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1 Introduction

Due to the rapid expansion of the commercial aviation industry, authorities have
been tightening the legislation for aircraft noise. For instance, the European
Commission has set a 65% reduction goal of overall aircraft noise from the year
2000 to 2050 [1]. The noise generated by the jet exhaust is one of the main
contributors to the overall aircraft noise, especially during take-off [2]. Moreover, in
new generation ultra-high by-pass ratio turbofan engines the increased interaction
between the engine jet and the high-lift devices can potentially affect the noise field
[3]. Thus, our overall aim is to develop and investigate an accurate and efficient
method for the prediction of far-field jet noise in installed jet configurations.

Rapid growth in computing power during the last decades has enabled the use
of scale resolving numerical simulations for jet noise research at a reduced cost
than most experimental campaigns. Conventionally, 2nd-order numerical schemes
combined with surface integral techniques, particularly the Ffowcs Williams-
Hawkings (FW-H) method [4] have been widely adopted for predicting the far-field
noise, due to its simplicity and low cost. However, defining the envelope surface
used in the FW-H method is not always trivial in complex configurations [5], for
example, installed jets on aircraft wings. Also, the results may be overly sensitive
to the size, shape and location of these surfaces. Now, directly resolving the
Navier-Stokes (NS) equations for sufficiently accurate far-field jet noise results is
prohibitively expensive [6]. LES using finite volume 2nd-order accurate schemes
has proven to be reliable and robust for solving jets’ near field, but large numerical
dispersion and dissipation error makes them less suitable for the propagation of the
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sound waves to the far field. High-order methods provide more accurate propagation
due to their reduced numerical error but are insufficiently robust for simulating
complex jet flows. Therefore, we have used a coupled approach in which a finite
volume LES solver is used to obtain the acoustic sources, which are then transferred
to a high-order acoustic solver that propagates noise to the far-field.

The spectral/hp DG method [7] is capable of providing high-order accuracy
and handling mixed mesh elements types such as tetrahedra and hexahedra, thus
providing a potential solution to geometrically complex acoustic problems. The
solver based on this approach is AcousticSolver of the Nektar++ framework [8, 9].
The LES code HYDRA and acoustic code AcousticSolver have been coupled and
validated using hexahedral elements [10, 11]. A similar coupling strategy has been
used previously for jet noise [12] and combustion noise on tetrahedral grids [9].

In this paper, our focus is on two aspects: (1) estimates of mesh design for the
high-order solver using a canonical two-dimensional (2D) case and (2) comparison
of three-dimensional (3D) turbulent isolated jet-noise results on a tetrahedral
grid and a comparable hexahedral grid using the coupling approach. From the
perspective of our near future work, the tetrahedral grid results provide motivation
and parameters for the set-up of the coupled methodology for jet-flap interactions.

2 Numerical Methods and Solvers

In this section, the details of the high-order spectral/hp DG solver employed to solve
the APE equations are provided followed by a brief description of the LES code
that solves the filtered compressible NS equations. Finally, the coupling of the two
is briefly mentioned.

2.1 APE Solver

Equations for Propagation The acoustic perturbation equations (APE) solved here
are the ones proposed by Ewert and Schröder [6] in the APE-4 form. These
equations describe the transport of acoustic fluctuations in a linearized form, where
the source terms can be non-linear, and can be written as:

∂tp
′ + c2∇ ·

(
ρu′ + u

p′

c2

)
= c2qc, (1)

∂tu′ + ∇ (
u · u′) + ∇

(
p′

ρ

)
= qm, (2)
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where p′, u are the acoustic pressure and acoustic velocity vector respectively and
c is the speed of sound. The time-averaged quantities are denoted by the over-bar
and acoustic fluctuations are primed. The left-hand side of (1) and (2) represents the
advection of waves in the mean flow. The right-hand side describes different sources
that may be present in a generic aeroacoustic problem.

Finally, the source terms, qc and qm are defined as:

qc = −∇ · (
ρ′u′)′ + ρ

cp

Ds′

Dt
, (3)

qm = − (ω × u)′ + T ′∇s − s′∇T −
⎛
⎝∇ (

u′)2

2

⎞
⎠

′
+

(∇ · τ

ρ

)′
. (4)

These terms are classified into four categories:

1. the non-linear terms: −∇ · (
ρ′u′)′ and −(∇ (

u′)2
/2)′,

2. the heat/entropy terms: (ρ/cp) · (Ds′/Dt) and T ′∇s − s′∇T ,
3. the viscous term: (∇ · τ/ρ)′ and
4. the vortical term, known as the Lamb vector, L′ = −(ω × u)′.

