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Abstract

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools
to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological
approaches as have been used in the control of other infectious diseases. However, to utilize these methodologies for
malaria, we first need to extend the methods to capture the complex interactions between parasites, human and vector
hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop
an individual-based transmission model to simulate malaria parasite genetics parameterized using estimated relation-
ships between complexity of infection and age from five regions in Uganda and Kenya. We predict that cotransmission
and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which
superinfections dominate. Finally, we characterize the predictive power of six metrics of parasite genetics for detecting
changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria
prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were
considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled
individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in
areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient
metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.

Key words: malaria, genetics, surveillance, modeling.

Introduction

Molecular tools are increasingly being used to understand the
transmission histories and phylogenies of infectious patho-
gens (Hall et al. 2015). Using phylodynamic methods, it is now
possible to estimate the historic prevalence of infection di-
rectly from molecular data, even in organisms with relatively
complex lifecycles (Volz et al. 2009). However, these tools

typically rely on pathogens having an elevated mutation
rate and not undergoing sexual recombination, which allows
for the application of coalescent theory (Grenfell et al. 2004).
Consequently, these techniques are yet to be adapted for the
study of Plasmodium falciparum malaria, which is known to
undergo frequent sexual recombination. In addition, malaria
transmission between both the human and the mosquito
hosts involves a series of population bottlenecks (Vaughan
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2007; Churcher et al. 2010), which combined with the brief
sexual stage involving a single two-step meiotic division
(Bennink et al. 2016), have marked effects on the population
genetics of P. falciparum (McKenzie et al. 2001; Chang et al.
2013). This is extenuated by evidence of cotransmission (mul-
tiple parasite strains introduced within an infection event) of
clonally related parasites (Wong et al. 2017). This phenome-
non, in combination with host-mediated immune (Barry et al.
2007; Portugal et al. 2011) and density-dependent regulation
of superinfection (infection of an already infected individual)
(Bruce et al. 2000; Pinkevych et al. 2013), results in a compli-
cated network of processes driving the genetic diversity of the
parasite population within an individual host.

Despite this substantial complexity, an increasingly nu-
anced understanding of the processes shaping parasite ge-
netic diversity is appearing, with multiple genetic metrics
proving promising for inferring transmission intensity
(Daniels et al. 2013; Nkhoma et al. 2013). For example, meas-
ures of the multiplicity of P. falciparum infections have been
shown to be useful for identifying hotspots of malaria trans-
mission (Bejon et al. 2010; Karl et al. 2016). The spatial con-
nectivity of parasite populations has also been shown to be
well predicted by pairwise measures of identity-by-descent
(IBD) (Omedo, Mogeni, Bousema, et al. 2017; Taylor et al.
2017). More recently, it has been shown that malaria geno-
typing could be used to enhance epidemiological surveillance
(Daniels et al. 2015), however, two main challenges have been
identified before molecular tools could be used in an opera-
tional context. The first is that our understanding of the re-
lationship between transmission intensity and within-host
parasite genetic diversity is incomplete. Combined models
of both population genetics and malaria epidemiology would
allow us to develop a more detailed view of both processes,
yet these two approaches are largely explored separately.
Recent efforts have been made to incorporate both modeling
scales within one framework (Nguyen et al. 2015), with the
concomitant modeling of resistance evolution both within
and between hosts yielding important insights into the evo-
lution of drug resistance (Legros and Bonhoeffer 2016).
However, the realism of either the transmission process or
the genetic evolutionary process has been limited in these
models, with the representation of recombination and the
parasite lifecycle within the mosquito often simplified. This
makes the generalizability of using molecular tools for surveil-
lance difficult. More realistic models are subsequently needed
that capture both processes. These models could answer pre-
vious hypotheses (Wong et al. 2018) about how transmission
intensity alters the rate at which superinfection events and
cotransmission of genetically related parasites shape the par-
asite genetic diversity observed within humans. The second
challenge is to understand in what situations molecular tools
will offer advantages over traditional surveillance. In addition,
power calculations need to be carried out to understand how
many samples are required for reliable inference and what
types of genetic data are most informative.

Here, we use mathematical transmission modeling to ad-
dress these challenges. We extend a previously published ma-
laria transmission model (Griffin et al. 2016), which now

allows parasite populations to be followed explicitly through
the parasite’s obligate sexual life cycle by the inclusion of
individually modeled mosquitoes. The new model is fitted
to parasite single-nucleotide polymorphism (SNP) genotype
data to capture the observed relationship between an indi-
vidual’s age and their complexity of infection (COI), defined as
the total number of genetically distinct parasite strains in an
individual. Using the fitted model, we characterize how six
measures of parasite genetic diversity respond to changes in
transmission intensity. We continue by conducting a power
analysis, assessing the ability of each metric to detect changes
in transmission intensity as a function of the number of avail-
able samples. We conclude by building an ensemble statistical
model, which demonstrates how routinely collected clinical
genotype samples could be used for accurate prediction of
malaria prevalence using as few as 200 SNP-genotyped
samples.

Results

Complexity of Infection Data
First, we used THE REAL McCOIL (Chang et al. 2017) to esti-
mate the COI from SNP-genotyped samples collected previ-
ously from individuals with evidence of asexual parasitaemia
by microscopy from regions in Kenya and Uganda (fig. 1).
These two data sets were selected as they recorded both the
age of the sampled individuals and the SNP intensities at
sufficiently large number of loci, enabling the relationship
between COI and age to be estimated. After excluding SNP
loci with >20% missing data and subsequently removing
samples with >25% missing SNP data from further analysis,
the COI was estimated for 2,419 samples from 95 primary
schools in Western Kenya (1,363 from Nyanza province and
1,056 from Western province) and 584 samples from repre-
sentative cross-sectional household surveys in three subcoun-
ties in Uganda (462 from Nagongera in Tororo District, 74
from Kihihi in Kanungu District, and 48 from Walukuba in
Jinja District) (see table 1). Distribution of COI varied between
each region, ranging between 1 and 21 and broadly peaking in
children aged 6 years old before decreasing with increasing
age of the individual sampled.

