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Abstract: In this paper, an improved differential evolution (DE) algorithm with the successful-
parent-selecting (SPS) framework, named SPS-JADE, is applied to the pattern synthesis of linear
antenna arrays. Here, the pattern synthesis of the linear antenna arrays is viewed as an optimization
problem with excitation amplitudes being the optimization variables and attaining sidelobe
suppression and null depth being the optimization objectives. For this optimization problem,
an improved DE algorithm named JADE is introduced, and the SPS framework is used to solve the
stagnation problem of the DE algorithm, which further improves the DE algorithm’s performance.
Finally, the combined SPS-JADE algorithm is verified in simulation experiments of the pattern synthesis
of an antenna array, and the results are compared with those obtained by other state-of-the-art random
optimization algorithms. The results demonstrate that the proposed SPS-JADE algorithm is superior
to other algorithms in the pattern synthesis performance with a lower sidelobe level and a more
satisfactory null depth under the constraint of beamwidth requirement.

Keywords: random optimization algorithm; differential evolution algorithm; SPS framework;
SPS-JADE algorithm; antenna array; sidelobe suppression; null depth; pattern synthesis

1. Introduction

An array of sensors or antennas, compared with a single one, often displays better characteristics
and can perform more functions. One example is the structural health monitoring (SHM) system
based on the finite element theory [1], which utilizes a sensor array. This paper focuses on the
antenna arrays which have the merits of high gains, flexible scanning, and easy beamforming
implementations, and which have therefore been widely used in radios such as radar and electronic
communication. The antenna array pattern synthesis, as a key problem to antenna arrays, has attracted
much attention. The main task of the antenna array pattern synthesis is to adjust the excitation
amplitudes, the phases, and the positions of array elements of the antenna array to obtain the pattern
with required characteristics.

In the early study, due to the limited computing resource, some classic analytical techniques such
as the Dolph–Chebyshev method and Taylor method [2] are used to optimize the excitation amplitudes
of the array so as to suppress the sidelobe. Since the end of the 20th century, with the rapid development
of computer technology, more and more random optimization algorithms have been applied to the
antenna design. These highly flexible algorithms have few restrictions on the optimization objectives,
which make them suitable to solve complicated and nonlinear optimization problems, and hence they
show a better optimization performance and a higher degree of freedom in antenna array pattern
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synthesis. These algorithms have been used in various pattern synthesis problems, and with the help
of them, optimization objectives such as sidelobe suppression, null depth and beamforming have been
achieved. For example, the genetic algorithm (GA) [3] has been applied to optimize the excitations of
uniform array elements [4]. Additionally, the particle swarm optimization (PSO) algorithm [5] and the
enhanced flower pollination (EFPA) algorithm have been applied to optimize the distances between
the array elements of the non-uniform arrays [6,7], and the differential evolution (DE) algorithm [8] has
been used for the pattern synthesis of the time-modulated array [9]. However, the random optimization
algorithms cannot always meet the design requirements of antenna arrays due to their low convergence
rate, long running time, and/or being trapped in the local optimum. Therefore, there are still incentives
to find a more efficient and practical random optimization algorithm.

The DE algorithm is prominent for the pattern synthesis of antenna array which utilizes the
array element excitations as optimization variables. However, there are difficulties in the control
parameter settings and the mutation strategy selection. Therefore, various algorithms are proposed
such as the dynamic differential evolution (DDE) [10], the composite differential evolution (CoDE) [11],
and the hybrid differential evolution algorithms [12]. Most of them, as well as some pertinently
modified differential evolution algorithms [13,14], have been applied to the pattern synthesis of
antenna arrays [15–17] and prove to enhance the optimization performance effectively. Among them,
the JADE algorithm [18], a state-of-the-art improved DE algorithm, has been widely applied and
shown strong performance in optimization problems because of its ability in the parameter adaptive
adjustment. Besides, to solve the stagnation problem of DE algorithm, Shu-Mei Guo and Chin-Chang
Yang proposed the successful-parent-selecting (SPS) framework [19] in 2015 that uses the success
history in the iterations to select the parent vectors, which makes it easier for the DE algorithm to find
the global optimum.

