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Abstract. Atopic dermatitis (AD), also known as eczema, is one of the
most common chronic skin diseases. AD severity is primarily evaluated
based on visual inspections by clinicians, but is subjective and has large
inter- and intra-observer variability in many clinical study settings. To
aid the standardisation and automating the evaluation of AD severity,
this paper introduces a CNN computer vision pipeline, EczemaNet, that
first detects areas of AD from photographs and then makes probabilistic
predictions on the severity of the disease. EczemaNet combines trans-
fer and multitask learning, ordinal classification, and ensembling over
crops to make its final predictions. We test EczemaNet using a set of im-
ages acquired in a published clinical trial, and demonstrate low RMSE
with well-calibrated prediction intervals. We show the effectiveness of us-
ing CNNs for non-neoplastic dermatological diseases with a medium-size
dataset, and their potential for more efficiently and objectively evaluating
AD severity, which has greater clinical relevance than mere classification.
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1 Introduction

Atopic dermatitis (or ezcema; AD) is a chronic skin disease affecting 15-30%
of children and 2-10% of adults worldwide [27]. It is characterised by recurrent
skin inflammation that can severely impact patients’ lifestyles, with detrimental
effects on social, academic, and occupational aspects of their lives. While cur-
rent treatments aim to manage dynamic and unpredictable fluctuations of AD
symptoms, only 24% of patients and caregivers feel confident that they can man-
age AD symptoms adequately [31]. Automating the evaluation of AD severity
would allow us to assist research into the disease and enable patients to become
more involved in the management of their condition. Remote assessment of AD
symptoms by automated evaluation would enhance data-enabled efficient clini-
cal trials by reducing the burden of parties involved and minimise detection bias
in clinical trials that test interventions.

Several clinical scores are commonly used to grade the severity of AD, in-
cluding the Six Area, Six Sign Atopic Dermatitis (SASSAD) score [4], the Three
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Item Severity Score (TISS) [28], and the Eczema Area and Severity Index (EASI)
[11], the latter of which is recommended by the Harmonising Outcome Measure
for Eczema organisation [20]. Each of these are defined according to a combina-
tion of the severities of 7 disease signs3 (Fig. 1): cracking (Cra.), dryness (Dry.),
erythema (Ery.), excoriation (Exc.), exudation (Exu.), lichenification (Lic.) and
oedema (Oed.). However, due to the lack of sufficient clinical training materi-
als, and the non-intuitive nature of some disease signs (e.g., “dryness” versus
“cracking”), inter- and intra-rater reliability is poor [19]. Our goal is to improve
the reliability of these scoring systems through computer-aided evaluation of the
different disease signs.

Fig. 1: Disease signs and their relationship to severity scores. A) Examples of the
4 disease signs associated with EASI. Reproduced from [11]. B) A list of disease
signs used for calculating SASSAD, TISS and EASI.

In recent years, machine-learning-based methods using convolutional neural
networks (CNNs) have reached dermatologist-level performance on classifying
skin cancers [7, 5]. However, due to the lack of standardised clinical datasets
beyond skin cancer, applications of CNNs for non-cancerous diseases have mostly
been limited to automatic disease diagnosis of skin lesions [10, 16, 29]. Whether a
lesion can be attributed to AD is of limited value to already diagnosed patients,
and does not address the important challenge of assessing the overall severity of
the disease, whose lesions are spatially distributed over the entire body and can
exhibit multiple symptoms of varying intensities.

In this paper, we introduce a novel computer vision pipeline, EczemaNet, that
is capable of detecting and evaluating the severity of AD from camera images. In
comparison to prior work [2], we use deep learning to learn relevant features from
the data (as opposed to hand-engineered features), produce probabilistic predic-
tions, and evaluate our method on a far larger dataset. Our pipeline uses CNNs
to first detect regions-of-interest (RoI) from an image to make image crops, and
then evaluate the severity of the 7 disease signs in each crop. Our input im-
ages often include background, clothes, etc. while most pipelines expect closely
cropped images [26]. Similarly to recent work on psoriatic plaque severity assess-
ment [17], we use ordinal classification to predict the severity of multiple disease
signs simultaneously. However, we also propagate the uncertainties over these

3 As well as the area of the affected region in the case of EASI.
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predictions to produce a final set of severity scores (SASSAD, TISS and EASI)
simultaneously, and show that using multiple crops and probabilistic predictions
allows us to make well-calibrated predictions with low root mean squared error
(RMSE). These properties make EzcemaNet a promising proof-of-concept for
the use of CNNs in clinical trials, with downstream applications in personalised
therapies for AD.

