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Abstract
For γ ∈ (0, 2), we define a weak γ -Liouville quantum gravity (LQG) metric to be a
function h �→ Dh which takes in an instance of the planar Gaussian free field and out-
puts ametric on the plane satisfying a certain list of natural axioms.We show that these
axioms are satisfied for any subsequential limits of Liouville first passage percolation.
Such subsequential limits were proven to exist by Ding et al. (Tightness of Liouville
first passage percolation for γ ∈ (0, 2), 2019. ArXiv e-prints, arXiv:1904.08021). It
is also known that these axioms are satisfied for the

√
8/3-LQGmetric constructed by

Miller and Sheffield (2013–2016). For any weak γ -LQG metric, we obtain moment
bounds for diameters of sets as well as point-to-point, set-to-set, and point-to-set dis-
tances. We also show that any such metric is locally bi-Hölder continuous with respect
to the Euclidean metric and compute the optimal Hölder exponents in both directions.
Finally, we show that LQG geodesics cannot spend a long time near a straight line or
the boundary of a metric ball. These results are used in subsequent work by Gwynne
and Miller which proves that the weak γ -LQG metric is unique for each γ ∈ (0, 2),
which in turn gives the uniqueness of the subsequential limit of Liouville first pas-
sage percolation. However, most of our results are new even in the special case when
γ = √

8/3.
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1 Introduction

1.1 Overview

Let γ ∈ (0, 2), let U ⊂ C be open, and let h be some variant of the Gaussian free
field (GFF) on U . The γ -Liouville quantum gravity (LQG) surface corresponding to
(U , h) is, heuristically speaking, the random two-dimensional Riemannian manifold
with metric tensor eγ h(dx2 + dy2), where dx2 + dy2 denotes the Euclidean metric
tensor. LQG surfaces are the scaling limits of various types of random planar maps: the
case when γ = √

8/3 corresponds to uniform random planar maps. Other values of γ

correspond to random planar maps weighted by the partition function of a statistical
mechanics model on the map, e.g., the uniform spanning tree for γ = √

2 or the
critical Ising model for γ = √

3. More generally, convergence to γ -LQG is expected
if the planar map is weighted by the partition function of a critical statistical mechanics
model with central charge c = 25 − 6(2/γ + γ /2)2; see, e.g., [22, Section 3.1] and
the references therein for further discussion.

The above definition of a γ -LQG surface does not make rigorous sense since the
GFF is a randomdistribution, not a function. In particular, it does not havewell-defined
pointwise values and so cannot be exponentiated. Therefore, one needs to use various
regularization procedures to make rigorous sense of LQG surfaces. For example, one
can construct a random measure μh on U , called the γ -LQG area measure, as a limit
of regularized versions of “eγ hdz”, where dz denotes Lebesgue measure [16,33,44].
Thismeasure can be thought of as the volume form associatedwith the γ -LQG surface.
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Weak LQGmetrics and Liouville first passage percolation 371

One way to construct μh is as follows. Let ps(z, w) = 1
2πs exp

(
−|z−w|2

2s

)
be the heat

kernel on C. For ε > 0, we define a mollified version of the GFF by

h∗
ε(z) := (h ∗ pε2/2)(z) =

∫

U
h(w)pU

ε2/2(z, w) dw, ∀z ∈ U , (1.1)

where the integral is interpreted in the sense of distributional pairing (see Remark 1.1
for some discussion on the particular choice of mollifier). One can then define the
γ -LQG measure μh as the a.s. weak limit [6,44]

lim
ε→0

εγ 2/2eγ h∗
ε (z) dz. (1.2)

The LQGmeasureμh satisfies a conformal coordinate change formula: if φ : Ũ →
U is a conformal map and

h̃ := h ◦ φ + Q log |φ′|, where Q = 2

γ
+ γ

2
(1.3)

then μh(A) = μh̃(φ
−1(A)) for each Borel set A ⊂ U . We think of two pairs (U , h)

and (Ũ , h̃) which are related by a conformal map as in (1.3) as being two different
parametrizations of the same LQG surface. Thus the coordinate change formula for
μh says that this measure depends only on the quantum surface, not on the particular
choice of parametrization.

Since γ -LQGsurfaces are thought of as randomRiemannianmanifolds, one expects
that such a surface also gives rise to a random metric Dh on U . Constructing such
a metric is a much harder problem than constructing the measure μh . Miller and
Sheffield [38,39,43] constructed such a metric in the special case when γ = √

8/3 by
using a process called quantum Loewner evolution [41] to define

√
8/3-LQG metric

balls. They also showed that in this case, the metric space (U , Dh) for certain special
choices of U and Dh is isometric to a known Brownian surface—like the Brownian
map [35,36] or the Brownian disk [7]. Brownian surfaces are random metric spaces
which arise as the scaling limits of uniform random planar maps with respect to the
Gromov–Hausdorff topology.

This paper is part of a program whose eventual goal is to construct a metric on
γ -LQG for all γ ∈ (0, 2) as a limit of regularized metrics analogous to (1.2). These
regularized metrics are called Liouville first passage percolation (LFPP). We recall
the precise definition of LFPP just below. It was previously shown by Ding et al. [10]
that LFPP admits non-degenerate subsequential limits in law w.r.t. the local uniform
topology (i.e., the topology of uniform convergence on compact sets). The main con-
tributions of this paper are as follows.

• Properties of subsequential limits of LFPP We prove, using a general theorem
from [26], that every subsequential limit of LFPP can be realized as a measurable
function of the field, so the convergence occurs in probability, not just in distri-
bution. We also check that every subsequential limit of LFPP satisfies a certain
natural list of axioms which one would expect any reasonable notion of a metric
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372 J. Dubédat et al.

on γ -LQG to satisfy (see Sect. 1.2). We call a metric satisfying these axioms a
weak LQG metric. A closely related list of axioms appeared previously in [37].

• Properties of weak LQG metrics We prove several quantitative properties for a
general weak LQG metric. We compute the optimal Hölder exponents between
the LQGmetric and the Euclidean metric in both directions. We also give moment
bounds for LQG diameters and for point-to-point, set-to-set, and point-to-set dis-
tances; these bounds are analogous to known moment bounds for the γ -LQG
measure (see, e.g., [44]). See Sect. 1.3 for precise statements. Since our list of
axioms is satisfied for the Miller–Sheffield

√
8/3-LQG metric, our results apply

to this metric as well. Even in this special case, most of our results are new.

The results in this paper are used to prove further properties of weak LQG metrics
(including subsequential limits of LFPP) in [23–25], eventually culminating in the
proof in [25] that there is only one weak γ -LQG metric for each γ ∈ (0, 2), which
establishes the existence and uniqueness of the γ -LQG metric for all γ ∈ (0, 2).
However, even after this program is completed, we expect that our results will continue
to be a useful tool in the study of the γ -LQG metric. For example, our estimates for
the LQG metric are used in [31] to prove a version of the KPZ formula [16,34] for
this metric. Moreover, as explained in Remark 1.1, our results for subsequential limits
of LFPP apply to variants of LFPP defined using different continuous approximations
for the GFF (other than convolution with the heat kernel) once tightness is established
for these variants.

We remark that versions of some of the estimates for weak LQG metrics which are
proven in this paper (including tail estimates for the distance across a rectangle, the
first moment bound for diameters, and Hölder continuity) were previously proven for
subsequential limits of LFPP in [10]. However, it is important to have these estimates
for general weak γ -LQG metrics: indeed, such estimates will be used in [25] to show
the uniqueness of the weak γ -LQG metric (which is a stronger statement than just the
uniqueness of the subsequential limit for the variant of LFPP considered in [10]).Many
of our estimates are also new for subsequential limits of LFPP, e.g., the optimality of
the Hölder exponents in Theorem 1.7, the moment bounds in Theorems 1.8, 1.10,
and 1.11, and the estimates for geodesics in Sect. 4.

Due to our axiomatic approach, our proofs do not require any outside input besides
the existence of LFPP subsequential limits from [10] and a general theorem about
local metrics from [26] (both of which can be taken as black boxes). To understand
the paper, the reader only needs to be familiar with basic properties of the GFF, as
reviewed, e.g., in [46] and the introductory sections of [40,42,47].

1.2 Weak LQGmetrics and subsequential limits of LFPP

Let us now discuss the approximations of LQG metrics which we will be interested
in. We first need to introduce an exponent which plays a fundamental role in the study
of γ -LQG distances. It is shown in [12] that for each γ ∈ (0, 2), there is an exponent
dγ > 2 which arises in various approximations of LQG distances. For example, for
certain random planar maps in the γ -LQG universality class, a graph-distance ball
of radius r ∈ N in the map typically has of order rdγ +or (1) vertices. It is shown
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Weak LQGmetrics and Liouville first passage percolation 373

in [31] that dγ is the Hausdorff dimension of the γ -LQGmetric. The value of dγ is not
known explicitly except for d√

8/3 = 4, but reasonably tight upper and lower bounds
are available; see [12]. We define

ξ = ξγ := γ

dγ

. (1.4)

For concreteness, we will primarily focus on the whole-plane case. We say that a
random distribution h on C is a whole plane GFF plus a continuous function if there
exists a coupling of h with a random continuous function f : C → R such that
the law of h − f is that of a whole-plane GFF. If such a coupling exists for which
f is bounded, then we say that h is a whole-plane GFF plus a bounded continuous
function.1 Note that the whole-plane GFF is defined only modulo a global additive
constant, but these definitions do not depend on the choice of additive constant.

If h is a whole-plane GFF, or more generally a whole-plane GFF plus a bounded
continuous function, we define the mollified GFF h∗

ε(z) for ε > 0 and z ∈ C as
in (1.1). For z, w ∈ C and ε > 0, we define the ε-LFPP metric by2

Dε
h(z, w) := inf

P:z→w

∫ 1

0
eξh∗

ε (P(t))|P ′(t)| dt (1.5)

where the infimum is over all piecewise continuously differentiable paths from z to
w. One should think of LFPP as the metric analog of the approximations of the LQG
measure in (1.2).

Remark 1.1 The reasonwhywedefineLFPPusing h∗
ε instead of someother continuous

approximation of theGFF is that this is the approximation forwhich tightness is proven
in [10]. If we had a tightness result similar to those in [10] for LFPP defined using a
different approximation (such as the circle average process of [16, Section 3.1] or the
convolution of hwith ε−1φ(|z−w|/√ε), whereφ is a continuous non-negative radially
symmetric function with total integral one), then similar arguments to those in Sect. 2
would show that the subsequential limits are alsoweakLQGmetrics. Togetherwith the
uniqueness of weak LQG metrics proven in [25], this means that in order to show that
such approximations converge to the γ -LQGmetric one only needs to prove tightness.

For ε > 0, let aε be the median of the Dε
h-distance between the left and right

boundaries of the unit square along paths which stay in the unit square. It follows
from results in [10] (see Lemma 2.5) that the laws of the metrics {a−1

ε Dε
h}ε>0 are tight

with respect to the local uniform topology on C × C and every subsequential limit
induces the Euclidean topology on C.

1 The reason why we sometimes restrict to bounded continuous functions is that it ensures that the con-
volution with the whole-plane heat kernel is finite (so Dε

h is defined) and it makes parts of the proof of
Theorem 1.2 simpler.
2 The intuitive reason why we look at eξh

∗
ε (z) instead of eγ h

∗
ε (z) to define the metric is as follows. By (1.2),

we can scale LQG areas by a factor of C > 0 by adding γ −1 logC to the field. By (1.5), this results in
scaling distances by Cξ/γ = C1/dγ , which is consistent with the fact that the “dimension” should be the
exponent relating the scaling of areas and distances.
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Building on this, we will prove that in fact the metrics a−1
ε Dε

h admit subsequential
limits in probability and that every subsequential limit satisfies a certain natural list of
axioms. To state these axioms, we need some preliminary definitions. Let (X , D) be
a metric space.
For a curve P : [a, b] → X , the D-length of P is defined by

len (P; D) := sup
T

#T∑
i=1

D(P(ti ), P(ti−1))

where the supremum is over all partitions T : a = t0 < · · · < t#T = b of [a, b]. Note
that the D-length of a curve may be infinite.
For Y ⊂ X , the internal metric of D on Y is defined by

D(x, y; Y ) := inf
P⊂Y

len (P; D) , ∀x, y ∈ Y (1.6)

where the infimum is over all paths P in Y from x to y. Then D(·, ·; Y ) is a metric on
Y , except that it is allowed to take infinite values.
We say that (X , D) is a length space if for each x, y ∈ X and each ε > 0, there exists
a curve of D-length at most D(x, y) + ε from x to y.
A continuous metric on a domain U ⊂ C is a metric D on U which induces the
Euclidean topology on U , i.e., the identity map (U , | · |) → (U , D) is a homeomor-
phism.We equip the space of continuousmetrics onU with the local uniform topology
for functions from U × U to [0,∞) and the associated Borel σ -algebra. We allow a
continuous metric to have D(u, v) = ∞ if u and v are in different connected compo-
nents of U . In this case, in order to have Dn → D w.r.t. the local uniform topology
we require that for large enough n, Dn(u, v) = ∞ if and only if D(u, v) = ∞.
Let D′(C) be the space of distributions (generalized functions) on C, equipped with
the usual weak topology. For γ ∈ (0, 2), a weak γ -LQG metric is a measurable
function h �→ Dh from D′(C) to the space of continuous metrics on C such that the
following is true whenever h is a whole-plane GFF plus a continuous function.

I. Length space Almost surely, (C, Dh) is a length space, i.e., the Dh-distance
between any two points of C is the infimum of the Dh-lengths of Dh-continuous
paths (equivalently, Euclidean continuous paths) between the two points.

II. Locality Let U ⊂ C be a deterministic open set. The Dh-internal metric
Dh(·, ·;U ) is determined a.s. by h|U .

III. Weyl scaling Let ξ be as in (1.4) and for each continuous function f : C → R,
define

(eξ f · Dh)(z, w) := inf
P:z→w

∫ len(P;Dh)

0
eξ f (P(t)) dt, ∀z, w ∈ C, (1.7)

where the infimum is over all continuous paths from z to w parametrized by Dh-
length. Then a.s. eξ f · Dh = Dh+ f for every continuous function f : C → R.

IV. Translation invariance For each deterministic point z ∈ C, a.s. Dh(·+z) = Dh(·+
z, · + z).
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V. Tightness across scalesSuppose thath is awhole-planeGFFand let {hr (z)}r>0,z∈C
be its circle average process. For each r > 0, there is a deterministic constant
cr > 0 such that the set of laws of the metrics c−1

r e−ξhr (0)Dh(r ·, r ·) for r > 0
is tight (w.r.t. the local uniform topology). Furthermore, the closure of this set of
laws w.r.t. the Prokhorov topology on continuous functions C × C → [0,∞) is
contained in the set of laws on continuous metrics on C (i.e., every subsequen-
tial limit of the laws of the metrics c−1

r e−ξhr (0)Dh(r ·, r ·) is supported on metrics
which induce the Euclidean topology onC). Finally, there exists � > 1 such that
for each δ ∈ (0, 1),

�−1δ� ≤ cδr

cr
≤ �δ−�, ∀r > 0. (1.8)

We emphasize that the definition of a weak γ -LQG metric depends on γ only via the
parameter ξ in Axiom III. We will therefore sometimes say that a metric satisfying
the above axioms is a weak LQG metric with parameter ξ .

It is easy to see, at least heuristically, why Axioms I through V should be satisfied
for subsequential limits of LFPP, although there is some subtlety involved in checking
these axioms rigorously. The first main result of this paper is the following statement,
whose proof builds on results from [10,26].

Theorem 1.2 Let γ ∈ (0, 2). For every sequence of ε’s tending to zero, there is a weak
γ -LQG metric D and a subsequence {εn}n∈N for which the following is true. Let h be
a whole-plane GFF, or more generally a whole-plane GFF plus a bounded continuous
function. Then the re-scaled LFPP metrics a−1

εn
Dεn
h from (1.5) converge in probability

to Dh.

We will explain why we get convergence in probability, instead of just in law,
in Theorem 1.2 just below. Let us first discuss the axioms for a weak LQG met-
ric. Axioms I through IV are natural from the perspective that γ -LQG is a “random
two-dimensional Riemannian manifold” obtained by exponentiating h. Axiom V is a
substitute for exact scale invariance of the metric. To explain this, it is expected (and
will be proven in [24,25]) that the γ -LQGmetric, like the γ -LQGmeasure, is invariant
under coordinate changes of the form (1.3). In particular, it should be the case that for
any a ∈ C\{0}, a.s.

Dh (a·, a·) = Dh(a·)+Q log |a|(·, ·), for Q = 2

γ
+ γ

2
. (1.9)

Under Axiom III, the formula (1.9) together with the scale invariance of the law of
h, modulo an additive constant, implies Axiom V with cr = r ξQ . We define a strong
LQG metric to be a mapping h �→ Dh which satisfies Axioms I through IV as well
as (1.9).

A similar definition of a strongLQGmetric has appeared in earlier literature. Indeed,
the paper [37] proved several properties of geodesics for any metric associated with
γ -LQG which satisfies a similar list of axioms to the ones in our definition of a
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strong LQGmetric; however, at that point such a metric had only been constructed for
γ = √

8/3.3

It far from obvious that subsequential limits of LFPP satisfy (1.9). The reason for
this is that scaling space results in scaling the value of ε in (1.5), which in turn changes
the subsequence which we are working with. It will eventually be proven in [25] that
every weak LQG metric satisfies (1.9), i.e., every weak LQG metric is a strong LQG
metric, but the proof requires all of the results of the present paper as well as those
of [23,26].

Nevertheless, Axiom V can be used in place of (1.9) in many situations. Basically,
this axiom allows us to compare distance quantities at the same Euclidean scale. For
example, Axiom V implies that if U ⊂ C is open and K ⊂ U is compact, then the
laws of

(
c−1
r e−ξhr (0)Dh(r K , r∂U )

)−1
and c−1

r e−ξhr (0) sup
u,v∈r K

Dh(u, v; rU ) (1.10)

as r varies are tight.
Part of the proof of Theorem 1.2 is to show that for any joint subsequential limit

(h, Dh) of the laws of the pairs (h, a−1
ε Dε

h), the limiting metric Dh is a measurable
function of h. This is not obvious since convergence in law does not in general preserve
measurability. In our setting, we will prove that Dh is determined by h by checking
the conditions of [26, Corollary 1.8], which gives a list of conditions under which a
random metric coupled with the GFF is determined by the GFF. The reason why we
have convergence in probability, instead of convergence in law, in Theorem 1.2 is the
following elementary probabilistic lemma (see e.g. [47, Lemma 4.5]).4

Lemma 1.3 Let (�1, d1) and (�2, d2) be complete separable metric spaces. Let X be
a random variable taking values in �1 and let {Yn}n∈N and Y be random variables
taking values in �2, all defined on the same probability space, such that (X ,Yn) →
(X ,Y ) in law. If Y is a.s. determined by X, then Y n → Y in probability.

Theorem 1.2 will be proven in Sect. 2. Once this is done, throughout the rest of
the paper we will only ever work with a weak γ -LQG metric—we will not need to
make explicit reference to LFPP. An important advantage of this approach is that the
Miller–Sheffield

√
8/3-LQG metric from [38,39,43] is known to satisfy the axioms

3 Although the axioms in [37] are formulated in a slightly different way from our axioms for a strong LQG
metric, it can be proven, with some work, that the two notions are equivalent. The analog of Axiom II
in [37], which asserts that metric balls are local sets, is proven to be equivalent to our Axiom II in [26,
Lemma 2.2]. The analog of Axiom III in [37] is stated only for constant functions, but it is easy to check
that this axiom implies Axiom III. For example, this is explained in [29, Section 2.4] in the special case
when γ = √

8/3, and the same argument works for general γ ∈ (0, 2). In [37, Assumption 1.1], the authors
allow for fields on any open domain in C and assume that the metric satisfies a LQG coordinate change
formula for general conformal maps, not just complex affine maps. It is shown in [24] that a strong LQG
metric in the sense of this paper gives rise to a metric associated with a GFF on any proper sub-domain of
C which satisfies the LQG coordinate change formula for general conformal maps.
4 Since the space of continuousmetrics is not complete w.r.t. any natural choice of metric which induces the
local uniform topology, we apply the lemma with (�2, d2) equal to the larger space of continuous functions
C × C → [0, ∞) equipped with the local uniform topology, which is completely metrizable.
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for a weak
√
8/3-LQG metric. See [29, Section 2.4] for a careful explanation of why

this is the case. Note that [29, Section 2.4] checks the coordinate change relation (1.9)
for the Miller–Sheffield metric which (as discussed above) implies Axiom V. Hence
all of our results for weak γ -LQG metrics apply to both this

√
8/3-LQG metric and

to subsequential limits of LFPP.5

Remark 1.4 (Liouville graph distance) Besides LFPP, there is another natural scheme
for approximating LQG metrics called Liouville graph distance (LGD). The ε-LGD
distance between two points inC is defined to be the minimum number of Euclidean
balls with LQGmass εwhose union contains a path between the two points. It has been
proven in [9] that for each γ ∈ (0, 2), the ε-LGD metric, appropriately renormalized,
admits subsequential limiting metrics as ε → 0 which induce the Euclidean topology.
In the contrast to LFPP, for subsequential limits of LGD the coordinate change rela-
tion (1.9) is easy to verify but Weyl scaling (Axiom III) appears to be very difficult
to verify, so these subsequential limits are not known to be weak LQG metrics in the
sense of this paper. It is still an open problem to establish uniqueness of the scaling
limit for LGD. Similar considerations apply to variants of LGD defined using embed-
ded planar maps (such as maps constructed from LQG square subdivision [16,19]
or mated-CRT maps [21,27]) instead of Euclidean balls, although for these variants
tightness has not been checked.

1.3 Quantitative properties of weak LQGmetrics

In what follows, we assume that D is a weak γ -LQG metric and h is a whole-plane
GFF. Perhaps surprisingly, the axioms for a weak LQG metric imply much sharper
bounds on the scaling constants cr than (1.8).

Theorem 1.5 Let ξ be as in (1.4) and let Q = 2/γ + γ /2. Then for r > 0, the scaling
constants satisfy

cδr

cr
= δξQ+oδ(1) as δ → 0, (1.11)

at a rate which is uniform over all r > 0.

The definition of a weak LQG metric uses only the parameter ξ . Theorem 1.5 con-
nects this definition to the coordinate change parameter Q. This will be important
for the proof in [25] that any weak LQG metric satisfies the coordinate change for-
mula (1.9). Theorem 1.5 will be proven in Sect. 3.2 by comparing Dh-distances to
LFPP distances and using the fact that the δ-LFPP distance between two fixed points is
typically of order δ1−ξQ+oδ(1) [12, Theorem 1.5] [for convenience, for this argument
we will work with a variant of LFPP which is defined in a slightly different manner
than the version in (1.5)].