Model Fitting
We developed an extended version of a previously published
individual-based model of malaria transmission (Griffin et al.
2016). Briefly, the model was extended to include individual
mosquitoes, enabling parasite populations and their geno-
types to be tracked throughout the full lifecycle, enabling
the potential formation of multiple oocysts from an infec-
tious event and multiple genetically distinct sporozoites to be
onwardly transmitted. Male and female gametocytes are sam-
pled from the infecting human with the probability propor-
tional to relative densities of each genotype. The resultant
oocyst is able to produce up to four new parasite genotypes
resulting from a two-step meiotic division. The extensions
require to define the proportion of sporozoites from an in-
fectious bite that survive to found a blood-stage infection,
which we define as f. This process will ultimately affect the
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level of new parasite genetic diversity introduced and conse-
quently we parameterized our developed model (see supple-
mentary methods, Supplementary Material online) through
fitting to the earlier estimated relationships between COI and

age in the five regions across Uganda and Kenya (fig. 1a). We
estimate that 20% of sporozoites onwardly transmitted
within an infectious bite successfully progress to a blood-
stage infection and produce gametocytes that may

FIG. 1. Modeled estimates of the relationship between complexity of infection against age. (a) One realization of the model-predicted relationship
between complexity of infection (COI) and age compared with the observed relationship estimated using THE REAL McCOIL. Each point represents
an individual, with a local regression fit plotted in red. The relationship shown represents the selected best model fit, which estimates that 20% of
sporozoites successfully progress to blood-stage infection in an individual with no immunity. In (b), the results of the model fit are shown, with
each point representing the mean Kullback–Leibler divergence and the whiskers representing the 95% confidence interval. Results of model fitting
are shown for the assumption that all infections are detected (red) or only those that are PCR-detectable (blue). In (c), the model-predicted
relationship between COI measured by msp2 genotyping and PCR prevalence is shown in red, with the point-ranges showing observed values of
COI by msp2 genotyping from the literature review.

Table 1. Study Site Age and Sample Size.

Kenya Uganda

Western Kenya Nyanza Nagongera,
Tororo District

Kihihi,
Kanungu District

Walukuba,
Jinja District

Samples 1,363 1,056 462 74 48
Mean age, years (range) 11.1 (4–18) 11.0 (6–17) 10.9 (0–90) 9.0 (0–50) 11.2 (1–35)
Reference Omedo, Mogeni, Rockett, et al. (2017). Wellcome

Open Res. 2:1–25
Chang et al. (2017). PLoS Comput Biol. 13:e1005348
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contribute to future mosquito infections. The model captures
the observed peak in COI observed at age 7–8 years (fig. 1a);
however, the comparatively fewer samples at higher ages
make it difficult to confirm that this is the true peak in COI
(see supplementary table 1, Supplementary Material online).
Additionally, this observed peak in COI also likely reflects the
limits of detection, with more accurate model predictions
occurring under the assumption that parasite strains that
would not be detected by PCR do not contribute to the
estimated COI (fig. 1b). Model fitting also showed that sen-
sitivity of the model fit to the percentage of sporozoites that
survive is negligible between values of 15–20%, with the con-
fidence intervals for the most likely parameter value of f
overlapping intervals for values of f ranging from 0.1 to 0.29.

To further assess the fitted model, we wanted to incorpo-
rate estimates of COI based on msp2 genotyping, which is
more commonly measured, however, it does underestimate
COI in individuals with high COI, with COIs >7 difficult to
resolve. We updated a previous literature review (Karl et al.
2016) of paired estimates of msp2 COI and parasite preva-
lence by PCR, which yielded 91 paired measures of msp2 COI
and PCR prevalence. The fitted model predicts an increase in
msp2 COI with increasing malaria prevalence in agreement
with the data collected within our literature search (fig. 1c).
However, there are notably larger uncertainties in the
recorded msp2 COI at higher prevalence ranges in the studies
found.

Contribution of Cotransmission Events to Within-
Host Parasite Diversity
Using the fitted model, we explored the relationship between
the proportion of within-host parasite strains that are highly
related, which we define as being >50% IBD with other
parasites and thus indicative of cotransmission events, and
transmission intensity. The model-predicted proportion of
within-host parasite diversity that is due to cotransmission
events was shown to increase at lower transmission intensi-
ties (fig. 2a). We predict that at PCR prevalence <11.5%,
>50% of strains within polygenomically infected individuals
(COI>1) of all ages result from cotransmission events, rather
than superinfection. This is based on the assumption that
highly related parasites have originated from a recent com-
mon ancestor, and as such reflects the proportion of within-
host genetic diversity that is due to cotransmission events
rather than superinfection. We also predict this relationship is
dependent on the age of individuals sampled, with parasites
within younger individuals more likely to be more highly re-
lated. This reflects the increased chance that younger individ-
uals will be treated after an initial infection due to their lower
acquired immunity increasing the probability of developing
clinical symptoms from an infection. Subsequently, younger
individuals will be less able to accrue parasites from superin-
fection events, which increases the likelihood that any poly-
genomically infected individuals are the result of a
cotransmission event. In figure 2b, the model-predicted rela-
tionship between mean IBD in mixed infections and the frac-
tion of mixed infections is shown, and is well described by an
exponential trend line fit to this data. The model-predicted

relationship is comparable to estimates of IBD from whole-
genome sequence data collected from sites across Africa and
Asia as part of the Pf3k project (a collection of P. falciparum
short-read sequences and associated analyses—https://www.
malariagen.net/projects/pf3k) (Zhu et al. 2019). However, the
model predicts significantly lower mean IBD in settings with a
high fraction of mixed infections compared with the esti-
mates based on the whole-genome sequencing data, with
samples from sites in Ghana, Malawi, Mali, and the
Democratic Republic of the Congo exhibiting higher mean
IBD than predicted by the model.

The Impact of Intervention Strategies on Parasite
Genetic Diversity
Using our parameterized model, we first modeled how a re-
duction in transmission would affect four genetic metrics as
the prevalence of malaria declined due to the scale-up of
interventions (fig. 3). The genetic metrics explored were: (1)
the population mean COI, (2) the percentage of samples that
are polygenomic (COI>1), (3) the percentage of unique par-
asite 24-SNP barcodes, and (4) the coefficient of uniqueness
(COU) (fig. 3). COU is a new measure of genetic relatedness
within samples and is equal to 0 when all barcodes within a
sample are identical, and is equal to 1 when all barcodes
within a sample are unique (a multilocus analog of
homozygosity).

The model was initiated at 70% PCR prevalence with no
interventions in place. Three levels of intervention scale-up
were simulated, representing a low, medium, and high reduc-
tion in prevalence resulting in a final PCR prevalence of
�45%, �20%, and �5%, respectively, after 10 years. We pre-
dict that all four metrics decline proportionally with declining
malaria prevalence (fig. 3a). The model predicts that the
specific relationship depends on the population chosen for
genetic testing (supplementary fig. 1a, Supplementary
Material online). For example, COI is predicted to be higher
in older age categories. The percentage of unique samples
varied greatly depending on the subpopulation sampled,
reflecting difference in the absolute numbers of individuals
that fall within each subpopulation. Samples taken from indi-
viduals with asymptomatic infections were predicted to have
the highest COI and percentage of polygenomic samples.
Across the scenarios simulated, metrics based on the com-
plexity of infection (COI and % Polygenomic) showed a higher
level of correlation with changes in the prevalence of malaria
than measures based on the uniqueness of samples (COU
and % Unique) (table 2). In addition, samples collected only
from patients with symptomatic malaria led to metrics that
were the least correlated with reductions in prevalence,
resulting from the decreased number of available samples.
This effect was most noticeable when assessing the percent-
age of unique genotypes within clinical samples, which had a
correlation coefficient of 0.24 with PCR prevalence (table 2).

