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Abstract— An identification-free control design strategy for
discrete-time linear time-varying systems with unknown dy-
namics is introduced. The closed-loop system (under state
feedback) is parametrised with data-dependent matrices ob-
tained from an ensemble of input-state trajectories collected
offline. This data-driven system representation is used to classify
control laws yielding trajectories which satisfy a certain bound
and to solve the linear quadratic regulator problem - both using
data-dependent linear matrix inequalities only. The results are
illustrated by means of a numerical example.

I. INTRODUCTION

Most classical contributions to modern control theory rely
on the explicit knowledge of a plant model for controller
design, e.g. a state-space model or transfer function. They
hence fall into the category of model-based control. In
practice, an accurate model of the system to be controlled
is rarely known in advance. System models are typically
derived from first principles or identified using data. Com-
mon system identification methods include, for example,
prediction error and subspace methods [1]. Once a model
describing the system behaviour is available, a control law
can be designed in a separate step, using any “classical”
technique.

Data-driven control methods, on the other hand, skip the
modelling step altogether and aim to control the system
directly from data. This does not only have theoretical
value, but is also attractive for situations in which system
identification can be difficult or time-consuming. The topic
has recently attracted significant interest by the research
community. In particular, with the availability of increasing
computational power and novel machine learning techniques,
model-free controllers using neural networks [2] and rein-
forcement learning [3], [4] have gained interest. However,
learning from data is not a new concept in control theory
and can be traced back to the work on PID tuning by
Ziegler and Nichols [5] in the 1940s. Further contributions
to data-driven control include model-free adaptive control
[6], iterative feedback tuning [7], virtual reference feedback
tuning [8] and unfalsified control [9]. For an overview of and
more references on direct data-driven control the interested
reader is referred to the survey papers [10] and [11], for
instance.

A central question in data-driven control is how to sub-
stitute a system model with data. For linear time-invariant
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(LTI) systems Willems et al.’s fundamental lemma [12] gives
an answer to that question. In brief, the result states that
all possible trajectories an LTI system can produce can be
parametrised by a single, finite-length input-output trajectory
- provided the input sequence is exciting the system dynam-
ics sufficiently, which is known as persistency of excitation.
In [13] De Persis and Tesi use the fundamental lemma to de-
rive a data-driven representation of LTI discrete-time systems
in closed-loop with static state feedback, where the controller
itself is parametrised using data only. The framework is used
to formulate and solve the stabilisation and linear quadratic
regulator (LQR) problems in terms of data-dependent linear
matrix inequalities (LMIs). This approach is extended to the
finite-horizon LQR problem in [14]. In [15] the notion of
persistency of excitation is extended to multiple datasets,
allowing to extract sufficient information from data that
might be corrupted or missing samples. In [16] persistency of
excitation is extended to certain classes of nonlinear systems.
A data-enabled predictive control (DeePC) algorithm for
unknown discrete-time LTI systems has been developed
in [17]. Based on the fundamental lemma the open-loop
dynamics and state estimate in an optimisation problem
over the prediction horizon are replaced with a constraint
containing only input-output data collected offline. In [18] it
is shown that data-driven control and analysis are possible
in certain cases in which unique system identification is not,
because the data is not persistently exciting. These findings
further emphasise the potential of direct data-driven control
methods compared to the classical identification and model-
based design approach.

Linear time-varying (LTV) systems appear in many real
life applications, for instance due to changing aerodynamic
coefficients in high-speed aircraft or changing parameters
in electrical circuits or chemical plants. It is also common
to treat nonlinear systems as LTV systems for controller
design by linearising around a trajectory or time-varying
operating points [19]. Consequently, increasing attention
has been given to system identification of LTV systems.
According to Kearney et al. [20] plant model identification
techniques for time-varying systems can be divided into
four groups: quasi-time-invariant methods, adaptive methods,
temporal expansion methods and ensemble methods. While
quasi-time-invariant methods are only applicable to slowly
varying systems, adaptive and temporal expansion methods
require prior knowledge of the system structure or the nature
of the time-variation. Hence, those techniques only require
a single time sequence of input-output data to identify
the plant model. However, if the a priori information is
imprecise or the time-variation occurs at a frequency similar



to the sampling rate, the above methods have difficulties
identifying accurate system models [21]. Ensemble methods
do not rely on prior knowledge of the system structure or
parameter variation and are hence the preferred choice for
many applications. However, they require multiple input-
output sequences capturing the same underlying time-varying
behaviour. This enables the use of standard LTI identification
techniques for each point in time across the ensemble of
responses, see for example [20], [22], [21] and [23]. While
there may be practical difficulties in obtaining ensemble data
for some systems, there are a variety of applications for
which such data can easily be gathered, examples include
nonlinear systems linearised along a particular trajectory and
periodically varying systems [21].