2 Data

Our data originates from the Softened Water Eczema Trial (SWET), which is a
randomised controlled trial of 12 weeks duration followed by a 4-week crossover
period, for 310 AD children aged from 6 months to 16 years [25]. The original
data contains 1393 photos of representative AD regions taken during their clinic
visits, along with the corresponding severity of each disease sign. During each
visit, a disease assessment was made for SASSAD and TISS, using the 7 disease
signs labelled for each image. The severity of each sign was determined on an
ordinal scale: none (0), mild (1), moderate (2), or severe (3).

The photos vary both in resolution and subjective quality, such as focus,
lighting, and blur. In addition, as the photos can contain significant areas of
background or areas that are otherwise irrelevant for diagnosis, we manually
curated 962 of the original photos, generating 1748 image crops of representative
diseased regions by visual inspection4. We used these crops to fine-tune an RoI
detection network, and then bootstrapped our dataset by running this network
on all images, extracting a further 2178 image crops. Both sets of image crops
were then combined and paired with the labels for the 7 disease signs, resulting
in a final dataset of 933 diagnoses from 285 patients, including 1237 original
photos with corresponding 3926 image crops5.

This final dataset was used to train our severity prediction network (Subsec-
tion 3.2). All crops were labelled with the overall diagnosis for the entire image,
as we did not have labels for the individual crops. Despite this noisy labelling,
the use of RoI detection and severity prediction in EczemaNet led to better
performance than using the entire image (Subsection 4.2).

3 Method

Our EczemaNet pipeline consists of detecting RoI, making probabilistic predic-
tions on all 7 disease signs over all crops simultaneously, and then combining
these to predict the AD severity scores per image (Fig. 2). We made heavy use
of transfer learning [30] to train on our medium-size dataset successfully: we fine-
tuned both our RoI detection and severity prediction CNNs. The RoI detection

4 RoI, of arbitrary size, were labelled by 3 volunteers given a set of 50 expert-labelled
images, where 1 volunteer was instructed directly by an expert. 431 photos were
deemed difficult to label by the volunteers and hence left out of our dataset.

5 The full data pipeline is provided in Supp. Fig. 1.
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was trained first, as otherwise it would not be able to provide relevant crops for
the severity prediction network for end-to-end training. We used TensorFlow [1]
for training and evaluation, starting with pretrained models in TensorFlow. Our
code is available at https://github.com/Tanaka-Group/EczemaNet.

3.1 RoI (Region of Interest) Detection

Following the speed/memory/accuracy model selection guidelines from Huang
et al. [15], we chose the Faster R-CNN model [18] to perform RoI detection for
diseased areas.

Fig. 2: EczemaNet overview. The RoI detection network extracts crops from an
image. The severity prediction network makes probabilistic predictions for each
disease sign in each crop. The averaged prediction over crops are then combined
to form the final probabilistic prediction of the severity scores for the image.

3.2 Severity Prediction

Our severity prediction pipeline is composed of a pretrained CNN base and 7
fully-connected neural networks (FCNNs), each of which predicts the severity of
one of the 7 disease signs. We reflect the ordinal nature of the labels by training
the FCNNs with ordinal classification. The predicted severities are averaged over
all crops to calculate a probabilistic distribution of the severity of each disease
sign for the image. Finally, the predictions for the disease signs are combined
to produce a probability distribution of the regional6 severity scores (SASSAD,
TISS and EASI) per image.

Here we describe characteristic features of EczemaNet in more detail.
Pretrained CNN base: Our base consists of all convolutional and pooling
layers within MobileNet [14].