We also assessed measures of parasite genetic diversity
based on comparisons of the number of loci that are IBD,
which included the within-host pairwise mean proportion of
loci that are IBD (individual mean IBD [iIBD]) and the pop-
ulation pairwise mean proportion of loci that are IBD
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(population mean IBD [pIBD]). We predict that both metrics
increase in response to declines in prevalence, however, we
predict that pIBD only increases substantially at PCR preva-
lences <15% (fig. 3b). Consequently, metrics based on IBD
were explored at a lower starting prevalence of 35% PCR
prevalence before the scale-up of interventions. The shape
of the increase in iIBD was predicted to be dependent on the
population sampled (supplementary fig. 1a, Supplementary
Material online), with iIBD increasing quicker in symptomatic
individuals. iIBD, however, becomes less informative as trans-
mission intensity declines, with individuals less likely to be
infected with multiple strains due to the lower rates of
superinfection.

Power Analysis
To evaluate the performance of each metric for detecting
annual changes in the prevalence of malaria, we calculated
the statistical power for each metric at different sample sizes.
In this analysis, we conducted analogous simulations as before
but focusing on samples collected from children aged be-
tween 5 and 15 years old. We estimate that after 5 years of
intervention scale-up, corresponding to an absolute decrease
in malaria prevalence by PCR of 20%, no more than 350
samples are required for each metric explored (except for
iIBD) to detect the change in transmission intensity 80% of
the time (fig. 4). The predictive power, however, declined

across all metrics when the effect size, that is, the decrease
in prevalence, decreased. With 600 samples, each metric had
<40% power to detect the decrease in prevalence after 1 year.
The performance of each metric was additionally dependent
on the starting prevalence, with metrics based on the unique-
ness of samples (COU and % Unique) predicted to be more
powerful at lower starting prevalences compared with higher
prevalences (fig. 4b). Metrics based on measures of IBD were
overall less powerful, with the predictive power of iIBD being
<80% across all years and sample sizes (fig. 4c). pIBD only
exhibited a predictive power >80% when detecting the larg-
est change in prevalence between 22.5% and 8%, requiring
over 225 samples.

The power of COU, % Unique, and pIBD were noticeably
worse when it was assumed that samples from polygenomi-
cally infected individuals could not be phased (supplementary
fig. 2, Supplementary Material online). Under this assumption,
we assume that we are unable to observe the genotype of
each strain and consequently only the major haplotype
within an individual is available, that is, calling the most abun-
dant allele at each locus of the barcode, which negates our
ability to measure an individual’s iIBD. Across the full range of
malaria prevalence simulated, measures of COI and COU
were consistently predicted to be the most powerful, with
% unique samples and IBD metrics demonstrating increased
power to detect changes in transmission in areas with lower

FIG. 2. Contribution of superinfection and cotransmission to within-host parasite relatedness. In (a), the model-predicted relationship between
the mean within-host proportion of highly identical parasite strains (>50% of loci comparisons are identical by descent [IBD]) against PCR
prevalence. The relationship is shown for all ages and for three age groups: 0–5 years, 5–15 years, and 15þ years, with error bars showing 61 SEM.
In (b), the mean IBD in mixed infections (COI>1) is shown against the proportion of mixed infections. Results from model simulations are shown
with empty circles with an exponential regression shown with the black curve. The model estimates are compared with estimates of IBD from
whole-genome sequence data collected in sites across Africa and Asia, which were estimated previously in Zhu et al. (2019). Populations are
colored by continent, with size reflecting sample size and error bars showing 61 SEM. Abbreviations: SN, Senegal; GM, The Gambia; NG, Nigeria;
GN, Guinea; CD, The Democratic Republic of Congo; ML, Mali; GH, Ghana; MW, Malawi; MM, Myanmar; TH, Thailand; VN, Vietnam; KH,
Cambodia; LA, Laos; BD, Bangladesh.
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baseline transmission intensities where we predict the genetic
variation to be lower.

Statistical Model for Predicting Transmission Intensity
In order to translate the information, we have characterized
into an effective tool for assisting surveillance programs, a

statistical model was created to predict malaria prevalence
using genetic metrics derived from parasite SNP genotyping.
Due to the difficulty in phasing high-complexity infections, we
assumed that all collected samples were unphased and as
such we did not focus on metrics based on IBD when building
our data set for training our statistical model.

FIG. 3. Impact of changes in transmission intensity upon genetic metrics of transmission intensity. In (a), the top plot shows the change in PCR
prevalence after the introduction of three different levels of intervention scale-up, with both the ten individual stochastic realizations and the
mean local regression smoothed relationship shown. The following four plots show the population mean percentage of the population that are
polygenomically infected, the complexity of infection (COI), the percentage of samples that are genotypically unique (% unique) and the
coefficient of uniqueness (COU) for the prevalence declines seen in the first row. COU measures the diversity of genetic barcodes, with
COU¼0 when all barcodes observed are identical and COU¼1 when all barcodes observed are unique. In (b), the top plot shows the change
in PCR prevalence, which starts at a lower starting prevalence of 35% compared with 70% in (a). The following row shows the within-host identity-
by-descent (iIBD) mean across the 24 identity loci considered, and the population mean pairwise measure of IBD (pIBD). In all plots, the vertical
dashed black line shows the time from which the scale-up of interventions starts (time¼0 years).
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The ensemble model was trained using the outputs of the
developed transmission model, with simulations chosen that
spanned the range of transmission, seasonality, and interven-
tion coverage seen in sub-Saharan Africa. The resultant fitted
models (combining three different statistical models: elastic
net, gradient-boosted trees, and random forest) performed
well on simulation data sets that were excluded from the
model fitting, and was able to identify the underlying model
behavior used to generate the training data set (fig. 5a). The
best performing model provided accurate predictions of ma-
laria prevalence when tested on SNP genotype data from the
five administrative regions, with an observed mean absolute
error (MAE) equal to 0.055 for these five locations. The per-
formance of the model was enhanced when sample metadata
was available (fig. 5b), with the ensemble model trained and
tested using data with no age or clinical status information
consistently performing worse. Similar patterns were also ob-
served when assessing the performance of each of the level 1
models in the ensemble model (supplementary table 2,
Supplementary Material online). As in the power analysis,
across the range of malaria transmission intensities assessed,
measures of COI and COU were observed to be the most
informative metrics (supplementary fig. 3, Supplementary
Material online). Model predictors based on the age and clin-
ical status of individuals sampled contributed 28% toward the
total model importance.