5 The uniqueness of the weak LQG metric proven in [25] implies that the Miller–Sheffield
√
8/3-LQG

metric is the limit of LFPP for γ = √
8/3.
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Remark 1.6 Theorem 1.5 gives a proof purely in the continuum that the exponent
d√

8/3 of [12,18] is equal to 4. Previously, this was proven in [12] (building on [20])
using the known ball volume growth exponent for random triangulations [1]. To see
why Theorem 1.5 implies that d√

8/3 = 4, we observe that the
√
8/3-LQG metric

of [38,39,43] satisfies the axioms for a weak LQG metric with parameter ξ = 1/
√
6.

Moreover, by theLQGcoordinate change formula for the
√
8/3-LQGmetric,AxiomV

holds for this metric with with cr = r5/6. Theorem 1.5 therefore implies that if γ ∈
(0, 2) is chosen so that γ /dγ = 1/

√
6, then the associated parameter Q = 2/γ +γ /2

satisfies Q/
√
6 = 5/6, i.e., Q = 5/

√
6 which is equivalent to γ = √

8/3. Hence
γ /dγ = 1/

√
6 when γ = √

8/3, so d√
8/3 = 4.

Our next main result gives the optimal Hölder exponents for Dh with respect to the
Euclidean metric.

Theorem 1.7 (Optimal Hölder exponents) Let U ⊂ C be open and bounded. Almost
surely, the identity map from U, equipped with the Euclidean metric, to (U , Dh)

is locally Hölder continuous with any exponent smaller than ξ(Q − 2) and is not
locally Hölder continuous with any exponent larger than ξ(Q − 2). Furthermore, the
inverse of this map is a.s. locally Hölder continuous with any exponent smaller than
ξ−1(Q + 2)−1 and is not locally Hölder continuous with any exponent larger than
ξ−1(Q + 2)−1.

Forγ = √
8/3, one has ξ = 1/

√
6 and Q = 5/

√
6, so the optimalHölder exponents

are given by

ξ(Q − 2) = 1

6
(5 − 2

√
6) ≈ 0.0168 and ξ−1(Q + 2)−1 = 30 − 12

√
6 ≈ 0.6061.

(1.12)

The intuitive reason why Theorem 1.7 is true is as follows. If z is an α-thick point
for h, i.e., the circle average satisfies hε(z) = (α + oε(1)) log ε−1 as ε → 0, then we
can show that the Dh-distance from z to ∂Bε(z) behaves like εξ(Q−α)+oε(1) as ε → 0.
Indeed, this is an easy consequence of the estimates in Sect. 3.4. Almost surely, α-thick
points exist for α ∈ (−2, 2) but not for |α| > 2 [32].

We next state some basic moment estimates for distances which are metric ana-
logues of the well-known fact that the γ -LQGmeasure has finite moments of all orders
in (−∞, 4/γ 2) [44, Theorems 2.11 and 2.12].

Theorem 1.8 (Moment bounds for diameters) Let U ⊂ C be open and let K ⊂ U be
a compact connected set with more than one point. Then the U-internal diameter of
K satisfies

E

[(
sup

z,w∈K
Dh(z, w;U )

)p]
< ∞, ∀p ∈

(
−∞,

4dγ

γ 2

)
. (1.13)

For γ = √
8/3, we get finite moments up to order 6. We also have the following

bound for distances between sets. In this case, we get finite moments of all orders.
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Theorem 1.9 (Distance between sets) Let U ⊂ C be an open set (possibly all of C)
and let K1, K2 ⊂ U be connected, disjoint compact sets which are not singletons.
Then

E
[
(Dh(K1, K2;U ))p

]
< ∞, ∀p ∈ R. (1.14)

The results of [10] show that if Dh is a subsequential scaling limit of the LFPP
metrics (1.5), then one has the following slightly stronger version of Theorem 1.9:

P
[
A−1 ≤ a−1

ε Dε
h(K1, K2;U ) ≤ A

]
≥ 1 − c0e

−c1(log A)2/ log log A, ∀A > 2ee

(1.15)

for constants c0, c1 > 0 allowed to depend on K1, K2,U . A posteriori, one gets (1.15)
for every weak LQG metric since [25] proves that the weak LQG metric is unique for
each γ ∈ (0, 2), so in particular it is the limit of LFPP.

We now turn our attention to point-to-point distances. These estimates also work if
we allow the field to have a log singularity. To make sense of the metric in this case,
we note that since log | · | is continuous away from 0, we can define Dh−α log |·| as a
continuous length metric onC\{0} by Dh−α log |·| = | · |−αξ · Dh , in the notation (1.7).
We can then extend Dh−α log |·| to a metric defined on all ofCwhich is allowed to take
the value ∞ by taking the infima of the Dh−α log |·|-lengths of paths. We can similarly
define the metric associated with fields with two or more log singularities.

Theorem 1.10 (Distance from a point to a circle) Letα ∈ R and let hα := h−α log |·|.
If α ∈ (−∞, Q), then

E
[
(Dhα (0, ∂D))p

]
< ∞, ∀p ∈

(
−∞,

2dγ

γ
(Q − α)

)
. (1.16)

If α > Q, then a.s. Dhα (0, z) = ∞ for every z ∈ C\{0}.
For example, if γ = √

8/3 and α = 0, we get finite moments up to order 10. If
instead γ = √

8/3 and α = γ (which corresponds to the case when 0 is a “quantum
typical” point, see, e.g., [16, Proposition 3.4]) we only get finite moments up to order
2. In the critical case when α = Q, our estimates at this point are not sufficiently sharp
to determine whether DhQ (0, ∂D) is finite. However, once we know that every weak
LQG metric is a strong LQG metric (which is proven in [25]) it is not hard to check
that a.s. DhQ (0, z) = ∞ for every z ∈ C\{0}. Similar comments apply in the case
when α = Q or β = Q in Theorem 1.11 just below.

Theorem 1.11 (Distance between two points) Let α, β ∈ R, let z, w ∈ C be distinct,
and let hα,β := h − α log | · −z| − β log | · −w|. If α, β ∈ (−∞, Q), then

E
[(
Dhα

(
z, w; B4|z−w|(z)

))p]
< ∞, ∀p ∈

(
−∞,

2dγ

γ
(Q − max{α, β})

)
.

(1.17)
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If either α > Q or β > Q, then a.s. Dhα,β (z, w) = ∞.

As applications of our main results, in Sect. 4 we will also prove some estimates
which constrain the behavior of Dh-geodesics and which will be important in [25].
To be more precise, the first main estimate of Sect. 4 is Proposition 4.1, which gives
an upper bound for the amount of time that a Dh-geodesic can spend in a small
neighborhood of a line segment or a circular arc. Intuitively, one expects that this
amount of time is small since LQG geodesics should be fractal and hence should look
very different from smooth curves. The particular bound given in Proposition 4.1 is
used in [25, Section 3] to prevent a geodesic from spending a long time in an annulus
with a small aspect ratio; and in [25, Section 5] in order to force a geodesic to enter a
“good” region of the plane in which certain distance bounds hold.

The other main estimate in Sect. 4 is Proposition 4.3, which is an upper bound for
how much time an LQG geodesic can spend near the boundary of an LQG metric ball
centered at its starting point. Intuitively, this amount of time should be small since
if P is a Dh-geodesic, then Dh(P(0), P(t)) = t but Dh(P(0), ·) is constant on the
boundary of a Dh-ball centered at P(0). The bound given in Proposition 4.3 is used
in [25, Lemma 4.7].

Remark 1.12 (The case when ξ > 2/d2) Throughout this paper, we focus on the case
of weak γ -LQG metrics. Since γ �→ γ /dγ is increasing [12, Proposition 1.7], weak
γ -LQG metrics have parameter ξ ∈ (0, 2/d2) (here, d2 := limγ→2− dγ ). It is natural
to wonder whether one can say anything about weak LQG metrics which satisfy the
same axioms but with a parameter ξ ≥ 2/d2. In the critical case when ξ = 2/d2
(i.e., γ = 2), we expect that a weak LQG metric still exists and is the scaling limit of
LFPP with parameter 2/d2. This metric should be the γ -LQG metric with γ = 2 (the
γ = 2 metric should also be the limit as γ ↗ 2 of the γ -LQG metrics, appropriately
renormalized). We expect that all of the theorem statements in this section still hold
for ξ = 2/d2, except that the metric Dh is not Hölder continuous w.r.t. the Euclidean
metric.

For ξ > 2/d2, we do not expect that any weak LQG metrics with parameter
ξ exist. However, there should be metrics which satisfy a similar list of properties
except that suchmetrics no longer induce the Euclidean topology. Instead, there should
be an uncountable, dense set of points z ∈ C such that Dh(z, w) = ∞ for every
w ∈ C\{z}. More precisely, let λ(ξ) be the exponent for the typical LFPP distance
between the left and right sides of [0, 1]2 and let Q(ξ) = (1 − λ(ξ))/ξ . By [12,
Theorem 1.5], Q(γ /dγ ) = 2/γ + γ /2 > 2. By [30, Lemma 4.1] and [14, Theorem
1.1], Q(ξ) ∈ (0, 2) for ξ > 2/d2. For ξ > 2/d2, the points z ∈ C which lie at infinite
Dh-distance from every other point should correspond to so-called thick points of h
(as defined in [32]) with thickness α > Q.

It is shown in [13] that LFPPwith parameter ξ > 2/d2 admits subsequential scaling
limits in law w.r.t. the topology on lower semicontinuous functions. We expect that
the subsequential limit is unique, satisfies the properties discussed in the preceding
paragraph, and is related to LQG with matter central charge c ∈ (1, 25) (LQG with
γ ∈ (0, 2] corresponds to c ∈ (−∞, 1]). In particular, with Q(ξ) as above, the
central charge should be related to ξ by c = 25 − 6Q(ξ)2. See [3,13,14,19,30] for
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further discussion of this extended phase of LQG and some justification for the above
predictions.

1.4 Outline

In Sect. 2, we prove Theorem 1.2, which says that subsequential limits of LFPP
are weak γ -LQG metrics, taking [10] as a starting point. Throughout the rest of the
paper, we work with an arbitrary weak γ -LQG metric (not necessarily assumed to
arise as a subsequential limit of LFPP). Section 3 contains the proofs of the results
stated in Sect. 1.3. In fact, for most of these results, we will prove more quantitative
versions which are required to be uniform over all Euclidean scales. At this point, these
statements are not implied by the statements in Sect. 1.3 since we are working with
a weak γ -LQG metric, which is only known to be “tight across scales” (Axiom V)
instead of exactly scale invariant.

Thefirst result thatweprove for aweakγ -LQGmetric is the estimate for the distance
between two sets fromTheorem 1.9; this is the content of Sect. 3.1. In Sect. 3.2, we use
this estimate to relate Dh-distances to LFPP distances and thereby prove Theorem 1.5.
Once Theorem 1.5 is established, we have some ability to compare Dh-distances at
different Euclidean scales. This allows us to prove the moment estimate (1.13) of
Theorem 1.8 in Sect. 3.3 as well as the moment estimates of Theorems 1.10 and 1.11
in Sect. 3.4. Using these moment estimates, we then prove Theorem 1.7 in Sect. 3.5.

In Sect. 4, we apply the estimates of Sect. 1.3 to prove some bounds for Dh-
geodesics.

1.5 Basic notation

We write N = {1, 2, 3, . . . } and N0 = N ∪ {0}.
For a < b, we define the discrete interval [a, b]Z := [a, b] ∩ Z.
If f : (0,∞) → R and g : (0,∞) → (0,∞), we say that f (ε) = Oε(g(ε)) (resp.
f (ε) = oε(g(ε))) as ε → 0 if f (ε)/g(ε) remains bounded (resp. tends to zero) as
ε → 0. We similarly define O(·) and o(·) errors as a parameter goes to infinity.
If f , g : (0,∞) → [0,∞), we say that f (ε) � g(ε) if there is a constant C > 0
(independent from ε and possibly from other parameters of interest) such that f (ε) ≤
Cg(ε). We write f (ε) � g(ε) if f (ε) � g(ε) and g(ε) � f (ε).
Let {Eε}ε>0 be a one-parameter family of events. We say that Eε occurs with

• polynomially high probability as ε → 0 if there is a p > 0 (independent from ε

and possibly from other parameters of interest) such that P[Eε] ≥ 1 − Oε(ε
p).

• superpolynomially high probability as ε → 0 if P[Eε] ≥ 1 − Oε(ε
p) for every

p > 0.

We similarly define events which occur with polynomially or superpolynomially high
probability as a parameter tends to ∞.
We will often specify any requirements on the dependencies on rates of conver-
gence in O(·) and o(·) errors, implicit constants in �, etc., in the statements of
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lemmas/propositions/theorems, inwhich casewe implicitly require that errors, implicit
constants, etc., appearing in the proof satisfy the same dependencies.
For z ∈ C and r > 0, we write Br (z) for the Euclidean ball of radius r centered at z.
We also define the open annulus

Ar1,r2(z) := Br2(z)\Br1(z), ∀0 < rr < r2 < ∞. (1.18)

We write S = (0, 1)2 for the open Euclidean unit square.

2 Subsequential limits of LFPP are weak LQGmetrics

The goal of this section is to deduce Theorem 1.2 from the tightness result of [10].
We start in Sect. 2.1 by introducing a “localized” variant of LFPP, defined using
the convolution of h with a truncated version of the heat kernel, which (unlike the
ε-LFPP metric Dε

h defined in (1.5)) depends locally on h. We then show that this
localized variant of LFPP is a good approximation for Dε

h (Lemma 2.1). In Sect. 2.2,
we explain why the results of [10] imply that the re-scaled LFPP metrics a−1

ε Dε
h as

well as the associated internal metrics on certain domains inC are tight w.r.t. the local
uniform topology and that every subsequential limit is a continuous length metric on
C. In Sections 2.3, 2.4, and 2.5, respectively, we will prove versions of Weyl scaling,
tightness across scales, and locality for the subsequential limits (i.e., Axioms III, V,
and II). In Sect. 2.6, we use a theorem from [26] to show that subsequential limits of
LFPP can be realized as measurable functions of h. We then conclude the proof of
Theorem 1.2.

Throughout this section, we will frequently need to switch between working with
a whole-plane GFF and working with a whole-plane GFF plus a continuous function.
As such, we will always write h for a whole-plane GFF (with some choice of additive
constant, specified as needed) and h for a whole-plane GFF plus a continuous function
(usually, this will be a whole-plane GFF plus a bounded continuous function). Note
that this differs from the convention elsewhere in the paper, where h is sometimes
used to denote a whole-plane GFF plus a continuous function.

2.1 A localized version of LFPP

Let h be a whole-plane GFF plus a bounded continuous function. The mollified field
h∗

ε(z) of (1.1) does not depend on h in a local manner, and hence Dε
h-distances do

not depend on h in a local manner. However, as ε → 0 the heat kernel pε2/2(z, w)

concentrates around the diagonal, so we expect that h∗
ε(z) “almost” depends locally

on h when ε is small. To quantify this, we will introduce an approximation ĥ
∗
ε of h∗

ε

which depends locally on h and prove a lemma (Lemma 2.1) to the effect that ĥ
∗
ε and

h∗
ε are close when ε are small. This will be useful at several places in this section,

especially for the proof of locality (essentially, Axiom II) in Sect. 2.5.
For ε > 0, let ψε : C → [0, 1] be a deterministic, smooth, radially symmetric

bump function which is identically equal to 1 on Bε1/2/2(0) and vanishes outside of
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Bε1/2(0) [in fact, the power 1/2 could be replaced by any p ∈ (0, 1)]. We can choose
ψε in such a way that ε �→ ψε is a continuous mapping from (0,∞) to the space
of continuous functions on C, equipped with the uniform topology. Recalling that
ps(z, w) denotes the heat kernel, we define

ĥ
∗
ε(z) :=

∫

C
ψε(z − w)h(w)pε2/2(z, w) dw, (2.1)

with the integral interpreted in the sense of distributional pairing. Since ψε vanishes
outside of Bε1/2(0), we have that ĥ

∗
ε(z) is a.s. determined by h|B

ε1/2 (z). It is easy to see

that ĥ
∗
ε a.s. admits a continuous modification (see Lemma 2.1). We henceforth assume

that ĥ
∗
ε is replaced by such a modification.

As in (1.5), we define the localized LFPP metric

D̂ε
h(z, w) := inf

P:z→w

∫ 1

0
eξ ĥ

∗
ε (P(t))|P ′(t)| dt, (2.2)

where the infimum is over all piecewise continuously differentiable paths from z to
w. By the definition of ĥ

∗
ε ,

for any open U ⊂ C, the internal metric D̂ε
h(·, ·;U ) is a.s. determined by h|B

ε1/2 (U ).

(2.3)

Lemma 2.1 Let h be a GFF plus a bounded continuous function. Then a.s. (z, ε) �→
ĥ

∗
ε(z) is continuous. Furthermore, for each bounded open set U ⊂ C, a.s.

lim
ε→0

sup
z∈U

|h∗
ε(z) − ĥ

∗
ε(z)| = 0. (2.4)

In particular, a.s.

lim
ε→0

D̂ε
h(z, w;U )

Dh(z, w;U )
= 1, uniformly over all z, w ∈ U with z �= w. (2.5)

To prove Lemma 2.1, we will need the following elementary estimate for the circle
average process, whose proof we postpone until after the proof of Lemma 2.1.

Lemma 2.2 Let h be a whole-plane GFF (with any choice of additive constant) and
let {hr }r≥0 be its circle average process. For each R > 0 and ζ > 0, a.s.

sup
z∈BR(0)

sup
r>0

|hr (z)|
max{(2 + ζ ) log(1/r), (log r)1/2+ζ , 1} < ∞. (2.6)
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Proof of Lemma 2.1 We first consider the case when h = h is a whole-plane GFF
normalized so that h1(0) = 0. The functions w �→ ψε(z − w) and w �→ pε2/2(z, w)

are each radially symmetric about z, i.e., they depend only on |z−w|. Using the circle
average process {hr }r>0, we may therefore write in polar coordinates

h∗
ε(z) = 2

ε2

∫ ∞

0
rhr (z)e

−r2/ε2 dr and ĥ∗
ε(z) = 2

ε2

∫ ε1/2

0
rhr (z)ψε(r)e

−r2/ε2 dr .

(2.7)

From this representation and the continuity of the circle average process, we infer that
(z, ε) �→ ĥ∗

ε(z) a.s. admits a continuous modification.
Since ψε ≡ 1 on Bε1/2/2(z) and ψε takes values in [0, 1],

|h∗
ε(z) − ĥ∗

ε(z)| ≤ 2

ε2

∫ ∞

ε1/2/2
r |hr (z)|e−r2/ε2 dr . (2.8)

By Lemma 2.2 (appliedwith ζ = 1/2, say), there is a random constantC = C(U ) > 0
such that |hr (z)| ≤ C max{log(1/r), log r , 1} for each z ∈ U and r > 0. Plugging
this into (2.8) shows that a.s.

sup
z∈U

|h∗
ε(z) − ĥ∗

ε(z)| ≤ 2C

ε2

∫ ∞

ε1/2
r max{log(1/r), log r , 1}e−r2/ε2 dr , (2.9)

which tends to zero exponentially fast as ε → 0. This gives (2.4) in the case of a
whole-plane GFF with h1(0) = 0.

If f : C → R is a bounded continuous function, we similarly obtain a.s.
limε→0 supz∈U | f ∗

ε (z) − f̂ ∗
ε (z)| = 0, using the notation (1.1) and (2.1) with f in

place of h or h. This gives (2.4) in the case of a whole-plane GFF plus a bounded
continuous function. The relation (2.5) is immediate from (2.2) and the definition of
LFPP. ��

To conclude the proof of Lemma 2.1 we still need to prove Lemma 2.2. To deal
with large values of r , we will use the following lemma.

Lemma 2.3 Let h be a whole-plane GFF. For each R > 0 and ζ > 0, a.s.

lim
r→∞ sup

z∈BR(0)

|hr (z)|
(log r)1/2+ζ

= 0. (2.10)

Proof The process {hr (z) − hr (0) : z ∈ BR(0), r ∈ [1/2, 1]} is centered Gaus-
sian with variances bounded above by a constant depending only on R. Furthermore,
this process a.s. admits a continuous modification [16, Proposition 3.1], so if we
replace it by such a modification then a.s. supz∈BR(0) supr∈[1/2,1] |hr (z) − hr (0)| <

∞. By the Borel-TIS inequality [8,45] (see, e.g., [4, Theorem 2.1.1]), we have
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E
[
supz∈BR(0) supr∈[1/2,1] |hr (z) − hr (0)|

]
< ∞ and there are constants c0, c1 > 0

depending only on R such that for each A > 0,

P

[
sup

z∈BR(0)
sup

r∈[1/2,1]
|hr (z) − hr (0)| > A

]
≤ c0e

−c1A2
. (2.11)

Note that we absorbed the R-dependent constant E
[
supz∈BR(0) supr∈[1/2,1] |hr (z)

−hr (0)|] into c0.
By the scale invariance of the law of h, viewed modulo an additive constant, we

infer from (2.11) that for each k ∈ N0 and A > 0,

P

[
sup

z∈BR2k (0)
sup

r∈[2k−1,2k ]
|hr (z) − hr (0)| > A

]
≤ c0e

−c1A2
. (2.12)

By applying this with A equal to a universal constant times k1/2+ζ/2, say, then using
the Borel–Cantelli lemma, we get that a.s.

lim
k→∞ sup

z∈BR2k (0)
sup

r∈[2k−1,2k ]
|hr (z) − hr (0)|
(log r)1/2+ζ

= 0. (2.13)

Each z ∈ K is contained in BR2k (0) for each k ∈ N and each r ≥ 1/2 is contained in
[2k−1, 2k] for some k ∈ N. Hence, (2.13) implies that a.s.

lim
r→∞ sup

z∈BR(0)

|hr (z) − hr (0)|
(log r)1/2+ζ

= 0. (2.14)

Since t �→ het (0) is a standard two-sided linear Brownian motion [16, Section 3], it
follows that a.s. |hr (0)|/(log r)1/2+ζ → 0 as r → ∞. Combining this with (2.14)
yields (2.10). ��
Proof of Lemma 2.2 Standard estimates for the maximum of the circle average process
(see, e.g., the proof of [32, Lemma 3.1]) show that a.s.

sup
z∈BR(0)

sup
r∈(0,1/2]

|hr (z)|
(2 + ζ ) log(1/r)

< ∞. (2.15)

By the continuity of the circle average process, a.s. for any r0 > 1/2, supz∈BR(0)
supr∈[1/2,r0] |hr (z)| < ∞. By Lemma 2.3, it is a.s. the case that for each large enough
r0 > 0,

sup
z∈BR(0)

sup
r≥r0

|hr (z)|
(log r)1/2+ζ

< ∞. (2.16)

Combining these estimates gives (2.6). ��
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2.2 Subsequential limits

In this subsectionwe explainwhy the results of [10] imply that the laws of the re-scaled
LFPP metrics a−1

ε Dε
h are tight (this is not entirely immediate since [10] considers a

slightly different class of fields and only looks atmetrics on bounded domains).Wewill
in fact obtain a stronger convergence statement which also includes the convergence
of internal metrics of a−1

ε Dε
h on a certain class of sub-domains of C.

