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Abstract1

A key strategy for agriculture to adapt to climate change is by switching crops2

and relocating crop production. We develop an approach to estimate the economic3

potential of crop reallocation using a Bayesian hierarchical model of yields. We apply4

the model to six crops in the United States, and show that it outperforms traditional5

empirical models under cross-validation. The fitted model parameters provide evidence6

of considerable existing climate adaptation across counties. If crop locations are held7

constant in the future, total agriculture profits for the six crops will drop by 31% for8

the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated9

to avoid yield decreases and take advantage of yield increases, half of these losses10

are avoided (16% loss), but 57% of counties are allocated crops different from those11

currently planted. Our results provide a framework for identifying crop adaptation12

opportunities, but suggest limits to their potential.13
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1 Introduction14

Extreme temperatures under climate change are predicted to reduce average yields for several15

of the United States’ major crops [1, 2, 3, 4]. However, these impacts can vary across space,16

with some areas showing benefits from increases in moderate temperatures and increased17

evapotranspiration under irrigation [5, 6]. As climate shifts, these changes in productivity18

will drive farmers to change crops and move into new areas [7]. Understanding the extent of19

these regional changes in agricultural productivity and how they influence future cropping20

decisions is a central question for the impacts of climate change on agriculture [8, 9]. Crop21

shifting may be able to attenuate climate impacts, but the potential benefits depend on the22

distribution of impacts, the total availability of productive land, and costs of switching crops.23

In this paper, we explore the potential redistribution of six crops in the United States24

as an adaptation to climate change. We approach the crop shifting problem as a spatial25

optimization problem to maximize profits, following Polasky et al. [10] and Devineni and26

Perveen [11]. Our key innovation consists of providing a new empirical approach which27

better supports this form of crop shifting analysis, by providing estimates of the potential28

for crops as they move into new areas.29

Empirical agricultural crop models use variation in weather to explain yearly variation in30

crop yields [5, 12, 13]. Local agricultural management decisions are detailed and dynamic in31

a way that is unavailable to scientists working at large spatial scales. Econometric techniques32

allow these unobserved differences between regions to be accounted for with local baselines.33

However, these techniques have two consequences that undermine their ability to model the34

crop shifting process. First, they can model changes in yields, but not yield levels, since35

this information is factored out with region-specific baselines. As a result, crop productivity36

in regions that are not observed growing the crop cannot be determined. Second, they37

have a resolution-variance trade-off, whereby interactions terms that allow the relationship38

between weather and yield to vary by region necessarily reduce the precision of the estimated39

relationship within each region and may lead to over-fitting.40

In this paper, we develop a Bayesian approach which addresses both of these challenges.41

As with econometric models, yields are predicted with a log-linear model, with terms for42

the non-linear effect of temperatures, crop water deficits, and a linear technology trend. In43

our model, the coefficients of the model are allowed to vary for each high-resolution region,44

represented here with US counties. To constrain this regional variation in parameters and45

predict parameters in new regions, the expected values of each region’s coefficients and of46

the regional intercept are modeled as a linear combination of a set of spatial covariates47

in an hierarchical Bayesian model [14, 15]. The method allows “partial pooling”, whereby48

the degree to which regions are pooled to estimate a single national set of parameters is49

determined by the data: if the data support idiosyncratic regional differences in temperature50

sensitivity, for example, very little pooling between regions will be used and the parameters51

for each region will be estimated separately. The covariates used to predict variation in the52

sensitivity to weather are the annual mean temperature, isothermality (diurnal range divided53



by annual temperature range), temperature seasonality (standard deviation over months),54

annual precipitation, precipitation seasonality (coefficient of variation across months), and55

irrigation fraction by crop (see SI 1-2). Both the region-specific weather coefficients and the56

model of how those coefficients vary over space are estimated simultaneously. In comparison57

to a least-squares regression approach, the hierarchical Bayesian approach is more efficient58

than a two-stage estimation process and allows more regional variation than an regression59

model with interacted coefficients.60

2 Results61

2.1 Spatial variation in climate sensitivity62

We fit the Bayesian yield model to yield observations for United States counties from 194963

to 2009 for six crops: barley, corn, cotton, soybeans, rice, and wheat. The covariate model64

is used to predict weather response functions and yields in new locations for each crop. The65

coefficients for extreme degree-days, a key driver behind climate impacts, are shown in figure66