Direct data-driven control approaches for LTV systems are
also available in the literature. In [24] a model-free control
strategy for linear parameter-varying systems is introduced.
A dual-loop iterative algorithm to solve the finite-horizon
LQR problem for continuous-time LTV systems is presented
in [25]. In [26] and [27] data-driven iterative extremum
seeking approaches are used to find the optimal open-loop
control sequence for unknown discrete-time LTV systems. In
[28] a model-free approach using reinforcement learning is
introduced for LTV systems to find approximate solutions
to the finite-horizon LQR problem. Finally, Baros et al.
[29] extend the DeePC method to capture changing system
conditions by updating the data matrices online.

In this paper the direct data-driven control framework
presented in [13] (for LTI systems) is extended to LTV
systems. The closed-loop system is directly parametrised
using data, skipping the explicit system identification step,
and the control design does not require any iterative pro-
cedures or machine learning. While in [13] the closed-loop
LTI system is parametrised using a single sufficiently long
input-state data sequence, the approach presented herein
uses multiple input-state sequences capturing the same time-
varying behaviour, similar to what is common in ensemble
methods for LTV system identification. At each time step
input-state data from an ensemble of experiments is used to
obtain a model-free parametrisation of the system in closed-
loop with state feedback.

The remainder of this paper is organised as follows. In
Section II some preliminaries are provided and notation used
throughout the paper is defined. The data representation of
the closed-loop LTV system under state feedback is intro-
duced in Section III. In Section IV the data parametrisation is
used to characterise - in terms of data-dependent LMIs - state
feedback control laws which ensure the trajectories of the
closed-loop system satisfy a certain bound throughout a finite
time window of interest. In Section V the data parametrisa-
tion is used to formulate and solve the LQR problem - again
by means of data-dependent LMIs. A numerical example is
presented in Section VI, before some concluding remarks are
provided in Section VII.

Notation. The set of real numbers is denoted by R, the set
of integers by Z and the set of natural numbers by N. In

indicates the n×n identity matrix. Given a matrix A, Tr(A)
denotes its trace. We write A � 0 (A � 0) to denote that
A is positive definite (positive semi-definite). Given a signal
z : Z → Rσ the sequence {z(k), z(k + 1), . . . , z(k + T )}
is denoted by z[k,k+T ] with k, T ∈ Z. Given a vector
v ∈ Rn, ‖v‖ denotes its Euclidean norm and given a matrix
M ∈ Rm×n, ‖M‖ denotes the norm of M induced by the
Euclidean norm.

II. PRELIMINARIES

Consider a LTV system, described by discrete-time dy-
namics

x(k + 1) = A(k)x(k) +B(k)u(k), (1)

where x ∈ Rn is the state of the system, u ∈ Rm is the
control input and A(k) and B(k) denote the time-varying
dynamics and input matrices of appropriate dimensions,
respectively.

Assume the system (1) is controllable and the full state is
accessible. We are interested in representing the system using
data for time instances k = 0, 1, . . . , T −1, with T ∈ N. Let

ud,j,[0,T−1], xd,j,[0,T ],

represent input-state data collected during an experiment j,
for j = 1, 2, . . . , L, with L ∈ N. Each experiment j captures
the same time-varying behaviour. This is similar to the data
sequences typically required in ensemble methods for system
identification of LTV systems. We introduce the matrices

X(k) = [xd,1(k), xd,2(k), . . . , xd,L(k)] ,

for k = 0, 1, . . . T , and

U(k) = [ud,1(k), ud,2(k), . . . , ud,L(k)] ,

for k = 0, 1, . . . T − 1, which combine the data from all L
experiments at each time step. Note that

X(k + 1) = A(k)X(k) +B(k)U(k)

= [A(k) B(k)]

[
X(k)
U(k)

]
.

