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Abstract
A rapid reversed-phase gradient method employing a 50 mm × 1 mm i.d., C18 microbore column, combined with ion mobil-
ity and high-resolution mass spectrometry, was applied to the metabolic phenotyping of urine samples obtained from rats 
receiving different diets. This method was directly compared to a “conventional” method employing a 150 × 2.1 mm i.d. 
column packed with the same C18 bonded phase using the same samples. Multivariate statistical analysis of the resulting 
data showed similar class discrimination for both microbore and conventional methods, despite the detection of fewer mass/
retention time features by the former. Multivariate statistical analysis highlighted a number of ions that represented diet-
specific markers in the samples. Several of these were then identified using the combination of mass, ion-mobility-derived 
collision cross section and retention time including N-acetylglutamate, urocanic acid, and xanthurenic acid. Kynurenic acid 
was tentatively identified based on mass and ion mobility data.

Keywords  Microbore columns · Ion mobility · Metabolite identification · Metabolic phenotyping

Introduction

Metabolic phenotyping (metabotyping) [1–3], using meth-
ods based on liquid chromatography (LC), of the type 
routinely undertaken during metabonomic/metabolomic 
investigations faces a number of challenges connected with 

both throughput and metabolite identification. The tension 
between maximizing throughput versus obtaining the most 
comprehensive metabolite coverage possible is particularly 
acute when large numbers of samples are to be analysed, or 
there are constraints on the availability of instrumentation. 
As a partial solution to some of these problems we recently 
introduced the concept of rapid microbore metabolic pro-
filing (RAMMP) using reversed-phase ultra (high) perfor-
mance liquid chromatography (U(H)PLC) on a 1 mm i.d. 
column, coupled to mass spectrometric detection (MS) [4] 
and, more recently, similar rapid HILIC and RP-lipidomic 
methods have been described [5, 6]. Reducing the separation 
time via a rapid gradient enables much higher throughput, 
whilst the use of a 1 mm i.d. column also brings advantages 
of increased sensitivity and reduced solvent consumption. 
However, and as would be expected, the peak capacity of the 
RAMMP method was reduced (from 150 to 50) compared 
to analysis on a conventional 2.1 mm i.d., and the number of 
measured features was decreased from ca. 19,000 to ca. 6000 
[4]. Notwithstanding the loss of peak capacity and reduced 
number of features the RAMMP methodology was still able 
to achieve similar levels of group discrimination by PCA, 
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and this was based largely on the same features seen using 
conventional analysis [4].

More recently we have examined the effect of adding 
ion mobility (IM) separations and spectrometry (IMS) to 
provide an added dimension of both separation and com-
pound characterisation to rapid methods of LC–MS-based 
metabotyping [5–7]. This study showed that the use of IM 
increased the number of features detected significantly from 
ca. 16,000 by LC–MS to nearly 20,000 for LC–IM–MS, 
with similar increases seen as the run time and column 
length were reduced [7]. As IM would not compensate for 
ion suppression effects, this increase in detected features 
presumably resulted from the improved resolution of the 
ions formed in the ion source, enabling easier feature detec-
tion. However, as well as this welcome increase in features, 
incorporation of IM can result in improved MS data as a 
result of the separation of co-eluting compounds and can 
also be used to determine the rotationally averaged collision 
cross section (CCS) of analytes. These CCS values, which 
represent a characteristic property of a molecule, provide a 
further means of improving the identification of metabolites 
detected in metabolic phenotyping studies in addition to MS 
[8–12].

Here, we have coupled the 2.5  min gradient 
RAMMP–UPLC–MS method with ion mobility and 
employed this combination to analyze a subset of rat urine 
samples obtained as part of a study examining the effects of a 
methionine-choline deficient (MCD) diet [13] on the result-
ing induced liver pathology in rats related to non-alcoholic 
steatosis hepatitis (NASH), a severe stage of non-alcoholic 
fatty liver disease (NAFLD). The resulting metabolic phe-
notypes (metabotypes) were compared with those obtained 
using a conventional, 12.5 min gradient, UPLC–MS analy-
sis [14] to highlight the advantages and limitations of the 
RAMMP–UPLC–IM–MS approach.