Discussion
The substantial reduction in the cost of generating genetic
data sets over the last 10 years and the establishment of
scientific networks committed to generating and sharing ge-
netic data has resulted in an abundance of sequenced
P. falciparum genomes. This effort has resulted in the identi-
fication of loci associated with emerging drug resistance
mechanisms (Cheeseman et al. 2012) and assisted in devel-
oping putative novel drug targets (Ludin et al. 2012). Another
potential use of malaria sequencing efforts is understanding
how malaria genomes can be used to study transmission.
Simple population genetics principles predict that in a closed
population a reduction in transmission intensity will typically
be accompanied by a reduction in parasite genetic diversity,
resulting from reduced opportunities for outcrossing to occur
within the sexual stages of the parasite’s life cycle. However,
there is as yet no consensus in the use of parasite genetics for
inferring transmission intensity. There is a need to understand

the contribution of superinfection and cotransmission to-
ward the within-host parasite genetic diversity, which is often
highlighted within critiques of early attempts to utilize model-
ing approaches for transmission intensity inference
(Greenhouse and Smith 2015).

In this study, we have extended a previously developed
model of malaria transmission to include individual mosqui-
toes and discrete parasite populations. The percentage of
sporozoites that are successful within an infectious bite was
estimated to be 20% (95% CI 10–29%), and was estimated by
fitting our model to the COI and age of 3,002 individuals in
five sites across Kenya and Uganda. The fitted model was used
to initially estimate the proportion of the within-host parasite
genetic diversity that is the result of cotransmission events
resulting in the acquisition of highly identical parasite strains,
as opposed to strains acquired through superinfection events.
We predict that for malaria prevalence >11.5%, the majority
of genetic variation within-hosts is generated through super-
infection events. To our knowledge, this is the first attempt to
characterize this relationship across the full transmission in-
tensity spectrum seen within sub-Saharan Africa and repre-
sents a move toward standardizing which genetic metrics
should be used at different transmission ranges. It is worth
highlighting, however, that this finding is different to those of
a recent study from Malawi, which observed a higher contri-
bution from cotransmission events toward the genetic diver-
sity of mixed infections (Nkhoma et al. 2020). One possible
explanation is that in the Malawian study, samples were col-
lected from young children, who were predicted to show
higher levels of genetic relatedness within mixed infection
(fig. 2a). This is because younger individuals have less immu-
nity and are consequently more likely to develop clinical
symptoms of malaria after an infection. This increases the
chance that younger individuals will present at clinic after
their first malaria infection, thus reducing the observed con-
tribution of superinfections events toward the observed par-
asite genetic diversity within mixed infections.

We predict that IBD within samples decays exponentially
as the proportion of samples is increasingly polygenomic. This
exponential relationship was similar to findings in a recent
study of IBD, which used whole-genome sequence data to
explore this relationship (Zhu et al. 2019). However, the
model predicted significantly lower IBD at higher transmis-
sion settings (settings with a higher fraction of mixed infec-
tions) than observed in the data presented in Zhu et al.
(2019). There are a number of reasons for this. Firstly, the
whole-genome sequence data were collected from individuals
of unknown age as part of a convenience sample. If the
samples were collected exclusively from younger individuals,
the results in figure 2a would suggest that the mean IBD
would be higher than if the samples were collected across
all ages. Secondly, in the study by Zhu et al. (2019), the esti-
mated COI across all sites was<2, which is significantly lower
than COI estimates from the sites in Kenya and Uganda in
figure 3a. Given that some of the African study sites in Zhu
et al. (2019) are in areas of high transmission intensity, it
seems likely that the convenience sampling scheme used
has selected for individuals with lower COIs. One explanation

Table 2. Kendall Rank Correlation Coefficients between Genetic
Diversity Metrics and Parasite Prevalence.

Sampled % Polygenomic COI % Unique COU iIBD pIBD

All 0.97 0.96 0.83 0.93 20.89 20.86
0–5 0.96 0.96 0.73 0.93 20.80 20.86
5–15 0.97 0.96 0.83 0.93 20.86 20.86
151 0.97 0.96 0.83 0.92 20.84 20.86
Clinical 0.87 0.91 0.24 0.75 20.64 20.85
Asymptomatic 0.97 0.96 0.83 0.93 20.89 20.86

NOTE.—Coefficients are bound between�1 and 1, with 1 indicating perfect-ranked
positive correlation and �1 indicating perfect-ranked negative correlation.
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could be that the individuals chosen for sequencing receive
treatment more regularly, which reduces the probability of
parasite strains from superinfection events being present at
the time of sampling. This could be due to their age, or due to
their enrollment in the study that resulted in them being
selected for sequencing. Ultimately, without this information,
it is challenging to draw strong conclusions about the validity

of the model predictions in figure 3b, although the broad
similarity is encouraging.

Our newly defined measure of parasite diversity, the COU,
alongside COI were consistently powerful statistical tools for
detecting changes in malaria prevalence. This is hardly sur-
prising, as we should consider that the % unique samples and
the % of polygenomic samples are simply the extreme cases

FIG. 4. Predictive power of six metrics of parasite genetic diversity with respect to sample size. The distribution of sample means of six metrics of
parasite genetic diversity was compared for 5 years following the initiation of the scale-up of intervention coverage. For each sample size, the power
is defined as the proportion of 100 subsamples comparing year 0 and years 1–5 for which a significant difference in the mean was observed,
estimated using one-tailed Monte Carlo P values generated by 100 permutations of the years samples were collected in. In (a), the metrics assessed
are the percentage of samples that are polygenomic, the complexity of infection (COI), the percentage of barcodes within samples that are unique,
and the coefficient of uniqueness (COU). The power of each metric was compared across 5 years in which a 20% absolute decrease in parasite
prevalence from 45% was observed. The same information is shown in (b), but for a 14.5% absolute decrease in prevalence from 22.5% over 5 years.
In (c), the metrics considered are the mean within-host identity-by-descent (iIBD) and the population mean pairwise measure of IBD (pIBD). In
each plot, 80% power is shown with the horizontal dashed line.
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of these metrics, and so we would expect them to contain less
information. Additionally, the power analysis conducted was
under the assumption that all samples that could be detected
by PCR can be effectively phased. This is an overly ambitious
assumption, and it is more correct to assess these metrics
under the assumption that polygenomic samples cannot be
phased (supplementary fig. 2, Supplementary Material on-
line). However, the increase in statistical power when we
are able to phase samples should highlight a need within
the research field for methods to compare unphased parasite
samples, with the majority of samples at higher transmission
intensities predicted to have a COI >1.