1 (others are in SI 3).67

[Figure 1 about here.]68

The spatial patterns for the effects of extreme temperatures vary by crop. Corn and cotton69

show less sensitivity to extreme temperatures in the southern US, reflecting adaptation in70

seed varieties or farming practices to minimize losses. For wheat and barley, adaptation is71

dependent upon water availability, with higher sensitivity in dry regions. We find that a fairly72

low degree of partial pooling was applied, so that the estimated parameters for the county-73

specific models vary considerably. The 95% range of the estimated coefficients on extreme74

temperatures is 2 (rice) to 12 (cotton) times the standard error of the average coefficient.75

Much of the variation in coefficients is explained by county mean temperature, suggesting76

existing adaptation to higher temperatures. The portion of variation in sensitivity of crop77

yields to extreme temperatures that is explained by mean temperature varies from 8% for78

soybeans to 63% for cotton. Finally, coefficients vary slowly across space, showing spatial79

correlations up to 2000 km (see SI 4).80

2.2 Comparison of crop modeling approaches81

To validate the crop models, we compare the coefficients of determination (unadjusted R2)82

for each crop to the results of a series of panel econometric regressions, mapping out the83

range between Schlenker and Roberts [5] and an regression-based equivalent to our analysis84

using covariate interactions. Since we are interested in the ability of the model to predict85

future years, we also perform cross-validation, by fitting the model to data from 1949 to 199486
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and evaluating it on yields during 1995 - 2009. These results are shown in table 1. Spatial87

patterns of R2 are shown in SI 5, and the regression comparison details are in SI 6.88

[Table 1 about here.]89

Applied to data from all years, the Bayesian model performs similarly to the most flexible90

ordinary least squares (OLS) models with linearly varying coefficients. However, these same91

OLS models are prone to over-fitting, and show large decreases in their R2 under cross-92

validation. OLS models with constant coefficients across all counties perform better under93

cross-validation. While the Bayesian models also show reduced predictive capacity under94

cross-validation, they out-perform all OLS models for four of the crops. In all cases, they have95

a greater R2 than similarly flexible OLS models. This is due to the idiosyncratic differences96

between coefficients in different counties that are permitted in the Bayesian model.97

2.3 Shifting cultivation under climate change98

Next, we use the Bayesian model to identify the optimal cultivation patterns now and in the99

future. We use the yield model with constant error variance (table 1, column 6) to limit the100

variance in unobserved counties. Since cultivation costs and prices vary across the United101

States, we use profit (local price in 2010 times predicted yield, minus management costs) in102

USD acre−1 to determine the best crop (see SI 8). Costs and prices are from USDA Economic103

Research Service [16] for 2010, adjusted when necessary to make the locally optimal crop104

according to profits match the most widely planted observed crop (see SI 9). Since we do not105

account for alternative uses of land, we constrain the crops to only be cultivated in the future106

in areas currently used for at least one of the six crops. Changes in future crop production107

can also result in general equilibrium effects on prices [9]. Here, we avoid significant price108

changes by limiting the total land used by each crop to not exceed current nation-wide totals109

(details in SI 10).110

[Figure 2 about here.]111

Applied to current climate, crops are grown in characteristic temperature ranges, as shown in112

figure 2 (top). Barley and rice are mainly grown in cooler counties, while cotton is grown in113

the warmest areas. However, these suitability envelopes are not exclusive, with some barley114

and rice grown at higher temperatures. Although the optimization is calibrated to prefer115

the crop currently most planted in each county, 16% [14 - 18%]1 of counties do experience116

changes under the optimization, as secondary crops are replaced with the optimal crop, and117

then these secondary crops are shifted to other counties. This results in a 13% [8 - 37%]118

increase in total profits (see figure 3). The largest changes result from swaps between soybean119

and corn, which are commonly grown in rotation (excluding corn-soy swaps, 5% [4 - 6%] of120

counties show changes).121

1Ranges in brackets display the 95% credible interval throughout.
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We then use a suite of CMIP5 models to project these changes in optimal crops forward122

under RCP 8.5, and report outcomes in 2050 and 2070 including both climate and statistical123

uncertainty (figure 2, SI 11). Corn retains its enormous area (by construction, so long as124

corn profits are positive), but becomes less concentrated in the Midwest. Soybeans show a125

gradual movement north, replacing spring wheat and barley. The wheat lands of the Great126