Under the constraint of the beamwidth, the excitation amplitudes optimization of the linear
antenna arrays with sidelobe suppression and null depth is considered in this paper. Several similar
works have been completed with different algorithms [20–23], and they all show satisfactory results.
However, in the above-mentioned works, the number of the array elements used in the simulations is
small, and thus the power of the algorithms hasn’t been examined in the large-scale antenna arrays.
Another less-noticed requirement is to shorten the optimal solution searching time so that the antenna
arrays can respond to the changing situations more easily and quickly. In this paper, an SPS-JADE
algorithm for antenna array pattern syntheses is designed by combining the aforementioned JADE
algorithm with the SPS framework. This algorithm can find the optimal solution with fewer iteration
numbers, and it is verified in the pattern synthesis simulations for the antenna arrays with more
elements. In comparison with other random optimization algorithms, the SPS-JADE algorithm gives
better optimization result in the pattern syntheses and has the potential to meet the requirements
stated above with its excellent global optimization and rapid convergence feature.

The rest of this paper is organized as follows. In Section 2, the problem of linear antenna
array pattern synthesis and its optimization model is introduced. In Section 3, the basic ideas and
implementation steps of the classic DE algorithm, the JADE algorithm, and the SPS-JADE algorithm
with SPS framework are introduced. In Section 4, the SPS-JADE algorithm is utilized for the simulations
of pattern syntheses. Numerical results compared with other algorithms are presented and analyzed.
Conclusions are given in Section 5.
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2. Pattern Synthesis of Linear Antenna Array

The far-field pattern is mainly related to the array factor when a linear antenna array consists of
elements placed along the x-axis as shown in Figure 1.
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Figure 1. The geometry of the linear antenna array.

The array factor of a broadside linear array on the x-z plane is expressed as follows [24]:

FA(θ, x, I,ϕ) =
N∑

n=1

Ine j( 2π
λ xn sinθ+ϕn), (1)

where the elements of the vectors x = [x1, x2, . . . , xN]
T, I = [I1, I2, . . . , IN]

T, and ϕ = [ϕ1,ϕ2, . . . ,ϕN]
T

are the position coordinates, the excitation amplitudes and phases of array elements, respectively. λ is
the wavelength, θ is the steering angle of the antenna from the positive z-axis, and N is the number of
array elements.

In this paper, we consider an N-element equally spaced linear symmetric antenna array with
an adjacent element separation of λ/2. Consider the case that N is even, with the phases of all array
elements zeroed in advance, Equation (1) becomes

FA(θ, x, I,ϕ)= 2
N/2∑
n=1

In cos[π(n−
1
2
) sinθ]. (2)

The excitation amplitudes are taken as the optimization variables and constrained within [0,1].
The sidelobe suppression, along with the beamwidth constraint, serves as the optimization objective.
The objective function is given by

f (I) =
max
θ∈S

(|F|)

max(|F|)
+ ε ·max{0, FNBW − FNBWD}, (3)

where S is the area outside of the main beam in the pattern. The first term on the right side of the
equation is the normalized maximum sidelobe level (MSL). FNBW denotes the first null beamwidth
(FNBW), which is calculated as the angle difference between the minimum amplitude points nearest to
the peak of the main beam on the left and right in the pattern. FNBWD is the desired FNBW. ε is the
penalty factor set to 104. For the anti-interference function, by adding a null depth term of which the
penalty factor is set to 1, the objective function becomes

f (I) =
max
θ∈S

(|F|)

max(|F|)
+ ε ·max{0, FNBW− FNBWD}+

M∑
m=1

∣∣∣F(θnull
m )

∣∣∣
max(|F|)

, (4)

where θnull
m is the given angle direction of the mth null. The optimization model can then be expressed as

find I= [I1, I2, . . . , IN/2]

min
{
f (I)

}
s.t. 0 ≤ In ≤ 1, n ∈ {1, 2, . . . , N/2}

, (5)
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and the result of pattern synthesis can be obtained by optimizing this model with the given random
optimization algorithm.

3. SPS-JADE Algorithm

3.1. Classic DE Algorithm

The simplicity, high efficiency and robustness of the classic DE algorithm proposed by Rainer Storn
and Kenneth Price make it suitable for solving many nonlinear problems. Firstly, an initial population

X0 =
{

xi,0
∣∣∣xi,0 = [x1,i,0, x2,i,0, . . . , xD,i,0]

T
, i = 1, 2, . . . , NP

}
, (6)

is randomly generated in the constrained optimization space, where D is the dimension of the variable,
and NP is the population size. After initialization, the steps to update the population in each iteration
can be divided into three operations: mutation, crossover, and selection.