In the absence of being able to phase polygenomic sam-
ples, however, the observed genetic metrics were still infor-
mative within the ensemble statistical model developed to
translate parasite genetic information into estimates of ma-
laria prevalence. For example, variable importance was ob-
served for each predictor variable (supplementary fig. 3,
Supplementary Material online), however, COU and COI
accounted for nearly half the variance explained. There is
also a degree of compensation afforded between metrics,
that is, where one metric becomes less informative, another
metric becomes more predictive. For example, at PCR PfPR
(Plasmodium falciparum parasite rate)<10%, COI and the %
of samples that are polygenomic will become substantially
less informative, whereas IBD measures will start being more
informative. This is further demonstrated by only needing 200
samples within our statistical ensemble model to produce
accurate predictions of the prevalence of malaria, with the
addition of individual-level metadata yielding further gains in
model performance (fig. 5b). As more samples are added only

modest improvements in model predictive performance are
observed (supplementary fig. 4, Supplementary Material on-
line). The importance of metadata, specifically the age of
individuals, is highlighted in the findings of the model-
predicted COI between age groups. In figure 3, we compared
the COI between asymptomatic and symptomatic individu-
als, in which we predicted across all ages that asymptomatic
individuals have higher COI. However, this finding does not
hold when we compare the COI between symptomatic and
asymptomatic individuals at different age groups and across
different transmission intensities. For example, in the model
fitting in lower transmission areas younger children who are
symptomatic are predicted to have higher COI than asymp-
tomatic younger children (supplementary fig. 5,
Supplementary Material online). This finding is reversed, how-
ever, at higher transmission intensities reflecting the interac-
tion between acquired clinical immunity and rates of
superinfection. This pattern, however, may be different in
other real-world settings, where other factors not modeled
here, such as nonmalarial fevers and presumptive treatment
may alter the effect that treatment has on the level of genetic
diversity observed within individuals.

This study has some important limitations. Firstly, we as-
sumed there is only one parameter detailing the percentage
of sporozoites that successfully progress to a blood-stage,
which is the same for all study sites considered. This is likely
a simplification, but our observation of 20% sporozoites sur-
viving from an individual mosquito feed is comparable to
Bejon et al.’s (2005) observation of 25% (14 sporozoites sur-
viving from an assumed total of 55 sporozoites resulting from
five mosquito bites) of sporozoites successfully progressing to

FIG. 5. Ensemble statistical model-predicted malaria prevalence versus observed malaria prevalence. In (a), the performance of the trained
ensemble statistical model is shown, with the model-predicted prevalence in red showing the predictions for the out-of-sample test data set
composed of model simulations held back from model fitting. The blue points show the predicted prevalence for the five administrative regions
considered earlier. In (b), the performance of the ensemble model is shown under different assumptions about the availability of patient metadata
within simulated data.
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blood-stage infection. It is, however, higher than estimates
based on transmission efficacy studies (Smith et al. 2010).
The model fitting, however, revealed that the sensitivity to
this parameter was low, with the confidence intervals for a
value of f equal to 0.20 overlapping intervals for values of f
ranging from 0.1 to 0.29. This is highlighted when we re-
examined the model-predicted relationship between msp2
COI and prevalence with these values, which showed only
slight changes to the predicted COI (supplementary fig. 6,
Supplementary Material online). However, It is important
to highlight that this fitted value may not be representative
of other African settings and that heterogeneity in transmis-
sion may result in a different percentage of sporozoites being
successfully transmitted in other regions. The fitted estimate
was also based on model fits to the administrative mean
prevalence as opposed to the recorded prevalence in the
specific study sites. For example, the study site in Jinja
District, Walukuba, was observed to have the lowest parasite
prevalence of all three study sites in Uganda (Nankabirwa
et al. 2015). If we had used this prevalence value as opposed
to the administrative prevalence value, the parameterized
model would have failed to predict the pattern of COI in
Walukuba (supplementary fig. 7, Supplementary Material on-
line), which may suggest that this study site exhibits higher
heterogeneity in the force of infection. However, the fact that
the model-predicted COI closely matches the observed data
when using the administrative region’s prevalence may sug-
gest that parasite genetic metrics are more representative of
the prevalence at larger spatial scales, which in turn may
reflect human mobility between areas of differing transmis-
sion intensity and parasite genetic diversity. This may also be
of benefit from a surveillance point of view, with 200 samples
being able to give accurate measures of malaria prevalence
within a large area. This could be of particular utility in areas
where community surveillance is not feasible, in which sam-
ples collected from symptomatic patients attending public
health facilities could provide additional information in help-
ing to translate clinical incidence into measures of parasite
prevalence.

Secondly, we did not explicitly model the scale-up of
vector-based interventions, instead incorporating the effects
of insecticide-treated nets (ITNs) and indoor residual spraying
(IRS) through their impact on the average age of the mos-
quito population and the rate of anthrophagy. This assump-
tion will cause each individual to experience the same relative
reduction in molecular force of infection, that is, the number
of new P. falciparum clones acquired over time.
Consequently, model predictions are likely to underestimate
the variance in the reduction of within-host parasite genetic
diversity resulting from vector-based interventions. This effect
would lead to a decrease in the statistical power of the genetic
metrics considered and subsequently, the sample sizes pre-
sented within the power analysis are likely on the lower end of
the sample sizes required for a given predictive power.
Additionally, it is important to note that when estimating
the statistical power of each genetic metric, these were con-
ducted using model simulations conducted in nonseasonal
settings. However, the bottlenecks resulting from seasonality

in transmission are likely to have a large impact on the genetic
diversity observed, in particular in low prevalence settings.
This effect has been previously shown to lead to significant
differences in estimates of pfhrp2/3 deletions in low transmis-
sion settings depending on the timing of sample collection
within a transmission season (Watson et al. 2019). To circum-
vent this issue, parasite samples should be collected at the
same point within a transmission season to increase the suit-
ability of comparisons.