Definition 2.4 (Dyadic domain) A closed square S ⊂ C is dyadic if S has side length
2k and corners in 2kZ2 for some k ∈ Z. We say that W ⊂ C is a dyadic domain
if there exists a finite collection of dyadic squares S such that W is the interior of⋃

S∈S S. Note that a dyadic domain is a bounded open set.

Lemma 2.5 Let h be a whole-plane GFF plus a bounded continuous function.

A. The laws of the metrics a−1
ε Dε

h are tight w.r.t. the local uniform topology onC×C
and any subsequential limit of these laws is supported on continuous lengthmetrics
on C.

B. Let W be the (countable) set of all dyadic domains. For any sequence of positive
ε’s tending to zero, there is a subsequence E and a coupling of a continuous length
metric Dh on C and a length metric Dh,W on W for each W ∈ W which induces
the Euclidean topology on W such that the following is true. Along E , we have the
convergence of joint laws

(
a−1
ε Dε

h,
{
a−1
ε Dε

h(·, ·;W )
}
W∈W

)
→ (

Dh,
{
Dh,W

}
W∈W

)
(2.17)

where the first coordinate is given the local uniform topology onC×C and each
element of the collection in the second coordinate is given the uniform topology
on W × W. Furthermore, for each W ∈ W we have the a.s. equality of internal
metrics Dh,W (·, ·;W ) = Dh(·, ·;W ).

In the setting of Assertion A, we note that the space of continuous functions
C × C → R, equipped with the local uniform topology, is separable and com-
pletely metrizable, which means that we can apply Prokhorov’s theorem in this space.
Assertion B of Lemma 2.5 does not give that Dε

h(·, ·;W ) → Dh(·, ·;W ) in law along
E for each W ∈ W . The reason why we do not prove this statement is to avoid wor-
rying about possible pathologies near ∂W (see Lemma 2.11). We now proceed with
the proof of Lemma 2.5. At several places in this section, we will use the following
elementary scaling relation for LFPP.

Lemma 2.6 Let h be a whole-plane GFF normalized so that h1(0) = 0. Let r > 0

and let hr := h(r ·) − hr (0), so that hr
d= h. The LFPP metrics defined as in (1.5) for

h and hr are related by

Dε/r
hr

d= Dε/r
h and Dε/r

hr (z, w) = r−1e−ξhr (0)Dε
h(r z, rw), ∀ε > 0, ∀z, w ∈ C.

(2.18)
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Proof Using the notation (1.1), we get from a standard change of variables that the
convolutions of hr and h with the heat kernel satisfy hr ,∗ε/r (z) = h∗

ε(r z) − hr (0) for
each ε > 0 and z ∈ C. Using the definition (1.5) of LFPP, we now compute

e−ξhr (0)Dε
h(r z, rw) = inf

P:r z→rw

∫ 1

0
eξ(h∗

ε (P(t))−hr (0))|P ′(t)| dt

= inf
P:r z→rw

∫ 1

0
eξhr ,∗ε/r (P(t)/r)|P ′(t)| dt

= r inf
P̃:z→w

∫ 1

0
eξhr ,∗ε/r (P̃(t))|P̃ ′(t)| dt (set P̃ = P/r)

= r Dε/r
hr (z, w).

��
To check that our limiting metrics are length metrics, we will need the following

standard fact from metric geometry.

Lemma 2.7 Let X be a compact topological space and let {Dn}n∈N be a sequence of
length metrics on X which converge uniformly to a metric D on X. Then D is a length
metric on X.

Proof This is [5, Exercise 2.4.19],which in turn is an easy consequence of [5, Corollary
2.4.17]. ��

Let us now record what we get from [10].

Lemma 2.8 Let S ⊂ C be a closed square and let h be a whole-plane GFF plus
a bounded continuous function. The laws of the internal metrics a−1

ε Dε
h(·, ·; S) for

ε ∈ (0, 1) are tight w.r.t. the uniform topology on S × S and any subsequential limit
of these laws is supported on length metrics which induce the Euclidean topology on
S.

Proof We first consider the case when S = [0, 1]2 is the Euclidean unit square and
h = h is a whole-plane GFF normalized so that h1(0) = 0. Let h̊ be a zero-boundary
GFF on (−1, 2)2. By the Markov property of the whole-plane GFF, we can couple h
and h̊ in such a way that h − h̊ is a.s. harmonic, hence continuous, on (−1, 2)2.

Recall the heat kernel ps(z, w) = 1
2πs e

−|z−w|/(2s). For z ∈ [0, 1]2 and ε ∈ (0, 1),

we define the convolution h̊∗
ε = h̊ ∗ pε2/2 as in (1.1). For z, w ∈ (−1, 2)2, define

Dε

h̊
(z, w) as in (1.5) with h̊∗

ε in place of h∗
ε . It is shown in [10, Theorem 1] (see

also [10, Section 6.1]) that there are constants {λε}ε>0 such that the internal metrics
λ−1

ε Dε

h̊

(·, ·; [0, 1]2) are tight w.r.t. the uniform topology on [0, 1]2 × [0, 1]2 and any
subsequential limit of these laws is supported on length metrics which induce the
Euclidean topology on [0, 1]2.

Wenowwant to compare Dε

h̊
and Dε

h using the fact that (h−h̊)|(−1,2)2 is a continuous
function. However, we cannot do this directly since we only have a uniform bound
for h − h̊ on compact subsets of (−1, 2)2 and the convolution (1.1) does not depend
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locally on the field. To this end, we define the localized LFPP metrics D̂ε
h and D̂ε

h̊
as

in (2.2) with h = h and with h̊ in place of h, respectively. Then Lemma 2.1 remains
true with Dε

h̊
and D̂ε

h̊
in place of Dε

h and D̂ε
h and with U any open set satisfying

U ⊂ (−1, 2)2, with the same proof (actually, the proof is simpler since one does not
need Lemma 2.3). Therefore, a.s. D̂ε

h̊
(z, w;U )/Dε

h̊
(z, w;U ) → 1 uniformly over all

distinct z, w ∈ U and the conclusion of the preceding paragraph is true with D̂ε

h̊
in

place of Dε

h̊
.

Since h − h̊ is a.s. equal to a continuous function on a neighborhood of [0, 1]2,
we infer from (2.3) that a.s. the metrics D̂ε

h̊
(·, ·; [0, 1]2) and D̂ε

h(·, ·; [0, 1]2) are bi-
Lipschitz equivalent with (random) ε-independent Lipschitz constants. By combining
this with the conclusion of the preceding paragraph and Lemma 2.7, we get that the
laws of the internal metrics λ−1

ε Dε
h(·, ·; S) for ε ∈ (0, 1) are tight w.r.t. the uniform

topology on [0, 1]2 ×[0, 1]2 and any subsequential limit of these laws is supported on
length metrics which induce the Euclidean topology on S. In particular, this implies
that λε is bounded above and below by ε-independent constants times the median
D̂ε
h-distance between the left and right sides of [0, 1]2. By Lemma 2.1 (for h), we now

get that {aε/λε}ε∈(0,1) is bounded above and below by positive, finite constants and
the statement of the lemma holds in the special case when h = h and S = [0, 1]2.

By Lemma 2.6 and the scale and translation invariance of the law of h, modulo
additive constant, this implies the statement of the lemma for a general choice of S,
but still with h = h. If h is a whole-plane GFF and f is a bounded continuous function,
then the metrics Dε

h+ f and Dε
h are bi-Lipschitz equivalent, with Lipschitz constants

e±ξ‖ f ‖∞ . Hence the case of a whole-plane GFF implies the case of a whole-plane GFF
plus a continuous function. ��

We now upgrade from internal metrics on closed squares to internal metrics on
closures of dyadic domains.

Lemma 2.9 Let W ⊂ C be a dyadic domain. The laws of the internal metrics
a−1
ε Dε

h(·, ·;W ) for ε ∈ (0, 1) are tight w.r.t. the uniform topology on W × W and
any subsequential limit of these laws is supported on length metrics which induce the
Euclidean topology on W.

Proof If W is a dyadic domain, then W has finitely many connected components and
these connected components are the closures of dyadic domains which lie at posi-
tive Euclidean distance from each other. By considering each connected component
separately, we can assume without loss of generality that W is connected.

For a connected set X ⊂ C, a collection D of random metrics on X is tight w.r.t.
the local uniform topology if and only if for each ζ > 0, there exists δ > 0 such that
for each d ∈ D, it holds with probability at least 1 − ζ that

d(z, w) ≤ ζ, ∀z, w ∈ X such that |z − w| ≤ δ. (2.19)

Indeed, this is an easy consequence of the Arzéla-Ascoli theorem, the Prokhorov
theorem, and the triangle inequality.
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For any closed square S ⊂ W , the restriction of Dε
h(·, ·;W ) to S is bounded above

by the internal metric of Dε
h(·, ·;W ) on S, which equals Dε

h(·, ·; S). By Lemma 2.8 and
the above tightness criterion, the laws of the restrictions of {a−1

ε Dε
h(·, ·;W )}ε∈(0,1) to

S are tight. Since W is a dyadic domain, we can choose a finite collection S of closed
squares such that

⋃
S∈S S = W .

By the above tightness criterion applied to each square in S, for each ζ > 0, there
exists δ > 0 such that for each ε ∈ (0, 1), it holds with probability at least 1 − ζ that

a−1
ε Dε

h(z, w;W ) ≤ ζ, ∀z, w ∈ W s.t. |z − w| ≤ δ and z, w ∈ S for some S ∈ S.

(2.20)

Nowassume that (2.20) holds and consider points z, w ∈ W such that |z−w| ≤ δ/2 but
z andw do not lie in the same square of S. If δ is sufficiently small (depending only on
the collectionof squaresS), thenwecanfind squares S, S′ ∈ S such that z ∈ S, w ∈ S′,
and S ∩ S′ �= ∅. Since S and S′ are closed squares, geometric considerations show
that there is a u ∈ S ∩ S′ such that |z − u| ≤ δ and |w − u| ≤ δ. By (2.20) and the
triangle inequality this implies that a−1

ε Dε
h(z, w;W ) ≤ 2ζ . Therefore, ∀ε ∈ (0, 1) it

holds with probability at least 1 − ζ that

a−1
ε Dε

h(z, w;W ) ≤ 2ζ, ∀z, w ∈ W such that |z − w| ≤ δ/2.

Since ζ is arbitrary, the above tightness criterion applied on all ofW now shows that the
laws of the metrics a−1

ε Dε
h(·, ·;W ) for ε ∈ (0, 1) are tight w.r.t. the uniform topology

on W × W .
Let D̃ be a subsequential limit of a−1

ε Dε
h(·, ·;W ) in law w.r.t. the local uniform

topology. A priori D̃ might be a pseudometric, not a metric. We need to show that D̃
is in fact a length metric and that it induces the Euclidean topology onW . To this end,
consider two squares (not necessarily dyadic) S1 ⊂ S2 ⊂ W such that S1 lies at positive
Euclidean distance from ∂S2\∂W . For each ε > 0, we have Dε

h(S1,W\S2;W ) =
Dε
h(S1, ∂S2\∂W ; S2) and Dε

h(S1,W\S2;W ) → D̃(S1,W\S2) in law. From this and
Lemma 2.8, we infer that a.s. D̃(S1,W\S2) > 0. By considering an appropriate
countable collection of such square annuli whose inner squares S1 cover W , we infer
that a.s. D̃(u, v) > 0 whenever u, v ∈ W with u �= v. This implies that D̃ is a
metric. Since W is compact, it follows that D̃ induces the Euclidean topology on W .
By Lemma 2.7, D̃ is a length metric. ��

The following lemma will allow us to extract tightness of a−1
ε Dε

h from tightness of
a−1
ε Dε

h(·, ·; S) for squares S ⊂ C.

Lemma 2.10 For r > 0, let Sr (0) be the closed square of side length r centered at zero.
Let h be a whole-plane GFF plus a bounded continuous function. For each p ∈ (0, 1)
and each C > 0, there exists R = R(p,C) > 1 (depending on p,C and the law of h)
such that for each fixed r > 0,

lim inf
ε→0

P

[
sup

u,v∈Sr (0)
Dε
h(u, v) <

1

C
Dε
h (Sr (0), ∂SRr (0))

]
≥ p. (2.21)
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Proof We first consider the case when h = h is a whole-plane GFF normalized so that
h1(0) = 0. By Lemma 2.8 applied with W = S1(0), there exists R = R(p,C) > 1
such

lim inf
ε→0

P

[
sup

u,v∈S1/R(0)
Dε
h(u, v) <

1

C
Dε
h

(
S1/R(0), ∂S1(0)

)
]

≥ p. (2.22)

The occurrence of the event in (2.22) is unaffected by re-scaling Dε
h by a constant

factor. By Lemma 2.6 applied with Rr in place of r , we see that (2.22) implies that
for each fixed r > 0,

lim inf
ε→0

P

[
sup

u,v∈Sr (0)
Dε
h(u, v) <

1

C
Dε
h (Sr (0), ∂SRr (0))

]
≥ p. (2.23)

Now suppose that h = h + f is a whole-plane GFF plus a bounded con-
tinuous function. If f is a (possibly random) bounded continuous function, then
Dε
h+ f and Dε

h are a.s. bi-Lipschitz equivalent with Lipschitz constants e−ξ‖ f ‖∞ and

eξ‖ f ‖∞ . Furthermore, since f is a.s. bounded exists a deterministic A > 1 such
that P

[
eξ‖ f ‖∞ ≤ A

] ≥ p. By (2.23) with A2C in place of C , we get (2.21) but with
1−2(1− p) in place of p. Since p can bemade arbitrarily close to 1, this yields (2.21).

��
The last lemma we need for the proof of Lemma 2.5 is the following determin-

istic compatibility statement for limits of internal metrics, which is used to get the
relationship between internal metrics in assertion B of Lemma 2.5.

Lemma 2.11 Let V ⊂ U ⊂ C be open. Let {Dn}n∈N be a sequence of continuous
length metrics on U which converges to a continuous length metric D (w.r.t. the local
uniform topology on U ×U). Suppose also that Dn(·, ·; V ) converges to a continuous
length metric D̃ w.r.t. the uniform topology on V × V . Then D(·, ·; V ) = D̃(·, ·; V ).

In the setting of Lemma 2.11, we do not necessarily have D(·, ·; V ) = D̃. The
reason is that it could be, e.g., that paths of near-minimal D̃-length spend a positive
fraction of their time in ∂V .

Proof of Lemma 2.11 Let u, v ∈ V such that D(u, v) < D(u, ∂V ). Since D is a length
metric, D(u, v) = D(u, v; V ) = D(u, v; V ). Furthermore, for large enough n ∈ N
we have Dn(u, v) < Dn(u, ∂V ) which implies that Dn(u, v) = Dn(u, v; V ) =
Dn(u, v; V ). Therefore, Dn(u, v) converges to both D(u, v) = D(u, v; V ) and
D̃(u, v). Furthermore, we have D̃(u, v) < D̃(u, v; ∂V )which implies that D̃(u, v) =
D̃(u, v; V ). Consequently, D(u, v; V ) = D̃(u, v; V ) for each u, v ∈ V with
D(u, v) < D(u, ∂V ). This implies that the D-length of any path in V which lies
at positive Euclidean distance from ∂V is the same as its D̃-length. Since D(·, ·; V )

and D̃(·, ·; V ) are length metrics, we conclude that D(·, ·; V ) = D̃(·, ·; V ). ��
Proof of Lemma 2.5 For r > 0, let Sr (0) be the closed square of side length r centered
at zero, as in Lemma 2.10. Let p ∈ (0, 1) and let R = R(p) > 1 be as in Lemma 2.10
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with C = 2 and with (1 + p)/2, say, in place of p. Then for each fixed r > 0 and
each small enough ε > 0, it holds with probability at least p that

sup
u,v∈Sr (0)

Dε
h(u, v) ≤ 1

2
Dε
h(Sr (0), ∂SRr (0))

which implies Dε
h(u, v) = Dε

h(u, v; SRr (0)), ∀u, v ∈ Sr (0). (2.24)

We now apply Lemma 2.8 with S = SRr (0) and use that p can be made arbitrarily
close to 1 to get that the laws of a−1

ε Dε
h|Sr (0) are tight w.r.t. the local uniform topology

on Sr (0). Furthermore, any subsequential limit in law of these metrics a.s. induces
the Euclidean topology on Sr (0). Since r can be made arbitrarily large, we get that
the metrics a−1

ε Dε
h are tight w.r.t. the local uniform topology on C × C and any

subsequential limit in law is a.s. a continuous metric on C.
To prove assertion A, it remains to check that if Dh is a subsequential limit in law

of the metrics a−1
ε Dε

h, then a.s. Dh is a length metric. To this end, let p ∈ (0, 1) and
let R = R(p) > 1 be as above. By Lemma 2.8, if we are given r > 0 then by possibly
passing to a further subsequence we can arrange that along our subsequence, the joint
law of (a−1

ε Dε
h, a

−1
ε Dε

h(·, ·; SRr (0))) converges to a coupling (Dh, D̃) where D̃ is a
length metric on SRr (0). By passing to the (subsequential) limit in (2.24), we get that
with probability at least p,

sup
u,v∈Sr (0)

Dh(u, v) ≤ 1

2
Dh(Sr (0), ∂SRr (0)) and Dh(u, v) = D̃(u, v), ∀u, v ∈ Sr (0).

(2.25)

By Lemma 2.11, a.s. the internal metrics of Dh and D̃ on the interior of SRr (0)
coincide. Hence (2.24) implies that with probability at least p, Dh(u, v) is equal to the
infimum of the Dh-lengths of all continuous paths from u to v which are contained in
the interior of SRr (0), which (by the first condition in (2.24)) is equal to the infimum
of the Dh-lengths of all continuous paths from u to v. Since p can be made arbitrarily
close to 1 and r can be made arbitrarily large, we get that a.s. Dh is a length metric.

To get the joint convergence (2.17), we first apply Lemma 2.9 and the Prokhorov
theorem to get that the joint law of the metrics on the left side of (2.17) is tight.
Moreover any subsequential limit of these joint laws is a coupling of a continuous
lengthmetric Dh onC and a lengthmetric Dh,W onW for eachW ∈ W which induces
the Euclidean topology onW . We then apply Lemma 2.11 to say that Dh,W (·, ·;W ) =
Dh(·, ·;W ) for each W ∈ W . ��

2.3 Weyl scaling

The following lemma will be used to check Axiom III.

Lemma 2.12 Let h be a whole-plane GFF plus a bounded continuous function and
consider a sequence εn → 0 along which a−1

εn
Dεn
h converges in law to some metric

Dh w.r.t. the local uniform topology. Suppose we have, using the Skorokhod theorem,
coupled so this convergence occurs a.s. Then, a.s., for every sequence of bounded
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continuous functions f n : C → R such that f n converges to a bounded continuous
function f uniformly on compact subsets ofC, we have the local uniform convergence
Dεn
h+ f n → eξ f · Dh, where here Dε

h+ f n is defined as in (1.5) with h + f n in place of

h and eξ f · Dh is defined as in (1.7).

As a consequence of Lemma 2.12, if h is a whole-plane GFF plus a bounded
continuous function and εn → 0 is a sequence alongwhich a−1

εn
Dεn
h → Dh in law, then

whenever h′ is another whole-plane GFF plus a bounded continuous function, we have
a−1
εn

Dεn
h′ → Dh′ in law for some limiting metric Dh′ . Furthermore, (h,h′, Dh, Dh′)

can be coupled together in such a way that h′−h is a bounded continuous function and
Dh′ = eξ(h′−h) · Dh. Consequently, any subsequence along which a−1

εn
Dεn
h converges

in law gives us a way to define a metric associated with any whole-plane GFF plus a
bounded continuous function.

Proof of Lemma 2.12 Let f ∗,n
εn

= f n ∗ pε2n/2
be defined as in (1.1) with with f n in

place of h. Then f ∗,n
εn

→ f uniformly on compact subsets ofC. By the definition (1.5)

of LFPP, we have Dεn
h+ f n = eξ f ∗,n

εn · Dεn
h .

We now want to apply an argument as in the proof of [11, Lemma 7.1] to say that
Dεn
h+ f n → eξ f · Dh w.r.t. the local uniform topology. That lemma only applies for

metrics defined on squares, sowe need to localize.Wedo this bymeans of Lemma2.10.
By taking a limit as ε → 0 in the estimate of Lemma 2.10, then sending p → 1, we
find that a.s. for each r > 0 and each C > 1, there exists r ′ = r ′(r ,C) > 0 (random)
such that

sup
u,v∈Sr (0)

Dh(u, v) ≤ 1

2C
Dh(Sr (0), ∂Sr ′(0)). (2.26)

Furthermore, the uniform convergence a−1
εn

Dεn
h → Dh, we get that (2.26) is a.s. true

with a−1
εn

Dεn
h in place of Dh for large enough n ∈ N, but with C instead of 2C .

This implies that each path of near-minimal Dh-length between two points of Sr (0) is
contained in Sr ′(0), and the same is true with a−1

εn
Dεn
h in place of Dh for large enough

n ∈ N. If we choose C > supn∈N ‖ f n‖∞, then from (2.26) we deduce that each path
of near-minimal eξ f · Dh-length between two points of Sr (0) is contained in Sr ′(0),
and the same is true with a−1

εn
Dεn
h+ f n in place of Dh for large enough n ∈ N. With these

conditions in hand, the lemma now follows from the same proof as in [11, Lemma
7.1]. ��

2.4 Tightness across scales

In this section we check that subsequential limits of LFPP satisfy Axiom V. For the
statement,we note thatwe can take a subsequential limit of the joint laws of (h, a−1

ε Dε
h)

due to Lemma 2.5 and the Prokhorov theorem.