The mutation operation is the process of generating the mutation vectors through a linear
calculation of the parent vectors and the differential vectors. The expressions of the two most common
strategies are given as follows:

1. “DE/rand/1”

vi,G = xr1,G + F ·
(
xr2,G − xr3,G

)
, (7)

2. “DE/best/1”

vi,G = xbest,G + F ·
(
xr1,G − xr2,G

)
, (8)

where the subscripts r1, r2, and r3 are three different integers chosen from {1, 2, . . . , NP} randomly and
not equal to i. xbest,G is the optimal vector in the Gth generation population, and F is the scaling factor,
which is a constant within [0,1].

The crossover operation is the process of generating trial vectors ui,G by the binomial crossover
between the mutation vectors and the parent vectors expressed as follows:

u j,i,G =

{
v j,i,G, if rand < CR or j = jrand
x j,i,G, otherwise

, (9)

where CR ∈ [0, 1] is the crossover rate. For each i and j, rand is a uniformly distributed number within
[0,1]. jrand is an integer randomly chosen from [1, D] for each i, which guarantees the diversity of
searching. The trial vectors out of the boundary constraints can be adjusted by

u j,i,G =

 (x j,i,G + xlow
j )/2, if x j,i,G < xlow

j
(x j,i,G + xup

j )/2, if x j,i,G > xup
j

, (10)

where xlow
j and xup

j are the lower and upper boundary of the optimization space, which are set to 0
and 1, respectively as in Section 2.

Finally, the selection operation, which is greedy, is to choose the better individuals from the trial
vectors and the parent vectors, and place them into the parent population of the next generation.
As shown in Section 2, the purpose of the pattern synthesis is to find the minimum of the objective
function. Hence, the specific operation can be expressed as

xi,G+1 =

{
ui,G, if f (ui,G) < f (xi,G)

xi,G, otherwise
, (11)
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where f (·) is the objective function value. The selection operation is a successful update when satisfies
f (ui,G) < f (xi,G), and such condition is of great significance in the JADE algorithm and SPS framework
introduced next.

3.2. JADE Algorithm

The JADE algorithm proposed by Jingqiao Zhang and Arthur C. Sanderson is an adaptive DE
algorithm with an optional external archive that improves the performance of the classic DE algorithm.
The improvements mainly consist of the selection of mutation strategies and the adaptive adjustment
of control parameters.

The selection of mutation strategies seriously affects the balance between the search ability and
the convergence rate. Therefore, it is significant to choose an appropriate mutation strategy. The JADE
algorithm provides a compromise strategy by giving consideration to both sides, which is named as
DE/current-to-pbest/1 and can be expressed as

vi,G = xi,G + Fi,G ·
(
xp

best,G − xi,G
)
+ Fi,G ·

(
xr1,G − xA

r2,G

)
, (12)

where the subscripts r1, r2, are randomly chosen, and r1 , r2 , i. xp
best,G is a vector randomly selected from

the top p × 100% of the current parent population sorted from best to worst, and p is a given parameter
within [0,1]. xA

r2,G is a vector randomly selected from the union of the current parent population and
the archive defined by the set of archived inferior solutions. The archive is one of the improvements
of the JADE algorithm. It is initialized as empty with a maximum population size of NP. Whenever a
successful update is completed, the replaced vector enters the archive. When the number of vectors in
the archive is equal to NP, the newly entered one will randomly replace an original one. This procedure
can expand the selection space of the difference vector and further enhance the search diversity.

It can be seen in Equation (12) that the scaling factor F is no longer a constant; instead,
it is independently generated for each individual in the population at each generation. Similarly,
the crossover rate CR is also a variable. These two parameters are generated by

Fi,G = randci(µF,G, 0.1), (13)

CRi,G = randni(µCR,G, 0.1), (14)

and truncated to [0,1] (especially, Fi,G will be regenerated if Fi,G ≤ 0), where for each i, randci(a, b) and
randni(a, b) are random numbers generated by a Cauchy distribution that serves to diversify the scaling
factors, and a Gaussian distribution, respectively, with location parameter a and scale parameter b.
µF,G and µCR,G are initialized as given parameters µF,0 and µCR,0, respectively, and updated after the
selection operation at each generation:

µF,G+1 = (1− c) · µF,G + c ·

∑
Fi,G∈SF

F2
i,G∑

Fi,G∈SF
Fi,G

, (15)