In this paper, only the Lamb vector L′ is considered as a source term because it is
the dominant contributor for isothermal applications with strong vortical motions
(shear layers and wakes), as demonstrated in [12, 13].

Numerical Solver The solver used for the above APE equations is called Acous-
ticSolver, which is part of the open-source Nektar++ framework [8]. The solver
employs a high-order, spectral/hp element method with a DG formulation [7]. In
short (for details see [9]), the present DG method works as follows:

1. The computational domain is divided into non-overlapping elements.
2. The governing equations are discretised in each element by a weighted sum of

basis functions where the coefficients of the expansion are the unknowns. In case
of tetrahedral elements, the basis functions are modified hierarchical Jacobi basis
[8].

3. The discretised equation is then multiplied by a test function (same as the
basis function) followed by integration over each element in order to obtain the
variational form of the governing equations.

4. The flux terms in the variational equation are responsible for communicating the
information across the elements. The interface fluxes are calculated using the
immediate left- and right-side values with a Riemann solver.

The scheme used here to solve the Riemann problem is a local Lax-Friederichs
scheme as defined in [9]. The temporal discretisation is performed using a 4th-order
Runge-Kutta scheme. A numerical sponge layer [14] is set up using source terms
to dampen out the outgoing acoustic waves smoothly, thus minimising reflections
from the boundaries of the domain.
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2.2 LES Solver

The LES is performed using the in-house code of Rolls-Royce plc., HYDRA [15]
that solves Favre-filtered unsteady compressible Navier-Stokes equations [10]. It
is a density-based, spatially 2nd-order accurate finite volume cell-vertex code used
for propulsion and turbomachinery applications. More details on the set-up of the
spatial scheme used can be found in [10]. For the temporal discretisation, a 2nd-
order, four-stage Runge-Kutta explicit algorithm is employed. The size of the time
step is chosen to keep the Courant number less than unity. The code is capable of
solving arbitrary mesh topologies which is beneficial for complex geometries. The
sub-grid scale model is chosen as σ -model [16] with model constant Cσ = 1.35
[17].

2.3 Coupling of Solvers

The 3D data from LES mesh is transferred and interpolated onto the APE mesh in
real time. The interpolation is necessary because two solvers have different meshes
designed specifically to capture flow and acoustics. The transfer-interpolation
process takes place in parallel. This is achieved using an MPI based coupling
strategy with the open-source library CWIPI [18]. More details on the coupling
mechanism are provided in Lackhove et al. [9] and Moratilla-Vega et al. [10]. Note
that larger time steps can be used for AcousticSolver since it is not restricted to
resolve the small flow structures.

3 Test Cases

Two cases are presented here. First, a canonical noise propagation case due to a
well-defined vortex-pair source run on AcousticSolver alone. A study of numerical
error by changing the mesh and polynomial expansion order (P) is performed. The
second case uses the mesh parameters from the first to propagate noise generated by
an isolated jet in an LES simulation. This case provides validation of the coupling
for a 3D turbulent jet noise case on a fully tetrahedral mesh. The results are then
compared to the ones obtained with the FW-H technique.

3.1 Spinning Vortex Pair

The case is an acoustic wave propagation problem in two dimensions where the
source is mathematically well-defined, as in the original work on APE [6]. The
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case is run with standalone AcousticSolver. The source is in the form of two-
point vortices at a distance of r0 from the origin, rotating with a circulation �. An
analytical solution of the induced acoustic field was found by Müller and Obermeier
[19] as:

p̃′ = ρ∞�4

64π3r4
0c2∞

H
(2)
2 (kr), (5)

where, H
(2)
2 is the Hankel function of 2nd-order and second kind, the rotation

period is defined as T = 8π2r2
0/�; the angular velocity as ω = �/4πr2

0 and
the Mach number as Mr = �/4πr0c∞. The real part of Eq. (5) gives the pressure
fluctuations. Ewert and Schröder [6] found the source-term based on the Lamb
vector that represents the acoustic field for this case as:

qm = − �2er (t)

8π2σ 2r0

2∑
i=1

(−1)i exp

(
−| r + (−1)ir0(5) |2

2σ 2

)
, σ ≈ r0, (6)

where, r = (x, y)T , r0 = r0er , er = (cos θ, sin θ)T and θ = ωt .
The computational domain considered is circular and extends to 250r0. The

source parameters are set as in [6] i.e. �/(c∞r0) = 1.6 and Mr = 0.1273.
Simulations are run until the pressure fluctuations reach r = 200r0 in order to
minimise the boundary effects. All the elemental meshes consist of triangles and a
modified hierarchical Jacobi polynomial basis [8].