Lemma 2.13 Let h be a whole-plane GFF normalized so that h1(0) = 0. Let (h, Dh)

be any subsequential limit of the laws of the field/metric pairs (h, a−1
ε Dε

h). There
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are deterministic constants {cr }r≥0, depending on the law of Dh, such that the laws
of the metrics {c−1

r e−ξhr (0)Dh(r ·, r ·)}r>0 are tight w.r.t. the local uniform topology.
Furthermore, the closure of this set of lawsw.r.t. the Prokhorov topology for probability
measures on continuous functionsC×C → [0,∞) is contained in the set of laws on
continuous metrics on C. Finally, there exists � > 1 such that for each δ ∈ (0, 1),

�−1δ� ≤ cδr

cr
≤ �δ−�, ∀r > 0. (2.27)

We first produce the scaling constants cr appearing in Axiom V.

Lemma 2.14 Consider a sequence E ⊂ (0, 1) converging to zero along which a−1
ε Dε

h
converges in law to a limiting metric Dh. For each r > 0, the limit

cr := lim
E�ε→0

raε/r

aε

(2.28)

exists and satisfies the relation (2.27) for some choice of � > 1 depending only on E
and γ .

Proof Let hr := h(r ·) − hr (0) be as in Lemma 2.6, so that hr
d= h. By our choice of

subsequence E and Lemma 2.6,

a−1
ε Dε/r

hr = r−1e−ξhr (0)a−1
ε Dε

h(r ·, r ·) E�ε→0−−−−→ r−1e−ξhr (0)Dh(r ·, r ·) (2.29)

in law w.r.t. the local uniform topology on C × C. Let mr be the median distance
between the left and right boundaries of [0, 1]2 w.r.t. the metric on the right side

of (2.29). Since hr
d= h,

a−1
ε/r D

ε/r
h︸ ︷︷ ︸

tight

d= a−1
ε/r D

ε/r
hr = aε

aε/r
a−1
ε Dε/r

hr︸ ︷︷ ︸
convergent
by (2.29)

. (2.30)

Ifwe consider a subsequenceE ′ ofE alongwhich the joint lawofa−1
ε/r D

ε/r
h anda−1

ε Dε/r
hr

converges, then (2.30) shows that along this subsequence, aε/r/aε converges to some

number sr (E ′) > 0 (we know the limit is strictly positive since the limits of a−1
ε/r D

ε/r
h

and a−1
ε Dε/r

hr aremetrics). By the definitions of aε and ofmr and Portmanteau’s lemma,
the median distance between the left and right boundaries of [0, 1]2 w.r.t. the metric
on the left (resp. right) side of (2.30) is 1 (resp. mr/sr (E ′)). Hence sr (E ′) = mr ,
i.e., the limit does not depend on the choice of subsequence E ′ ⊂ E . This shows the
convergence of aε/r/aε along the subsequence E , which in turn implies the existence
of the limit (2.28). The bounds (2.27) (in fact, substantially stronger bounds) are
immediate from [10, Theorem 1, Equation (1.3)] and the fact the ratio of our aε

and the scaling factor λε from [10] is bounded above and below by deterministic,
ε-independent constants (see the proof of Lemma 2.8). ��
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Proof of Lemma 2.13 Define cr for r > 0 as in Lemma 2.14. Let hr := h(r ·) − hr (0),

as in Lemma 2.6, so that hr
d= h and the metrics Dε/r

hr and Dε
h are related as in (2.18).

We know from Lemma 2.5 that the laws of the metrics {a−1
ε Dε

h}0<ε<1 are tight, and
every element of the closure of this set of laws is supported on continuous metrics on
C. It follows that the same is true for the laws of the metrics {a−1

ε/r D
ε/r
hr }0<ε<r . By

combining this with (2.18), we get that the laws of the metrics

e−ξhr (0)
(
raε/r

aε

)−1

a−1
ε Dε

h(r ·, r ·) = a−1
ε/r D

ε/r
hr , ∀r > 0, ∀ε ∈ (0, r) (2.31)

are tight and every element of the closure of this set of laws w.r.t. the Prokhorov
topology is supported on continuous metrics on C.

Now consider a subsequence E ⊂ (0, 1) along which (h, a−1
ε Dε

h) → (h, Dh) in
law. By the definition (2.28) of cr ,

e−ξhr (0)
(
raε/r

aε

)−1

a−1
ε Dε

h(r ·, r ·) → e−ξhr (0)c−1
r Dh(r ·, r ·), in law along E .

Therefore, the metrics e−ξhr (0)c−1
r Dh(r ·, r ·) for r > 0 are all subsequential limits as

ε → 0 of the family of random metrics (2.31). It follows that the laws of the metrics
e−ξhr (0)c−1

r Dh(r ·, r ·) are tight and every element of the closure of this set of laws is
supported on continuous metrics on C. ��

2.5 Locality

In this section, we will prove a variant of Axiom II for subsequential limits of LFPP,
restricted to the case of a whole-plane GFF (locality for a whole-plane GFF plus
a continuous function will be checked in Sect. 2.6). At this point, we have not yet
established that such subsequential limits can be realized as measurable functions of
the field, so we will actually check a somewhat different condition. In what follows,
if K ⊂ C is closed we define the σ -algebra generated by h|K to be

⋂
δ>0 h|Bδ(K ).

With this definition it makes sense to condition on h|K . The following definitions first
appeared in [26].

Definition 2.15 (Local metric) Let U ⊂ C be a connected open set and let (h, D) be
a coupling of a GFF on U and a random continuous length metric on U . We say that
D is a local metric for h if for any open set V ⊂ U , the internal metric D(·, ·; V ) is
conditionally independent from the pair (h, D(·, ·;U\V )) given h|V .

Definition 2.15 is formulated in a slightly different way than [26, Definition 1.2];
the equivalence of the definitions is proven in [26, Lemma 2.3]. The following is [26,
Definition 1.5].

Definition 2.16 (Additive local metric) Let U ⊂ C be a connected open set and let
(h, D) be a coupling of a GFF on U and a random continuous length metric on U
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which is local for h. For ξ ∈ R, we say that D is ξ -additive for h if for each z ∈ U
and each r > 0 such that Br (z) ⊂ U , the metric e−ξhr (z)D is local for h − hr (z).

Lemma 2.17 Let h be a whole-plane GFF. Let (h, Dh) be any subsequential limit of
the laws of the pairs (h, a−1

ε Dε
h). Then Dh is a ξ -additive local metric for h. That

is, suppose z ∈ C and r > 0 and that h is normalized so that the circle average
hr (z) is zero. Also let V ⊂ C be an open set. Then the internal metric Dh(·, ·; V ) is
conditionally independent from the pair

(
h, Dh(·, ·;C\V )

)
given h|V .

There are two main difficulties in the proof of Lemma 2.17.

1. The mollified GFF h∗
ε(z) of (1.1) does not exactly depend locally on h (since the

heat kernel pε2/2(z, ·) does not have compact support), so the Dε
h-lengths of paths

are not locally determined by h.
2. Conditional independence does not in general behave nicely under taking limits in

law.

Difficulty 1 will be resolved by means of the localization results for LFPP in Sect. 2.1.
To resolve Difficulty 2, we will use theMarkov property of the GFF (see Lemma 2.18)
and Weyl scaling (Lemma 2.12) in order to reduce to working with metrics which
are actually independent, not just conditionally independent. The use of the Markov
property is the reason why we restrict to a whole-plane GFF, not a whole-plane GFF
plus a bounded continuous function, in Lemma 2.17.

For the proof of Lemma 2.17 we will need the following version of the Markov
property of the whole-plane GFF, which is proven in [28, Lemma 2.2]. We note that
the statement of this Markov property is slightly more complicated than in the case of
the zero-boundary GFF due to the need to fix the additive constant for h.

Lemma 2.18 ([28]) Let z ∈ C and r > 0 and let h be a whole-plane GFF with
the additive constant chosen so that hr (z) = 0. For each open set V ⊂ C which is
non-polar (i.e., Brownian motion started in V a.s. hits ∂V in finite time), we have the
decomposition

h = h + h̊ (2.32)

where h is a random distribution which is harmonic on V and is determined by h|C\V
and h̊ is independent from h and has the law of a zero-boundary GFF on V minus its
average over ∂Br (z)∩V . If V is disjoint from ∂Br (z), then h̊ is a zero-boundary GFF
and is independent from h|C\V .

The following lemma will allow us to apply Lemma 2.18 to study h|C\V .

Lemma 2.19 It suffices to prove Lemma 2.17 in the case when Br (z) ⊂ V .

Proof Assume that we have proven Lemma 2.17 in the case when Br (z) ⊂ V . Fix
z0 ∈ C and r0 > 0 such that Br0(z0) ⊂ V and assume that h is normalized so that
hr0(z0) = 0. By assumption, Dh(·, ·; V ) is conditionally independent from the pair(
h, Dh(·, ·;C\V )

)
given h|V .
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Fig. 1 Illustration of the sets used in the proof of Lemma 2.17. The set φ−1(1) is not shown; it contains
the closure of the pink set W ′ and is contained in the grey set suppφ (color figure online)

Now let z ∈ C and r > 0 and define h̃ := h−hr (z), so that h̃ is a whole-plane GFF
normalized so that h̃r (z) = 0. Lemma 2.12 implies that Dε

h̃
→ e−ξhr (z)Dh =: Dh̃ in

law along the same subsequence for which Dε
h → Dh in law, so Dh̃ is unambiguously

defined. We need to show that the conclusion of the first paragraph remains true with
(̃h, Dh̃) in place of (h, Dh).

The key fact which allows us to show this is that h̃r0(z0) = −hr (z). Since Br0(z0) ⊂
V , this means that hr (z) ∈ σ

(̃
h|V

)
. In particular, h|V = h̃|V +hr (z) is determined by

h̃|V . Therefore, our assumption implies that Dh(·, ·; V ) is conditionally independent
from the pair

(
h, Dh(·, ·;C\V )

)
given h̃|V (instead of just h|V ).

We have Dh̃(·, ·; V ) = e−ξhr (z)Dh(·, ·; V ), so Dh̃(·, ·; V ) is determined by h̃|V and
Dh(·, ·; V ). Similarly, Dh̃(·, ·;C\V ) is determined by h̃|V and Dh(·, ·;C\V ). Obvi-
ously, h and h̃ determine the same information. Therefore, Dh̃(·, ·; V ) is conditionally
independent from the pair

(̃
h, Dh̃(·, ·;C\V )

)
given h̃|V , as required. ��

Proof of Lemma 2.17 Step 1: reductions. By Lemma 2.1, for any sequence of ε’s tend-
ing to zero along which (h, a−1

ε Dε
h) → (h, Dh) in law, we also have (h, a−1

ε D̂ε
h) →

(h, Dh) in law. This allows us to work with D̂ε
h instead of Dε

h throughout the proof.
The reason why we want to do this is the locality property (2.3) of D̂ε

h .
The statement of the lemma is vacuous if V = C, so we can assume without loss of

generality that V �= C, which implies thatC\V is non-polar. By Lemma 2.19, we can
also assume without loss of generality that Br (z) ⊂ V . These assumptions together
with Lemma 2.18 applied with C\V in place of V allows us to write

h|C\V = h + h̊ (2.33)

where h is a random harmonic function onC\V which is determined by h|C\V and h̊

is a zero-boundary GFF in C\V which is independent from h|C\V .
Step 2: independence for LFPP.We want to apply the convergence of internal metrics
given in Lemma 2.5, so we fix dyadic domains (Definition 2.4) W ,W ′ with W ⊂ V
and W

′ ⊂ C\V (we will eventually let W and W ′ increase to all of V and C\V ,
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respectively). Let φ be a deterministic, smooth, compactly supported bump function
which is identically equal to 1 on a neighborhood of W

′
and which vanishes outside

of a compact subset of C\V . See Fig. 1 for an illustration of these objects.
The restrictions of the fields h − φh and h̊ to the set φ−1(1) ⊃ W

′
are identical.

By the locality property (2.3) of D̂ε
h , if ε > 0 is small enough that Bε(W ′) ⊂ φ−1(1),

then the ε-LFPP metric for h − φh satisfies

D̂ε
h−φh(·, ·;W ′

) ∈ σ
(
h̊
)

. (2.34)

Similarly, for small enough ε > 0 the metric D̂ε
h(·, ·;W ) is a.s. determined by h|V .

Since h|V and h̊ are independent, we obtain

(
h|V , a−1

ε Dε
h(·, ·;W )

)
and

(
h̊, a−1

ε Dε
h−φh(·, ·;W ′

)
)

are independent.

(2.35)

Step 3: passing to the limit.Wenowwant to pass the independence (2.35) through to the
(subsequential) scaling limit. To this end, consider a sequence E of positive ε’s tending
to zero along which (h, a−1

ε D̂ε
h) → (h, Dh) in law. By possibly passing to a further

deterministic subsequence, we can arrange that in fact (h, h, a−1
ε D̂ε

h) → (h, h, Dh)

in law along E , where here the second coordinate is given the local uniform topology
onC\V . By the analog of Lemma 2.12 with D̂ε· in place of Dε· (which is proven in an
identical manner), if we set Dh−φh = e−ξφh · Dh , then along this same subsequence
we have the convergence of joint laws

(
h, h, a−1

ε D̂ε
h, a

−1
ε D̂ε

h−φh

)
→ (

h, h, Dh, Dh−φh

)
. (2.36)

By assertion B of Lemma 2.5, applied once to each of h and h − φh, by pos-
sibly replacing E with a further deterministic subsequence we can find a coupling
(h, Dh, Dh,W , Dh−φh,W ′) of (h, Dh) with length metrics on W and W

′
, respectively,

which induce the Euclidean topology and which satisfy

Dh,W (·, ·;W ) = Dh(·, ·;W ) and Dh−φh,W ′(·, ·;W ′) = Dh−φh(·, ·;W ′)
(2.37)

such that the following is true. Along E , we have the convergence of joint laws
(
h, h, a−1

ε D̂ε
h, a

−1
ε D̂ε

h−φh, a−1
ε D̂ε

h(·, ·;W ), a−1
ε D̂ε

h−φh(·, ·;W ′
)
)

→ (
h, , h, Dh, Dh−φh, Dh,W , Dh−φh,W ′

)
(2.38)

where the last two coordinates are given the uniform topology on W × W and on
W

′ ×W
′
, respectively. Since independence is preserved under convergence in law, we
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obtain from (2.35) and (2.38) that (h|V , Dh,W ) and (h̊, Dh−φh,W ′) are independent.
By (2.37), this means that

(h|V , Dh(·, ·;W )) and (h̊, Dh−φh(·, ·;W ′)) are independent. (2.39)

Step 4: adding back in the harmonic part.By (2.39), Dh(·, ·;W ) is conditionally inde-
pendent from (h̊, Dh−φh(·, ·;W ′)) given h|V . We now argue that (h, Dh(·, ·;W ′)) is
a measurable function of (h̊, Dh−φh(·, ·;W ′)) and h|V , so that Dh(·, ·;W ) is condi-
tionally independent from (h, Dh(·, ·;W ′)) given h|V . Indeed, by Lemma 2.12, a.s.
Dh(·, ·;W ′) = (eξφh · Dh−φh)(·, ·;W ′). Hence Dh(·, ·;W ′) is a measurable func-
tion of h ∈ σ(h|V ) and Dh−φh(·, ·;W ′). Since h|C\V = h̊ + h, we get that h is a

measurable function of h̊ and h|V . It therefore follows that Dh(·, ·;W ) is condition-
ally independent from (h, Dh(·, ·;W ′)) given h|V . Letting W increase to V and W ′
increase to C\V now concludes the proof. ��

2.6 Measurability

We have not yet established that subsequential limits of LFPP can be realized as mea-
surable functions of the corresponding field.Wewill accomplish this in this subsection
using a result from [26].

Lemma 2.20 Let h be a whole-plane GFF normalized so that h1(0) = 0 and let
(h, Dh) be any subsequential limit of the laws of the pairs (h, a−1

ε Dε
h). Then Dh is

a.s. determined by h. In particular, a−1
ε Dε

h → Dh in probability along the given
subsequence.

The following theorem is a special case of [26, Corollary 1.8].

Theorem 2.21 ([26]) There is a universal constant p ∈ (0, 1) such that the following
is true. Let ξ ∈ R, let h be a whole-plane GFF normalized so that h1(0) = 0, and
let (h, D) be a coupling of h with a random continuous length metric satisfying the
following properties.

1. D is a ξ -additive local metric for h (Definition 2.16).
2. Condition on h and let D and D̃ be conditionally i.i.d. samples from the conditional

law of D given h. There is a deterministic constant C > 0 such that

P

[
sup

u,v∈∂Br (z)
D̃
(
u, v; B2r (z)\Br/2(z)

)
≤ CD(∂Br/2(z), ∂Br (z))

]
≥ p,

∀z ∈ C, ∀r > 0. (2.40)

Then D is a.s. determined by h.

Proof of Lemma 2.20 Let p ∈ (0, 1) be as in Theorem 2.21. Lemma 2.17 implies that
Dh is a ξ -additive local metric for h. Lemma 2.13 along with the translation invariance
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of the law of h, modulo additive constant, implies that there exists C > 0 (depending
only on the choice of subsequence) such that for each z ∈ C and each r > 0,

P
[
D(∂Br/2(z), ∂Br (z)) ≥ C−1/2cr e

ξhr (z)
]

≥ 1 − p

2
and

P

[
sup

u,v∈∂Br (z)
Dh

(
u, v; B2r (z)\Br/2(z)

)
≤ C1/2cr e

ξhr (z)

]
≥ 1 − p

2
.

This implies that (2.40) holds for two conditionally independent samples from the
conditional law of Dh given h. Hence the criteria of Theorem 2.21 are satisfied, so Dh

is a.s. determined by h. The last statement follows from Lemma 1.3. ��

Proof of Theorem 1.2 Step 1: Defining a Dh for a whole-plane GFF plus a bounded
continuous function. Let h be a whole-plane GFF normalized so that h1(0) = 0.
Lemma 2.5 implies that for any sequence of ε’s tending to zero, there is a subsequence
εn → 0 along which (h, Dεn

h ) → (h, Dh) in law. By Lemma 2.20, Dh is a.s. deter-
mined by h and Dεn

h → Dh in probability. Hence every deterministic subsequence

of the εn’s admits a further deterministic subsequence εnk along which D
εnk
h → Dh

a.s. By Lemma 2.12, it is a.s. the case that for every bounded continuous function
f : C → R simultaneously, we have D

εnk
h+ f → eξ f ·Dh .We define Dh+ f := eξ f ·Dh .

Then Dh+ f is a.s. determined by h + f and Dεn
h+ f converges in probability to Dh+ f .

This gives us a measurable function h �→ Dh from distributions to continuous
metrics on C which is a.s. defined whenever h is a whole-plane GFF plus a bounded
continuous function: in particular, Dh is the a.s. limit of D

εnk
h .With this definition of D,

Axiom I holds with h constrained to be a whole-plane GFF plus a bounded continuous
function since we know that the limiting metric in the setting of Lemma 2.5 is a length
metric. By the preceding paragraph, Axiom III holds for this definition of D and with
f constrained to be bounded. It is immediate from the definition of LFPP that also
Axiom IV holds. By Lemma 2.13, also Axiom V holds.
Step 2: locality for a whole-plane GFF plus a bounded continuous function.Axiom II
in the case of a whole-plane GFF is immediate from Lemma 2.17 now that we know
that Dh is a.s. determined by h. We now prove Axiom II in the case when h is a
whole-plane GFF plus a bounded continuous function. Indeed, let V ⊂ C be open
and let O ⊂ O ′ ⊂ V be open and bounded with O ⊂ O ′ and O

′ ⊂ V . Let u, v ∈ O
be deterministic. We will show that

Dh(u, v)1{Dh(u,v)<Dh(u,∂O ′)} ∈ σ (h|V ) . (2.41)

Since (u, v) �→ Dh(u, v) is a.s. continuous, (2.41) implies that in fact h|V a.s. deter-
mines the random function O � (u, v) �→ Dh(u, v)1{Dh(u,v)<Dh(u,∂O ′)}. Since O
is a compact subset of O ′, O can be covered by finitely many sets of the form
{v ∈ O : Dh(u, v) < Dh(u, ∂O ′)} for points u ∈ O . By the definition of the
internal metric Dh(·, ·; O), this shows that h|V a.s. determines Dh(·, ·; O). Letting O
increase to all of V then shows that h|V a.s. determines Dh(·, ·; V ).
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To prove (2.41), note that if we define the localized LFPP metric D̂εn
h as in (2.2),

then by Lemma 2.1 we have a−1
εn

D̂εn
h (u, v) → Dh(u, v) and a−1

εn
D̂εn
h (u, ∂O ′) →

Dh(u, ∂O ′) in probability. Therefore,

a−1
εn

D̂εn
h (u, v)1{D̂εn

h (u,v)<D̂εn
h (u,∂O ′)

} → Dh(u, v)1{Dh(u,v)<Dh(u,∂O ′)}, in probability.

(2.42)

By (2.3) and since O
′ ⊂ V , the random variable on the left side of (2.42) is a.s.

determined by h|V for large enough n ∈ N. Thus (2.41) holds.
Step 3: extending to unbounded continuous function.Wewill now extend the definition
of D to the case of a whole-plane GFF plus an unbounded continuous function and
check that the axioms remain true. To this end, let h be a whole-plane GFF and let f
be a possibly random unbounded continuous function. If V ⊂ C is open and bounded
and φ is a smooth compactly supported bump function which is identically equal to
1 on V , then φ f is bounded so we can define the metric DV

h+ f := Dh+φ f (·, ·; V ).
By Axiom II in the case of a whole-plane GFF plus a bounded continuous function,
this metric is a.s. determined by (h + φ f )|V = (h + f )|V , in a manner which does
not depend on φ. We now define the Dh+ f -length of any continuous path P in C
to be the DV

h+ f -length of P , where V ⊂ C is a bounded open set which contains
P The definition does not depend on the choice of V . We define Dh+ f (z, w) for
z, w ∈ C to be the infimum of the Dh+ f -lengths of continuous paths from z to w.
Then Dh+ f is a length metric on C which is a.s. determined by Dh+ f and which
satisfies Dh+ f (·, ·; V ) = DV

h+ f for each bounded open set V ⊂ C.
With the above definition, it is immediate from the case of a whole-plane GFF plus

a bounded continuous function that the axioms in the definition of a weak γ -LQG
metric are satisfied to the mapping h �→ Dh, which is a.s. defined whenever h is a
whole-plane GFF plus a continuous function. ��

3 Proofs of quantitative properties of weak LQGmetrics

In this section we will prove the estimates stated in Sect. 1.3. Actually, in many
cases we will prove a priori stronger estimates which are required to be uniform
across different Euclidean scales. With what we know now, these estimates are not
implied by the estimates stated in Sect. 1.3 since we are working with a weak γ -LQG
metric so we have tightness across scales instead of exact scale invariance. However, a
posteriori, once it is proven that a weak γ -LQGmetric satisfies the coordinate change
formula (1.9) (which will be done in [25], building on the results in the present paper),
the estimates in this section are equivalent to the estimates in Sect. 1.3. Throughout this
section, D denotes a weak LQG metric and h denotes a whole-plane GFF normalized
so that h1(0) = 0.
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Fig. 2 Left: To prove the lower bound in Proposition 3.1, we cover rU by balls Br/2(w) such that the
Dh -distance across the annulus Ar ,2r (w) is bounded below. Each path from rK1 to r(K2 ∪ ∂U ) must
cross at least one of these annuli (one such path is shown in purple). Right: To prove the upper bound in
Proposition 3.1, we cover rU by balls Br/2(w) for which the Dh -diameter of the circle ∂Br (w) is bounded
above, then string together a path of such circles from K1 to K2 (color figure online)

3.1 Estimate for the distance between sets

The goal of this subsection is to prove the following more precise version of Theo-
rem 1.9 which is required to be uniform across scales. For the statement, we recall the
scaling constants cr for r > 0 from Axiom V.