Thirdly, although the developed statistical model provided
accurate estimates of malaria prevalence overall for the five
regions, the prediction for Jinja was noticeably worse, which
reflects the high COI observed in that region given its com-
paratively low prevalence. Although we were able to replicate
the COI age relationship for this region during model param-
eterization, this was largely due to the fact that the historic
prevalence for the region was much higher. For this reason,
the model predicts that individuals in the region will have
higher acquired immunity and will subsequently be able to
harbor more infections before developing a fever and poten-
tially being treated and thus clearing infections. The devel-
oped statistical model, however, did not include any
covariates for historic prevalence or genetic diversity.
Subsequently, predictions made by this model largely reflect
the mean diversity expected for a given prevalence and will
suffer when making predictions for regions that have experi-
enced a recent and large decline in prevalence. Recent
declines in prevalence will cause individuals in the region to
possess higher immunity than predicted based solely on the
region’s current prevalence, which has been shown to man-
ifest in clear patterns in the size of the submicroscopic reser-
voir (Whittaker et al. 2019). From a genetic perspective,
increased immunity may either lead to a reduction in
within-host genetic diversity due to more infections being
suppressed. Alternatively, increased immunity may increase
within-host genetic diversity if the higher immunity decreases
the frequency with which people develop clinical symptoms,
which in turn reduces the likelihood that an individual has
recently been treated and subsequently has cleared all para-
site strains. The latter may be a possible explanation for the
comparatively high COI observed in the Walukuba study site
in Uganda compared with its malaria prevalence.
Consequently, as more genetic data are collected over time,
we will be able to extend the methods presented here to
better handle recent changes in prevalence and incorporate
historic measures of genetic diversity for more accurate pre-
dictions of malaria prevalence. Alternatively, the modeling
framework presented here could be extended to incorporate
alternative data sources, such as longitudinal measures of
clinical incidence from passive surveillance.

In our model, we have only considered neutral genetic
markers that are unlinked. Although these loci are informa-
tive for capturing standing genetic diversity, we have not
considered how selective events may shape the genetic diver-
sity. For example, if drug resistance was to spread quickly
through an area it is likely that this would cause a decrease
in genetic diversity in neighboring regions (ImWong et al.
2017). However, the precise impact that this will have on
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the metrics explored in this study will depend on both how
quickly recombination will result in linkage disequilibrium
decay and the strength of the selective sweep. Although these
were not assessed in this article, it would be possible to adapt
our model to consider loci under selection and simulate how
known factors that affect the speed of selection, such as
transmission intensity, importation of resistance, treatment
rates, and the metabolic costs associated with resistance, im-
pact genetic metrics. Lastly, the model could also be extended
to better capture importation and spatial dynamics. The cur-
rent model employs a continent-island assumption, where
the genotypes of imported parasites are drawn from a pop-
ulation with a fixed population-level allele frequency. This
could be extended to consider populations within a metapo-
pulation, where importations are sampled from connected
populations. This would have the benefit of better capturing
dynamics between different populations and could incorpo-
rate different data sources such as mobile phone records and
travel surveys, which have been used to give a greater reso-
lution to the spatial dynamics of malaria transmission (Chang
et al. 2019; Tessema et al. 2019).

The 2018 World Malaria Report shows that the reductions
in the global burden of malaria made since 2000 may be
stalling, with two million more cases of malaria estimated
in 2017 compared with 2016 (World Health Organization
2018). These declines have necessitated the development of
new tools to enhance current surveillance efforts. In this
study, we have shown that that malaria genetic metrics could
provide an additional toolkit for operational surveillance. In
particular, a combination of metrics focused on the COIs, the
frequency and uniqueness of genotyped barcodes, and meas-
ures of IBD could be used for inferring the prevalence of
malaria across the current range of malaria prevalence. It is
important to highlight that there is still a need to understand
the cost-effectiveness of these tools compared with current
surveillance methods. In many endemic areas, clinical inci-
dence data provide a temporally and spatially rich measure
of malaria transmission. However, it is reliant on the accuracy
of estimates of the population size. In situations where this is
not possible, such as migratory populations and clinics with
unknown health facility catchment areas. Consequently,
there may be a niche for parasite genetics to complement
measures of malaria incidence in areas in which the spatial
coverage of surveillance data is poor. It is hoped that these
findings, in particular the importance of sample metadata
and quantifying the contribution of cotransmission and su-
perinfection events have in shaping genetic diversity, can
guide future efforts by the wider community for utilizing
malaria genotyping for epidemiological surveillance.

Materials and Methods

Plasmodium falciparum Transmission Model
An individual-level stochastic model was developed to simu-
late the transmission dynamics of P. falciparum. The model is
based upon previous modeling efforts (Griffin et al. 2010,
2014, 2016; Watson et al. 2017), however with extensions to
now include individual mosquitoes as well as humans, and

with parasites now modeled as discrete populations associ-
ated with individual infection events. Each parasite popula-
tion is identified by a 24-SNP barcode, with sexual stages
represented by two barcodes to characterize the female
and male gametes within the vector and allow recombination
to be explicitly modeled. An overview of the original model is
given here before describing the changes made to the model,
with the full methods detailed in the supplementary meth-
ods, Supplementary Material online.

People exist in one of six infection states, with individuals
beginning life susceptible to infection. At birth, individuals
possess a level of maternal immunity that decays exponen-
tially over the first 6 months. Each day individuals experience
a force of infection that depends on their level of immunity,
biting rate, and the abundance of infectious mosquitoes.
Infected individuals, after a 12-day latent period, develop ei-
ther clinical disease or asymptomatic infection dependent on
their level of acquired immunity from previous infections.
Individuals that develop disease have a fixed probability of
being effectively treated. Treated individuals enter a protec-
tive state of prophylaxis, before returning to susceptible.
Individuals that did not receive treatment recover to a state
of asymptomatic infection. Asymptomatic individuals prog-
ress to a subpatent infection, before clearing infection and
returning to susceptible. All infected individuals that are not
in the prophylactic state are also susceptible to
superinfection.

The adult stage of mosquito development is modeled in-
dividually, with adult mosquitoes beginning life susceptible to
infection. Mosquitoes seek a blood meal on the same day
they are born and every 3 days after that until they die.
Infected mosquitoes pass through a latent infection stage
that lasts 10 days before becoming onwardly infectious to
humans. The introduction of vector-based interventions
leads to a decrease in the average age of the mosquito pop-
ulation throughout the duration of the intervention due to
the increased mortality rate. A decrease in anthrophagy is also
observed reflecting mosquitoes that are repelled as a result of
interventions but do not die. The daily rate of change to these
parameters in response to ITN and IRS is calculated using an
equivalent deterministic version of the earlier model that in-
cluded interventions (Griffin et al. 2016), before being intro-
duced as a time-dependent variable within the stochastic
model.