First, a reference simulation with polynomial order 4 (P4) is run on a fine
uniform mesh. The resulting acoustic pressure field is plotted along a diagonal
line in Fig. 1a. The result from this simulation matches its analytical counterpart
well. Further comparisons are made with respect to this well-resolved P4 numerical
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Fig. 1 (a) Pressure field along x = y line, (b) solution points, and contours of the source term in
the source region and the pressure field in the propagation region
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Table 1 Details of the test cases run

Simulation Poly. order Nr × Nθ ppw at r
r0

= 150 CPU cost

P4 (reference) 4 260 × 152 90 6.53

P1 1× coarse 1 64 × 76 5.20 1.00

P2 2× coarse 2 32 × 76 5.15 0.82

P4 4× coarse 4 15 × 76 5.00 0.68

Nr is the elements in the radial direction
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Fig. 2 Acoustic pressure and relative error comparison of the test cases. (a) Pressure along x=y

line. (b) Relative error (as moving average)

result, henceforth called as “P4 reference”. For the test cases, elemental meshes are
coarsened radially and the polynomial order is elevated in the propagation region,
such that, the solution points-per-wavelength (referred as “ppw”) distribution is
similar in the radial direction. The radial growth rate is kept ∼1.023 with geometric
distribution in all the cases. In the source region, the mesh is kept the same with P1
expansion for all cases. This allows having a smooth transition of solution points
distribution when crossing from one region to the other. A sample P2 mesh and
contours are shown in Fig. 1b. Table 1 summarises the test runs.

Figure 2a compares the pressure fields in different test cases with the P4
reference. As expected, the P1 simulation shows a considerable reduction in the
amplitude. P2 and P4 preserve this quantity more accurately. For simplification,
we unify the dissipation and dispersion error by calculating the overall relative
error as a moving average (M.A.) over bins of ∼30r0. This is plotted in Fig. 2b.
For P1 and P2 simulations, a 2% error limit is reached around 50r0 (ppw ∼ 9) and
85r0 respectively (ppw ∼ 6.4). P4 simulations remain below this limit under the
present conditions (note ppw ∼ 5 at 150r0). The values of ppw for different P agree
with those suggested in [20] and provide an estimate for mesh design in different
polynomial order setting.

Note that for the given ppw, mesh expansion rate and Riemann solver, we did
not observe reflections of the acoustic signals on the inter-element boundaries. A
caveat of the present study is that we calculate total numerical error here for brevity,
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however dissipation and dispersion error could be studied separately as done in [20]
on a one-dimensional advection study.

3.2 3D Turbulent Isolated Jet Noise

As a step forward towards noise prediction of installed jets, an isolated jet is
simulated using a tetrahedral mesh for AcousticSolver to verify the capabilities of
the present methodology for complex 3D cases. Note that the coupling is already
validated on a cylinder in cross flow and a cylinder-airfoil interaction case in [11].

Jet Flow The LES performed is described here briefly since the same is detailed
in [10]. An isothermal turbulent jet issuing from a circular cross-section nozzle at
Mach 0.9 and Reynolds number Re = 10,000 (based on jet bulk velocity Uj and
jet diameter Dj ) is considered. Following Shur et al. [21], the present LES domain
is cylindrical in shape and extends as x/Dj = [−5, 100] and r/Dj = [0, 50].
The mesh has 190 × 75 × 49 nodes in the axial, radial and azimuthal directions
respectively. It is refined in the shear layer development area and coarsened towards
the outer boundaries. Figure 3a shows a central cross-section of the LES mesh. The
inlet boundary condition is a total pressure profile.

