , 𝜈𝑗,𝑡,𝑐

+ , 𝜉𝑗, 𝜋𝑗,𝑡
− , 𝜋𝑗,𝑡

+ , 

𝜌𝑛,𝑚,𝑡
− , 𝜌𝑛,𝑚,𝑡

+ , 𝜎𝑛,𝑡
− , 𝜎𝑛,𝑡

+ , 𝜑𝑡}             (15) 

subject to: 

(2), (5), (8), (12) 

𝑘𝑖,𝑡𝜆𝑖,𝑏
𝐺 − 𝜆(𝑛:𝑖∈𝐼𝑛),𝑡 − 𝜇𝑖,𝑡,𝑏

− + 𝜇𝑖,𝑡,𝑏
+ = 0, ∀𝑡, ∀𝑏 (16) 

𝑘𝑖−,𝑡𝜆𝑖−,𝑏
𝐺 − 𝜆(𝑛:𝑖−∈𝐼𝑛),𝑡 − 𝜇𝑖−,𝑡,𝑏

− + 𝜇𝑖−,𝑡,𝑏
+ = 0, ∀𝑖−, ∀𝑡, ∀𝑏 (17) 

−𝜆𝑗,𝑡,𝑐
𝐷 + 𝜆(𝑛:𝑗∈𝐽𝑛),𝑡 − 𝜈𝑗,𝑡,𝑐

− + 𝜈𝑗,𝑡,𝑐
+ − 𝛼𝑗𝜋𝑗,𝑡

− − 𝛼𝑗𝜋𝑗,𝑡
+ =

0, ∀𝑗, ∀𝑡, ∀𝑐 (18) 

𝜆(𝑛:𝑗∈𝐽𝑛),𝑡 + 𝜉𝑗 − 𝜋𝑗,𝑡
− + 𝜋𝑗,𝑡

+ = 0, ∀𝑗, ∀𝑡 (19) 

∑
𝜆𝑛,𝑡−𝜆𝑚,𝑡

𝑥𝑛,𝑚
𝑚∈𝑀𝑛

+ ∑
𝜌𝑛,𝑚,𝑡

+ −𝜌𝑚,𝑛,𝑡
+

𝑥𝑛,𝑚
𝑚∈𝑀𝑛

− ∑
𝜌𝑛,𝑚,𝑡

− −𝜌𝑚,𝑛,𝑡
−

𝑥𝑛,𝑚
𝑚∈𝑀𝑛

+

𝜎𝑛,𝑡
+ − 𝜎𝑛,𝑡

− + (𝜑𝑡)𝑛=1 = 0, ∀𝑛, ∀𝑡 (20) 

0 ≤ 𝜇𝑖,𝑡,𝑏
− ⊥ 𝑔𝑖,𝑡,𝑏 ≥ 0, ∀𝑖, ∀𝑡, ∀𝑏 (21) 

0 ≤ 𝜇𝑖,𝑡,𝑏
+ ⊥ (𝑔

𝑖,𝑏
− 𝑔𝑖,𝑡,𝑏) ≥ 0, ∀𝑖, ∀𝑡, ∀𝑏 (22) 

0 ≤ 𝜈𝑗,𝑡,𝑐
− ⊥ 𝑑𝑗,𝑡,𝑐 ≥ 0, ∀𝑗, ∀𝑡, ∀𝑐 (23) 

0 ≤ 𝜈𝑗,𝑡,𝑐
+ ⊥ (𝑑𝑗,𝑡,𝑐 − 𝑑𝑗,𝑡,𝑐) ≥ 0, ∀𝑗, ∀𝑡, ∀𝑐 (24) 

0 ≤ 𝜋𝑗,𝑡
− ⊥ (𝑑𝑗,𝑡

𝑠ℎ + 𝛼𝑗 ∑ 𝑑𝑗,𝑡,𝑐𝑐 ) ≥ 0, ∀𝑗, ∀𝑡 (25) 

0 ≤ 𝜋𝑗,𝑡
+ ⊥ (𝛼𝑗 ∑ 𝑑𝑗,𝑡,𝑐𝑐 − 𝑑𝑗,𝑡

𝑠ℎ) ≥ 0, ∀𝑗, ∀𝑡 (26) 