Experimental Section

Chemicals and Reagents

Water, methanol, 0.1% formic acid in water and 0.1% formic 
acid in acetonitrile were purchased from Fisher Scientific 
Ltd (Loughborough, UK). Standards used for instrument 
calibration were from the “Waters Major Mix IMS/ToF Cali-
bration Kit for IMS” (Product Number 186008113, (Waters 
Corp., Milford, USA). Leu Enk (Sigma, Dorset, UK) was 
used to calibrate the QTof mass spectrometer.

Study Design

Full details of the study design are provided in Ref. [13]. 
Briefly, the urine samples used here were collected from ten 

male Sprague Dawley rats, of which half were maintained 
on a control diet whilst the other half received a methionine-
choline deficient (MCD) diet for 8 weeks to model non-alco-
holic steatohepatitis (NASH) as part of a study to explore 
methotrexate-induced liver toxicity [13]. Samples were col-
lected from animals that had been fed with either control or 
MCD diets for 8 weeks for four 6 h periods over 2 days (− 6 
to 0 h, 6–12 h, 18–24 h and 36–48 h). The urine samples 
were collected from animals forming the study control group 
after placing the rats into metabolism cages. Urine was col-
lected on ice and mixed with sodium azide (1 mL 1% w/v 
in H2O) to prevent the unwanted growth of bacteria. Urine 
samples were stored at – 80 °C until analysis. This investiga-
tion was approved by the Institutional Animal Care and Use 
Committee (IACUC) at the University of Arizona. The work 
was undertaken within the NIH guidelines on the care and 
use of experimental animals as previously described [13].

Sample Preparation

Urine samples were prepared as previously described [4]. 
Briefly, 20 µL of urine were mixed with 60 µL of MeOH 
and stored at − 20 °C overnight for protein removal. The 
samples were then centrifuged (15,000g, 5 min, 4 °C) and 
25 µL of the clear supernatant transferred into a 350 µL 96 
well-plate. To provide a quality control (QC) sample [15, 16] 
30 µL of each sample was taken and mixed to prepare a bulk 
pooled sample, followed by thorough vortex mixing (3 s). 
To each of the samples, including the QCs, 225 µL of water 
was then added. The plates were centrifuged (700g, 5 min, 
room temperature) and then placed into the auto sampler at 
4 °C. The column was conditioned by the injection of 20 QC 
samples prior to the beginning of the run. To monitor the 
quality of the analysis a QC was injected every 11 samples.

UPLC–MS

A Waters Acquity UPLC system and a HSS T3 1.8 µm col-
umn (2.1 × 150 mm) were used for sample analysis using the 
conventional profiling method [14]. The temperature of the 
column was set at 45 °C with the autosampler temperature 
at 5 °C. The mobile phases used were water (solvent A) 
and acetonitrile (solvent B), both modified with 0.1% v/v of 
formic acid with an initial solvent composition of 99% of A 
and a flow rate of 600 µL min−1. For gradient chromatogra-
phy, the proportion of solvent B was increased from 1% at 
0.10 s to 55% at 10 min after which solvent B was increased 
by 10% every 15 s until it reached 100% (at a flow rate of 
0.8 mL min−1) before a wash step for 1 min. The wash step 
was followed by a re-equilibration period of 1 min with 99% 
solvent A (total run time 12.65 min). The volume of the 
sample injected was 5 µL and the purge solvent used was 
water. Mass spectrometry was performed using a Synapt 
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G2-S mass spectrometer employing electrospray ionization 
in positive mode (ESI +). The capillary voltage was 1.5 kV 
and the source temperature were set at 120 °C. The cone gas 
flow was 50 L h−1 and the gas used was nitrogen. The desol-
vation gas temperature was 450 °C, the desolvation gas flow 
was 900 L h−1 and the nebuliser gas flow was 6 bars. The 
acquisition was carried out over the m/z range 50–1200. To 
obtain fragmentation data, centroid mode with MSe acquisi-
tion was used with a low collision energy of 4 eV and the 
high collision energy ramped from 15 to 45 eV. Leucine 
encephalin (MW = 555.62) was used for mass accuracy with 
a scan collected every 60 s and a cone voltage fixed at 30 V. 
The data were collected using MassLynx V 4.1 (Waters 
Corp., Milford, USA).