Parasite Genetics
Parasites are modeled as discrete populations that result from
an infection event associated with a mosquito or a human
(see supplementary methods, Supplementary Material online,
for full description). Each asexual parasite is characterized by
one genetic barcode, which contains information relating to
24-SNPs distributed across the parasite genome. In simula-
tions modeling IBD, the barcode is modified to contain 24
integer values that uniquely index an individual in the starting
population, enabling ancestry to be tracked over time and
hence IBD rather than identity-by-state to be modeled. Sexual
stages of the parasite lifecycle within the mosquito are rep-
resented by both a female and a male barcode, thus defining
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the range of recombinants that could be produced. During a
successful human to mosquito infection event, multiple
oocysts may develop within the mosquito. The number of
oocysts formed is drawn from a zero-truncated negative bi-
nomial distribution with mean equal to 2.5 and shape equal
to 1 (95% quantile: 1–9) (Churcher et al. 2013; Stone et al.
2013, 2014), with required gametocytes sampled from the
human according to the relative parasitaemias of the game-
tocytogenic strains. This process results in more recently ac-
quired parasite strains being more likely to be onwardly
transmitted resulting from the assumed higher asexual para-
site density. During a successful mosquito to human trans-
mission event, multiple sporozoites may be onwardly
transmitted, with the genotypes which are the result of re-
combination events from ruptured oocysts. Recombination is
simulated at this stage, and generated recombinants stored
within the mosquito and associated with the oocyst from
which it originated. Within our simulations, we consider ge-
netic loci that are unlinked. Consequently, the resultant spor-
ozoites formed inherit each locus by sampling with equal
probability from the parental genotypes. The number of spor-
ozoites passed on is drawn from a zero-truncated geometric
distribution with a mean of 10 (95% quantile: 1–29) (Beier
et al. 1992; Bejon et al. 2005), with the percentage of spor-
ozoites that survive estimated within model fitting.

Model Fitting
Our extensions to the transmission model introduced a new
parameter, f, which determines the percentage of the total
sporozoites passed on within a feeding event that survive to
yield a blood-stage infection and subsequently produce
gametocytes. To fit this parameter, we compared the
model-predicted relationship between the COI and age uti-
lizing previously SNP-genotyped samples from five sites across
Kenya (Omedo, Mogeni, Rockett, et al. 2017) and Uganda
(Chang et al. 2017), collected between 2008–2010 and
2012–2013, respectively. In brief, dried blood spots were col-
lected, and samples taken from individuals with evidence of
asexual parasitaemia by microscopy were selected for
Sequenom SNP genotyping. Genotyping was conducted us-
ing the Sequenom MassARRAY iPLEX platform, yielding mi-
nor and major allele frequencies.

We applied THE REAL McCOIL proportional method to the
SNP-genotyped samples to estimate each individual’s COI
(Chang et al. 2017). Samples were filtered first by excluding
loci with >20% missing samples, followed by samples with
>25% missing loci. We performed 30 MCMC repetitions for
each sample, with a burn-in period of 104 iterations followed
by 106 sampling iterations, with genotyping measurement
error estimated along with COI and allele frequencies, and
a maximum observable COI equal to 25. Default priors were
assigned for each parameter, and we used standard method-
ology to confirm convergence between chains (Gelman and
Rubin 1996).

The observed relationship between COI and age was com-
pared with the model-predicted relationship for each admin-
istrative region studied. The model-predicted relationship
was generated by conducting simulations calibrated to

estimates of the administrative malaria prevalence from
2000 to 2015 (Bhatt et al. 2015), exploring 50 values of f
between 0.5% and 50%. For each region, ten stochastic real-
izations of 100,000 individuals were simulated with a burn-in
period of 50 years to ensure both an epidemiological and
genetic equilibrium was reached by year 2000. In all simula-
tions conducted in this study, the same population size and
burn-in period were used throughout. For each of the five
administrative regions of interest, we incorporate the histor-
ical scale-up of ITNs and IRS between 2000 and 2015, using
data previously collated for the World Malaria Report (World
Health Organization 2015), and estimates for the coverage of
treatment modeled using DHS and MICS survey data (Cohen
et al. 2012). Seasonality for each region was included by alter-
ing the total number of mosquitoes using annually fluctuat-
ing seasonal curves fitted to daily rainfall data from 2002 to
2009 (Cairns et al. 2012). Lastly, we introduced rates of im-
portation of infections that were calculated for each year
between 2000 and 2015 using a fitted gravity model of human
mobility (Marshall et al. 2018). These sources represent infec-
tions acquired from individuals traveling out of the region
and returning with an infection, and also mosquitoes being
infected by individuals traveling from outside into to the re-
gion of interest.

We calculated the “distance” between our model predic-
tions and the observed data using the Kullback–Leibler (KL)
divergence (Burnham et al. 2002). Using an individual’s age
and estimated COI, the distance between the observed and
predicted distributions of COI for each age is given by:

I fið Þ :¼ I pCOIi nð Þ; oCOIið Þ

¼
X25

COI¼1

pCOIi nð Þln pCOIi nð Þ
oCOIi

� �
;

where oCOIi is the observed distribution of COI at age i and
pCOIi fð Þ is one realization of the model-predicted distribu-
tion of COI at age i for a given frequency of successful spor-
ozoites f (with only parasites that would have been detected
by PCR being assumed to be detected by SNP genotyping).
The total distance for a given value of f is subsequently given
by:

X5

r

Pni

i I fið ÞwiPni

i wi

� �
r

;

where wi is the weight for age i, and ni is the total number of
unique sampled ages in administrative region r. This can be
interpreted as the sum of the weighted KL divergence means
within a region, with weights equal to the number of obser-
vations at each age. Each region thus contributes equally to
the total distance, despite the difference in the number of
individuals in each region.

Further model fit validation was conducted by incorporat-
ing a comparatively larger collection of estimates of the COI
estimated using msp2 genotyping, which is more commonly
referred to as multiplicity of infection (MOI). msp2 genotyp-
ing is known to underestimate COI in individuals with very
high COIs, with COIs>7 difficult to observe. Consequently, to

Transmission Modelling of Malaria Genetics and Transmission Intensity . doi:10.1093/molbev/msaa225 MBE

285

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/38/1/274/5902837 by Im
perial C

ollege London Library user on 05 February 2021



distinguish these estimates, we refer to these as msp2 COI. We
compiled P. falciparum malaria MOI data where there were
estimates of both the malaria prevalence and the MOI of
study participants. This was conducted by updating a previ-
ous review (Karl et al. 2016), using the same search terms of
“falciparum multiplicity infection prevalence msp2.”
Analogous relationships were predicted using the fitted
model, with the model-predicted msp2 COI estimated by
assuming that any individual with a model-predicted COI
>7 results in an msp2 COI of 7, which reflects the limits of
resolution when using msp2 genotyping (Gupta et al. 2010).

Contribution of Superinfection and Cotransmission
Events toward Within-Host Genetic Diversity
The parameterized model was used to characterize the rela-
tive contribution of cotransmission events and superinfection
events toward within-host parasite genetic diversity. Ten sto-
chastic realizations of 100,000 individuals were simulated for
50 years at 15 different transmission intensities. The propor-
tion of highly identical parasite strains (>50% of loci are IBD
in pairwise comparison) within simulations was recorded and
used to estimate the proportion of within-host genetic diver-
sity that is due to cotransmission events rather than
superinfection.