Proposition 3.1 Let U ⊂ C be an open set (possibly all of C) and let K1, K2 ⊂ U
be connected, disjoint compact sets which are not singletons. For each r > 0, it holds
with superpolynomially high probability as A → ∞, at a rate which is uniform in the
choice of r, that

A−1cre
ξhr (0) ≤ Dh(rK1, rK2; rU ) ≤ Acre

ξhr (0). (3.1)

We now explain the idea of the proof of Proposition 3.1; see Fig. 2 for an illus-
tration. Using Axiom V and a general “local independence” lemma for the GFF (see
Lemma 3.3), we can, with extremely high probability, cover rU by small Euclidean
balls Br/2(w) such that r ∈ [ε2r, εr] and the Dh-distance across the annulusAr ,2r (w)

is bounded below by a constant times cr eξhr (w). Any path from rK1 to rK2 must cross
at least one of these annuli. This leads to a lower bound for Dh(rK1, rK2; rU ) in
terms of

inf
r∈[ε2r,εr]

cr and inf
r∈[ε2r,εr]

inf
w∈rU eξhr (w). (3.2)

The first infimum in (3.2) can be bounded below by a positive power of ε times
cr by (1.8). By being a little more careful about how we choose the balls Br/2(w),
the second term in (3.2) can be reduced to an infimum over finitely many values of
r and w, which can then be bounded below by a positive power of ε times eξhr (0)

using the Gaussian tail bound and a union bound (see Lemma 3.4). Choosing ε to be
an appropriate power of A then concludes the proof.

The upper bound in (3.1) is proven similarly, but in this case we instead cover U
by balls Br/2(w) for which the Dh-diameter of the circle ∂Br (w) is bounded above
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by a constant times cr eξhr (w), then “string together” a collection of such circles to get
a path from rK1 to rK2 whose Dh-length is bounded above. The hypothesis that K1
and K2 are connected and are not singletons allows us to force some of the circles in
this path to intersect K1 and K2.

We now explain how to coverU by Euclidean balls with the desired properties. For
C > 1, z ∈ C, and r > 0, let Er (z;C) be the event that

sup
u,v∈∂Br (z)

Dh
(
u, v;Ar/2,2r (z)

) ≤ Ccr e
ξhr (0) and Dh (∂Br (z), ∂B2r (z)) ≥ C−1cr e

ξhr (0).

(3.3)

Lemma 3.2 For each ν > 0 and each M > 0, there exists C = C(ν, M) > 1 such
that for each r > 0, it holds with probability at least 1− Oε(ε

M ) as ε → 0, at a rate
which is uniform in r, that the following is true. For each z ∈ Brε−M (0), there exists

w ∈ Brε−M (0) ∩
(

ε1+νr
4 Z2

)
and r ∈ [ε1+νr, εr] ∩ {2−kr}k∈N such that Er (w;C)

occurs and z ∈ Brε1+ν/2(w).

We will prove Lemma 3.2 using the following result from [26], which in turn
follows from the near-independence of the GFF across disjoint concentric annuli. See
in particular [26, Lemma 3.1].

Lemma 3.3 Fix 0 < s1 < s2 < 1. Let {rk}k∈N be a decreasing sequence of positive
numbers such that rk+1/rk ≤ s1 for each k ∈ N and let {Erk }k∈N be events such that

Erk ∈ σ
(
(h − hrk (0))|As1rk ,s2rk (0)

)
for each k ∈ N. For K ∈ N, let N (K ) be the

number of k ∈ [1, K ]Z for which Erk occurs.
For each a > 0 and each b ∈ (0, 1), there exists p = p(a, b, s1, s2) ∈ (0, 1) and
c = c(a, b, s1, s2) > 0 such that if

P
[
Erk

] ≥ p, ∀k ∈ N, (3.4)

then

P [N (K ) < bK ] ≤ ce−aK , ∀K ∈ N. (3.5)

Proof of Lemma 3.2 By Axioms IV and V [also see (1.10)], for each p ∈ (0, 1) there
exists C > 1 such that for every z ∈ C and r > 0, P [Er (z;C)] ≥ p. By the locality
of Dh and Axiom III, the event Er (z;C) is determined by (h − h3r (z))|Ar/2,2r (z).
We can therefore apply Lemma 3.3 to a logarithmic (in ε) number of values of r ∈
[ε1+νr, εr] ∩ {2−kr}k∈N to find that for any choice of ν > 1 and M̃ > 0, there is a
large enough C = C(ν, M̃) > 1 such that the following is true. For each z ∈ C it
holds with probability at least 1− Oε(ε

M̃ ) that Er (z;C) occurs for at least one value
of r ∈ [ε1+νr, εr] ∩ {2−kr}k∈N. We now conclude the proof by choosing M̃ to be
sufficiently large, in a manner depending only on ν, M , and taking a union bound over

all z ∈ Brε−M (0) ∩
(

ε1+νr
4 Z2

)
. ��
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The occurrence of the event Er (z;C) allows us to bound distances in terms of circle
averages and the scaling coefficients cr . The cr ’s can be bounded using (1.8). To bound
the circle averages, we will need the following lemma.

Lemma 3.4 For each ν > 0, each q > 2 + 2ν, each R > 0, and each r > 0, it holds

with probability 1 − Oε

(
ε

q2

2(1+√
ν)2

−2−2ν
)
, at a rate depending only on q and R (not

on r) that

sup

{
|hr (w) − hr(0)| : w ∈ BRr(0) ∩

(
ε1+νr

4
Z2

)
, r ∈ [ε1+νr, εr]

}
≤ q log ε−1.

(3.6)

Proof Fix s ∈ (0, q) to be chosen momentarily. For each w ∈ BRr(0), the random
variable t �→ he−tεr(w) − hεr(w) is a standard linear Brownian motion [16, Section
3]. We can therefore apply the Gaussian tail bound to find that

P

[
sup

r∈[ε1+νr,εr]
|hr (w) − hεr(w)| ≤ s log ε−1

]
≥ 1 − Oε

(
εs

2/(2ν)
)

. (3.7)

The random variables hεr(w) − hr(0) for w ∈ BRr(0) are centered Gaussian with
variance log ε−1 + Oε(1). Applying the Gaussian tail bound again therefore gives

P
[
|hεr(w) − hr(0)| ≤ (q − s) log ε−1

]
≥ 1 − Oε

(
ε(q−s)2/2

)
. (3.8)

Combining (3.7) and (3.8) applied with s = q
√

ν/(1 + √
ν) shows that for w ∈

BRr(0),

P

[
sup

r∈[ε1+νr,εr]
|hr (w) − hr(0)| ≤ q log ε−1

]
≥ 1 − Oε

(
ε

q2

2(1+√
ν)2

)
. (3.9)

We nowconclude bymeans of a union bound over Oε(ε
−2−2ν) values ofw ∈ BRr(0)∩(

ε1+νr
4 Z2

)
. ��

Proof of Proposition 3.1 Throughout the proof, all O(·) and o(·) errors are required to
be uniform in the choice of r. We also impose the requirement thatU is bounded—we
will explain at the very end of the proof how to get rid of this requirement.

Set ν = 1, say, and fix a large M > 1, which we will eventually send to ∞. Let
C = C(1, M) > 1 be chosen as in Lemma 3.2 and for ε ∈ (0, 1) and r > 0, let Fε

r be
the event of Lemma 3.2 for this choice of ν, M,C , so thatP[Fε

r ] = 1− Oε(ε
M ). We

will eventually take ε = A−b/
√
M for a small constant b > 0, so εM will be a large

negative power of A (i.e., the power goes to ∞ as M → ∞) but ε
√
M will be a fixed

negative power of A (which does not go to ∞ when M → ∞).
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ByLemma3.4 (appliedwith ν = 1 andq = 2
√
2
√
4 + M), it holdswith probability

1 − Oε(ε
M ) that

sup

{
|hr (w) − hr (0)| : w ∈ Br (rU ) ∩

(
ε2r

4
Z2
)

, r ∈ [ε2r, εr]
}

≤ 2
√
2
√
4 + M log ε−1.

(3.10)

Henceforth assume that Fε
r occurs and (3.10) holds, which happens with probability

1 − Oε(ε
M ). We will now prove lower and upper bounds for Dh (rK1, rK2; rU ) in

terms of ε.
Step 1: lower bound. By the definition of Fε

r , if ε is sufficiently small, depending
on K1, K2,U , then each path from rK1 to r(K2 ∪ ∂U ) must cross from ∂Br (w) to

∂B2r (w) for somew ∈ Bεr(rU )∩
(

ε2r
4 Z2

)
and r ∈ [ε2r, εr]∩{2−kr}k∈N for which

Er (w;C) occurs. Therefore,

Dh (rK1, rK2)

≥ inf

{
C−1cr e

ξhr (w) : w ∈ Bεr(rU ) ∩
(

ε2r

4
Z2
)

, r ∈ [ε2r, εr]
}

(by (3.3))

≥ C−1εξ2
√
2
√
4+Meξhr (0) inf

{
cr : r ∈ [ε2r, εr]

}
(by (3.10))

≥ �−1εξ2
√
2
√
4+M+2�+oε(1)cre

ξhr (0) (by (1.8)). (3.11)

Step 2: upper bound. It is easily seen from the definition of Fε
r (see Lemma 3.5) that

if ε is sufficiently small (depending only on K1, K2, and U ) then the union of the

circles ∂Br (w) for w ∈ Bεr(rU )∩
(

ε2r
4 Z2

)
and r ∈ [ε2r, εr] ∩ {2−kr}k∈N such that

Er (w;C) occurs contains a path from rK1 to rK2 which is contained in rU . The total
number of such circles is at most ε−4−oε(1), so by the triangle inequality,

Dh (rK1, rK2; rU )

≤ ε−4−oε(1) sup

{
Ccr e

ξhr (w) : w ∈ Bεr(rU ) ∩
(

ε2r

4
Z2
)

, r ∈ [ε2r, εr]
}

(by (3.3))

≤ ε−4−ξ2
√
2
√
4+M−oε(1)eξhr(0) sup

{
cr : r ∈ [ε2r, εr]} (by (3.10))

≤ �ε−4−ξ2
√
2
√
4+M−2�−oε(1)cre

ξhr(0) (by (1.8)). (3.12)

Step 3: Choosing ε. The bounds (3.11) and (3.12) hold with probability 1− Oε(ε
M ).

Given A > 0, we now choose ε = A−b/
√
M , where b > 0 is a small constant

(depending only on ξ,�) chosen so that the right side of (3.11) is at least A−1creξhr (0)

and the right side of (3.12) is at most Acreξhr (0). Then (3.11) and (3.12) imply that

P
[
Dh(rK1, rK2) ≥ A−1cre

ξhr(0), Dh(rK1, rK2; rU ) ≤ cre
ξhr(0)

]
≥ 1 − OA(A−b

√
M ).

(3.13)
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If U ′ is a possibly unbounded open subset ofC with U ⊂ U ′, then Dh(rK1, rK2) ≤
Dh(rK1, rK2; rU ′) ≤ Dh(K1, K2; rU ). Since M can be made arbitrarily large, we
now obtain (3.1) (with U possibly unbounded) from (3.13). ��

The following lemma was used in the proof of the upper bound of Proposition 3.1.

Lemma 3.5 Assume that we are in the setting of Proposition 3.1, with U bounded.
Define the event Fε

r as in the proof of Proposition 3.1. For small enough ε > 0
(depending on K1, K2,U), on Fε

r , the union of the circles ∂Br (w) forw ∈ Bεr(rU )∩(
ε2r
4 Z2

)
and r ∈ [ε2r, εr] ∩ {2−kr}k∈N such that Er (w;C) occurs contains a path

from rK1 to rK2 which is contained in rU.

Proof Throughout the proof we assume that Fε
r occurs. By the definition of Fε

r and
sinceU is connected, if ε is chosen so be sufficiently small then the union of the balls
Br (w) for w, r as in the lemma statement contains a path from rK1 to K2 which is
contained inU . Let B be a sub-collection of these balls which is minimal in the sense
that

⋃
B∈B B contains a path from rK1 to rK2 in rU and no proper sub-collection of

the balls in B has this property. Choose a path P from rK1 to rK2 in (rU )∩⋃B∈B B.
We first observe that

⋃
B∈B B is connected. Indeed, if this set had two proper

disjoint open subsets, then each would have to intersect P (by minimality) which
would contradict the connectedness of P . Furthermore, by minimality, no ball in B is
properly contained in another ball in B.

We claim that
⋃

B∈B ∂B is connected. Indeed, if this were not the case then we
could partition B = B1 � B2 such that B1 and B2 are non-empty and

⋃
B∈B1

∂B
and

⋃
B∈B2

∂B are disjoint. By the minimality of B, it cannot be the case that any
ball in B2 is contained in

⋃
B∈B1

B. Furthermore, since
⋃

B∈B1
∂B and

⋃
B∈B2

∂B
are disjoint, it cannot be the case that any ball in B2 intersects both

⋃
B∈B1

B and
C\⋃B∈B1

B (otherwise, such a ball would have to intersect the boundary of some
ball in B1). Therefore,

⋃
B∈B1

B and
⋃

B∈B2
∂B are disjoint. Since no element of B1

can be contained in
⋃

B∈B2
B, we get that

⋃
B∈B1

B and
⋃

B∈B2
B are disjoint. This

contradicts the connectedness of
⋃

B∈B B, and therefore gives our claim.
Since P is a path from rK1 to rK2 and each of rK1 and rK2 is connected and

not a single point, if ε < 1
2 (diam(K1) ∧ diam(K2)), then the boundaries of the balls

in B which contain the starting and endpoint points of P must intersect K1 and K2,
respectively. Hence for such an ε,

⋃
B∈B ∂B contains a path from rK1 to rK2, as

required. ��

3.2 Asymptotics of the scaling constants

The goal of this section is to prove Theorem 1.5.Wewill accomplish this by comparing
Dh-distances to a variant of the Liouville first passage percolation (LFPP) which we
now define.

For ε ∈ (0, 1) and U ⊂ C, we view U ∩ (εZ2) as a graph with adjacency defined
by
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z, w ∈ U ∩ (εZ2) are connected by an edge if and only if |z − w| ∈ {ε,√2ε}.
(3.14)

Note that this differs from the standard nearest-neighbor graph structure in that we also
include the diagonal edges. We define the discretized ε-LFPP metric with parameter
ξ on U by

D̃ε
h(z, w;U ) := min

π :z→w

|π |∑
j=0

eξhε(π( j)), ∀z, w ∈ U ∩ (εZ2), (3.15)

where the minimum is over all paths π : [0, |π |]Z → U ∩ (εZ2) from z to w in
U ∩ (εZ2) [the tilde is to distinguish this from the variant of LFPP defined in (1.5)].

Recall that S = (0, 1)2 denotes the open Euclidean unit square. Below, we will
show, using Proposition 3.1 and a union bound over a polynomial number of δr× δr
squares contained in rS, that with high probability,

cr = δoδ(1)cδr × (
D̃δr
h distance between two sides of rS

)
. (3.16)

The reason why discretized LFPP comes up in this estimate is the circle average term
eξhr (0) in Proposition 3.1. We know that the D̃δr

h distance across the square rS is of
order δ−ξQ+oδ(1), uniformly in r, by the results of [12] (see Lemma 3.6). Hence (3.16)
leads to cδr = δξQ+oδ(1)cr, as required.

For a square S ⊂ C, we write ∂ε
LS and ∂ε

RS for the set of leftmost (resp. rightmost)
vertices of S ∩ (εZ2).

Lemma 3.6 Fix ζ ∈ (0, 1). For r > 0, it holds with probability tending to 1 as δ → 0,
uniformly in the choice of r, that

D̃δr
h

(
∂δr
L (rS), ∂δr

R (rS); rS) ∈
[
δ−ξQ+ζ eξhr (0), δ−ξQ−ζ eξhr (0)

]
. (3.17)

Proof We first reduce to the case when r = 1. Indeed, by the scale and translation

invariance of the law of h, modulo additive constant, we have h(r·) − hr(0)
d= h.

Moreover, from the definition (3.15) it is easily seen that

D̃δ
h(r·)−hr (0) (·, ·;S) = e−ξhr (0) D̃δr

h (·, ·; rS) . (3.18)

Hence e−ξhr (0) D̃δr
h (·, ·; rS)

d= D̃δ
h(·, ·;S), so we only need to prove the lemma when

r = 1, i.e., we need to show that with probability tending to 1 as δ → 0, we have

D̃δ
h

(
∂δ
LS, ∂δ

RS;S) = δ−ξQ+oδ(1). (3.19)

This follows from the LFPP distance exponent computation in [12]. To be more
precise, [12, Theorem 1.5] shows that for continuum LFPP defined using the circle
average process of the GFF, as in (1.5), the δ-LFPP distance between the left and
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right boundaries of S is of order δ1−ξQ+oδ(1) with probability tending to 1 as δ → 0.
Combining this with [12, Lemma 3.7] shows that the same is true for continuum
LFPPdefined using thewhite-noise approximation {̂hδ}δ>0, as defined in [12, Equation
(3.1)], in place of the circle average process. The same argument as in the proof of [12,
Proposition 3.16] then shows that (3.19) holds if we replace the circle average by the
white-noise approximation in the definition of D̃δ

h (here we note that the definition of
discretized LFPP in [12, Equation (3.32)] has an extra factor of δ as compared to (3.15),
which is why we get δ−ξQ+oδ(1) instead of δ1−ξQ+oδ(1)). The desired formula (3.19)
now follows by combining this with the uniform comparison of hδ and ĥδ from [12,
Lemma 3.7]. ��

For the proof of Theorem 1.5 (and at several later places in this section) we will
use the following terminology.

Definition 3.7 (Distance around an annulus) For a set A ⊂ C with the topology of a
an annulus, we define the Dh-distance around A to be the infimum of the Dh-lengths
of the paths in A which disconnect the inner and outer boundaries of A.

Proof of Theorem 1.5 Step 1: estimates for Dh . For z ∈ εZ2, wewrite Sε
z for the square

of side length ε centered at z and Bε(Sε
z ) for the ε-neighborhood of this square. Fix

ζ ∈ (0, 1). By Proposition 3.1 and a union bound over all z ∈ (rS) ∩ (δrZ2), it
holds with superpolynomially high probability as δ → 0 that (in the terminology of
Definition 3.7)
(
Dh-distance around Bδr(S

δr
z )\Sδr

z

) ≤ δ−ζ cδre
ξhδr (z), ∀z ∈ (rS) ∩ (δrZ2).

(3.20)

Similarly, it holds with superpolynomially high probability as δ → 0 that

Dh
(
Sδr
z , ∂Bδr(S

δr
z )

) ≥ δζ cδre
ξhδr (z), ∀z ∈ (rS) ∩ (δrZ2). (3.21)

Henceforth assume that (3.20) and (3.21) both hold.
Step 2: lower bound for cδr/cr. Let π : [0, |π |]Z → (rS) ∩ (δrZ2) be a path in
(rS)∩(δrZ2) (with the graph structure defined by (3.14)) from ∂δr

L (rS) to ∂δr
R (rS) for

which the sum in (3.15) equals D̃δr
h

(
∂δr
L (rS), ∂δr

R (rS); rS). For each j ∈ [0, |π |]Z,
let Pj be a path in Bδr(Sδr

π( j))\Sδr
π( j) which disconnects the inner and outer boundaries

of Bδr(Sδr
π( j))\Sδr

π( j) and whose Dh-length is at most 2δ−ζ cδreξhδr (z). Such a path
exists by (3.20).

We have Pj ∩Pj−1 �= ∅ for each j ∈ [0, |π |]Z, so the union of the Pj ’s is connected
and contains a path between the left and right boundaries of rS. Therefore, the triangle
inequality implies that

Dh (r∂LS, r∂RS) ≤
|π |∑
j=0

(
Dh-length of Pj

) ≤ 2δ−ζ cδr

|π |∑
j=0

eξhδr (0)

= 2δ−ζ cδr D̃
δr
h

(
∂δr
L (rS), ∂δr

R (rS); rS) .

(3.22)

123



408 J. Dubédat et al.

By Axiom V, the left side of (3.22) is at least δζ creξhr (0) with probability tending
to 1 as δ → 0, uniformly in r. By Lemma 3.6, the right side of (3.22) is at most
δ−ξQ−2ζ cδreξhr (0) with probability tending to 1 as δ → 0, uniformly in r. Combining
these relations and sending ζ → 0 shows that cr ≤ δ−ξQ−oδ(1)cδr, as desired.
Step 3: upper bound for cδr/cr. Let P : [0, |P|] → S be a path between the left and
right boundaries of rS with Dh-length at most 2Dh (r∂LS, r∂RS; rS). We will use
P to construct a path in (rS) ∩ (δrZ2) from ∂δr

L (rS) to ∂δr
R (rS) for which the sum

in (3.15) can be bounded above.
To this end, let τ0 = 0 and let z0 ∈ (rS) ∩ (δrZ2) be chosen so that P(0) ∈ Sδr

z0 .
Inductively, suppose j ∈ N, a time τ j−1 ∈ [0, |P|], and a point z j−1 ∈ (rS)∩ (δrZ2)

have been defined in such a way that P(τ j−1) ∈ Sδr
z j−1

. Let τ j be the first time after

τ j−1 at which P exits Bδr(Sδr
z j−1

), if such a time exists, and otherwise set τ j = |P|.
Let z j ∈ (rS) ∩ (δrZ2) be chosen so that P(τ j ) ∈ Sδr

z j . Let J be the smallest j ∈ N

for which τ j = |P|, and note that P(|P|) ∈ Sδr
z j .

Successive squares Sδr
z j−1

and Sδr
z j necessarily share a vertex. Hence z j−1 and z j lie

at (rS) ∩ (δrZ2)-graph distance 1 from one another, so π( j) := z j for j ∈ [0, J ]Z is
a path from ∂δr

L (rS) to ∂δr
R (rS) in (rS) ∩ (δrZ2).