0 ≤ 𝜌𝑛,𝑚,𝑡
− ⊥ (𝐹𝑛,𝑚 +

𝜃𝑛,𝑡−𝜃𝑚,𝑡

𝑥𝑛,𝑚
) ≥ 0, ∀𝑛, ∀𝑚 ∈ 𝑀𝑛, ∀𝑡 (27) 

0 ≤ 𝜌𝑛,𝑚,𝑡
+ ⊥ (𝐹𝑛,𝑚 −

𝜃𝑛,𝑡−𝜃𝑚,𝑡

𝑥𝑛,𝑚
) ≥ 0, ∀𝑛, ∀𝑚 ∈ 𝑀𝑛, ∀𝑡 (28) 

0 ≤ 𝜎𝑛,𝑡
− ⊥ (𝜋 + 𝜃𝑛,𝑡) ≥ 0, ∀𝑛, ∀𝑡 (29) 

0 ≤ 𝜎𝑛,𝑡
+ ⊥ (𝜋 − 𝜃𝑛,𝑡) ≥ 0, ∀𝑛, ∀𝑡 (30) 

The objective function of the MPEC is identical to the 

objective function of the UL problem. The set of decision 

variables (15) includes the decision variables of the UL and 

the LL problem as well as the Lagrangian multipliers 

associated with the constraints of the LL problem. The KKT 

optimality conditions of the LL problem correspond to 

equations (16)-(30). 

D.  MILP Model of Strategic Producer 

The above MPEC formulation is non-linear and thus any 

solution obtained by commercial solvers is not guaranteed to 

be globally optimal. The objective of this section is to 

transform this MPEC to a mixed-integer linear problem 

(MILP) which can be efficiently solved to global optimality 

using commercial branch-and-cut solvers [27]-[29]. More 

specifically, the above MPEC includes two types of non-

linearities. The first one involves the bilinear 

terms  ∑ 𝜆(𝑛:𝑖∈𝐼𝑛),𝑡𝑔𝑖,𝑡,𝑏𝑡,𝑏  in the objective function (14). 

Adopting the linearization approach proposed in [26], which 

exploits the strong duality theorem and some of the KKT 

equalities, these bilinear terms are replaced with the following 

linear expression: 

∑ (𝜆𝑗,𝑡,𝑐
𝐷 𝑑𝑗,𝑡,𝑐 − 𝜈𝑗,𝑡,𝑐

+ 𝑑𝑗,𝑡,𝑐)𝑗,𝑡,𝑐 − ∑ (𝑘𝑖−,𝑡𝜆𝑖−,𝑏
𝐺 𝑔𝑖−,𝑡,𝑏 +𝑖−,𝑡,𝑏

𝜇𝑖−,𝑡,𝑏
+ 𝑔

𝑖−,𝑏
) − ∑ (𝜌𝑛,𝑚,𝑡

− + 𝜌𝑛,𝑚,𝑡
+ )𝐹𝑛,𝑚𝑛,(𝑚∈𝑀𝑛),𝑡 −

∑ (𝜎𝑛,𝑡
− + 𝜎𝑛,𝑡

+ )𝜋𝑛,𝑡    (31) 

The second non-linearity involves the bilinear terms in the 

complementarity conditions (21)-(30), which can be expressed 

in the generic form 0 ≤ 𝜇 ⊥ 𝑝 ≥ 0, with 𝜇 and 𝑝 representing 

generic dual and primal terms respectively. The linearization 

approach proposed in [30] replaces each of these conditions 

with the set of mixed-integer linear conditions 𝜇 ≥ 0, 𝑝 ≥ 0, 

𝜇 ≤ 𝜔𝑀𝐷 , 𝑝 ≤ (1 − 𝜔)𝑀𝑃 , where 𝜔  is an auxiliary binary 

variable, while 𝑀𝐷  and 𝑀𝑃  are large positive constants. The 

set of decision variables of the MILP formulation includes the 

set (15) as well as the auxiliary binary variables introduced for 

linearizing (21)-(30). 

The values of the parameters 𝑀𝐷  and  𝑀𝑃  should be 

suitably selected in order to achieve not only accurate but also 

computationally efficient solution of the MILP. More 

specifically, 𝑀𝐷  and 𝑀𝑃  should be large enough in order to 

avoid imposing additional upper bounds on the decision 

variables and thus resulting in an inaccurate solution of the 

MILP. On the other hand, extremely large values should be 

avoided as they hinder the convergence of branch-and-cut 

solvers and result in large computational times [25]-[26]. 