Impact of Changes in Transmission Intensity upon
Measures of Parasite Genetic Diversity
The effect of declines in transmission intensity on four meas-
ures of within-host genetic diversity was explored. The four
measures considered were: (1) the mean COI, (2) the percent-
age of polygenomic infections (% Polygenomic), (3) the per-
centage of unique barcode genotypes (% Unique), and (4) a
newly defined metric, the COU, which is given by:

COU ¼ 1�
ð
Pn

i x2
i Þ � 1

n

1� 1
n

� � ; 0 � COU � 1;

where xi is the frequency at which barcode i occurs within a
sample of size n. COU¼0 when all barcodes within a sample
are identical, and COU¼1 when all barcodes within a sample
are unique.

Ten stochastic realizations of 100,000 individuals were sim-
ulated for 50 years with an initial parasite prevalence mea-
sured by PCR equal to�70% and a fixed importation rate to
ensure both a genetic and an epidemiological equilibrium.
Once at equilibrium, three differing levels of intervention
scale-up (low, medium, high) were introduced that lead to
an absolute reduction in parasite prevalence from 70% to
45%, 20%, and 5% after 10 years. The scale-up of interventions
resulted in an increase in the coverage of ITNs (maximum
after 10 years: 30%, 60%, and 90%), IRS (maximum after
10 years: 20%, 40%, and 60%), and treatment (maximum after
10 years: 15%, 30%, and 45%). For all simulations, the monthly
mean for each genetic marker was recorded for the whole
population as well as within three age ranges (0–5 years old,
5–15 years old, and over 15 years old), and within individuals
who were asymptomatic or symptomatic at the time of sam-
ple collection.

An identical analysis was conducted at a lower starting
prevalence, with maximum reductions in parasite prevalence
by PCR from 35% to 20%, 2%, and�0% after 10 years, in order
to assess the change in two measures of IBD, pIBD, and iIBD.
The pIBD we define as the mean number of loci in pairwise
comparisons between samples that are identical across all loci
in terms of their 24-locus identity barcode (focusing on gen-
otypes that could be detected by microscopy only), that is, it
is the mean proportion of shared ancestry between samples.
The iIBD is the mean number of identical loci of the 24-locus
identity barcode within individuals who are polygenomically
infected. If all sampled individuals are monogenomic, then
iIBD is set equal to 1.

Statistical Power Analysis of Parasite Genetic
Measures
To evaluate the utility of the considered measures of parasite
genetic diversity, we conducted an analysis to characterize the
predictive power of each metric for detecting changes in
transmission intensity, and their sensitivities to the sample
size chosen. In an analogous design to earlier simulations, we
conducted ten stochastic realizations of 100,000 individuals
and measured sample mean measures of the COI, %
Polygenomic, % Unique, COU, iIBD, and pIBD at yearly inter-
vals for the first 5 years after the initiation of a 10-year scale-
up of interventions.

Sensitivity to the sample size of each metric was assessed
by sequentially sampling subsets of the simulated data and
comparing the mean difference in metrics. Sample sizes be-
tween 10 and 600 individuals were explored, with 100 samples
drawn from a stochastic realization at years 0, 1, 2, 3, 4, and 5,
and comparisons made between years 1–5 and year 0, that is,
0–1, 0–2, . . . 0–5. All samples were collected from micros-
copy positive individuals aged between 5 and 15 years old.
One-tailed Monte Carlo P values were generated for each
subsample by 100 permutations of the years that samples
were collected from. The power of each metric was defined
as the proportion of subsamples for which 95% of the per-
muted mean differences were greater or less than the ob-
served mean difference, with the direction of the tail
dependent on whether the metric is expected to decrease
or increase, respectively, in response to a decrease in trans-
mission intensity. The overall power for each metric was cal-
culated as the mean power of ten stochastic realizations, and
repeated at two different starting parasite prevalence by PCR
(�45% and �22.5%). Metrics based on comparisons of IBD
were only assessed for the lowest starting parasite prevalence.
The performance of each metric was also explored under the
assumption that it was not possible to phase all genotypes
within the samples collected, and that only the dominant
genotype was able to be called.

Statistical Modeling of the Predictive Performance of
Malaria Genetics for Surveillance
A statistical model was constructed to predict malaria prev-
alence using the genetic metrics explored thus far, with three
different assumptions about the availability of patient meta-
data (no metadata, patient age only, and both patient age
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and symptomatic status of infection). Simulations of 100,000
individuals were conducted for 50 years for the purpose of
constructing a simulated data set to be used to train the
statistical model. Simulation settings were chosen to broadly
reflect the epidemiology of malaria in sub-Saharan Africa,
spanning across a wide range of transmission intensity (0–
65% microscopy positive prevalence) (Weiss et al. 2019), sea-
sonality (low and high seasonality with both unimodal and
bimodal peaks in transmission explored) (Cairns et al. 2015),
and intervention coverage (0–60% treatment, IRS, and ITN
coverage) settings (Battle et al. 2016). To assess the opera-
tional utility of such a model for surveillance, samples of only
200 individuals were chosen from the simulations conducted
at random from microscopy positive individuals of all ages.
We used the sampled mean measures of the genetic metrics
discussed, and, in models where patient metadata was as-
sumed to be available, summaries of the age and clinical sta-
tus of samples to create our simulated data sets. About 25%
of the simulated data sets were held back as an out-of-sample
data set to be used for evaluating the performance of the
trained statistical models and to test for overfitting. Three
different statistical models (gradient-boosted trees, elastic
net regression model, and random forests) were fit to the
model simulated data. The predictions of these level 1 models
were subsequently used to train an ensemble model using a
linear optimization based on the root mean-squared error
(RMSE) of the level 1 models. When training both the level
1 models and the ensemble, K-fold cross-validation sets were
produced by splitting the training the data into 25 sets of
training data with the results of the cross-validation subse-
quently averaged to reduce any bias from the cross-validation
set chosen. The averaged cross-validation results were used to
assess the performance of the ensemble model on the testing
data set by comparing the RMSE, MAE, and the correlation
under the different assumptions about the availability of pa-
tient metadata. The predictors of the ensemble model were
assessed for their contribution to the overall model perfor-
mance. Variable importance was calculated for each level 1
model, before reporting their overall importance as the
weighted mean importance, with the weight equal to the
level 1 model weights in the ensemble model. Lastly,
the trained ensemble model was used to predict the preva-
lence of malaria for the study sites considered within Uganda
and Kenya.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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