µCR,G+1 = (1− c) · µCR,G + c ·mean(SCR), (16)

where mean(·) denotes the numerical average, c is a given constant within [0,1]. SF and SCR are the
sets of scaling factors and crossover rates corresponding to all individuals that have completed the
successful updates in the current population, which guide the selection of control parameters at the next
generation and realize the adaptive adjustment to overcome the lack of adaptability to the optimization
problems. Therefore, this improvement is helpful to adjust the mutation and crossover operation
timely and to further solve the pattern synthesis problems pertinently with a high convergence rate to
shorten the searching time.
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3.3. SPS-JADE Algorithm with SPS Framework

Although the JADE algorithm can improve the convergence performance, problems may arise
in the multiple-dimensional cases such as the pattern syntheses. When the optimization dimension
increases, the aggregate of the solutions will grow exponentially, resulting in a sharp increase in the
number of local optima, and the high convergence rate will lead to the global searching trapping in
these local optima. Consequently, it will be harder and take longer to find the new optimal solutions in
the population when the DE algorithm is applied to the large-scale antenna arrays pattern syntheses
with a large number of the array elements. This phenomenon is called stagnation, and to overcome this,
here, the SPS framework that can provide a timely response to the stagnation occurring is utilized to
further improve the optimization ability of the DE algorithm and the efficiency of the pattern syntheses.

The core of the SPS framework is to use different parent vectors in the mutation and crossover
operation. In the DE algorithm, when the stagnation occurs, a population individual cannot be
successfully updated for a long time. In this case, the last NP vectors that complete the successfully
updates in the history, dubbed the successful parents, will be chosen as the parent vectors instead of the
vectors selected at the previous generation. The algorithm can then be guided out of the stagnation by
successful parents with a higher potential of searching. The standard to measure whether stagnation
occurs is the total number of selection operations performed for each population individual over the
duration that the individual continuously fails to be updated. When this number is greater than the
given stagnation tolerance Q, the stagnation occurs, and the algorithm will use the successful parents to
update the population. This novel method of the parent selection makes the algorithm keep exploring
a better solution efficiently without the reduction of the convergence rate, which shows its potential to
solve the high dimensional optimization problems.

Theoretically, the SPS framework can be applied to the general DE algorithms. In this paper,
the introduced JADE algorithm is combined with the SPS framework as the SPS-JADE algorithm,
which is further applied to the pattern synthesis of the linear antenna arrays introduced in Section 2.
The flowchart of the SPS-JADE algorithm is shown in Figure 2.
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4. Numerical Analysis and Results

4.1. Parameter Settings

The linear symmetric antenna array used here has 40 array elements, which is relatively more than
the examples in the previous works mentioned in Section 1 [20–23], with an adjacent element spacing
of λ/2. In the following simulation experiments, the parameters are chosen by referring to [18,19] and
trained by using simulations under the optimization model of the antenna array to achieve a better
optimization effect. For the SPS-JADE algorithm, p = 0.05, c = 0.1, µF,0 = 0.7, µCR,0 = 0.8, and Q = 10.
Comparisons are made with other random optimization algorithms by using the same example and
appropriate parameters setting. For the classic DE algorithm with DE/best/1, F = 0.7 and CR = 0.8;
for the improved GA algorithm in [25], the mutation probability pm = 0.3; for the jDE algorithm [26],
the initial control parameters F0 = 0.5, CR0 = 0.5; for the SaDE algorithm [27], the learning period
LP = 10; for the DEGL algorithm [28], the mutation parameters α = β = F = 0.7, the crossover rate
CR = 0.8, and the neighborhood size is the 10% of the population size; and for the JADE algorithm
without the SPS framework, p = 0.05, c = 0.1, µF,0 = 0.7, and µCR,0 = 0.8. In all these algorithms,
the desired FNBW FNBWD = 10◦. The angle resolution is set to 0.02◦. The population size and the
maximum number of the iterations are set to 50 and 300, respectively, to examine the convergence
performance of the algorithms.

4.2. Simulation Experiments Results

4.2.1. Experiment A

Each algorithm runs 30 times independently to simulate the 40-element linear symmetric antenna
array synthesis with sidelobe suppression, in which Equation (4) is used as the objective function.