Jet Acoustics The acoustics domain is cubical to facilitate control on mesh growth.
It extends as [−5, 40]Dj in streamwise direction and [−25, 25]Dj in transverse
directions. Noise propagation on two different grids is compared: fully hexahedral
(“hexa”) and fully tetrahedral (“tetra”). The former mesh consists of 107 × 69 × 69
elements in the streamwise and transverse directions respectively [10]. The tetra
grid is generated to give a similar distribution as the hexa mesh in the vicinity of the

(a) (b)

Fig. 3 Cross-section view through the centre of the jet nozzle. (a) LES mesh elements. (b)
AcousticSolver meshes
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jet, providing 300,000 elements in total. Figure 3b shows the two meshes where it
is seen that the nominal element size in the tetra mesh is slightly larger away from
the jet nozzle. Results on the hexa grid (P4) are available from [10] and calculations
are performed on the tetra grid in this study. The expansion type utilised is a P4
modified Jacobi basis [8]. A numerical sponge layer [14] of thickness 3Dj is applied
at the outer boundaries to avoid reflections of the outgoing waves. A factor of 3 in
time step size is used as compared to the compressible LES. In line with Sect. 3.1
and [20], a value of ppw ∼ 5 is chosen for accurately resolving frequencies up to a
Strouhal number St = 0.9.

It is already demonstrated in [10] that the LES flow quantities are in acceptable
agreement with the high-order LES study of Shur et al. [21]. The noise propagation
is calculated using the FW-H method [4] in addition to the present coupled approach.
The nominal cut-off St for the integral surface defined is ∼0.3 based on the 22 ppw
criterion [6]. Figure 4 shows a visual comparison between the acoustic pressure
field computed by LES alone and coupled LES-APE (on two meshes). Figure 4a,
b qualitatively show that the coupled LES-APE has retained more acoustic content
(especially at higher frequencies) due to lower numerical error. This difference is
more pronounced in the direction perpendicular to the jet centre-line. Qualitatively
comparable results are obtained on the tetra mesh as depicted in Fig. 4c.

Figure 5 shows a quantitative comparison in terms of power-spectral-density
(PSD) at two observer locations at a distance of 120Dj . The PSD for FW-H is
calculated over the surface indicated by the dashed line in Fig. 4a (details in [10]).
Comparison is done with the LES of Shur et al. [21] and the experiment of Tanna
[22] (Re = 106, Mach = 0.9). As previously observed in Fig. 4, the difference
between FW-H and the present coupled approach is significant at higher frequencies.
For the 30◦ location, the tetra mesh results match the hexa results well. At 90◦

(a) (b) (c)

Fig. 4 Acoustic pressure field at the same time instant (in grayscale [−30, 30] Pa). (a) LES. (b)
LES-APE (hexa). (c) LES-APE (tetra)
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(a) (b)

Fig. 5 PSD at 120Dj at two observer locations with respect to the jet centre-line. (a) 30◦. (b) 90◦

location, there is an improvement of cut-off St from 0.3 to 0.8. A small discrepancy
is seen at 90◦ for St > 0.8 (close to the cut-off St = 0.9). This may be improved by
using a finer mesh in the far-field. Overall, the APE results are an improvement over
the present FW-H prediction in the high frequency domain. Moreover, the results
from the tetra mesh are comparable to ones from the hexa mesh. This implies that
the present methodology using tetra grids can be extended to more complex cases
(such as installed jets).

4 Conclusions

A spectral/hp code AcousticSolver (under Nektar++ framework) has been
employed for acoustic waves propagation. The favourable properties of this solver
are high-order accuracy and capability to handle unstructured mesh elements. A
study on a canonical test case with an analytical solution provided estimates for
designing the mesh for the jet application. For polynomial order expansion P4, 5
solution points-per-wavelength is found to provide a low overall error. This value
is close to the one reported in a related study [20]. These estimates are used to
design a tetrahedral mesh for prediction of noise from an isolated jet (Re = 104,
Mach = 0.9). The noise sources are calculated from a 2nd-order accurate finite
volume LES solver and interpolated onto AcousticSolver mesh on-the-fly for
noise propagation. The noise results thus obtained offer an improvement over the
traditional FW-H method due to high-order accuracy. The power-spectral-density
(PSD) results of the noise signal at two different locations relative to the jet nozzle
show that the PSDs obtained on the tetrahedral mesh agree with the ones obtained
on a slightly finer hexahedral mesh. Further improvements may be achieved by
refining the former mesh in the radial direction. These results are encouraging for
noise-prediction of more complex industrially relevant geometries such as installed
jets.
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