Suitable values of the parameters 𝑀𝑃 corresponding to primal 

terms can be more easily determined based on the bounds of 
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primal variables which correspond to explicit physical limits. 

For example, the parameter 𝑀𝑃  corresponding to the primal 

term of the complementarity constraint (21) is set equal to the 

maximum power output limit 𝑔
𝑖,𝑏

 which physically limits the 

primal variable 𝑔𝑖,𝑡,𝑏 . Suitable selection of the parameters 𝑀𝐷 

corresponding to dual terms is more challenging since the dual 

variables do not exhibit explicit physical limits. In this 

context, the heuristic approach presented in [26] has been 

employed to tune parameters 𝑀𝐷. 

E.  Determining Market Equilibrium 

The above MPEC / MILP model expresses the decision 

making problem of a single strategic producer. In order to 

determine the oligopolistic market equilibrium under the 

participation of multiple strategic producers, recent work has 

employed two distinct approaches. Under the first one, which 

was employed in [22]-[25], the KKT conditions of all 

producers’ MPEC problems are combined into a single 

optimization problem, known as Equilibrium Program with 

Equilibrium Constraints (EPEC), the solutions of which 

generally constitute market equilibria. The main drawback of 

this approach is its modeling and computational complexity, 

mainly associated with the significant non-linearities of the 

EPEC formulation. 

The second one employs an iterative approach, which is 

known as diagonalization, was introduced in the mathematical 

paper [31] and was employed in [6], [17]-[21]. At each 

iteration, each producer 𝑖 solves its respective MILP problem -

accounting for the offering strategies 𝑘𝑖−,𝑡  of the rest of the 

producers as fixed parameters and equal to their values in the 

previous iteration- until the iterative approach converges i.e. 

the offering strategies of all producers remain constant with 

respect to the previous iteration. As discussed in [17]-[21], this 

convergence state corresponds by definition to a pure strategy 

Nash equilibrium of the oligopolistic market, since none of the 

producers can increase their profits by unilaterally modifying 

their offering strategies. Given that the computational 

challenges of EPEC formulations become even more 

significant in the multi-period, time-coupling and network-

constrained framework of this paper, the authors have decided 

to employ the iterative diagonalization approach. 

As discussed in the literature, existence and uniqueness of 

Nash equilibria are not generally guaranteed [17]-[25], [28], 

[32]. Furthermore, if multiple Nash equilibria exist, a global 

Nash equilibrium may exist, where the profits of all competing 

players are higher than their respective profits in all other 

Nash equilibria [32]. Finally, the iterative diagonalization 

approach is not generally guaranteed to converge to an 

equilibrium, even if equilibria exist [17]-[19], [23], [25]. 

However, an equilibrium has been reached within a relatively 

small number of iterations in every examined case study 

(Section V). This finding, along with the focus of this work on 

investigating the impact of DS on producers’ market power, 

sets a detailed analysis of existence, uniqueness, globality and 

convergence to an equilibrium out of the scope of this paper. 

IV.  THEORETICAL ANALYSIS OF IMPACT OF DEMAND 

SHIFTING ON PRODUCERS’ MARKET POWER 

This section provides a theoretical example demonstrating 

the beneficial impact of DS on the extent of generation market 

power, in a simplified market representation involving only 

two periods (one peak and one off-peak period), no network 

constraints and inelastic demand. As discussed in Section II 

and demonstrated in [10]-[15], DS drives flattening of the 

demand profile by reducing demand during peak time periods 

and increasing it during off-peak time periods. 

Fig. 1 illustrates the impact of this demand flattening effect 

on the extent of market power exercised by strategic producers 

in the investigated example. The two curves represent in a 

simplified fashion the aggregate offer curves of the generation 

side -characterized by increasing slopes [1]-under competitive 

and strategic behavior. The price intercept and the slope of 

each segment of the strategic curve are higher than the 

respective parameters of the competitive curve (Section III-A). 

DS reduces peak demand from 𝑑2 to 𝑑2
′  and increases off-peak 

demand from 𝑑1  to 𝑑1
′ . The intersections of the offer curves 

with the vertical demand bid curves (given that demand is 

assumed inelastic) determine the market clearing prices in the 

respective cases. The price increments ∆𝜆  represent the 

increase of the market clearing prices driven by the exercise of 

market power in the respective cases. As demonstrated in Fig. 