The synthesis results of the normalized MSLs obtained by different algorithms are given in Table 1.
The optimal excitation amplitudes of the array elements computed by SPS-JADE algorithm are given
in Table 2 with the element number that increases along the positive direction of the x-axis in Figure 1.
Figure 3 shows the optimal patterns optimized by different algorithms. Since the antenna pattern
is symmetrical along the steering angle θ = 0◦, only a part of the antenna pattern with θ ∈ [0◦, 90◦]
is shown here. It can be seen that the sidelobe suppression results of the SPS-JADE algorithm are
generally better than the other algorithms. The normalized MSL obtained by the SPS-JADE algorithm
is around −38.45 dB, which validates its superiority in the global optimum searching. In addition,
from Table 1, we can see that the SPS-JADE algorithm performs more stably and robustly during
the multiple independent runs with a standard deviation of 0.1468 dB, which is lower than other
algorithms. The average convergence rates of different algorithms are shown in Figure 4. We can see
that the SPS-JADE algorithm converges within 150 iterations, which shows its outstanding convergence
performance. It is clear to see the superiority of the SPS-JADE algorithm in the convergence rate,
compared with the classic DE algorithm with DE/best/1, the improved GA algorithm, the jDE algorithm,
and the SaDE algorithm. Despite that the convergence rate of the DEGL algorithm is faster in the early
iterations, it is generally inferior to the SPS-JADE algorithm. Compared with the JADE algorithm,
the convergence rate of the SPS-JADE algorithm is only slightly improved by using the SPS framework.

Table 1. Synthesis results of the normalized MSLs for the linear antenna array with sidelobe suppression.

Algorithm Best (dB) Worst (dB) Average (dB) Std. (dB)

DE/best/1 −38.2821 −37.3611 −37.8710 0.2084
GA −38.3459 −37.6051 −38.0196 0.1887
jDE −37.9625 −36.7904 −37.5397 0.2577

SaDE −38.2037 −37.4546 −37.9220 0.1622
DEGL −38.3228 −36.1336 −37.6120 0.5901
JADE −38.3639 −37.4839 −38.1391 0.1811

SPS-JADE −38.4496 −37.7394 −38.2081 0.1468
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Table 2. The optimal excitation amplitudes of array elements computed by SPS-JADE algorithm with
sidelobe suppression.

Element Number Excitation Amplitude Element Number Excitation Amplitude

1, 40 0.1853 11, 30 0.6274
2, 39 0.1326 12, 29 0.6941
3, 38 0.1679 13, 28 0.7436
4, 37 0.2156 14, 27 0.8028
5, 36 0.2614 15, 26 0.8496
6, 35 0.3085 16, 25 0.9015
7, 34 0.3830 17, 24 0.9325
8, 33 0.4332 18, 23 0.9580
9, 32 0.5012 19, 22 0.9771

10, 31 0.5561 20, 21 0.9916
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In order to further study the optimization performance of algorithms in the pattern synthesis,
we select the SPS-JADE algorithm and the JADE algorithm with the best two performance in the
experiment for the pattern synthesis efficiency test and the results in the above experiment will also be
used for the analysis. In this paper, the pattern synthesis efficiency is examined by the total number of
evaluations required for the objective function to attain the given ‘value to reach’ (VTR) [16]. Since the
population size and the maximum number of iterations are 50 and 300, respectively, the maximum
number of objective function evaluations is 15,000 for each run. During this period, the number
of the independent runs that successfully reach the VTR is represented as NS, and the success rate
rS = NS/30. Four target values with high success rates and certain reference value are given as the
VTRs. The pattern synthesis efficiency test results are shown in Table 3, where FEmin, FEmax, and FEavg

are the minimum, the maximum and the average number of the objective function evaluations taken to
reach the VTRs in 30 runs, respectively. From the table, to achieve four different VTRs, the FEavgs with
the SPS-JADE algorithm are less than that with the JADE algorithm, which means that the SPS-JADE
algorithm tends to achieve the optimization objectives before the JADE algorithm. The success rates of
the SPS-JADE are also slightly higher than the JADE. In conclusion, these results intuitively show that
the SPS-JADE algorithm has higher optimization efficiency and better convergence performance in
the pattern synthesis, which demonstrates the effectiveness of our algorithm with the improvement
induced by using the SPS framework.

Table 3. Results of the pattern synthesis efficiency test with sidelobe suppression.

VTR (dB)
SPS-JADE JADE

rS FEmin FEmax FEavg rS FEmin FEmax FEavg

−37.4 100% 4030 7065 5060 100% 4242 14,332 5470
−37.6 100% 4583 8535 5563 96.7% 4504 9530 5742
−37.8 96.7% 4865 9952 6132 96.7% 5001 13,147 6773
−38.0 90% 5552 12,236 7252 83.3% 5754 11,430 7810

4.2.2. Experiment B

Assume the null at the direction of θ = 24◦. The other parameter settings are the same as in
Experiment A. Seven algorithms above are used to in the simulation experiment of the pattern synthesis
of the same 40-element linear symmetric antenna array to simultaneously achieve null depth and
sidelobe suppression. Thirty independent runs are repeated for each algorithm, where Equation (5) is
used as the objective function.