6 In practice, EASI and SASSAD are assessed across different regions of the body,
which we do not consider in this work.
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Separate FCNNs: We use separate FCNNs per disease sign, as opposed to
using one FCNN to predict all disease signs simultaneously.
Ordinal Classification: Instead of predicting the 4 severities independently
for each sign as a 4-way classification, as is typically done, we model them using
ordinal classification, which better reflects the ordinal nature of the severity.
To predict the classes, X, for the diagnoses none (X = 0), mild (X = 1),
moderate (X = 2) and severe (X = 3), we train 3 binary classifiers to output
the probabilities, p0 = p(X > 0), p1 = p(X > 1) and p2 = p(X > 2). These
probabilities are then converted into class probabilities for outcome X using a
modification of Frank & Hall’s method [8] with dependent classifiers [6]:
p(X = 0) = 1− p0, p(X = 1) = p0(1− p1), p(X = 2) = p0p1(1− p2), and
p(X = 3) = p0p1p2.
Expectation over Crops: We produce a single set of severity predictions for
each disease sign over the entire image, by averaging the predictions over all
crops7. Despite the high overlap between most crops, similarly to test-time data
augmentation [3], we found that averaging over crops improved both accuracy
and calibration (Subsection 4.2).
Multitask prediction: All 3 regional severity scores (TISS, EASI, SASSAD)
are sums of subsets of the 7 disease signs (Fig. 1B). While it is possible to directly
predict each of the regional severity scores, we treat prediction as a multitask
problem, predicting the severity of all disease signs simultaneously, and then sum
them8 to calculate the final regional severity scores.

4 Experiments and Evaluation

Inference for a single image on CPU (Intel i9-9980HK) took 15.6s for the de-
tection network and 1.6s for the severity prediction network. Our work is a
proof-of-concept, and could feasibly run on a smartphone in a few seconds with,
e.g., model compression techniques.

4.1 RoI (Region of Interest) Detection

We fine-tuned a pretrained Faster R-CNN model using the 962 manually cu-
rated original photos. With a train/validation/test ratio of 60:20:20, the manu-
ally curated photos were randomly split into 578:192:192 photos. It resulted in
1069:378:346 corresponding image crops, as each photo can contain a different
number of image crops. The model was trained for 105 steps with a batch size of
1, using SGD with momentum = 0.9, with an initial learning rate of 3 × 10−4,
dropped to 3 × 10−5 after 90000 steps; no data augmentation was used. We
weighted the localisation loss by a factor of 1.2, as our focus was to improve de-
tection, rather than classification by Faster R-CNN, which was trained to detect
the presence of AD.

7 Crops were preprocessed by bilinearly resampling to 224×224px.
8 We convolve the probability mass functions of the predicted severity of the 7 disease

signs, assuming that the predictions are independent random variables.
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We evaluated our model using the average precision (AP) score, the standard
measure in object detection. The AP score measures the intersection between
the ground truth and predicted boundaries, with a default overlap threshold of
50%. After tuning hyperparameters on our validation set, we tested our model
using the test set of 192 images and obtained the AP score of 40.15%. We
also performed a more qualitative evaluation to validate our trained model, and
estimated that our model achieved a 10% false positive rate per image. We
therefore concluded that our RoI detection network could generalise sufficiently
well, and used it to extract more crops from the original data (Section 2).

4.2 Severity Prediction

We combined a pretrained MobileNet with 7 separate randomly initialised FC-
NNs (for each disease sign), and trained all parameters to predict the severity
of the 7 disease signs on the final pre-processed dataset, which contained 933
diagnoses from 285 patients, including 1237 original photos with 3926 corre-
sponding image crops. We used 10-fold cross-validation with a 90:10 train/test
split, stratified on patients, to train and assess severity prediction models. The
models were trained for a maximum of 50 epochs (using early stopping) with a
batch size of 32, using SGD with a learning rate of 1× 10−4 and momentum =
0.9; no data augmentation was used. Dropout with p = 0.5 and a max `2-norm
weight constraint with c = 3 were used to regularise all fully-connected layers
[22]. To combat severe class imbalance, we weighted all prediction losses by the
inverse of the empirical class probabilities.