We will now bound
∑J

j=0 e
ξhδr (π( j)). For each j ∈ [1, J ]Z, the path P crosses

between the inner and outer boundaries of Bδr(Sδr
z j−1

)\Sδr
z j−1

between time τ j−1 and
time τ j . By (3.21), for each j ∈ [1, J ]Z,

Dh
(
P(τ j−1), P(τ j )

) ≥ δζ cδre
ξhδr (π( j)). (3.23)

Using (3.23) and the definition of P , we therefore have

J∑
j=0

eξhδr (π( j)) ≤ δ−ζ c−1
δr

J∑
j=0

Dh
(
P(τ j−1), P(τ j )

)

≤ δ−ζ c−1
δr Dh (r∂LS, r∂RS) . (3.24)

By Axiom V, the right side of (3.24) is at most δ−2ζ c−1
δr cre

ξhr (0) with probability
tending to 1 as δ → 0, uniformly in r. By Lemma 3.6, the left side of (3.22) is at least
δ−ξQ−ζ eξhr (0) with probability tending to 1 as δ → 0, uniformly in r. Combining
these relations and sending ζ → 0 shows that c−1

δr cr ≥ δ−ξQ−oδ(1). ��
Theorem 1.5 has the following useful corollary.

Lemma 3.8 Let h be a whole-plane GFF normalized so that h1(0) = 0. Almost surely,
for every compact set K ⊂ C we have limr→∞ Dh(K , ∂Br (0)) = ∞. In particular,
every closed, Dh-bounded subset of C is compact.

Proof By tightness across scales (Axiom V), there exists a > 0 such that for each
r > 0, P

[
Dh(Br (0), B2r (0)) ≥ acr eξhr (0)

] ≥ 1/2. By the locality of Dh (Axiom II)
and since σ

(⋂
r>0 h|C\Br (0)

)
is trivial, a.s. there are infinitely many k ∈ N for

which Dh(B2k (0), B2k+1(0)) ≥ ac2k e
ξh2k (0). By Theorem 1.5, cr = r ξQ+or (1). Since
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t �→ het (0) is a standard linear Brownian motion [16, Section 3.1], we get that a.s.
limr→∞ cr eξhr (0) = ∞. Hence a.s. lim supk→∞ Dh(B2k (0), B2k+1(0)) = ∞. Since
Dh is a length metric, for any r ≥ 2k+1 and any compact set K ⊂ B2k (0), we have
Dh(K , ∂Br (0)) ≥ Dh(B2k (0), B2k+1(0)). We thus obtain the first assertion of the
lemma. The first assertion (applied with K equal to a single point, say) implies that
any Dh-bounded subset ofC must be contained in a Euclidean-bounded subset ofC,
which must be compact since Dh induces the Euclidean topology on C. ��

3.3 Moment bound for diameters

In this section we will prove the following more quantitative version of the moment
bound from Theorem 1.8, which is required to be uniform across scales.

Proposition 3.9 Let U ⊂ C be open and let K ⊂ U be a compact connected set
with more than one point. For each p ∈ (−∞, 4dγ /γ 2), there exists Cp > 0 which
depends on U and K but not on r such that for each r > 0,

E

[(
c−1
r e−ξhr (0) sup

z,w∈rK
Dh(z, w; rU )

)p]
≤ Cp. (3.25)

We will deduce Proposition 3.9 from the following variant, which allows us to
bound internal Dh-distances all the way up to the boundary of a square. Recall that
S := (0, 1)2.

Proposition 3.10 For each p ∈ (−∞, 4dγ /γ 2), there is a constant Cp > 0 such that
for each r > 0,

E

[(
c−1
r e−ξhr (0) sup

z,w∈rS
Dh (z, w; rS)

)p]
≤ Cp. (3.26)

Proof of Proposition 3.9, assuming Proposition 3.10
For p < 0, the bound (3.25) follows from the lower bound of Proposition 3.1.
Now assume p ∈ (0, 4dγ /γ 2). We can cover K by finitely many Euclidean squares
S1, . . . , Sn which are contained in U , chosen in a manner depending only on K and
U . For k = 1, . . . , n, let uk be the bottom left corner of Sk and let ρk be its side length.
Proposition 3.10 together with Axiom IV shows that there is a constant C̃ p > 0
depending only on p such that for each k = 1, . . . , n,

E

[(
c−1
rρk e

−ξhrρk (ruk ) sup
z,w∈rSk

Dh (z, w; rSk)
)p]

≤ C̃ p. (3.27)

We apply the Gaussian tail bound to bound each of the Gaussian random variables
hrρk (ruk)− hr(0) (which have constant order variance) and Theorem 1.5 to compare
crρk to cr up to a constant-order multiplicative error. This allows us to deduce (3.25)
from (3.27). ��
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To prove Proposition 3.10, we first use the upper bound in Proposition 3.1 and a
union bound to build paths between the two shorter sides of each 2−nr × 2−n−1r or
2−n−1r× 2−nr rectangle with corners in 2−n−1rZ2 which is contained in S. We then
string together such paths at all scales (in the manner illustrated in Fig. 3) to get a
bound for the internal Dh-diameter of rS. The following lemma is needed to control
the circle average terms which appear when we apply Proposition 3.1.

Lemma 3.11 Fix R > 0 and q > 2. For C > 1 and r > 0, it holds with probability

1 − C−q−
√

q2−4+oC (1) as C → ∞, at a rate which is uniform in r, that

sup
{
|h2−nr(w) − hr(0)| : w ∈ BRr(0) ∩

(
2−n−1rZ2

)}
≤ log(C2qn), ∀n ∈ N0.

(3.28)

When we apply Lemma 3.11, we will take q to be a little bit less than Q =
2/γ + γ /2. The fact that Q +√

Q2 − 4 = 4/γ is the reason why γ (instead of just
ξ ) appears in our moment bounds.

Proof of Lemma 3.11 To lighten notation, define the event

En
r :=

{
sup

{
|h2−nr(w) − hr(0)| : w ∈ BRr(0) ∩

(
2−n−1rZ2

)}
≤ log(C2qn)

}
.

(3.29)

We want a lower bound for the probability that En
r occurs for every n ∈ N0 simulta-

neously.
Fix ζ > 0 (which we will eventually send to 0) and a partition ζ = α0 < · · · <

αN = 1/ζ of [ζ, 1/ζ ] with maxk=1,...,N (αk − αk−1) ≤ ζ . We will separately bound
the probability of En

r for 2n ∈ [Cαk−1 ,Cαk ] for k = 1, . . . , N , for 2n ≥ C1/ζ , and for
2n ≤ Cζ .

By Lemma 3.4 applied with ε = 2−n , ν = 0, and q + 1/αk in place of q, we find
that for each k = 1, . . . , N and each n ∈ N0 with 2n ∈ [Cαk−1 ,Cαk ],

P
[
(En

r)
c] ≤ P

[
sup

{
|h2−nr(w) − hr(0)| : w ∈ BRr(0) ∩

(
2−n−1rZ2

)}

>

(
q + 1

αk

)
log(2n)

]

≤ 2
−n

(
(q+1/αk )2

2 −2

)

≤ C
−αk−1

(
(q+1/αk )2

2 −2

)

≤ C
2αk− (qαk+1)2

2αk
+oζ (1)

(3.30)

with the rate of the oζ (1) depending only on q. Note that in the last inequality, we have
done some trivial algebraic manipulations then used that αk − αk−1 ≤ ζ (which is
what produces the oζ (1)). By a union bound over logarithmically many (in C) values
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of n ∈ N0 with 2n ∈ [Cαk−1 ,Cαk ], we get

P
[
En
r , ∀n ∈ N0 with C

αk−1 ≤ 2n ≤ Cαk
] ≥ 1 − C

2αk− (qαk+1)2

2αk
+oζ (1)+oC (1)

.

(3.31)

For n ∈ N0 with 2n ≥ C1/ζ , Lemma 3.4 applied with ε = 2−n , ν = 0, and q + ζ

in place of q gives

P
[
(En

r)
c] ≤ 2−n

(
(q+ζ )2/2−2

)
.

Summing this estimate over all such n shows that

P
[
En
r , ∀n ∈ N with 2n ≥ C1/ζ

]
≥ 1 − C− (q+ζ )2−4

2ζ +oC (1)
. (3.32)

Finally, if n ∈ N0 and 2n ≤ Cζ , then the Gaussian tail bound and a union bound,
applied as in the proof of Lemma 3.4, shows thatP[(En

r)
c] ≤ C2ζ−(qζ+1)2/(2ζ )+oC (1)

(in fact, if 2n is of constant order, this probability will decay superpolynomially in C
due to the Gaussian tail bound). By a union bound over a logarithmic number (in C)
of such values of n we get

P
[
En
r , ∀n ∈ N with 2n ≤ Cζ

] ≥ 1 − C
2ζ− (qζ+1)2

2ζ +oC (1)
. (3.33)

The quantity 2α − (qα + 1)2/(2α) is maximized over all α > 0 when α = (q2 −
4)−1/2, in which case it equals −(q + √

q2 − 4). Consequently, by combining the
estimates (3.31), (3.32), and (3.33), we get that if ζ is chosen sufficiently small relative
to q, then

P
[
En
r , ∀n ∈ N0

] ≥ 1 − C−q−
√

q2−4+oζ (1)+oC (1). (3.34)

Sending ζ → 0 now concludes the proof. ��
Proof of Proposition 3.10 For p < 0, the bound (3.26) follows from the lower bound
of Proposition 3.1. We will bound the positive moments up to order 4dγ /γ 2.
Step 1: Constructing short paths across rectangles. Fix q ∈ (2, Q) which we will

eventually send to Q. By Lemma 3.11 it holds with probability 1−C−q−
√

q2−4+oC (1)

that

sup
{
|h2−nr(w) − hr(0)| : w ∈ rS ∩

(
2−n−1rZ2

)}
≤ log(C2qn), ∀n ∈ N0.

(3.35)

Now fix ζ ∈ (0, Q−q), which we will eventually send to zero. For n ∈ N0, letRn
r

be the set of open 2−nr× 2−n−1r or 2−n−1r× 2−nr rectangles R ⊂ rS with corners
in 2−n−1rZ2. For R ∈ Rn

r let wR be the bottom-left corner of R.
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Fig. 3 Three of the sets XSn (z)
for dyadic squares containing z
used in the proof of
Proposition 3.10. As n → ∞,
the Dh -diameter of Sn(z)
shrinks to zero (by the continuity
of (z, w) �→ Dh(z, w)), so the
distance from z to XSN (z) is
bounded above by the sum over
all n ≥ N of the Dh -lengths of
the four paths which comprise
XSn (z)

XSn+2(z)

XSn+1(z)

XSn(z)

Let

NC := �log2 Cζ �. (3.36)

By the upper bound of Proposition 3.1 (applied with 2−nr in place of r and with
A = 2ζ ξn), Axiom IV, and a union bound over all R ∈ Rn

r and all n ≥ NC , we get that
except on an event of probability decaying faster than any negative power of C (the
rate of decay depends on ζ ), the following is true. For each n ≥ NC and each R ∈ Rn

r,
the distance between the two shorter sides of R w.r.t. the internal metric Dh(·, ·; R) is
at most 2ζ ξnc2−nre

ξh2−nr (wR).

Combining this with (3.10) shows that with probability 1 − C−q−
√

q2−4+oC (1), it
holds for each n ≥ NC and each R ∈ Rn

r that there is a path PR in R between the
two shorter sides of R with Dh-length at most Cξ2(q+ζ )ξnc2−nre

ξhr (0). By applying
Theorem 1.5 to bound c2−nr, we get that in fact

(Dh-length of PR) ≤ Cξ2−(Q−q−ζ )ξn+on(n)cre
ξhr (0). (3.37)

Henceforth assume that such paths PR exist. We will establish an upper bound for the
Dh-diameter of rS.
Step 2: stringing together paths in rectangles. For each square S ⊂ rSwith side length
2−nr and corners in 2−nrS, there are exactly four rectangles inRn

r which are contained
in S. If n ≥ NC , let XS be the #-shaped region which is the union of the paths PR for
these four rectangles, as illustrated in Fig. 3. If S′ is one of the four dyadic children
of S, then XS ∩ XS′ �= ∅. Since the four paths which comprise XS have Dh-length at
most Cξ2−(Q−q−ζ )ξn+on(n)eξhr (0)creξhr (0), this means that each point of XS can be
joined to XS′ by a path in S of Dh-length at most Cξ2−(Q−q−ζ )ξn+on(n)creξhr (0).

Since the metric Dh is a continuous function on C × C, if z ∈ rS and we let
Sn(z) for n ∈ N0 be the square of side length 2−nr with corners in 2−nrZ2 which
contains z, so that S0(z) = S, then the Dh-diameter of Sn(z) tends to zero as n → ∞.
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Consequently,

sup
w∈SNC (z)

Dh (z, w; rS) ≤ Cξ cre
ξhr (0)

∞∑
n=NC

2−(Q−q−ζ )ξn+on(n) ≤ OC (Cξ )cre
ξhr (0).

Since this holds for every z ∈ rS, we get that with probability at least 1 −
C−q−

√
q2−4oC (1), for each n ≥ NC , each 2−nr × 2−nr square S ⊂ rS with cor-

ners in 2−nrZ2 has Dh(·, ·; rS)-diameter at most OC (Cξ )creξhr (0).
Step 3: conclusion. Since 2NC ≤ Cζ , we can use the triangle inequality to get that if
the event at the end of the preceding step occurs, then the Dh(·, ·; rS)-diameter of rS
is at most OC (Cξ+ζ )creξhr (0). Setting C̃ := Cξ+ζ , then sending ζ → 0, shows that

P

[
c−1
r e−ξhr (0) sup

z,w∈rS
Dh(z, w; rS) > C̃

]
≤ C̃−ξ−1(q+

√
q2−4)+oC̃ (1).

By sending q → Q and noting that Q +√
Q2 − 4 = 4/γ , we get

P

[
c−1
r e−ξhr (0) sup

z,w∈rS
Dh(z, w; rS) > C̃

]
≤ C̃− 4

γ ξ
+oC̃ (1) = C̃

− 4dγ
γ 2

+oC̃ (1)
.

For p ∈ (0, 4dγ /γ 2), we can multiply this last estimate by C̃ p−1 and integrate to get
the desired pth moment bound (3.26). ��

3.4 Pointwise distance bounds

In this subsection we will prove the following more quantitative versions of Theo-
rems 1.10 and 1.11, which are required to be uniform across scales. Recall that h is a
whole-plane GFF normalized so that h1(0) = 0.

Proposition 3.12 (Distance from a point to a circle) Let α ∈ R and let hα := h −
α log | · |. If α ∈ (−∞, Q), then for each p ∈ (−∞,

2dγ

γ
(Q−α)), there exists Cp > 0

such that for each r > 0,

E
[(

c−1
r rαξ e−ξhr (0)Dhα (0, ∂Br(0))

)p] ≤ Cp. (3.38)

If α > Q, then a.s. Dhα (0, z) = ∞ for every z ∈ C\{0}.
Proposition 3.13 (Distance between two points) Let α, β ∈ R, let z, w ∈ C be
distinct, and let hα,β := h − α log | · −z| − β log | · −w|. Set r := |z − w|/2.
If α, β ∈ (−∞, Q), then for each p ∈

(
−∞,

2dγ

γ
(Q − max{α, β})

)
, there exists

Cp > 0 such that for each choice of z, w as above,

E
[(

c−1
r rαξ e−ξhr (z)Dhα (z, w; B8r(z))

)p] ≤ Cp. (3.39)
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If either α > Q or β > Q, then a.s. Dhα,β (z, w) = ∞.

Propositions 3.12 and 3.13 are immediate consequences of the following sharper
distance estimates and a calculation for the standard linear Brownian motion t �→
hre−t (0) − hr(0).

Proposition 3.14 Assume that we are in the setting of Proposition 3.12. If α ∈
(−∞, Q), then there is a deterministic function ψ : [0,∞) → [0,∞) which is
bounded in every neighborhood of 0 and satisfies limt→∞ ψ(t)/t = 0, depending
only on α and the choice of metric D,6 such that the following is true. For each r > 0,
it holds with superpolynomially high probability as C → ∞, at a rate which is uniform
in the choice of r, that

C−1 cr

rαξ

∫ ∞

0
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt ≤ Dhα (0, ∂Br(0))

≤ C
cr

rαξ

∫ ∞

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt (3.40)

and the Dhα -distance around the annulus Br(0)\Br/e(0) (Definition 3.7) is at most
the right side of (3.40). If α > Q, then a.s. Dhα (0, z) = ∞ for every z ∈ C\{0}.
Proposition 3.15 Assume that we are in the setting of Proposition 3.13. If α, β ∈
(−∞, Q), then there is a deterministic function ψ : [0,∞) → [0,∞) which is
bounded in every neighborhood of 0 and satisfies limt→∞ ψ(t)/t = 0, depending only
onα and the choice ofmetric D, such that the following is true.With superpolynomially
high probability as C → ∞, at a rate which is uniform in the choice of z and w,

Dhα,β (z, w) ≥ C−1 cr

rαξ

∫ ∞
0

(
eξhre−t (z)−ξ(Q−α)t−ψ(t) + eξhre−t (w)−ξ(Q−β)t−ψ(t)

)
dt

(3.41)

and

Dhα,β (z, w; B8r(z)) ≤ C
cr

rαξ

∫ ∞

0

(
eξhre−t (z)−ξ(Q−α)t+ψ(t) + eξhre−t (w)−ξ(Q−β)t+ψ(t)

)
dt .

(3.42)

If either α > Q or β > Q, then a.s. Dhα,β (z, w) = ∞.

Remark 3.16 It will be shown in [25] that every weak LQG metric is a strong LQG
metric, so in particular it satisfies Axiom V with cr = r ξQ . Once this is established,
our proof shows that Propositions 3.14 and 3.15 hold with ψ(t) = 0.

6 At this point we do not know that the weak LQG metric D : h �→ Dh is unique (it will be proven that
this metric is unique up to a deterministic multiplicative constant in [25]). When we say that something is
allowed to depend on the choice of D, we mean that it is allowed to depend on which particular weak LQG
metric we are looking at.
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Proof of Proposition 3.12, assuming Proposition 3.14
For t ≥ 0, let Bt := hre−t (0)−hr(0). Then B is a standard linearBrownianmotion [16,
Section 3.1]. By Proposition 3.14, for each ζ ∈ (0, 1), it holds with superpolynomially
high probability as C → ∞, uniformly over the choice of r, that

C−ζ

∫ ∞

0
eξ Bt−(Q−α)ξ t−ζ t dt ≤ c−1

r rαξ e−ξhr (0)Dhα (0, ∂Br(0))

≤ Cζ

∫ ∞

0
eξ Bt−(Q−α)ξ t+ζ t dt . (3.43)

To prove the proposition, we will use an exact formula for the laws of the integrals
appearing in (3.43). To write down such a formula, let B̃s := ξ Bs/ξ2 . Then B̃ is a
standard linear Brownian motion and Bt = ξ−1 B̃ξ2t . Making the change of variables
t = s/ξ2 gives

∫ ∞

0
eξ Bt−(Q−α)ξ t+ζ t dt = 1

ξ2

∫ ∞

0
eB̃s−(Q−α)s/ξ+ζ s/ξ2 ds. (3.44)

It is shown in [17] (see also [48, Example 3.3] with c = (Q − α)/ξ − ζ/ξ2) that

P

[∫ ∞

0
eB̃s−(Q−α)s/ξ+ζ s/ξ2 ds ∈ dx

]
= bx−2(Q−α)/ξ+2ζ/ξ2−1e−2/x , ∀x ≥ 0,

(3.45)

where b is a normalizing constant depending only on Q, α, ξ . Combining the upper
bound in (3.43) with (3.44) and the upper tail asymptotics of the density (3.45), then
sending ζ → 0, shows that

P
[
c−1
r rαξ e−ξhr (0)Dhα (0, ∂Br(0)) > C

]
≤ C−2(Q−α)/ξ−oC (1), (3.46)

uniformly in r. Recall that ξ = γ /dγ . Multiplying both sides of (3.46) by pC p−1 and
integrating gives the desired bound for positive moments from (3.38). We similarly
obtain the desired bound for negative moments using the lower bound in (3.43) and
the exponential lower tail of the density (3.45). ��
Proof of Proposition 3.13, assuming Proposition 3.15
The bound for positivemoments in (3.39) is obtained in essentially the sameway as the
analogous bound in Proposition 3.12. We apply the upper bound in Proposition 3.15
and use the exact formula (3.45) to bound the integral of each of the two summands
appearing on the right side of (3.42), thenmultiply the resulting tail estimate by pC p−1

and integrate. We use that hr(z) − hr(w) is Gaussian with constant-order variance
to get an estimate which depends only on hr(z), not hr(w). The bound for negative
moments in (3.39) can similarly be extracted from the lower bound in Proposition 3.15,
or can be deduced from Proposition 3.12 and the fact that a path from z to w must
cross ∂Br(z). ��
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∂B (0)

∂B /e(0)

Fig. 4 To prove Proposition 3.14, we use Proposition 3.1 to show that with high probability, the following
bounds hold simultaneously for each k ∈ N0: a lower bound for the Dh -distance across the annulus
Bre−k (0)\Bre−k−1 (0); an upper bound for the Dh -distance around this annulus; and a lower bound for the
Dh -distance across the larger annulus Bre−k (0)\Bre−k−2 (0). Summing the lower bounds for the distances
across these annuli leads to the lower bound in (3.40). The paths involved in the upper bounds are shown in
red in the figure. Concatenating all of these paths gives a path from 0 to ∂Br(0), which leads to the upper
bound in (3.40) (color figure online)

It remains only to prove Propositions 3.14 and 3.15.Wewill prove Proposition 3.14
by applying Proposition 3.1 to bound the distances across and around concentric annuli
surrounding 0 with dyadic radii, then summing over all of these annuli (see Fig. 4
for an illustration). We will then deduce Proposition 3.15 from Proposition 3.14 by
considering two overlapping Euclidean disks centered at z andw, respectively. For this
purpose the statement concerning the Dh-distance around Br(0)\Br/e(0) is essential
to link up paths in these two disks.

Proof of Proposition 3.14 See Fig. 2 for an illustration. The proof is divided into four
steps.

1. We apply Proposition 3.1 in the annuliAre−k−1,re−k for k ∈ N0 to prove upper and
lower bounds for Dh(0, ∂Br(0)) in terms of sums over such annuli.

2. Using Brownian motion estimates, we convert from sums over annuli to integrals
of quantities of the form eξhre−t (z)−ξ(Q−α)t+ot (t).