1, this price increase is much higher during the peak period 

due to the increasing slope of the offer curve. 
 

Demand

Price

1
1

2

2

Strategic 

offer curve

Competitive 

offer curve

1d 
2d1d 2d 

 
Fig. 1. Impact of demand shifting on the extent of market power exercised by 

the generation side. 
 

Fig. 1 demonstrates that DS reduces the price increment at 

the peak period from ∆𝜆2 to ∆𝜆2
′  while it increases it at the off-

peak period from ∆𝜆1  to ∆𝜆1
′ . Although the peak demand 

reduction is equal to the off-peak demand increase, i.e. 𝑑2 −
𝑑2

′ = 𝑑1
′ − 𝑑1 (given the assumed energy neutrality constraint 

(8)), the price increment reduction at the peak period is higher 
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than its increase at the off-peak period, i.e. ∆𝜆2 − ∆𝜆2
′ >

∆𝜆1
′ − ∆𝜆1, due to the increasing slope of the offer curve. This 

effect also applies to the resulting producers’ profit increments 

(as quantitatively explored in Section V) and implies that DS 

results in an overall reduction of the extent of market power 

exercised by the generation side. 

V.  CASE STUDIES 

A.  Test Data and Implementation 

The examined studies quantitatively demonstrate the 

beneficial impact of DS on the market power exercised by 

electricity producers in a test market with day-ahead horizon 

and hourly resolution, operating over a 16-node model of the 

GB transmission network (Fig. 2) [33]. Nodes 1-6 correspond 

to Scotland while nodes 7-16 correspond to England. 
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13
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11

14
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12

1516

Scotland

England

 
Fig. 2. 16-node model of GB transmission network. 
 

The market includes 7 electricity producers, with their 

location provided in Table I and their cost and maximum 

output data derived from [34]-[35]. The merit order of the 

units owned by the producers is presented in Table I (1 

indicating the unit with the lowest marginal costs) and reflects 

the actual situation in the GB system, where Scotland is 

characterized by cheaper generation.  
 

TABLE I 
LOCATION AND MERIT ORDER OF PRODUCERS  

Producer 𝑖 1 2 3 4 5 6 7 

Node 3 5 6  9  11 15 16 

Merit order 1 3 5 2 4 6 7 
 

The market also includes 13 demand participants, with their 

location and relative size (expressed as % of the total system 

demand and assuming that it remains identical for every time 

period) presented in Table II. This table reflects the actual 

situation in the GB system, where the largest demand centres 

are located in England. The time-specific benefit and 

maximum input data of these demands are derived from [34]-

[35]. Different scenarios are examined regarding the time-

shifting flexibility of the demand side, as expressed by 

parameter 𝛼𝑗. 
 

TABLE II 

LOCATION AND RELATIVE SIZE OF DEMANDS  

Demand 𝑗 1 2 3 4 5 6 7 8 9 10 11 12 13 

Node 1 2 4 5 6 7 8 9 11 12 14 15 16 

Size (%) 1.8 2.0 3.6 5.6 0.8 19 14.1 5.6 5.9 6.3 10.4 2.6 22.3 
 

The developed equilibrium programming model has been 

coded and solved using the optimization software FICOTM 

Xpress [36] on a computer with a 6-core 3.47 GHz Intel(R) 

Xeon(R) X5690 processor and 192 GB of RAM. A market 

equilibrium has been reached within a relatively small number 

of iterations in every examined case study. 

B.  Impact of Demand Shifting: Uncongested Network 

This section considers a case where the network capacity 

limits are neglected and therefore the network is not congested. 

For different DS flexibility (assumed identical for every 

demand, i.e. 𝛼𝑗 = 𝛼, ∀𝑗) scenarios, two cases are compared: i) 

a case of perfectly competitive market (indicated by the 

superscript 𝑐  in the remainder), where all producers behave 

competitively at all time periods, i.e. 𝑘𝑖,𝑡 = 1,∀𝑖,∀𝑡, and ii) a 

case of imperfect, oligopolistic market (indicated by the 

superscript 𝑠 in the remainder), where the offering strategies 

of the producers are determined based on the developed 

equilibrium model (Section III). In order to quantitatively 

characterize the extent of market power exercised by the 

generation side, relevant indexes from the literature [6]-[7] are 

employed. 