RAMMP–IM–MS

A Waters Acquity UPLC system was used for sample analy-
sis using the rapid gradient method with the separation per-
formed on a HSS T3 1.8 µm column (1 × 50 mm). The tem-
perature of the column was set at 40 °C with the autosampler 
temperature at 5 °C. The mobile phases were those used 
for the conventional method. The initial solvent composi-
tion 99% of A, at a flow rate of 400 µL min−1. For gradient 
chromatography, the proportion of solvent B was increased 
from 15% at 0.42 min to 50% at 0.83 min, 95% at 1.25 min 
and 99% at 1.51 min, before a wash step of 1 min (total run 
time 2.5 min). The volume of the sample injected was 5 
µL and the purge solvent used was water. Ion mobility and 
mass spectrometry were also performed using a Synapt G2-S 
mass spectrometer in ESI + mode with a capillary voltage of 
3.0 kV and a source temperature set at 120 °C. The cone gas 
flow was 50 L/h and the gas used was nitrogen. The desolva-
tion gas temperature was 450 °C, the desolvation gas flow 
was 1000 Lh−1 and the nebuliser gas flow was 6 bar. Fol-
lowing ionisation, the ions were passed into the ion mobility 
cell. The helium cell gas flow used to fill the ion mobility 
cell was fixed at 180 mL min−1 and the IMS gas flow was 
fixed at 90 mL min−1. A wave velocity of 650 m/s, a wave 
height of 40 V, a EDC delay coefficient of 1.41 V, a bias of 3, 
a mobility RF offset of 250, a Rf offset of 300, an IMS wave 
delay of 1000 µs and a DC entrance of 20 were applied. The 
IMS was calibrated using the Waters Major Mix IMS/ToF 
Calibration Kit for IMS. Following IM the ions were sub-
jected to MS with data acquired over the m/z range 50–1200. 
Continuum mode was applied to the experiment with a low 
collision energy of 15 eV and an elevation for the high col-
lision energy of 45 eV. Leucine encephalin (MW = 555.62) 
was used for mass accuracy with a scan collected every 15 s 
and a cone voltage fixed at 30 V. The data were collected 
using MassLynx V 4.1 (Waters Corp., Milford, USA).

Data Pre‑processing

The conventional UPLC–MS raw dataset was converted 
into the mzML format using ProteoWizard 3.0 [17] and 
pre-processed using XCMS software 1.52.0 [18] as a pack-
age into RStudio. The peak detection was done using the 
centWave method, with a peak width going from 1 to 15 s, 
a mass accuracy of 25 ppm, a signal to noise threshold 
cut-off of 3, a retention time error of 12 s, a m/z error of 
0.05 Da and a prefilter defining a minimal number of 8 
scans per peak with a minimal intensity of 1000. Peak 
grouping was done according to the nearest method. A 
minimum fraction filter was applied before the normali-
zation to conserve only the features present at a minimal 
level of 30% in at least one of the sample groups. Median 
fold change normalization was then applied as well as a 
coefficient of variation filter, based only on QCs and with 
a threshold of 0.2.

The RAMMP–IM–MS raw dataset was firstly centroided 
using “Accurate Mass Measure” in MassLynx according to 
the “Automatic Peak Detection” process type. As with the 
conventional UPLC–MS raw dataset, the RAMMP–IM–MS 
data were converted into the mzMLformat using ProteoWiz-
ard and pre-processed using the same XCMS script, but 
using the following parameters for the dataset: maximum 
peak width—20 s, mass accuracy—15 ppm, retention time 
error—6 s and minimum number of scans considered—7.