3. We show that the contribution of the small error terms in our estimates coming
from sums/integrals at superpolynomially small scales is negligible.

4. We put the above pieces together to conclude the proof.

Step 1: applying Proposition 3.1 at exponential scales.We will apply Proposition 3.1
and take a union bound over exponential scales. In this step we allow any value of
α ∈ R.

Fix a small parameter ζ ∈ (0, 1), which we will eventually send to zero. By Propo-
sition 3.1 andAxiom III (to dealwith the addition of−α log |·|) and a union bound over
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all k ∈ [0,C1/ζ ]Z, we find that with superpolynomially high probability as C → ∞,
the following is true for each k ∈ [0,C1/ζ ]Z.
1. The Dhα -distance from ∂Bre−k−1(0) to ∂Bre−k (0) is at least C−1cre−kr−ξα

exp
(
ξhre−k (0) + ξαk

)
.

2. There is a path from ∂Bre−k−2(0) to ∂Bre−k (0) which has Dhα -length at most
Ccre−kr−ξα exp

(
ξhre−k (0) + ξαk

)
. Moreover, there is also a path in

Bre−k (0)\Bre−k−1(0) which disconnects ∂Bre−k−1(0) from ∂Bre−k (0) and which
has Dhα -length at most
Ccre−kr−ξα exp

(
ξhre−k (0) + ξαk

)
.

To deal with the scales for which k ≥ C1/ζ , we apply Proposition 3.1 with kζ in place
of C and take a union bound over all such values of k to find that superpolynomially
high probability as C → ∞, the above two conditions hold for each k ∈ [0,C1/ζ ]Z,
and furthermore the following condition holds for each integer k ≥ C1/ζ .

2′. There is a path from ∂Bre−k−2(0) to ∂Bre−k (0) which has Dhα -length at most
kζ cre−kr−ξα exp

(
ξhre−k (0) + ξαk

)
. Moreover, there is also a path in

Bre−k (0)\Bre−k−1(0) which disconnects ∂Bre−k−1(0) from ∂Bre−k (0) and which
has Dhα -length at most
kζ cre−kr−ξα exp

(
ξhre−k (0) + ξαk

)
.

Henceforth assume that conditions 1 and 2 hold for each k ∈ [0,C1/ζ ]Z and condi-
tion 2′ holds for each integer k ≥ C1/ζ , which happens with superpolynomially high
probability as C → ∞.

Any path from 0 to ∂Br(0) must cross each of the annuli Bre−k (0)\Bre−k−1(0)
for k ∈ [0,C1/ζ ]Z. Furthermore, the union of {0} and the paths from conditions 2
and 2′ for all k ∈ N0 contains a path from 0 to ∂Br(0). By Theorem 1.5, there is a
deterministic function φ : [0,∞) → [0,∞) with φ(k) = ok(k), depending only on
the choice of metric D, such that

e−ξQk−φ(k)cr ≤ cre−k ≤ e−ξQk+φ(k)cr, ∀r > 0. (3.47)

Summing the bounds from conditions 1 and 2 over all k ∈ [0,C1/ζ ]Z and the bounds
from condition 2′ over all integers k ≥ C1/ζ and plugging in (3.47) shows that with
superpolynomially high probability as C → ∞,

C−1 cr

rαξ

�C1/ζ �∑
k=0

eξhre−k (0)−ξ(Q−α)k−φ(k) ≤ Dhα (0, ∂Br(0))

≤ C
cr

rαξ

�C1/ζ �∑
k=0

eξhre−k (0)−ξ(Q−α)k+φ(k) + cr

rαξ

∞∑

k=�C1/ζ �+1

kζ eξhre−k (0)−ξ(Q−α)k+φ(k)
.

(3.48)

Furthermore, by condition 2 for k = 0 the Dhα -distance around Br(0)\Br/e(0) is at
most the right side of (3.48).
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Step 2: From summation to integration.We nowwant to convert from sums to integrals
in (3.48). Since t �→ hre−t (0)−hr(0) is a standard linearBrownianmotion [16, Section
3.1], the Gaussian tail bound and the union bound show that with superpolynomially
high probability as C → ∞,

sup
t∈[k,k+1]

|hre−t (0) − hre−k (0)| ≤ 1

ξ
logC, ∀k ∈

[
0,C1/ζ

]
Z

. (3.49)

Let ψ(t) := φ(�t�), where φ is as in (3.47). Then ψ(t) = ot (t) and if (3.49) holds,
then for each k ∈ [0,C1/ζ ]Z,

eξhre−k (0)−ξ(Q−α)k−φ(k) ≥ C−1
∫ k+1

k
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt and

eξhre−k (0)−ξ(Q−α)k+φ(k) ≤ C
∫ k+1

k
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt . (3.50)

By summing (3.50) over all k ∈ [0,C1/ζ ]Z, we obtain
�C1/ζ �∑
k=0

eξhre−k (0)−ξ(Q−α)k−φ(k) ≥ C−1
∫ �C1/ζ �+1

0
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt and

�C1/ζ �∑
k=0

eξhre−k (0)−ξ(Q−α)k+φ(k) ≤ C
∫ �C1/ζ �+1

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt . (3.51)

Step 3: Bounding the sumof the small scales.Todeduce our desired bounds from (3.48)
and (3.51), we now need an upper bound for

∫∞
�C1/ζ � e

ξhre−t (0)−ξ(Q−α)t+ψ(t) dt and an
upper bound for the second sum on the right side of (3.48). This is the only step where
we need to assume that α < Q.

Since t �→ hre−t (0)−hr(0) is a standard linear Brownianmotion and for q ∈ (0, 1],
x �→ xq is concave, hence subadditive, if q ∈ (0, 1] is chosen small enough that
ξq(Q − α) − ξ2q2/2 > 0, then

E

[(∫ ∞

�C1/ζ �
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt

)q]

� eqhr (0)
∫ ∞

�C1/ζ �
exp

(
−
(

ξq(Q − α) − ξ2q2

2

)
t + ot (t)

)
dt

� eqhr (0) exp

(
−1

2

(
ξq(Q − α) − ξ2q2

2

)
C1/ζ

)
,

where here the ot (t) and the implicit constants in� do not depend onC or r. Therefore,
the Chebyshev inequality shows that

P

[∫ ∞

�C1/ζ �
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt > eξhr (0)−C1/(2ζ )

]
(3.52)
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decays faster than any negative power of C . On the other hand, it is easily seen from
the Gaussian tail bound that

P

[∫ �C1/ζ �

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt < eξhr (0)−C1/(2ζ )

]
(3.53)

decays faster than any negative power ofC . Hence with superpolynomially high prob-
ability as C → ∞,

∫ ∞

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt ≤ 2

∫ �C1/ζ �

0
eξhre−t (0)−ξ(Q−α)t+ψ(t) dt . (3.54)

Similarly, we get that with superpolynomially high probability as C → ∞,

∞∑

k=�C1/ζ �+1

kζ eξhre−k (0)−ξ(Q−α)k−φ(k) ≤
∫ ∞

0
eξhre−t (0)−ξ(Q−α)t−ψ(t) dt . (3.55)

Step 4: Conclusion. By applying (3.51), (3.54), and (3.55) to bound the left and right
sides of (3.48), we get that ifα < Q, thenwith superpolynomially high probability, the
bounds (3.40) as well as the bound stated just below (3.40) [here we use the sentence
just below (3.48)] all holdwith 2C2, say, in place ofC . Sincewe are claiming that these
bounds hold with superpolynomially high probability as C → ∞, this is sufficient.

Finally, we consider the case when α > Q. Since hre−t (0) − hr(0) evolves as
a standard linear Brownian motion, for each β ∈ (0, α − Q) it is a.s. the case that
the summand eξhre−k (0)−ξ(Q−α)k−φ(k) in the lower bound in (3.48) is bounded below
by eβk for large enough k. (How large is random). Since (3.48) holds with super-
polynomially high probability as C → ∞, the Borel–Cantelli lemma combined with
the preceding sentence shows that a.s. for large enough (random) C > 1, we have
Dhα (0, ∂Br(0)) ≥ C−1eβ�C1/ζ �, which tends to ∞ as C → ∞. This shows that a.s.
Dhα (0, ∂Br(0)) = ∞. Since this holds a.s. for each rational r > 0, it follows that a.s.
Dhα (0, z) = ∞ for every z ∈ C\{0}. ��
Proof of Proposition 3.15 We first observe that by Axiom IV, Proposition 3.14 still
holds with 0 replaced by any z ∈ C, with the rate of convergence as C → ∞ uniform
in z and r. Applying the lower bound of Proposition 3.14 with each of z and w in
place of 0 immediately gives (3.41) since any path from z to w must contain disjoint
sub-paths from z to ∂Br/2(z) and from w to Br/2(w). Moreover, by comparing the
local behavior of Dhα,β near z and near w to Dhα and Dhβ , respectively, we get that
a.s. Dhα,β (z, w) = ∞ if either α > Q or β > Q.

It remains to prove (3.42). Assume α < Q. We first apply Proposition 3.14 with 8r
in place of r to find that with superpolynomially high probability as C → ∞, there
is a path Pz,1 from z to ∂B8r(z) and a path Pz,2 in Br(z)\B8r/e(z) which disconnects
∂B8r/e(z) from ∂B8r(z) which each have Dh-length at most

∫ ∞

− log 8
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt;
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and the same is true with w in place of z. Since w ∈ B8r/e(z), the union of the paths
Pz,1, Pz,2, and Pw,1 contains a path from z to w in B8r(z). This gives (3.42) but with
− log 8 instead of 0 in the lower bound of integration for the integral on the right.

To get the estimate with the desired lower bound of integration, we use that
t �→ hre−t (z) − hr(z) is a standard two-sided linear Brownian motion. In particu-
lar, two applications of the Gaussian tail bound show that with superpolynomially
high probability as C → ∞,

sup
t∈[− log 8,0]

hre−t (z) ≤ inf
t∈[0,log 2] hre−t (z) + logC .

Therefore, with superpolynomially high probability as C → ∞,

∫ ∞

− log 8
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt ≤

∫ ∞

0
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt

+ Cξ

∫ log 2

0
eξhre−t (z)−ξ(Q−α)t+ψ(t) dt .

Combining this with the analogous estimate with w in place of z and the aforemen-
tioned analog of (3.42) with − log 8 instead of 0 in the lower bound of integration
gives (3.42). ��

Although it is not needed for the proofs of Propositions 3.14 and 3.15, we record
the following generalization of Proposition 3.9 which tells us in particular that Dhα

induces the Euclidean topology on C when Q > 2 and α < Q (which is a stronger
statement than just that Dhα (0, z) < ∞ for every z ∈ C).

Proposition 3.17 Let h,α, hα , and Dhα be as in Proposition 3.14. If Q = 2/γ +γ /2 >

2 and α ∈ (−∞, Q), then for each −∞ < p < min{ 4dγ

γ 2 ,
2dγ

γ
(Q − α)}, there exists

Cα,p > 0 such that for each r > 0,

E

[(
e−ξhr (0)c−1

r rαξ sup
z,w∈Br (0)

Dhα (z, w)

)p]
≤ Cα,p. (3.56)

In particular, a.s. Dhα induces the Euclidean topology on C.

We note that the range of moments −∞ < p < min{ 4dγ

γ 2 ,
2dγ

γ
(Q − α)} for the

Dhα -diameter ofD appearing in Proposition 3.17 is the same as the range of moments
for the μhα -mass of D, but scaled by dγ ; see, e.g., [21, Lemma A.3]. This is natural
from the perspective that dγ is the scaling exponent relating γ -LQG distances and
areas.

Proof of Proposition 3.17 On Br(0)\Br/2(0), we have that−α log |·| is bounded above
and below by −α log r times constants depending only on α. Therefore, the existence
of negative moments is immediate from Axiom III and Proposition 3.9 applied with
U = D\B1/2(0).
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To get the desired positive moments, for k ∈ N0 let Ak be the annulus
Bre−k (0)\Bre−k−1(0). The randomvariable hre−k (0)−hr(0) is Gaussianwith variance
k, so for p > 0,

E
[
epξ

(
hre−k (0)−hr (0)

)]
= ep

2ξ2k/2, ∀p > 0. (3.57)

By Proposition 3.9 (applied with K = A0, U = C, and re−k in place of r),

E

[(
c−1
re−k e

−ξhre−k (0)e−αξkrαk sup
z,w∈Ak

Dhα (z, w)

)p]
� 1, ∀p <

4dγ

γ 2 . (3.58)

By (3.57) and (3.58) and since (h−hre−k (0))|Ak is independent from hre−k (0)−hr(0),
we find that for p ∈ (0, 4dγ /γ 2),

E

[(
e−ξhr (0)c−1

r rαξ sup
z,w∈Ak

Dhα (z, w)

)p]

=
(
cre−k

cr

)p

epαξkE
[
epξ

(
hre−k (0)−hr (0)

)]

E

[(
c−1
re−k e

−ξhre−k (0)e−αξkrαk sup
z,w∈Ak

Dhα (z, w)

)p]

≤ exp

(
−
(

ξ p(Q − α) − p2ξ2

2

)
k + ok(k)

)
, (3.59)

at a rate depending only on α, p. Note that in the last line we used Theorem 1.5 to
bound cre−k/cr.

The quantity inside the exponential on the right side of (3.59) is negative provided
p < min{ 4dγ

γ 2 ,
2dγ

γ
(Q−α)} (recall that ξ = γ /dγ ). For 0 < p < min{1, 2dγ

γ
(Q−α)},

the function x �→ x p is concave, hence subadditive, so summing (3.59) over all k ∈ N0
gives

E

[(
e−ξhr (0)c−1

r rαξ sup
z,w∈Br (0)

Dhα (z, w)

)p]

≤
∞∑
k=0

E

[(
e−ξhr (0)c−1

r rαξ sup
z,w∈Ak

Dhα (z, w)

)p]

�
∞∑
k=0

exp

(
−
(

ξ p(Q − α) − p2ξ2

2

)
k + ok(k)

)

� 1. (3.60)
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This gives (3.56) in the case when 0 < p < min{1, 2dγ

γ
(Q − α)}. In the case when

1 ≤ p < min{ 4dγ

γ 2 ,
2dγ

γ
(Q − α)}, (3.56) follows from a similar calculation with the

triangle inequality for the L p norm used in place of sub-additivity.
Finally,weknow that the restriction of Dhα toC\{0} induces theEuclidean topology

(see the discussion just above Theorem 1.10), so to check that that Dhα induces the
Euclidean topology, we need to show that a.s. supz,w∈Be−k (0) Dhα (z, w) → 0 as k →
∞. This follows from the bound (3.60) applied with r = 1 and the Borel–Cantelli
lemma. ��

3.5 Hölder continuity

Wewill prove the followingmore quantitative versionofTheorem1.7which is required
to be uniform across scales.

Proposition 3.18 Fix a compact set K ⊂ C and exponents χ ∈ (0, ξ(Q − 2)) and
χ ′ > ξ(Q+2). For each r > 0, it holds with polynomially high probability as ε → 0,
at a rate which is uniform in r, that

∣∣∣∣
u − v

r

∣∣∣∣
χ ′

≤ c−1
r e−ξhr (0)Dh (u, v) ≤

∣∣∣∣
u − v

r

∣∣∣∣
χ

, ∀u, v ∈ rK with |u − v| ≤ εr.

(3.61)

We will actually prove a slightly stronger version of the upper bound for Dh in
Proposition 3.18, which bounds internal distances relative to a small neighborhood of
u instead of just distances along paths in all of C; see Lemma 3.20 just below. This
stronger version is used in [25].

For the proof of Proposition 3.18, we assume that Q > 2 and we fix a compact
set K ⊂ C. The basic idea of the proof of the upper bound in (3.61) is to apply
Proposition 3.9 to Euclidean balls of radius ε and take a union bound over many such
Euclidean ballswhich cover K . The basic idea for the proof of the lower bound in (3.61)
is to apply the lower bound in Proposition 3.1 to lower bound the Dh-distance across
Euclidean annuli of the form B2ε(z)\Bε(z), then take a union bound over many such
annuli whose inner balls cover K . We first prove an upper bound for Dh-distances in
terms of Euclidean distances. For this purpose we will use the following consequence
of Propositions 3.9 and 3.10.

Lemma 3.19 For each s ∈ (0, ξQ), each r > 0, and each z ∈ rK,

P

[
sup

u,v∈Bεr (z)
Dh (u, v; B2εr(z)) ≤ εscre

ξhr (0)

]
≥ 1 − ε

(ξQ−s)2

2ξ2
+oε(1)

, as ε → 0,

(3.62)

uniformly over the choices of r and z ∈ rK. Furthermore, if we let Sεr(z) be the
square of side length εr centered at z, then for r > 0 and z ∈ rK, the Dh-internal
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diameter of Sεr(z) satisfies

P

[
sup

u,v∈Sεr (z)
Dh

(
u, v; Sεr(z)

) ≤ εscre
ξhr (0)

]
≥ 1 − ε

(ξQ−s)2

2ξ2
+oε(1)

, as ε → 0,

(3.63)

uniformly over the choices of r and z ∈ rK.

Proof We know that h2εr(z) − hr(z) is centered Gaussian of variance log ε−1 − log 2
and is independent from (h − h2εr(z))|B2εr (z). By Axioms II and III, h2εr(z) − hr(z)
is also independent from the internal metric

Dh−h2εr (z) (u, v; B2εr(z)) = e−ξh2εr (z)Dh (u, v; B2εr(z)) .

Consequently, we can apply Theorem 1.5 and Proposition 3.9 (with εr in place of r)
together with the formulaE[eX ] = eVar(X)/2 for a Gaussian random variable X to get
that for p ∈ (0, 4/(γ ξ)),

E

[(
c−1
r e−ξhr (0) sup

u,v∈Bεr (z)
Dh (u, v; B2εr(z))

)p]

=
(
cεr

cr

)p

E
[
eξ p(hεr (z)−hr (z)

]
E

[(
c−1
εr e

−ξhεr (z) sup
u,v∈Bεr (z)

Dh (u, v; B2εr(z))

)p]

≤ εξQp−ξ2 p2/2+oε(1), (3.64)

with the oε(1) uniform over all r > 0 and z ∈ C.
By (3.64) and the Chebyshev inequality,

P

[
sup

u,v∈Bεr (z)
Dh (u, v; B2εr(z)) > εscre

ξhr (z)

]
≤ ε pξQ− p2ξ2

2 −ps+oε(1). (3.65)

The exponent on the right side is maximized for p = (ξQ − s)/ξ2, which is always
at most 4/(ξγ ) for s > 0 (since γ < 2) and is positive provided s < ξQ. Making
this choice of p gives (3.62) but with hr(z) in place of hr(0). The random variables
hr(z) − hr(0) for z ∈ rK are Gaussian with variance bounded above by a constant
depending only on K . Consequently, we can apply theGaussian tail bound to get (3.62)
in general.

The bound (3.63) is proven similarly but with Proposition 3.10 used in place of
Proposition 3.9. ��

We can now prove a slightly sharper version of the upper bound of Proposition 3.18.
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Lemma 3.20 For each χ ∈ (0, ξ(Q − 2)) and each r > 0, it holds with polynomially
high probability as ε → 0, at a rate which is uniform in r, that

c−1
r e−ξhr (0)Dh

(
u, v; B2|u−v|(u)

) ≤
∣∣∣∣
u − v

r

∣∣∣∣
χ

, ∀u, v ∈ rK with |u − v| ≤ εr.

(3.66)

Furthermore, it also holds with polynomially high probability as ε → 0, at a rate
which is uniform in r, that for each k ∈ N0 and each 2−kεr × 2−kεr square S with
corners in 2−kεrZ2 which intersects rK, we have

c−1
r e−ξhr (0) sup

u,v∈S
Dh (u, v; S) ≤ (2−kε)χ . (3.67)

Proof The bound (3.66) follows from (3.62), applied with s = χ and with 2−kε for
k ∈ N0 in place of ε, together with a union bound over all z ∈ Bεr(K )∩ (2−k−2εrZ2)

and then over all k ∈ N0. The bound (3.67) similarly follows from (3.63). ��
To prove the Hölder continuity of the Euclidean metric w.r.t. Dh , we first need the

following estimate which plays a role analogous to Lemma 3.19.

Lemma 3.21 For each s > ξQ, each r > 0, and each z ∈ rK,

P
[
Dh (Bεr(z), ∂B2εr(z)) ≥ εscre

ξhr (0)
]

≥ 1 − ε

(s−ξQ)2

2ξ2
+oε(1)

, as ε → 0,

(3.68)

uniformly over the choices of r and z ∈ rK.

Proof The proof is similar to that of Lemma 3.19 but we use Proposition 3.1 instead of
Proposition 3.9. Proposition 3.1 implies that c−1

εr e
−ξhεr (z)Dh (Bεr(z), ∂B2εr(z)) has

finite moments of all negative orders which are bounded above uniformly over all
z ∈ C and r > 0. By the same calculation as in (3.64), for each p > 0 we have

E

[(
c−1
r e−ξhr (z)Dh (Bεr(z), ∂B2εr(z))

)−p
]

= ε−ξQp−ξ2 p2/2+oε(1), (3.69)

uniformly over all z ∈ C and r > 0. Applying the Chebyshev inequality and setting
p = (s−ξQ)/ξ2 gives (3.68) with hr(z) in place of hr(0). For z ∈ rK , we can replace
hr(z) with hr(0) via exactly the same argument as in the proof of Lemma 3.19. ��
Lemma 3.22 For each χ ′ > ξ(Q + 2) and each r > 0, it holds with polynomially
high probability as ε → 0, at a rate which is uniform in r, that

c−1
r e−ξhr (0)Dh (u, v) ≥

∣∣∣∣
u − v

r

∣∣∣∣
χ ′

, ∀u, v ∈ K with |u − v| ≤ ε. (3.70)
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Proof This follows from (3.62), applied with s = χ ′ and with 2−kε for k ∈ N0 in
place of ε, together with a union bound over all z ∈ Bεr(K ) ∩ (2−k−2εrZ2) and then
over all k ∈ N0. ��
Proof of Proposition 3.18 Combine Lemmas 3.20 and 3.22. ��

To conclude the proof of Theorem 1.7, we need to check that the Hölder exponents
ξ(Q − 2) and (ξ(Q + 2))−1 are optimal.

Lemma 3.23 Let V ⊂ C be an open set. Almost surely, the identity map from V ,
equipped with the Euclidean metric, to (V , Dh |V ) is not Hölder continuous with any
exponent greater than ξ(Q − 2). Furthermore, the inverse of this map is not Hölder
continuous with any exponent greater than ξ−1(Q + 2)−1.