Fig. 3 presents the hourly system demand for different DS 

flexibility scenarios in the oligopolistic market case. As 

discussed before, DS drives flattening of the demand profile 

by reducing demand during peak time periods and increasing 

it during off-peak time periods, although the daily energy 

consumption remains the same. 
 

 
Fig. 3. Hourly system demand for different DS flexibility scenarios in the 

oligopolistic market case. 
 

Fig. 4 presents the increment of market prices driven by the 

exercise of market power for different DS flexibility scenarios. 

As qualitatively illustrated in Section IV, DS reduces the price 

increment at peak periods and increases it at off-peak periods, 

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
y
st

em
 d

em
an

d
 (

G
W

)

Time (h)

α = 0% α = 2% α = 4%

α = 6% α = 8% α = 10%



 7 

with the former reduction being significantly higher than the 

latter increase and resulting in an overall positive impact. 
 

 
Fig. 4. Hourly market price increment driven by the exercise of market power 

for different DS flexibility scenarios. 
 

This positive impact is justified through the quantification 

of the average Lerner index (AveLI) (32), which expresses the 

average increment of market prices driven by the exercise of 

market power; as illustrated in Fig. 5, AveLI is reduced with 

increasing DS flexibility. 

𝐴𝑣𝑒𝐿𝐼 = average
𝑛,𝑡

 
𝜆𝑛,𝑡

𝑠 −𝜆𝑛,𝑡
𝑐

𝜆𝑛,𝑡
𝑠  (%) (32) 

 

 
Fig. 5. Average Lerner index (AveLI) and generation profit deviation index 

(GPDI) for different DS flexibility scenarios. 
 

This reduction of producers’ ability to manipulate market 

prices has also an impact on their additional profit driven by 

the exercise of market power. Fig. 6 presents the aggregate 

increment of all producers’ hourly profit for different DS 

flexibility scenarios. Following the trend characterising the 

price increments, DS reduces the hourly profit increment 

during peak periods and increases it during off-peak periods, 

with the former reduction being significantly higher than the 

latter increase. As a result, the total profit increment driven by 

the exercise of market power is significantly reduced. This 

reduction is justified through the quantification of the 

generation profit deviation index (GPDI) (33); as illustrated in 

Fig. 5, GPDI is reduced with increasing DS flexibility, 

implying that the latter reduces the additional profit driven by 

the exercise of market power. 

𝐺𝑃𝐷𝐼 =
∑ 𝐺𝑃𝑖,𝑡

𝑠
𝑖,𝑡 −∑ 𝐺𝑃𝑖,𝑡

𝑐
𝑖,𝑡

∑ 𝐺𝑃𝑖,𝑡
𝑐

𝑖,𝑡
 (%) (33) 

 
Fig. 6. Aggregate hourly generation profit increment driven by the exercise of 

market power for different DS flexibility scenarios. 
 

The reduction of the generation market power has also 

beneficial effects on demand utility and social welfare, which 

are justified by the quantification of the demand utility 

deviation index (DUDI) (34) and the market inefficiency index 

(MII) (35), respectively. 

𝐷𝑈𝐷𝐼 =
∑ 𝐷𝑈𝑗,𝑡

𝑠
𝑗,𝑡 −∑ 𝐷𝑈𝑗,𝑡

𝑐
𝑗,𝑡

∑ 𝐷𝑈𝑗,𝑡
𝑐

𝑗,𝑡
 (%) (34) 

𝑀𝐼𝐼 =
∑ 𝑆𝑊𝑡

𝑠
𝑡 −∑ 𝑆𝑊𝑡

𝑐
𝑡

∑ 𝑆𝑊𝑡
𝑐

𝑡
 (%) (35) 

Fig. 7 demonstrates that the absolute values of DUDI and 

MII are both reduced with increasing DS flexibility. The 

absolute DUDI reduction implies that DS reduces the demand 

utility loss driven by the exercise of market power, and thus 

enables consumers to more efficiently preserve their economic 

surplus against producers’ strategic behavior. The absolute 

MII reduction implies that DS reduces the social welfare loss 

driven by the exercise of market power and thus enhances the 

overall efficiency of the market. 

 
Fig. 7. Demand utility deviation index (DUDI) and market inefficiency index 

(MII) for different DS flexibility scenarios. 
 