(2)

Remark 1. Considering the special case in which the time-
variation of system (1) is periodic, multiple experiments can
be replaced by one sufficiently long experiment capturing L
periods.

III. DATA-DRIVEN SYSTEM REPRESENTATION

Consider system (1) in closed-loop with a state feedback
control law of the form u(k) = K(k)x(k). Namely, consider
the closed-loop system

x(k + 1) =

(
A(k) +B(k)K(k)

)
x(k). (3)

In the following statement the matrices defined in Section II
are used to parametrise the closed-loop system using data.
Corollary 1. Suppose the rank condition

rank

[
X(k)
U(k)

]
= n+m, (4)



holds for k = 0, 1, . . . , T − 1. Then, the closed-loop system
(3) can equivalently be represented as

x(k + 1) = X(k + 1)G(k)x(k), (5)
u(k) = U(k)G(k)x(k), (6)

where G(k) ∈ RL×n satisfies[
In
K(k)

]
=

[
X(k)
U(k)

]
G(k), (7)

for k = 0, 1, . . . , T − 1.

Proof. The proof is analogous to the proof of Theorem 2 in
[13], using the alternative time-varying data matrices defined
in Section II.

While Corollary 1 is similar to the results presented in
[13, Theorem 2] and [14, Section 3.2], the main difference
between those formulations and the formulation presented
herein is that the data matrices X(k) and U(k) are time-
varying. This is a result of the time-varying system dy-
namics (1). Moreover, it is the reason why an ensemble
of experiments is required for the data-based representation,
rather than a single input-state trajectory collected during one
experiment as in [13] and [14].

Remark 2. In the LTI case considered in [13] the equivalent
rank condition to the condition (4) is satisfied if the input
sequence is persistently exciting of order n + 1. Since
Willems et al.’s fundamental lemma [12] is specific to LTI
systems, no similar result is available in the LTV case. Note,
however, that the condition (4) can always be verified if
the system state is accessible, as assumed herein, in our
consideration of state feedback control problems. Note that
a necessary condition for (4) to hold is L ≥ n + m. In
most cases the rank condition is satisfied if the number of
experiments L is chosen accordingly and the input sequence
for each experiment is randomly generated.

IV. STATE FEEDBACK STABILISATION

In Corollary 1 the sequence of control gains K(k) is
parametrised using data through the identity (7). Hence,
the matrices G(k) can be seen as decision variables for
identification-free controller design. For instance, we can
search for a matrix sequence G(k) that guarantees the trajec-
tories of the closed-loop system (3) satisfy a certain bound
for all k = 0, 1, . . . , T − 1. Analogous to the stabilisation
problem in the LTI case (see [13]) this problem can be
formulated in terms of linear matrix inequalities.

Theorem 1. Consider system (1) and suppose the rank
condition (4) holds for data gathered during an ensemble of
experiments. Then, any sequences of matrices Y (k), P (k)
satisfying[

P (k + 1)− In X(k + 1)Y (k)
Y (k)>X(k + 1)> P (k)

]
� 0, (8a)

X(k)Y (k) = P (k), (8b)

ηIn � P (k) � ρIn, (8c)

for k = 0, 1, . . . , T − 1, where η ≥ 1 and ρ > η are finite
constants, are such that the trajectories of the system (1) in
closed-loop with

K(k) = U(k)Y (k)P (k)−1, (9)

satisfy

‖x(k)‖ ≤
√
ρ

η

(
1− 1

ρ

) k
2

‖x(0)‖ , (10)

for k = 0, 1, . . . , T − 1.

Remark 3. In the limit as T → ∞ the result of Theorem 1
gives a data-driven characterisation of stabilising state feed-
back controllers.

V. OPTIMAL CONTROL

In this section, the result of Corollary 1 is used to for-
mulate the finite-horizon LQR problem as an identification-
free optimisation problem. First, the solution to the LQR
problem is revisited, before the problem is reformulated as a
covariance selection problem. Finally, the data-representation
is introduced and it is shown that the finite-horizon LQR
problem for LTV systems is equivalent to a semi-definite
programme with data-dependent LMI constraints.