Proof The idea of the proof is to use Proposition 3.14 to study Dh-distances as we
approach an α-thick point of h for α close to 2 or to−2. To produce such a thick point,
we will sample a point from the α-LQG measure induced by the zero-boundary part
of h|V . By Axiom III, we can assume without loss of generality that h is normalized
so that h1(0) = 0. We can also assume without loss of generality that V is bounded
with smooth boundary. Let hV be the zero-boundary part of h|V , so that h − hV is
harmonic on V .

Let α ∈ (−2, 2) which we will eventually send to either −2 or 2, and let μα
hV

be the α-LQG measure induced by hV . Also let z be sampled uniformly from μα
h ,

normalized to be a probability measure. Let P̃ be the law of (h, z) weighted by the
total mass μα

hV
(V ), so that under P̃, h is sampled from its marginal law weighted by

μα
hV

(V ) and conditional on h, z is sampled from μα
hV
, normalized to be a probability

measure. By a well-known property of the α-LQG measure (see, e.g., [15, Lemma
A.10]), a sample (h, z) from the law P̃ can be equivalently be produced by first
sampling h̃ from the unweighted marginal law of h, then independently sampling z
uniformly from Lebesgue measure on S′ and setting h = h̃−α log | ·−z|+gz, where
gz : V → R is a deterministic continuous function.

By Proposition 3.14 (applied with the field h̃−α log | ·−z| in place of hα), the fact
that gz is a.s. bounded in a neighborhood of z (by continuity), and the Borel–Cantelli
lemma, we find that a.s.

Dh (z, ∂Br (z)) = ror (1)
cr
rαξ

∫ ∞

0
eξ h̃re−t (z)−ξ(Q−α)tot (t) dt, (3.71)

where here the ot (t) is deterministic and tends to 0 as t → ∞ (it comes from the error
ψ(t) in Proposition 3.14) and the or (1) denotes a random variable which tends to 0
a.s. as r → 0. The description in the preceding paragraph shows that conditional on
z, the process t �→ h̃re−t (z) − h̃r (z) evolves as a standard linear Brownian motion.
Consequently, the Gaussian tail bound shows that with probability tending to 1 as
r → 0,

∫ ∞

0
eξ h̃re−t (z)−ξ(Q−α)t+ot (t) dt = ror (1)eξ h̃r (z) = ror (1). (3.72)
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By plugging (3.72) into (3.71) and using the fact that cr = r ξQ+or (1) (Theorem 1.5),
it therefore follows that with probability tending to 1 as r → 0,

Dh (z, ∂Br (z)) = r ξ(Q−α)+or (1).

Since α can be made arbitrarily close to 2, this shows the desired lack of Hölder
continuity for identity map (V , | · |) → (V , Dh). Since α can be made arbitrarily
close to −2, we also get the desired lack of Hölder continuity for the inverse map
(V , Dh) → (V , | · |). ��

4 Constraints on the behavior ofDh-geodesics

Let D be a weak γ -LQG metric. By Lemma 3.8, for a whole-plane GFF h, the metric
space (C, Dh) is a boundedly compact length space (i.e., closed bounded subsets are
compact) so there is a Dh-geodesic—i.e., a path of minimal Dh-length—between any
two points of C [5, Corollary 2.5.20]. In this section we will apply the main results
of this paper to prove two estimates which constrain the behavior of Dh-geodesics.
The first of these estimates, Proposition 4.1, tells us that paths which stay in a small
Euclidean neighborhoodof a straight line or an arc of the boundary of a circle have large
Dh-lengths. In particular, Dh-geodesics are unlikely to stay in such a neighborhood.
The second estimate, Proposition 4.3, says that a Dh-geodesic cannot spend a long
time near the boundary of a Dh-metric ball.

4.1 Lower bound for Dh-distances in a narrow tube

Proposition 4.1 Let L ⊂ C be a compact set which is either a line segment, an arc of
a circle, or a whole circle and fix b > 0. For each r > 0 and each p > 0, it holds with
probability at least 1 − ε p2/(2ξ2)+oε(1) that

inf {Dh (u, v; Bεr(rL)) : u, v ∈ Bεr(rL), |u − v| ≥ br} ≥ ε p+ξQ−1−ξ2/2cre
ξhr (0),

(4.1)

where the rate of the oε(1) depends on L, b, p but not on r.

By [2, Theorem 1.9], for each γ ∈ (0, 2) we have ξQ ≤ 1 and hence ξQ − 1 −
ξ2/2 < 0. Therefore, the power of ε on the right side of (4.1) is negative for small
enough p. Hence, Proposition 4.1 implies that when ε is small and u, v ∈ Bεr(rL)

with |u − v| ≥ br, it holds with high probability that Dh (u, v; Bεr(rL)) is much
larger than Dh(u, v). In particular, a Dh-geodesic from u to v cannot stay in Bεr(L).

Proof of Proposition 4.1 Step 1:Bounding distances in terms of circle averages.View L
as a path [0, |L|] → C parametrized by Euclidean unit speed. For k ∈ [0, |L|/(6ε)]Z,
let zεk := rL(6kε). Then the balls B3εr(zεk) are disjoint and the balls B7εr(zεk) cover
Bεr(rL).
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Fix ζ ∈ (0, 1), which we will eventually send to zero. By Proposition 3.1 and a
union bound, it holds with superpolynomially high probability as ε → 0 that

Dh
(
B2εr(z

ε
k), B3εr(z

ε
k)
) ≥ εζ cεre

ξhεr (zεk), ∀k ∈ [0, |L|/(6ε)]Z. (4.2)

Henceforth assume that (4.2) holds. The idea of the proof is that a path in Bεr(rL)

has to cross between the inner and outer boundaries of a large number of the annuli
B3εr(zεk)\B2εr(zεk). Thus (4.2) reduces our problem to proving a lower bound for the
sum of the quantities εζ cεreξhεr (zεk ) for these annuli, which in turn can be proven using
Theorem 1.5 and basic estimates for the circle average process.
Step 2: Lower-bounding lengths of paths in Bεr(rL) in terms of circle averages.
There is a constant c > 0 depending only on b and L such that for small enough
ε > 0 (depending only on b and L), the following is true. If u, v ∈ Bεr(rL) satisfy
|u − v| ≥ br, there are integers 0 ≤ k′

1 < k′
2 ≤ |L|/(6ε) such that k′

2 − k′
1 ≥ cε−1,

u ∈ B7εr(zεk′
1
), and v ∈ B7εr(zεk′

2
). Each path from u to v in Bεr(rL) must enter

B2εr(zεk) for each k ∈ [k′
1+2, k′

2−2]Z, and hencemust cross the annulusA2εr,3εr(zεk)
for each such k. Combining this with (4.2) shows that

Dh (u, v; Bεr(rL)) ≥ εζ cεr

k′
2−2∑

k=k′
1+2

eξhεr (zεk). (4.3)

Step 3: Proof conditional on a circle average estimate. We claim that for any fixed
k1, k2 ∈ [0, |L|/(6ε)]Z with k2 − k1 ≥ (c/2)ε−1 and any p > 0,

P

⎡
⎣

k2∑
k=k1

eξhεr (zεk ) ≥ ε p−1−ξ2/2eξhεr (0)

⎤
⎦ ≥ 1 − ε

p2

2ξ2
+oε(1) (4.4)

where the rate of the oε(1) depends on L, b, p but not on r or the particular choice of
k1, k2. We will prove (4.4) just below using standard Gaussian estimates.

Let us first conclude the proof assuming (4.4). We can find a constant-order number
of pairs k1, k2 ∈ [0, |L|/(6ε)]Z with k2 − k1 ≥ (c/2)ε−1 such that for small enough
ε (depending only on L and b), each interval [k′

1 + 2, k′
2 − 2] ⊂ [0, |L|/(6ε)]Z with

|k′
2 − k′

1| ≥ cε−1 contains one of the intervals [k1, k2].
By applying (4.4) (with p − 2ζ in place of p) to each such pair k1, k2, then taking

a union bound, we get that with probability at least 1− ε
(p−2ζ )2

2ξ2
+oε(1), the sum on the

right side of (4.3) is bounded below by ε p−1−ξ2/2−2ζ eξhεr (0) simultaneously for every

possible choice of k′
1, k

′
2. By (4.3), with probability at least 1− ε

(p−2ζ )2

2ξ2
+oε(1) it holds

simultaneously for each u, v ∈ Bεr(rL) satisfying |u − v| ≥ br that

Dh (u, v; Bεr(rL)) ≥ ε p−1−ξ2/2−ζ cεre
ξhr (0) ≥ ε p+ξQ−1−ξ2/2−ζ+oε(1)cre

ξhr (0)

(4.5)
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where in the second inequality we use Theorem 1.5. Sending ζ → 0 now gives (4.1).
Step 4: Proof of the circle average estimate. The rest of the proof is devoted to proving
the inequality (4.4). To lighten notation, write Xk := hεr(zεk) − hr(0). By the calcu-
lations in [16, Section 3.1] (and the scale invariance of the law of h, modulo additive
constant), the Xk’s are jointly centered Gaussian with variances satisfying

Var(Xk) = log ε−1 + O(1), (4.6)

where here O(1) denotes a quantity which is bounded above and below by constants
depending only on L, b (not on ε, r, j, k). Since zεk = rL(6kε) and L is parametrized
by Euclidean unit speed, we also have the following covariance formula for j �= k:

Cov
(
X j , Xk

) = log

(
r

|zεj − zεk |

)
+ O(1) = log

(
1

ε|k − j |
)

+ O(1).

(4.7)

Recall the formula E[eX ] = eVar(X)/2 for a centered Gaussian random variable X .
Applying this to the Xk’s and recalling (4.6) and the fact that k2 − k1 � ε−1 gives

E

⎡
⎣

k2∑
k=k1

eξ Xk

⎤
⎦ � ε−1−ξ2/2, (4.8)

with the implicit constant depending only on L, b. From (4.6) and (4.7) we obtain
Var(X j + Xk) = log

(
ε−4|k − j |−2

)+ O(1) for j �= k. Hence

E

⎡
⎢⎣
⎛
⎝

k2∑
k=k1

eξ Xk

⎞
⎠

2
⎤
⎥⎦ =

k2∑
k=k1

E
[
e2ξ Xk

]
+ 2

k2∑
k=k1

k2∑
j=k+1

E
[
eξ(X j+Xk )

]

� ε−1−2ξ2 + 2ε−2ξ2
k2∑

k=k1

k2∑
j=k+1

| j − k|−ξ2

� ε−1−2ξ2 + ε−2−ξ2 � ε−2−ξ2 (4.9)

with the implicit constants depending only on L, b, where in the last inequality we
use that ξ < 2/d2 < 1, so 1 + 2ξ2 < 2 + ξ2.

By (4.8), (4.9), and the Payley–Zygmund inequality, we find that there is a constant
a = a(L) > 0 such that

P

⎡
⎣

k2∑
k=k1

eξ Xk ≥ aε−1−ξ2/2

⎤
⎦ ≥ a. (4.10)

To improve the lower bound for this probability,wewill apply the following elementary
Gaussian concentration bound (see, e.g., [18, Lemma 2.1]): ��
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Lemma 4.2 For any a > 0, there exists C = C(a) > 0 such that the following is
true. Let X = (X1, . . . , Xn) be a centered Gaussian vector taking values in Rn and
let σ 2 := max1≤ j≤n Var(X j ). If B ⊂ Rn such that P[X ∈ B] ≥ a, then for any
λ ≥ Cσ ,

P

[
inf
x∈B |X − x|∞ > λ

]
≤ e

− (λ−Cσ)2

2σ 2 , (4.11)

where | · |∞ is the L∞ norm on Rn.

We now apply Lemma 4.2 with a as in (4.10), with σ 2 = log ε−1 + O(1)
[recall (4.6)], with

B =
⎧
⎨
⎩(xk1 , . . . , xk2) ∈ Rk1+k2+1 :

k2∑
k=k1

eξ xk ≥ aε−1−ξ2/2

⎫
⎬
⎭ , (4.12)

and with λ = p
ξ
log ε−1. This shows that with probability 1 − ε p2/(2ξ2)+oε(1), there

exists (xk1 , . . . , xk2) ∈ B such that maxk∈[k1,k2]Z |Xk − xk | ≤ p
ξ
log ε−1. If this is the

case, then

k2∑
k=k1

eξ Xk ≥ ε p
k2∑

k=k1

eξ xk ≥ aε p−1−ξ2/2. (4.13)

Since Xk = hεr(zεk) − hr(0), this implies (4.4). ��

4.2 Dh-geodesics cannot trace the boundaries of Dh-metric balls

For s > 0 and z ∈ C, we writeBs(z; Dh) for the Dh-metric ball of radius s centered at
z. The following proposition prevents a Dh-geodesic from spending a long time near
the boundary of a Dh-metric ball.

Proposition 4.3 For each M > 0 and each r > 0, it holdswith superpolynomially high
probability as ε → 0, at a rate which is uniform in the choice of r, that the following
is true. For each s > 0 for which Bs(0; Dh) ⊂ Bε−Mr(0) and each Dh-geodesic P
from 0 to a point outside of Bs(0; Dh),

area (Bεr(P) ∩ Bεr (∂Bs(0; Dh))) ≤ ε2−1/Mr2, (4.14)

where area denotes 2-dimensional Lebesgue measure.

For C > 1, z ∈ C, and r > 0, we say that the Euclidean ball Br (z) is C-good if

sup
u,v∈∂Br (z)

Dh
(
u, v;Ar/2,2r (z)

) ≤ CDh (∂Br (z), ∂B2r (z)) . (4.15)
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Fig. 5 Illustration of the proof of Proposition 4.3. By considering successive times at which P enters
Bεr(Bs (0; Dh)), we can find K ∈ N and a collection of K C-good Euclidean balls B0, . . . , BK with radii
in [2εr, ε1−ζ r] with the following properties: (a) each Bk intersects ∂Bs (0; Dh); (b) the Dh -geodesic
P crosses the annuli (2Bk )\Bk for k ∈ [0, K − 1]Z in numerical order; and (c) the balls of radii
4ε1−ζ r with the same centers as the Bk ’s cover P ∩ Bεr(Bs (0; Dh)). This last property implies that
area (Bεr(P) ∩ Bεr(∂Bs (0; Dh)) ≤ const×ε2−2ζ r2K , so we are left to bound K . To this end, we show
using the definition (4.15) of a C-good ball and the fact that P is a Dh -geodesic that Dh(∂Bk , ∂(2Bk ))
increases exponentially in k. Due to Lemma 4.5, this implies that K ≤ ε−1/(2M)

To prove Proposition 4.3, we will consider C-good balls which intersect ∂Bs(0; Dh)

and which are hit by a given Dh-geodesic started from 0. See Fig. 5 for an illustration
and outline of the proof.

Lemma 4.4 For each ζ ∈ (0, 1) and each M > 0, there exists C = C(ζ, M) > 1 such
that for each r > 0, it holds with probability at least 1 − Oε(ε

M ), at a rate which is
uniform in r, that the Euclidean ball Bε−Mr(0) can be covered by C-good balls with
radii in [2εr, ε1−ζ r].
Proof This is an immediate consequence of Lemma 3.2 applied with ε1−ζ in place of
ε and any choice of ν ∈ (0, 1

1−ζ
− 1). ��

We will also need the following easy consequence of the distance bounds from
Sect. 3.

Lemma 4.5 For each M > 0, there exists A = A(M) > 0 such that for each r > 0,
the following holds with probability 1− Oε(ε

M ) as ε → 0, at a rate which is uniform
in r. For each z, w ∈ Bε−Mr(0) with |z − w| ≥ εr,

Dh(z, w) ≥ εA sup
u,v∈B

ε−M r (0)
Dh(u, v). (4.16)
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Proof Wewill prove a lower bound for the left side of (4.16) [see (4.20)] and an upper
bound for the right side of (4.16) [see (4.22)], then compare them.

By Proposition 3.1 and a union bound, it holds with superpolynomially high prob-
ability as ε → 0 that

Dh(∂Bεr/4(x), ∂Bεr/2(x)) ≥ εcεre
ξhεr (x), ∀x ∈ Bε−Mr(0) ∩

(εr

8
Z2
)

. (4.17)

The circle averages hεr(x) − hr(0) for x ∈ Bε−Mr(0) are Gaussian with variance at
most (M + 1) log ε−1. By the Gaussian tail bound and a union bound, if we choose
A0 = A0(M) to be sufficiently large, then it holds with probability 1 − Oε(ε

M ) that

|hεr(x) − hr(0)| ≤ A0 log ε−1 ∀x ∈ Bε−Mr(0) ∩
(εr

8
Z2
)

. (4.18)

By Theorem 1.5,

cεr = εξQ+oε(1)cr. (4.19)

If z, w ∈ Bε−Mr(0) with |z − w| ≥ εr, then any path from z to w must cross
between the inner and outer boundaries of an annulus of the form Bεr/2(x)\Bεr/4(x)
for some x ∈ Bε−Mr(0) ∩ ( εr

8 Z
2
)
. Combining this last observation with (4.17) shows

that with superpolynomially high probability as ε → 0, Dh(z, w) is at least the right
side of (4.17) for each such z, w. We then apply (4.18) and (4.19) to lower-bound the
right side of (4.17). This shows that with probability 1 − Oε(ε

M ),

Dh(z, w) ≥ εξ A0+ξQ+1+oε(1)cre
ξhr (0), ∀z, w ∈ Bε−Mr(0) with |z − w| ≥ εr.

(4.20)

By Proposition 3.9,

E

[
c−1
ε−Mr

e−ξh
ε−M r (0) sup

u,v∈B
ε−M r (0)

Dh(u, v)

]
� 1, (4.21)

with the implicit constant uniform over all r > 0 and ε ∈ (0, 1). By Theorem 1.5,
cε−Mr = ε−ξQM+oε(1)cr. By the Gaussian tail bound, we can find A1 = A1(M) > 0
such that with probability 1 − Oε(ε

M ), we have |hε−Mr(0) − hr(0)| ≤ A0 log ε−1.
Combining these estimates with (4.21) andMarkov’s inequality shows that with prob-
ability 1 − Oε(ε

M ),

sup
u,v∈B

ε−M r (0)
Dh(u, v) ≤ ε−ξ A1−ξQM−M+oε(1)cre

ξhr (0). (4.22)

Combining (4.20) and (4.22) gives (4.16) for any choice of A > ξ A1 + ξQM + M +
ξ A0 + ξQ + 1. ��
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Proof of Proposition 4.3 Step 1: Defining a regularity event. For M̃ > 0, ζ ∈ (0, 1),
C > 1, and A > 1, let Gε

r = Gε
r(M̃, ζ,C, A) be the event that the following is true.

1. The ball B
ε−M̃r(0) can be covered by C-good Euclidean balls with radii in

[2εr, ε1−ζ r].
2. For each z, w ∈ B

ε−M̃r(0) with |z − w| ≥ εr,

Dh(z, w) ≥ εA sup
u,v∈B

ε−M̃ r
(0)

Dh(u, v). (4.23)

By Lemmas 4.4 and 4.5, for any M̃ > 0 and ζ ∈ (0, 1) we can find C, A > 1 for
which

P[Gε
r] ≥ 1 − Oε(ε

M̃ ), uniformly over all r > 0. (4.24)

Henceforth assume that Gε
r occurs for such a choice of C, A and that M̃ > M .

Step 2: Reducing to a bound for the number of excursions of a geodesic. Let s > 0
such that Bs(0; Dh) ⊂ Bε−Mr(0) and let P be a Dh-geodesic from 0 to a point outside
of Bs(0; Dh). Let τ0 = s and inductively for k ∈ N let τk be the first time t after the
exit time of P from B4ε1−ζ r(P(τk−1)) for which P(t) ∈ Bεr(∂Bs), or τk = ∞ if no
such time exists. Let K be the smallest k ∈ N for which τk = ∞.

We claim that there exists a constant c > 0 depending on C, A such that
K ≤ c log ε−1 on Gε

r. If this is the case, then P ∩ Bεr(∂Bs) can be cov-
ered by at most c log ε−1 Euclidean balls of radius 4ε1−ζ r. This means that
area (Bεr(P) ∩ Bεr(∂Bs(0; Dh)) ≤ 4πε2−2ζ+oε(1)r2. Choosing ζ < 1/(2M) and
sending M̃ → ∞ then concludes the proof. Hence we only need to prove a logarith-
mic upper bound for K assuming that Gε

r occurs.
Step 3: bounding excursions using C-good balls. For k ∈ [0, K − 1]Z, we can find
a C-good Euclidean ball Bk with radius in [εr, ε1−ζ r] which contains P(τk). Write
2Bk for the Euclidean ball with the same center as Bk and twice the radius of Bk . Let
σk be the first time after τk at which P exits 2Bk . The time σk is smaller than the exit
time of P from B4ε1−ζ r(P(τk)). Consequently, the definition of the τk’s shows that
σk ∈ [τk, τk+1] for each k ∈ [0, K ]Z.

Since P is a Dh-geodesic and P crosses the annulus (2Bk)\Bk between times τk
and σk ,

σk − τk ≥ Dh(∂Bk, ∂(2Bk)). (4.25)

We now argue that

τk ≤ s + CDh(∂Bk, ∂(2Bk)). (4.26)

Indeed, since Bk intersects Bεr(∂Bs(0; Dh)) and has radius at least 2εr, it follows
that Bk intersects ∂Bs(0; Dh). Let z ∈ ∂Bs(0; Dh) and let t ∈ [τk, σk] such that
P(t) ∈ ∂Bk (such a t exists by the definition of σk). By the definition of a C-good
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ball, the Dh-diameter of ∂Bk is at most CDh(∂Bk, ∂(2Bk)). Hence

τk ≤ t ≤ Dh(0, z) + Dh(z, P(t)) ≤ s + CDh(∂Bk, ∂(2Bk)),

which is (4.26).
By (4.25) and (4.26) and the fact that the intervals [τk, σk] ⊂ [s,∞) are disjoint,

we get

k−1∑
j=0

(σ j − τ j ) ≤ τk − s ≤ C(σk − τk).

This holds for each k ∈ [0, K − 1]Z, from which we infer that

σK−1 − τK−1 ≥ C−1(1 + C−1)K (σ0 − τ0). (4.27)

By the definition of σ0, we have |P(σ0)−P(τ0)| = εr. Moreover, since P(τK−1) ∈
Bεr(Bs(0; Dh)), Bs(0; Dh) ⊂ Bε−Mr(0), and M̃ > M ,wehave P(σK−1), P(τK−1) ∈
B

ε−M̃r(0). By (4.23) in the definition of Gε
r, it follows that

σ0 − τ0 ≥ εA(σK−1 − τK−1). (4.28)

Combining this with (4.27) shows that C−1(1 + C−1)K ≤ ε−A, which means that
K ≤ A

log(1+C−1)
log ε−1 + Oε(1), as required. ��
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