Table III provides an overview of the computational 

performance of the developed equilibrium programming 

model for each of the examined case studies, by presenting a) 

the total computational time, b) the number of iterations of the 

diagonalization approach, and c) the average computational 

time per iteration of the diagonalization approach (which 

reflects the computational time for the solution of the MILP 

decision making problems of the strategic producers). It can 

be concluded that the computational performance of the 

equilibrium programming model does not exhibit a clear trend 

with respect to the extent of demand shifting flexibility in the 

system. 
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TABLE III 
COMPUTATIONAL PERFORMANCE OF EQUILIBRIUM PROGRAMMING MODEL IN 

CASE STUDIES OF SECTION V-B 

DS 
flexibility 

Total CPU time 
(sec) 

Number of 
iterations 

Average CPU time 
per iteration (sec) 

𝛼 = 0% 3050 14 218 

𝛼 = 2% 3253 17 191 

𝛼 = 4% 3478 15 232 

𝛼 = 6% 3894 22 177 

𝛼 = 8% 2991 14 214 

𝛼 = 10% 3518 23 153 
 

C.  Impact of Demand Shifting: Congested Network 

In this section the impact of network congestion and the 

location of DS flexibility are investigated by examining the 

following cases: 

U: Network capacity limits are neglected and therefore the 

network is uncongested, under both competitive and 

oligopolistic market settings. The demand side has no shifting 

flexibility. 

U-DS-SC: The network is uncongested and demands in 

Scotland have shifting flexibility. 

U-DS-EN: The network is uncongested and demands in 

England have shifting flexibility. 

U-DS-SC&EN: The network is uncongested and demands 

in both Scotland and England have shifting flexibility. 

C: Network capacity limits are taken into account; in this 

case the line (6,7) connecting Scotland and England gets 

congested during some peak hours (reflecting the actual 

situation in the GB system), under both competitive and 

oligopolistic market settings. The demand side has no shifting 

flexibility. 

C-DS-SC: Line (6,7) is congested and demands in Scotland 

have shifting flexibility. 

C-DS-EN: Line (6,7) is congested and demands in England 

have shifting flexibility. 

C-DS-SC&EN: Line (6,7) is congested and demands in 

both Scotland and England have shifting flexibility. 

Given that England is characterized by significantly higher 

demand than Scotland (Table II), in order to provide a 

meaningful analysis regarding the impact of the location of DS 

flexibility in the network, the overall extent of DS flexibility is 

assumed identical in cases U-DS-SC, U-DS-EN, U-DS-

SC&EN, C-DS-SC, C-DS-EN and C-DS-SC&EN and 

equivalent to the 𝛼 = 6% scenario of Section V-B. In cases U-

DS-SC&EN and C-DS-SC&EN, it is assumed that demands in 

Scotland and England exhibit the same extent of DS flexibility 

i.e. they equally share the overall DS flexibility. 

Fig. 8-9 present the GPDI and DUDI corresponding to 

producers and demands in Scotland and England, and Fig. 10 

presents the MII, for each of the above cases. First of all, let us 

examine cases without DS flexibility, in order to understand 

the effects of network congestion which are highly relevant for 

the subsequent analysis. When the network is uncongested, the 

locational prices are identical in the two areas, while 

congestion in line (6,7) yields a locational price differential 

between the two areas [1], as illustrated in Fig. 11. More 

specifically, during periods when the line is congested, 

England -characterized by more expensive generation and 

higher demand- exhibits higher price than the one observed in 

the uncongested case, while Scotland -characterized by 

cheaper generation and lower demand- exhibits lower price 

than the one observed in the uncongested case. 
 

 
Fig. 8. Generation profit deviation index (GPDI) corresponding to producers 

in Scotland and England for each of the examined cases. 
 

 
Fig. 9. Demand utility deviation index (DUDI) corresponding to demands in 

Scotland and England for each of the examined cases. 
 

 
Fig. 10. Market inefficiency index (MII) for each of the examined cases. 
 

Producers’ market power is more significant at higher price 

levels due to the increasing slope of the offer curve (Section 

IV). Therefore, congestion increases the GPDI and the 

absolute value of DUDI corresponding to producers and 

demands in England, while it reduces the GPDI and the 

absolute value of DUDI corresponding to producers and 

demands in Scotland, as observed in Fig. 8-9. In other words, 

congestion creates a more favourable setting for producers in 

England and demands in Scotland, and a less favourable 

setting for producers in Scotland and demands in England. 