We evaluated RMSE on EASI (the recommended severity score [20]) for
EczemaNet (1.929± 0.019) and for its variations listed below to confirm the use
of each characteristic aspect of our model design (Fig. 3A and Table 1).
Pretrained CNN Base: The choice of pretrained CNN base significantly im-
pacts the performance of the prediction model. We evaluated a range of com-
monly used CNN architectures for the base: Inception-v3 [24], MobileNet [14],
ResNet-50 [13], VGG-16, and VGG-19 [21]. Only EczemaNet with MobileNet
consistently achieved an RMSE on EASI of < 2 including standard error.
Bootstrapped Dataset: Training EczemaNet with the 1748 manually labelled
crops, plus the 2178 additional crops automatically extracted by our trained
RoI detection network, achieved the lowest RMSE across all of our experimental
conditions (1.929 ± 0.019), compared to 2.003 ± 0.024 when EczemaNet was
trained with only the manually labelled crops.
Model architectures: We used a set of baselines (baseline and intercept-only)
and ablations (listed in order of performance, Fig. 3A; Supp. Fig. 2):

EczemaNet Our full model.
–Ordinal 4-way categorical classification vs. ordinal classification.
+Interaction Sign interaction added by concatenating FCNN features vs.

separate FCNN per sign.
–Separate FCNNs A single FCNN for all 7 signs vs. separate FCNNs per sign.
–Crops Using the entire image vs. averaging predictions over crops.
–Pretrained Starting with random CNN weights vs. pretrained CNN weights.
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Intercept-only Predicting the average EASI in the training set.

Baseline Predicting EASI from the whole image using regression.

–Multitask Predicting EASI directly vs. summing predicted disease signs.

The full EczemaNet performs best, although some components have a lesser
effect on the RMSE on EASI (Fig. 3A)9. In reverse order, multitask learning is
the most important modelling choice, which possibly mitigates overfitting. The
baseline model, which is a naive CNN-based approach, using regression on the
whole image, performs almost the same as the intercept-only model, indicating
the difficulty of our problem. Using pretrained weights and averaging over crops
also play a large role in the good predictive performance of EczemaNet. Sharing
FCNN parameters when modelling the 7 disease signs hurts performance slightly,
perhaps due to interference between the 7 tasks. Finally, ordinal classification
provides a small boost over categorical classification with MobileNet[14]10.

Fig. 3: A) RMSE (mean ± 1 standard error over cross-validation) on EASI across
models. B) EASI calibration of highest density prediction intervals (coverage).

The coverage of EczemaNet (Fig. 3B) indicates well-calibrated prediction
intervals for a NN [9]. The performance could be further improved by post-
processing, such as quantile calibration, to make the predictive distribution
sharper at the mode and with longer tails.

Achieving high accuracy on the regional severity scores is a major aim of
our work for clinical relevance. It is also important to examine other metrics as
well, particularly because of the class imbalance in the data. We calculated F1

scores and Ranked Probability Scores (RPS) for all disease signs for all models
that predict all 7 disease signs (Table 1). The F1 score is the harmonic mean of
precision and recall, and hence is less sensitive to class imbalance than recall.

9 We also observed a similar ranking across models for SASSAD (Supp. Figure 3) and
TISS (Supp. Figure 4), as well as across the individual signs.

10 The selection of base architecture was determined experimentally. MobileNet[14]
provided greater benefits over other base architectures including VGG-16/19 [21],
ResNet-50 [12], and Inception-v3[23] (Supp. Fig. 5).
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RPS is a strictly proper scoring rule corresponding to the MSE of the cumulative
forecast distribution and the cumulative outcome distribution, and measures the
calibration of ordinal forecasts. We observed approximately the same ranking of
baselines/ablations as for RMSE on EASI, with no clear outliers, supporting our
earlier assessment on their relative importance.

Table 1: F1 score (top; ↑ is better) and RPS (bottom; ↓ is better) for models
that predict all 7 disease signs. Mean ± 1 standard error over cross-validation.
Model Cra. Dry. Ery. Exc. Exu. Lic. Oed.