A. The finite-horizon LQR problem

Consider system (1) and suppose we are
interested in finding the optimal control sequence
{u∗(0), u∗(1), . . . , u∗(N − 1)} as a function of the
state, which minimises the quadratic cost function

J (x(k), u(k)) = x(N)>Qfx(N)

+

N−1∑
k=0

(
x(k)>Q(k)x(k) + u(k)>R(k)u(k)

)
, (11)

over the time horizon N ∈ N, starting from the initial
condition x(0) = x0, with Qf = Q>f � 0, Q(k) = Q(k)> �
0 and R(k) = R(k)> � 0, for k = 0, 1, . . . , N −1. Namely,
consider the minimisation problem

min
µk

J (x(k), u(k))

s.t. x(k + 1) = A(k)x(k) +B(k)u(k),

x(0) = x0,

u(k) = µk (x(0), x(1), . . . , x(k)) ,

∀k ∈ {0, 1, . . . , N − 1} .

(12)

Lemma 1 ([30, Chapter 4.1]). The solution to problem (12)
exists and is unique. The optimal control sequence is given
by the state feedback law

u∗(k) = K∗(k)x(k), (13)

with the time-varying gain matrix K∗(k) given by

K∗(k) = −
(
R(k) +B(k)>P (k + 1)B(k)

)−1
×B(k)>P (k + 1)A(k),



where the symmetric and positive-definite matrix P (k) is the
solution of the difference Riccati equation

P (k) = Q(k) +A(k)>P (k + 1)A(k)

−A(k)>P (k + 1)B(k)
(
R(k) +B(k)>P (k + 1)B(k)

)−1
×B(k)>P (k + 1)A(k), (14)

for k = 0, 1, . . . , N − 1, with P (N) = Qf .

B. Formulation as a covariance selection problem

A variety of problems arising in systems and control
can be reduced to convex programmes involving LMIs.
Consequently, many numerical solvers have been developed
to solve those problems efficiently (see e.g. [31]). In or-
der to derive a convex programming formulation of the
optimal control problem involving data-dependent LMIs an
equivalent formulation of the LQR problem - the covariance
selection problem (see [32]) - is considered.

Lemma 2 ([14, Sections 2.1,3.1]). Solving (12) is equivalent
to solving the optimisation problem

min
S,K,Z

Tr (QfS(N))

+

N−1∑
k=0

(
Tr (Q(k)S(k)) + Tr (Z(k))

)
(15a)

s.t.

S(0) � In, (15b)
S(k + 1)− In
− (A(k) +B(k)K(k))S(k) (A(k) +B(k)K(k))

> � 0,
(15c)

Z(k)−R(k)1/2K(k)S(k)K(k)>R(k)1/2 � 0, (15d)

for k = 0, 1, . . . , N − 1, with

S := {S(1), S(2), . . . , S(N)} ,
Z := {Z(0), Z(1), . . . , Z(N − 1)} ,
K := {K(0),K(1), . . . ,K(N − 1)} .

The optimal gain sequence for the feedback law (13) is given
by K.

Note that the proof in [14] is presented for LTI systems,
however, all arguments also hold for time-varying dynamics
and time-varying LQR weight matrices.

The optimisation problem (15) can be transformed to a
convex programme by a suitable change of variables [14].
This concept has been introduced in [33] and makes it
straight forward to formulate a data-driven representation
of the LQR problem in terms of a convex programme as
shown in [13], [14] for LTI systems. A similar result for
LTV systems is provided in the following subsection.

C. Data parametrisation

Using Lemma 2 and Corollary 1 the finite-horizon LQR
problem (12) is formulated as a data-parametrised semi-
definite programme in the following statement.

Theorem 2. Let the rank condition (4) hold for data from an
ensemble of experiments for system (1). The optimal state
feedback gain sequence {K∗(0),K∗(1), . . . ,K∗(N − 1)}
minimising the LQR problem (12) is given by

K∗(k) = U(k)H(k)S(K)−1 (16)

with H(k) and S(k) a solution of the optimisation problem

min
S,H,Z

Tr (QfS(N))

+

N−1∑
k=0

(
Tr (Q(k)S(k)) + Tr (Z(k))

)
(17a)

s.t.

S(0) � In, (17b)[
S(k + 1)− In X(k + 1)H(k)

H(k)>X(k + 1)> S(k)

]
� 0, (17c)[

Z(k) R(k)1/2U(k)H(k)
H(k)>U(k)>R(k)1/2 S(k)

]
� 0, (17d)

S(k) = X(k)H(k), (17e)

for k = 0, 1, . . . , N − 1, where

S = {S(1), S(2), . . . , S(N)} ,
H = {H(0), H(1), . . . , N(N − 1)} ,
Z = {Z(0), Z(1), . . . , Z(N − 1)} .