The best, the worst, the average values, and the standard deviations of the normalized MSLs by
different algorithms are given in Table 4. The best, the worst, and the average values of the normalized
null depths are given in Table 5, and the optimal patterns are shown in Figure 5. Table 6 presents the
optimal excitation amplitudes of the array elements computed by the SPS-JADE algorithm. It can be
seen that the SPS-JADE algorithm, which obtains the normalized MSL below −38.25 dB, is still superior
to the other algorithms in the sidelobe suppression despite considering the successfully generating
deep null with the null depth lower than −130 dB at the desired direction. Furthermore, it is shown
that the SPS-JADE algorithm can remain robust with a low standard deviation of the normalized MSLs
about 0.17 dB. The average convergence rates of different algorithms are shown in Figure 6. Comparing
with Figure 4, we can see that the convergence performance of each algorithm is similar to that in
Experiment A, and the SPS-JADE algorithm again shows its advantage in the convergence rate.
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Table 4. Synthesis results of the normalized MSLs for the linear antenna array with sidelobe suppression
and null depth.

Algorithm Best (dB) Worst (dB) Average (dB) Std. (dB)

DE/best/1 −37.8559 −35.9365 −37.3418 0.3833
GA −37.9721 −30.5613 −36.0488 1.7067
jDE −37.6730 −33.7738 −36.0254 0.9156

SaDE −37.3390 −31.9234 −35.0410 1.2500
DEGL −37.8964 −29.9828 −35.6964 2.1167
JADE −38.1666 −37.3229 −37.7729 0.2104

SPS-JADE −38.2521 −37.3910 −37.8737 0.1703

Table 5. Synthesis results of the normalized null depths for the linear antenna array with sidelobe
suppression and null depth.

Algorithm Best (dB) Worst (dB) Average (dB)

DE/best/1 −130.4027 −74.6508 −92.1970
GA −167.9265 −103.7220 −118.4906
jDE −103.5643 −61.3954 −73.6811

SaDE −112.0015 −73.8613 −98.3941
DEGL −142.5442 −77.2106 −106.6899
JADE −166.6318 −111.3316 −131.7949

SPS-JADE −162.1386 −105.3397 −130.8599Sensors 2020, 20, x FOR PEER REVIEW 11 of 13 
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Table 6. The optimal excitation amplitudes of array elements computed by SPS-JADE algorithm with
sidelobe suppression and null depth.

Element Number Excitation Amplitude Element Number Excitation Amplitude

1, 40 0.1736 11, 30 0.6040
2, 39 0.1271 12, 29 0.6776
3, 38 0.1710 13, 28 0.7447
4, 37 0.2173 14, 27 0.8021
5, 36 0.2607 15, 26 0.8358
6, 35 0.2948 16, 25 0.8740
7, 34 0.3699 17, 24 0.9205
8, 33 0.4366 18, 23 0.9613
9, 32 0.4954 19, 22 0.9698
10, 31 0.5573 20, 21 0.9682
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5. Conclusions

In this paper, a SPS-JADE algorithm for the antenna array pattern synthesis is designed. It improves
the shortcomings of the classical DE algorithm by making the control parameters adaptive and by
giving a better mutation strategy. In particular, the SPS framework used in the algorithm solves the
stagnation problem which occurs in various DE algorithms. The SPS-JADE algorithm is applied to the
pattern synthesis of a 40-element linear symmetric antenna array with the sidelobe suppression and
null depth under the beamwidth constraint of optimizing the excitation amplitudes of array elements.
By using the SPS-JADE algorithm, the normalized MSL of the antenna array can be reduced to around
−38.45 dB, and this value is around −38.25 dB with the null depth lower than −130 dB, which are both
the lowest among the algorithms discussed in this paper. The small average and standard deviations
of MSLs mean that the SPS-JADE algorithm can stably obtain satisfactory results. Furthermore,
the pattern synthesis efficiency of the SPS-JADE algorithm is compared with the JADE algorithm to
validate the effect of the SPS framework in speeding up the global optimum searching. In conclusion,
these simulation results show that, for the antenna array pattern synthesis, the SPS-JADE algorithm
has better performance in terms of the global search ability, the convergence rate, and robustness,
which demonstrates its great potential for the design of large-scale antenna arrays.
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