The overall impact of congestion on the efficiency of the 

market is negative (as justified by the increase of the absolute 

value of MII in Fig. 10), since the negative impact on 

producers’ market power in the higher-priced area (England) 

dominates the positive impact in the lower-priced area 

(Scotland). These findings verify the conclusions of previous 
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work [6], [18]-[20], [22], [25] that network congestion favours 

market power exercise by strategically-located producers and 

aggravates the overall impacts of market power exercise. 
 

 
Fig. 11. Price differential between Scotland and England for each of the cases 

with network congestion in the oligopolistic market case. 
 

Let us now examine the impact of introducing DS flexibility 

in the market. When the network is uncongested, producers’ 

market power is reduced (Section V-B), resulting in a 

reduction of the MII as well as the GPDI and the absolute 

value of DUDI for producers and demands in both areas. 

Furthermore, the location of DS flexibility does not have an 

impact on the market outcome and thus cases U-DS-SC, U-

DS-EN and U-DS-SC&EN exhibit the same indexes’ values 

(Fig. 8-10). 

When the network is congested though, the location of DS 

flexibility affects the market outcome significantly. Fig. 12-13 

present the aggregate increment of the hourly profit 

corresponding to producers in Scotland and England for each 

of the cases with network congestion. When demands in 

Scotland have shifting flexibility, the flattening effect on 

Scotland’s demand profile aggravates congestion on line (6,7), 

by increasing the number of hours that the line is congested 

and the price differential between the two areas, with respect 

to case C (Fig. 11). As a result, the hourly profit increment 

corresponding to producers in Scotland / England is 

significantly reduced / increased during peak hours when the 

network gets congested (Fig. 12-13). Therefore, the GPDI and 

the absolute value of DUDI corresponding to producers and 

demands in Scotland are reduced, while the GPDI and the 

absolute value of DUDI corresponding to producers and 

demands in England are increased, as observed in Fig. 8-9. In 

other words, DS flexibility in Scotland creates a less 

favourable setting for producers in Scotland and demands in 

England, and a more favourable setting for producers in 

England and demands in Scotland. 

On the other hand, when demands in England have shifting 

flexibility, the flattening effect on England’s demand profile 

relieves congestion on line (6,7), by reducing the number of 

hours that the line is congested and the price differential 

between the two areas, with respect to case C (Fig. 11). As a 

result, the hourly profit increment corresponding to producers 

in Scotland / England is significantly increased / reduced 

during peak hours when the network gets congested (Fig. 12-

13). Therefore, the GPDI and the absolute value of DUDI 

corresponding to producers and demands in Scotland are 

increased, while the GPDI and the absolute value of DUDI 

corresponding to producers and demands in England are 

reduced, as observed in Fig. 8-9. In other words, DS flexibility 

in England creates a less favourable setting for producers in 

England and demands in Scotland, and a more favourable 

setting for producers in Scotland and demands in England. 

Finally, the case C-DS-SC&EN (where demands in 

Scotland and England equally share the overall DS flexibility) 

exhibits intermediate results between the C-DS-SC and the C-

DS-EN cases (Fig. 8-13), given that the above discussed 

effects of DS in Scotland and England are now combined. 
 

 
Fig. 12. Aggregate hourly generation profit increment corresponding to 

producers in Scotland for each of the cases with network congestion. 
 

 
Fig. 13. Aggregate hourly generation profit increment corresponding to 

producers in England for each of the cases with network congestion. 
 

The overall impact of DS on the efficiency of the market is 

positive irrespectively of its location, as the absolute value of 

MII is reduced in all C-DS-SC, C-DS-EN and C-DS-SC&EN 

cases with respect to the C case (Fig. 10). However, this 

positive impact is higher when it is located in the higher-

priced area (England) where producers’ market power 

potential is more significant and lower when it is located in the 

lower-priced area (Scotland) where producers’ market power 

potential is less significant, while the case C-DS-SC&EN 

exhibits an intermediate impact. In other words, the benefits of 

DS in mitigating producers’ market power depend on its 

location in cases of network congestion. 