Data Visualization and Analysis

The output compound measurements were imported into 
SIMCA 14.1 (Umetrics). The datasets were log-transformed 
with an offset of 20 and mean-centred. Then PCA score plots 
were used to assess the general distribution of the samples 
and the QCs, and cross-validated OPLS-DA models were 
used to select the features of interest.

Feature Selection

To select the features impacting the most on the class separa-
tion between the animals fed with a control diet or those fed 
with the MCD diet an S-plot was created from the OPLS-
DA model for each method. A p(corr) value of 0.05 was 
used to select the features showing the greatest influence on 
the cross-validated OPLS-DA model from the conventional 
UPLC–MS method whilst for the RAMMP–IM–MS method, 
a p(corr) value of 0.1 was used.
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Feature Annotation

For the RAMMP–IMS–MS dataset metabolite annotation 
was performed using UNIFI® Scientific Information Sys-
tem software 1.9, service release 4 (Waters Corp., Milford, 
MA, USA), which matched these data with an in-house 
database constructed using the compounds provided in the 
IROA Mass Spectrometry Metabolite Library of Stand-
ards  (MSLMS) [12]. The database was searched using 
accurate mass m/z values (± 10 ppm) and CCS values (± 2% 
the mean direct infused (DI)-IMS), including protonated or 
sodiated adducts within 0.2 min of the expected retention 
time. Database-matching was performed on the entire data-
set and, from the annotations that were obtained, the features 
selected as driving the separation between the controls and 
those fed the MCD diet, and that were present at least two-
thirds of the samples in one of these classes were annotated 
where possible.

Results and Discussion

As indicated in the experimental section, the urine samples 
obtained from these animals were analysed using both con-
ventional UPLC–MS [14] and RAMMP–IM–MS. Following 
peak picking and peak grouping ca. 24,000 retention time/
mass features were found using the standard UPLC–MS 
method and ca. 3300 using the RAMMP–IM–MS method, 
respectively (Table 1). In the first instance, the metabolic 
profile of the RAMMP–IM–MS dataset was compared with 
that obtained by conventional UPLC–MS, to confirm that the 
outputs of both methods were comparable in terms of group 
discrimination, as previously shown for RAMMP–MS vs 
UPLC–MS [4]. Application of the minimum fraction filter 
resulted in the number of features being divided by 3.55 
for the conventional UPLC–MS method and by 3.93 for the 
RAMMP–IM–MS method. Finally, after filtering the data 
based on a coefficient of variation of 0.2, the final number 
of features detected for each method were 3,414 and 479 
by UPLC–MS and RAMMP–IM–MS methods, respectively 
(summarized in Table 1).

Metabolite Profiling

As previously described [13], following 8 weeks on the 
MCD diet designed to mimic NASH, a severe state of non-
alcoholic fatty liver disease (NAFLD) was successfully 
induced in the five rats to which it was administerd, which 
all exhibited liver pathology. Following metabolic pheno-
typing of the urine samples from this study by UPLC–MS 
and RAMMP–IM–MS, as described above, unsupervised 
multivariate statistical analysis of the data (principal compo-
nents analysis, PCA) showed a clear separation along prin-
cipal component 1 (PC1), with a similar distribution of the 
urine samples seen for both LC methods, which clustered 
according to the dietary regime (Fig. 1). The QCs used to 
determine the reproducibility of the measurements were all 
well clustered in the PCA score plots for both UPLC–MS 
and RAMMP–IMS–MS datasets, with all 479 features in the 
latter showing a CV of 20% or less (indeed the vast majority 
were 15% or better) (see Supplementary Table S1).