Full 0.707 ± 0.013 0.443 ± 0.006 0.419 ± 0.004 0.480 ± 0.007 0.769 ± 0.008 0.404 ± 0.005 0.694 ± 0.007
–Pretrained 0.671 ± 0.013 0.242 ± 0.008 0.250 ± 0.009 0.269 ± 0.004 0.759 ± 0.008 0.234 ± 0.003 0.694 ± 0.007
–Separate FCNNs 0.696 ± 0.013 0.422 ± 0.006 0.405 ± 0.006 0.473 ± 0.005 0.768 ± 0.008 0.390 ± 0.005 0.690 ± 0.007
+Interaction 0.704 ± 0.013 0.454 ± 0.008 0.437 ± 0.005 0.491 ± 0.007 0.767 ± 0.008 0.388 ± 0.007 0.697 ± 0.007
–Ordinal 0.696 ± 0.013 0.453 ± 0.006 0.428 ± 0.007 0.470 ± 0.004 0.772 ± 0.008 0.404 ± 0.006 0.692 ± 0.008
–Crops 0.686 ± 0.012 0.369 ± 0.004 0.370 ± 0.006 0.289 ± 0.007 0.765 ± 0.007 0.317 ± 0.006 0.700 ± 0.007

Full 0.076 ± 0.003 0.136 ± 0.001 0.137 ± 0.001 0.128 ± 0.001 0.056 ± 0.002 0.151 ± 0.002 0.077 ± 0.002
–Pretrained 0.098 ± 0.003 0.164 ± 0.001 0.160 ± 0.002 0.178 ± 0.001 0.077 ± 0.002 0.181 ± 0.001 0.085 ± 0.002
–Separate FCNNs 0.080 ± 0.003 0.140 ± 0.001 0.142 ± 0.001 0.132 ± 0.001 0.057 ± 0.002 0.156 ± 0.002 0.079 ± 0.002
+Interaction 0.080 ± 0.003 0.141 ± 0.001 0.141 ± 0.001 0.131 ± 0.002 0.056 ± 0.002 0.156 ± 0.002 0.079 ± 0.002
–Ordinal 0.079 ± 0.003 0.139 ± 0.001 0.136 ± 0.001 0.130 ± 0.001 0.055 ± 0.002 0.149 ± 0.001 0.079 ± 0.002
–Crops 0.083 ± 0.004 0.154 ± 0.001 0.155 ± 0.002 0.163 ± 0.002 0.063 ± 0.002 0.165 ± 0.002 0.081 ± 0.002

5 Discussion

This paper presented EczemaNet, a CNN-based pipeline for evaluating eczema
severity directly from camera images. EczemaNet consists of an RoI detection
network, which extracts relevant crops from each image, and a severity predic-
tion network, which predicts the severity of 7 disease signs for each crop. The
probability distributions of severities are averaged over crops, and then com-
bined to form a prediction of the 3 regional severity scores. EczemaNet achieved
a low RMSE on EASI on a medium-size clinical dataset, and demonstrated
well-calibrated prediction intervals. These results present a step towards stan-
dardising evaluation of objective AD severity scores for diverse dermatological
research purposes, and could be applied to similar conditions, such as psoriasis.

Multiple sources of systematic errors, aside from random errors, can be con-
sidered to limit the performance of EczemaNet: mis-labelling due to inter- and
intra-rater variability, discretisation error over a continuous outcome (severity),
and errors arising from partial/noisy information (e.g., tactile diagnoses, out-of-
focus images). While it is difficult to evaluate the effects of all of these sources
of errors, Monte Carlo simulations of the measurement process suggested that
rounding error alone could account for an RMSE of 0.6, which makes it unclear
how much performance could be further improved on EczemaNet trained with
our data. Future work could involve data augmentation while tackling the issue
of the class imbalance.

A natural extension of the work presented here is to move beyond regional
severity scores to predicting the overall severity scores. For a given area, EASI
is the product of the intensity score (which we currently predict), and the area
score. The area score could be predicted simultaneously with the intensity scores
given the box labels identified by our RoI network. We encourage future clinical
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trials to collect and share richer labels, such as pixel-level segmentations, to
increase the breadth of tasks, such as segmentation, that can be automated
using machine learning.
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