Remark 4. The data representation and hence the above
results are based on data from open-loop experiments. For
rapidly diverging unstable systems in combination with large
time horizons N this can lead to numerical issues, due
to the large difference in magnitude of the data samples.
In the LTI case similar issues have been observed (see
[13]) and a solution to the issues has been provided in
[15] by using multiple, short experiments and the notion of
“collective persistency of excitation”, in place of one long
data sequence collected from a single experiment for the
data-based parametrisation. This method is not applicable
to the LTV case, since it is required that all experiments
in the ensemble used for the data-representation cover the
entire time horizon. This is necessary to capture the time-
variation of the system dynamics over all time steps of
interest. However, if a stabilising, but not necessarily optimal
controller K̂(k) is known, experiments can be performed
on the closed-loop system by superimposing a sufficiently
informative signal ûd(k) to ensure the rank condition (4)
is satisfied, i.e. ud(k) = K̂(k)xd(k) + ûd(k), for k =
0, 1, . . . , N−1. This data can then be used to find an optimal
control sequence by solving (17).

VI. NUMERICAL EXAMPLE

To illustrate the efficacy of the results presented in the pre-
ceding sections consider the numerical example introduced



in [28]. Namely, consider the LTV system (1) with

A(k) =

[
1 0.0025k

−0.1 cos (0.3k) 1 + 0.053/2 sin (0.5k)
√
k

]
,

B(k) = 0.05

[
1

0.1k+2
0.1k+3

]
.

Note that the system is open-loop unstable. Suppose we are
interested in finding a feedback gain K∗(k) which minimises
the cost function (11), with

Q(k) = (0.04k + 2) I2, R(k) = 5− 0.02k, Qf = 50I2,

over the time horizon k = 0, 1, . . . , N − 1, with N = 120.
The data for the model-free representation is gathered in
L = 3 open-loop simulations with random initial conditions
and by applying a random bounded input sequence over the
interval [0, N − 1], both generated using the MATLAB func-
tion rand. The data-parametrised optimisation (17) is solved
using CVX [34]. For comparison, the optimal solution is also
computed by solving (14) (using the model). The sequence
of control gains K∗(k) computed using the data-based
representation (i.e. the result given in Theorem 2) coincides
with the control sequence K̄(k), for k = 0, 1, . . . , N − 1,
obtained by recursively solving the difference Riccati equa-
tion (14) with an average error

∥∥K∗(k)− K̄(k)
∥∥ of order

10−8. The time histories of the first (top plot) and second
(bottom plot) components of the state of the closed-loop
system with {K∗(0),K∗(1), . . . ,K∗(N − 1)} and x0 =
[0.4411 0.2711]

> are shown in Fig. 1. The corresponding in-
put sequence (top plot) and the gain error

∥∥K∗(k)− K̄(k)
∥∥

(bottom plot) for each time instance are shown in Fig. 2.
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Fig. 1. The time histories of the states of the system in closed-loop with
the optimal gain sequence determined from (17).

VII. CONCLUSION

A model-free representation of closed-loop LTV systems
under state feedback is introduced. The presented approach
extends the methods for parametrising LTI systems with data-
dependent matrices presented in [13] to time-varying sys-
tems. The input-state data used for the data-parametrisation
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Fig. 2. The time histories of the optimal input sequence u∗(k) =
K∗(k)x(k) of the system (top) and the error between the optimal control
gains (bottom) determined from (17) (model-free) and (14) (model-based).

is obtained from an ensemble of experiments capturing the
same time-varying behaviour. Using this result, the problem
of designing feedback controllers such that the closed-loop
system trajectories satisfy a certain bound can be recast as
a feasibility problem involving data-dependent linear matrix
inequalities. Similarily, the LQR problem can be recast as a
semi-definite programme involving data-parametrised LMI
constraints. These data-based formulations can be solved
efficiently using numerical solvers. A numerical example is
provided to illustrate the efficacy of the proposed data-based
methods. Problems to be addressed in future research include
the extension of the results presented herein to scenarios
in which the collected data is influenced by noise and the
consideration of systems evolving according to nonlinear
dynamics.
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