The PCA score plots provided very similar R2X(cum) val-
ues for both the UPLC–MS (0.667) and RAMMP–IMS–MS 
(0.543) methods, showing a good fit of the model to the 
dataset. Both methods also gave similar Q2(cum) results 
(0.561 for conventional UPLC–MS and 0.495 for 
RAMMP–IMS–MS method), indicating that models derived 
from both methods provided good predictions of the data-
sets after cross-validation. With both analytical methods, a 
slight time-related effect was observed along PC2 for both 
diets showing that, even with the reduced feature detection 
for the RAMMP–IMS–MS vs conventional UPLC–MS, the 
discrimination of metabolic phenotypes between the two 
groups of rats was conserved.

To simplify further comparisons, only the data for the 0 h 
time point samples obtained for animals on each diet were 
selected for further analysis (Fig. 1, lower panels).

Feature Selection

Cross-validated OPLS-DA models were generated from 
the 0 h time point urine samples for each diet (Fig. 2). 
Similar results in terms of group separation were obtained 
for the data generated by both methods, as demonstrated 
by the comparable values of R2X(cum), R2Y(cum) and 
Q2(cum) which were for the conventional method, 1 pre-
dictive and 1 orthogonal component, based on N = 10 
samples, R2X(cum) = 0.540, R2Y(cum) = 0.997 and 
Q2(cum) = 0.944). The equivalent figures for the RAMMP/
IM/MS method were, for1 predictive and 1 orthogonal 
component, R2X(cum) = 0.669, R2Y(cum) = 0.998 and 
Q2(cum) = 0.966). The OPLS-DA loading S plots were then 
used to identify the features driving the separation between 
the control and MCD diet-fed animals. To select these 
features, a p(corr) of 0.05 was used for the conventional 

Table 1   Numbers of features observed during the pre-processing of 
the dataset obtained from the conventional UPLC–MS and RAMMP–
IM–MS methods

Number of features Conventional 
UPLC–MS 
method

Rapid 
RAMMP–IM–
MS method

After peak picking and grouping 24,111 3316
After minimum fraction filtering 

and normalization
6794 843

After CV filtration 3414 479
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UPLC–MS method, which resulted in 35 features being 
selected. However, as discussed and expected, the number 
of features detected with the RAMMP–IM–MS method that 
passed through the various data filters was much lower than 
for the conventional method (Table 1). The number of fea-
tures found to be significant in terms of driving the discrimi-
nation between the two groups using a p(corr) of 0.05 on 
the S plot of the RAMMP–IM–MS model gave 11 features. 
Increasing the p(corr) value to 0.1 for the RAMMP/IM/MS 
method increased the number of features selected to 47.

Comparison of the Profiles from Conventional 
and RAMMP–IM–MS Methods.

Based on the OPLS-DA loading S plots, a comparison of 
the most discriminating signals from each group (control 
and MCD diets) was made according to both UPLC–MS 
and RAMMP–IMS–MS methods. Features were selected 
according to a p(corr) value of 0.05 for UPLC–MS (N = 35) 
and 0.1 for RAMMP–IM–MS N = 47. Out of the 35 dis-
criminating features in the conventional UPLC–MS method 
and the 47 discriminating features in the RAMMP–IM–MS 
method detected in this preliminary analysis of the data, 
there were very few in common. However, despite the lack 
of overlap between the two methods the class separations 
observed in Fig. 1 are clear. This result is interesting given 
that in a previous study where RP-RAMMP–MS was com-
pared with conventional UPLC–MS the discriminating fea-
tures were similar. However, such an outcome is perhaps not 
unexpected as the introduction of an IM-based separation 
effectively changes the selectivity of the separation system.