Plains see a gradual hollowing-out, while winter wheat moves up from the south along the127

Mississippi. Cotton is grown at higher latitudes, becoming the dominant crop in southern128

California. At the same time, lands in the southern US that are not profitable for any crop129

expand. These tend to be at the higher end of the temperature distribution, and account130

for 5% of the included land area by 2070.131

2.4 Economic outcomes of adaptation132

Figure 3 (top) shows the amount of switching between crops to maximize profits. Large133

portions of corn and soybean cultivation continue to swap in 2050, but changes from 2050 to134

2070 are more minor. By 2070, 53% [39 - 67%] of counties experience crop switching (36%135

[21 - 51%] excluding corn-soy swaps). We do not observe an orderly movement to higher136

latitudes, because of our constraint against crops moving into new areas (see SI 12).137

A comparison of the effects of optimization on profits is shown in figure 3 (bottom). In the138

absence of optimization, total estimated profits fall from $45.7 [$44 - 52] billion to $35.8139

[$24 - 50] billion in 2050 and $31.4 [$19 - 48] billion in 2070, a 31% decrease [59%↓ - 5%↑].140

With optimization, profits in 2010 were predicted to be able to increase to $51.8 [$49 - 63]141

billion. However, they fall below current profits by 2050 and by 2070, even with further142

optimization, they fall to $38.6 [$28 - 54] billion, still 16% below [38%↓ - 18%↑] observed143

levels. Relative to the profits of optimally reallocated crops in the current period, percentage144

losses from climate change are greater, 26% below [45%↓ - 4%↑] the peak.145

[Figure 3 about here.]146

Behind these profits are both increases and decreases in individual crop production. Produc-147

tion is predicted to be able to increase for most crops under current conditions and optimal148

planting, ranging from small decreases for soy (2% [4 - 1%]) to large production increases149

for barley (26% [11 - 44%]). By 2070, however, decreases in total production are shown for150

barley (9% [22%↓ - 4%↑]), corn (37% [74%↓ - 10%↑]), rice (2% [30%↓ - 37%↑]), and soybeans151

(6% [16%↓ - 5%↑]) relative to observed production. These are offset by increases from cotton152

(73% [20% - 192%]) and wheat (2% [26%↓ - 28%↑]). These results do not extrapolate the153

historical trend in crop yields into the future, to isolate the relative role of climate change154

(we explore this in SI 13-14).155

In the default model, we assume that there are no additional barriers or frictions involved156

switching crops, and explore the effects of imposing a range of crop switching costs in SI157

14. Switching costs of $180 / acre reduce reallocation changes by half, against average158

cultivation costs between $123 / acre (barley) and $499 / acre (rice). As switching costs159
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increase, optimal losses converge to the losses without crop reallocation. Since optimal profits160

in 2050 are below current profits, losses will remain under any level of switching costs.161

3 Discussion162

The crop switching projected in this paper would cause disruptions to farmers, food supplies,163

and environmental habitats. Even if crops are mobile, farmers may not be. In particular,164

farmers who work on the 5% of cultivated land that becomes economically untenable under165

our model will need to identify new crops or land uses outside the scope of this study.166

Our empirical model only captures adaptation practices currently employed to respond to167

within-year shocks of high temperatures. Future work is needed to explicitly account for168

the potential and limits of irrigation expansion, long-term investment in adaptation, and169

to distinguish the benefits of CO2 fertilization from the long-term trend. While we con-170

sider multiple sources of uncertainty in the outcomes, we do not account for risk aversion,171

unexpected weather shocks, or the multi-year consequences of crop failures.172

Our optimization approach assumes perfect knowledge of crop weather responses and that173

observed weather will correspond to expected climate. As such, our results should be consid-174

ered a frontier of possibility, assuming that crop yield respond to temperatures in the future175

as they have in the past. The cropping patterns shown in our current and future results176

should not be taken as recommendations, since many details at the field and farmer level177

are not included.178

Our results show considerable potential from crop switching to avoid damages from climate179

change. These changes are driven both by differences in how temperatures may change180

in different regions as well as differences in the sensitivity of crops to high temperatures.181