Table IV provides an overview of the computational 

performance of the developed equilibrium programming 

model for each of the examined case studies. It can be 

concluded that both the number of iterations and the average 

computational time per iteration (and therefore the total 

computational time) are higher when the network is congested. 
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TABLE IV 
COMPUTATIONAL PERFORMANCE OF EQUILIBRIUM PROGRAMMING MODEL IN 

CASE STUDIES OF SECTION V-C 

Case 
Total CPU time 

(sec) 
Number of 
iterations 

Average CPU time 
per iteration (sec) 

U 3050 14 218 

U-DS-SC 3902 22 177 

U-DS-EN 3846 22 175 

U-DS-SC&EN 3917 22 178 

C 8758 30 292 

C-DS-SC 10732 36 298 

C-DS-EN 9142 33 277 

C-DS-SC&EN 9719 34 286 
 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper has provided for the first time theoretical and 

quantitative analysis of the beneficial impact of demand 

shifting flexibility in mitigating market power by strategic 

producers in electricity markets. Theoretical analysis of this 

impact has been supported through a simplified two-period 

example without network constraints. This example has 

demonstrated that DS reduces the extent of exercised market 

power at peak periods and increases it at off-peak periods, 

with the former reduction dominating the latter increase and 

resulting in an overall positive impact. These effects are not 

captured in previous works modeling consumers’ flexibility 

solely through their self-price elasticity, which results in a 

simple demand reduction at periods of high prices and does 

not capture the realistic consumers’ flexibility to shift the 

operation of their loads from periods of higher prices to 

periods of lower prices. 

Quantitative analysis has been supported by a multi-period 

equilibrium programming model of the imperfect electricity 

market, accounting for the time-coupling operational 

characteristics of DS as well as network constraints. Case 

studies with the developed model on a test market reflecting 

the general generation and demand characteristics of the GB 

system have quantitatively demonstrated the benefits of DS in 

mitigating producers’ market power, by employing relevant 

indexes from the literature. In cases without network 

congestion, the location of DS flexibility does not have an 

impact on producers’ market power exercise, but an increasing 

DS flexibility is shown to i) reduce strategic producers’ ability 

to manipulate market prices, and as a result ii) reduce strategic 

producers’ additional profit driven by the exercise of market 

power, iii) allow consumers to more efficiently preserve their 

economic surplus against producers’ strategic behavior, and 

iv) reduce the social welfare loss and thus enhance the overall 

efficiency of the market. In cases with network congestion, DS 

flexibility still has an overall positive impact on market 

efficiency, but the extent of this benefit as well as the impact 

on producers and demands at different areas depends on the 

location of DS flexibility in the network, an effect which has 

not been explored in previous works. 

Future work aims at enhancing the presented model in four 

directions. First of all, beyond the generic, technology-

agnostic representation of DS flexibility employed in this 

paper, detailed representations of different residential and 

commercial flexible demand technologies, including electric 

vehicles, electric heat pumps and smart appliances, will be 

incorporated in the model. This will enable a comprehensive 

analysis of the value of different demand response initiatives 

in imperfect electricity markets. 

Secondly, the presented model is deterministic, assuming 

that strategic producers have accurate projections of their 

competitors’ strategic offers and the extent of DS flexibility. 

Future work aims at incorporating uncertainties that strategic 

producers face regarding these parameters, thus reformulating 

the developed model as a stochastic equilibrium programming 

model, and investigating the role and value of DS flexibility in 

this context. 

Furthermore, this paper has assumed that demand 

participants are competitive entities revealing their true 

characteristics to the market, as the focus has been set on the 

impact of DS on producers’ market power. Future work will 

model strategic demand participants, misreporting their actual 

DS flexibility to the market in order to increase their 

surpluses, and will explore the impacts of such strategic 

behavior on the market outcome. 

Finally, the developed equilibrium programming model as 

well as similar models in the existing literature [6]-[8], [17]-

[28], neglect the complex unit commitment constraints of the 

generation side, due to their inherent inability to deal with 

binary decision variables in the lower level of the strategic 

producers’ bi-level optimization problems. However, these 

complex operating properties may affect the market outcome 

and the value of demand flexibility, as the latter may have a 

significant impact on the scheduling patterns and offering 

strategies of different producers. In this context, future work 

will explore mathematical techniques enabling (approximate) 

incorporation of these complex constraints in the developed 

model without deteriorating significantly its computational 

performance. 
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