The data for the 47 features driving the separation 
between the control rats and those fed the MCD diet 
and measured with the RAMMP–IMS–MS method were 
matched against a previously described in-house data-
base, constructed using the compounds in the IROA Mass 
Spectrometry Metabolite Library of Standards (see Ref. 
[12]). This database includes retention time, m/z and the 
CCS values for ca. 530 compounds. Preliminary annota-
tions on the features that it contained that might represent 
compounds for which data were available were initially 
selected on the basis of CCS and m/z values, and these 
were then compared against retention time. These pre-
liminary annotations were therefore made on the basis 
of all three of these properties wherever possible using 
retention matching of ± 0.2 min, CCS of ± 2% and mass 
accuracy of ± 10 ppm, as indicated in the experimental 
section. In addition, exclusion based the compound not 
being detected in a sufficient number of samples, or “bio-
chemical plausibility” were also used to screen out e.g., 
xenobiotics etc. As a result, three metabolites, N-acetyl-
glutamate, urocanic acid, and the tryptophan catabolite 
xanthurenic acid were identified based on tR, m/z and CCS 

values match based on the UPLC–IM–MS database [12]. 
Kynurenic acid, another tryptophan metabolite, was more 
tentatively identified based only on matches to mass and 
CCS values. Other potential compounds, initially selected 
on the basis of the CCS and m/z filters, including hypox-
anthine, salicyamide, methyl-β-d-galactoside, galacterate 
and 10-hydroxydecanoate were eliminated from consid-
eration based on tR, poor abundance across the sample 
set, or insufficient biological plausibility. The data for 
N-acetylglutamate, which was found to be more abundant 
in the urine of control compared to MCD diet-fed rats, are 
shown in Fig. 3 whilst the equivalent results for urocanic, 
xanthurenic and kynurenic acids are shown in Supplemen-
tary Figures S1–S3 and Tables S2–S5.

Since its early beginnings in LC–MS-based metabolic 
phenotyping [19] the potential of IM, especially when com-
bined with the CCS values derived from it, has been obvi-
ous, and both are increasingly being used in metabotyping 
(e.g., [5, 6, 8–12]). However, whilst this trend is welcome, 
and the results obtained here employing the combination of 
tR, CCS are gratifying, the relatively low number of posi-
tive identifications does once again highlight a major prob-
lem for LC–MS-based metabolic phenotyping in that it is 
much easier to detect potential biomarkers than to actually 
convincingly identify them. The in-house database that we 
have constructed based on the IROA MSMLS is obviously 
limited by the number of compounds that it contains and the 
fact that many of them are not found in urine. Indeed, of the 
300 compounds in the library that were detected using the 
RAMMP method in + ve ESI for profiling rat urine only 63 
metabolites (some present in only 1 sample/biological rep-
licate) were positively identified using all three criteria [12]. 
The development of more comprehensive, matrix-specific, 
libraries of compounds is an obvious approach that could 
be developed, as is prediction of e.g. CCS and tR values. 
Indeed, there is much interest and indeed progress in the 
calculation of CCS values based on compound structures 
using both molecular modelling [20] or machine learning-
based approaches [21, 22], and significant inroads have been 
made in this area. In the case of the IROA compounds, our 
previous study showed that calculated and measured CCS 
values were generally within 2% (or better) of each other 
[12] offering hope that CCS can be calculated as routinely 
as accurate mass, without the need for prior experimental 
determination. The remaining challenge, if productivity is 
to be maximized in metabolic profiling is, therefore, one for 
separation scientists in solving the problem(s) inherent in the 
prediction of chromatographic properties to the point where 
they can be used with confidence in the absence of a readily 
available authentic standard.
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Conclusion

Comparison of conventional untargeted UPLC–MS 
method with RAMMP–IMS–MS has demonstrated that the 
results of both methods are complementary. The RAMMP 
approach, whilst detecting fewer features, had similar dis-
criminating power to the conventional method and could 
be used as a means of rapid fingerprinting/screening sam-
ples prior to a more in-depth analysis using e.g., the con-
ventional UPLC–MS method (perhaps supplemented with 
IM). The use of the database, containing m/z, CCS and 
separation-specific tR to identify analytes highlights both 
the benefits and the limitations of such approaches, and 
points to the need for improved methods for calculating/
predicting properties such as CCS and tR.
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