However, the remaining losses imply that crop switching is not a panacea and that new seed182

varieties and new adaptation practices are needed to support farmers and meet the food183

demands of the future.184
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Figure 1: The effect of extreme degree-days on yields, as it varies by county
and crop. The displayed coefficients are for the effect of a 1 standard deviation change in
extreme degree-days (EDDs) on log yield, interpretable as the fractional effect on yields. The
response to extreme temperatures is predicted even in areas where the crop is not currently
grown. Each crop has a different growing season and extreme degree-day (EDD) cut-off, so
that model coefficients are normalized by a different standard deviation per crop (240 EDDs
/ SD for barley, 65 for corn, 40 for cotton, 63 for rice, 64 for soybeans, and 82 for wheat).
County outline color indicates the confidence level (solid black outline: p-value < 0.05, thin
white outline: p-value > 0.33).
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Figure 2: Optimized crop patterns for each period (across rows), and across tem-
perature (left) and space (right). When plotted as a distribution across temperature,
the climatic annual mean temperature of each county is used, and the distribution is across
counties. NA (grey) regions are used where none of the six crops are planted at baseline or
where total profits are maximized by leaving land fallow later in the century.
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Figure 3: Adaptation outcomes accounting for crop shifting. (Top) The portion of
area allocated to each crop, under the optimization, in percent labeled boxes. Flows between
the allocations show the portion of area previously allocated to the crop on the left, and
flowing into its new allocation on the right. The difference between observed and optimized
crop allocations (first transition) is due to replacing secondary crops with primary crops.
(Bottom) Profits under observed and optimized crop allocations for the current climate
(first box), 2050, and 2070. The first bar in each columns gives estimates of profits without
relocation of crops, and the second bar is with optimization. Error bars show 95% credible
intervals.
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OLS Bayesian
Intercepts: Uniform County Linear County Partially pooled
Coefficients: Uniform Uniform Linear Linear Partially pooled
Error variance: Uniform Uniform Uniform Uniform County Uniform

(1) (2) (3) (4) (5) (6)
Estimated and evaluated on all years

Barley 0.36 0.71 0.57 0.75 0.74 0.75
Corn 0.48 0.76 0.65 0.78 0.81 0.82
Cotton 0.32 0.64 0.55 0.70 0.68 0.69
Rice 0.75 0.84 0.81 0.84 0.85 0.85
Soybeans 0.47 0.72 0.65 0.76 0.78 0.79
Wheat 0.42 0.71 0.56 0.73 0.76 0.76

Estimated on 1949 - 1994, evaluated on 1995 - 2009
Barley -0.11 0.43 0.20 0.45 0.48 0.46
Corn -0.09 0.20 0.07 -1.05 0.27 0.17
Cotton 0.07 0.31 0.14 -37.50 0.21 0.12
Rice 0.20 0.37 0.12 -1.59 0.19 0.14
Soybeans 0.26 0.47 0.39 -16.27 0.53 0.48
Wheat 0.16 0.49 0.31 0.47 0.51 0.50

Table 1: Comparison of the predictive power of OLS and Bayesian yield models.
Table cells show R2 by crop and model specification, using all data (top) and under cross-

validation on 1995 - 2009 (bottom). In all cases, R2 = 1−
∑

(yi−ŷi)
2∑

(yi−ȳi)
, where yi is the observed

log yield for county-year i. ŷi is the point estimate for OLS and the posterior prediction for
the mean MCMC parameter draw for the Bayesian model, and ȳi is the average across all
observations of yi. The first four columns are ordinary least squares (OLS) specifications,
variously including region-specific intercepts and covariate interactions. The last two columns
are for the Bayesian model, either allowing each county to have a different variance (5) or
constraining all to have the same variance (6).
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