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Abstract

The increasing urban population is leading to the exploitation of building sites close to sources of

ground-borne vibration, such as railways and busy roads. Piled foundations can provide a signif-

icant vibration transmission path into a building, which can then cause disturbance to occupants

and sensitive equipment. There is a strong need to develop numerical models that can capture the

essential dynamics of a piled foundation, over the frequency range associated with ground-borne

vibration, to help practising engineers decide on appropriate countermeasures. In this paper, a piled

foundation is modelled as a pile-group embedded in a homogeneous half-space. Previous research

has explored the dynamics of pile groups to inertial loading at relatively low frequencies, over the

seismic range. Here, an iterative approach is developed using a source-receiver boundary-element

model to account for the wave-scattering effect that becomes more significant at higher frequen-

cies. Predictions of the dynamic interaction factors, which describe the pile-soil-pile interaction,

show very good agreement with a standard boundary-element model for a range of geometric and

material parameters. The results show that using uncoupled source-receiver models can account

effectively for the interaction between piles without resorting to fully coupled models, even at

frequencies well above those of previously published results.
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1. Introduction1

An understanding of the dynamics of piled foundations is essential for the seismic assessment2

of many buildings. It is also essential for the serviceability assessment of buildings subjected to3

ground-borne vibration, from sources such as railways and busy roads [1]. In such cases, piles can4

provide a significant vibration transmission path, both into and out of the building, and this must be5

accounted for in any assessment of the likely internal vibration levels. The frequencies of interest6

extend well beyond the seismic range, up to as high as 250 Hz in some cases, and the associated7

wavelengths are now comparable with the dimensions of a typical foundation. Wave-scattering8

effects are therefore more significant, and theoretical models developed purely for seismic analysis9

can be of limited use.10

1.1. Existing pile-group models11

The dynamics of pile groups, in which multiple piles are connected to a common pile-cap support-12

ing the superstructure, can be categorised according to the mode of excitation: so-called, inertial13

and kinematic loading. This study focuses on the former, in which the piles within a group respond14

to forces and moments applied at the pile-head of one or more piles. Our particular interest lies in15

the soil-structure interaction that occurs between nearby piles, known as pile-soil-pile interaction16

(PSPI).17

There is extensive literature available on the modelling of piled foundations; a thorough review18

is presented by Kuo and Hunt [2]. When the spacing between piles in a group is small, it is known19

that PSPI needs to be accounted for when modelling the group’s dynamic response. There are20

two important effects. Soil stiffening dominates under static and low-frequency loading, when the21

wavelengths in the soil are greater than the pile spacing, and this occurs within the vicinity of the22

pressure bulb surrounding each excited pile, where the soil stresses (and strains) are significant.23

At higher frequencies, wave-scattering effects become significant as the wavelengths in the soil24

approach the length scale of the pile diameter. Dynamic interaction factors are commonly used to25

characterise PSPI. These are calculated for any pair of neighbouring piles within a group by ignor-26
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ing the presence of nearby piles; the dynamic stiffness of the overall pile-group is then obtained27

through the superposition of appropriate interaction factors.28

Semi-analytical models developed by Dobry, Gazetas and Makris [3]–[6] are some of the first29

to calculate frequency-dependent interaction factors, by representing a pair of piles as an uncoupled30

source-receiver system. The source sub-system models the excited pile to calculate the response of31

the surrounding soil in the absence of the second pile (the receiver). The wave-field that propagates32

away from the source, assuming the receiver does not influence the field, is applied as an incident33

excitation on the receiver sub-system. However, this approach is less accurate at high frequencies34

when the receiver can scatter the incident waves, which, in turn, can propagate back to excite the35

source. Furthermore, when the piles are close together, the receiver can influence the wave-field36

propagating away from the source, and this can occur even at low frequencies if the pressure bulb37

around the source also encompasses the receiver. Both of these effects can lead to inaccuracies in38

the uncoupled source-receiver model.39

The alternative approach is to model the full pile-group as a coupled system, which directly40

accounts for the PSPI. Kaynia and Kausel [7], [8] derived matrix equations for the dynamic re-41

sponse of a pile-group and produced a model based on a rigorous boundary-element method42

(BEM) formulation. Generally good agreement is observed between this model and uncoupled43

source-receiver models, and the agreement improves as the pile spacing increases. However, the44

results are presented over non-dimensional frequencies that do not extend to the high-frequency45

content of ground-borne vibration. Another concern is that the soil’s flexibility matrix is computed46

by superposing a ‘fictitious’ column onto the soil at the location of each pile, such that the flexural47

and inertial properties of the composite solid (i.e. the column and soil) are equivalent to the pile48

[7]. The pile cavity in the soil is therefore not represented, and this can lead to inaccuracies in the49

results at high frequencies, as concluded by Mamoon et al. [9].50

The aim of this paper is to investigate if the use of interaction factors, for vertical, lateral and51

rotational motion at the pile-heads of a generic pile-group, accounts effectively for PSPI over a52

range of non-dimensional frequencies a0, which correspond to ground-borne vibration in London53
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Clay in the range 1 − 160 Hz. A set of non-dimensional graphs is presented that plot interaction54

factors as functions of frequency, to investigate how a typical range of fundamental material and55

geometric parameters influence PSPI. Two methods of modelling a pile-group are presented:56

1. a direct method is used to model a pile-group as a coupled system, with all pile cavities57

explicitly included in the soil;58

2. an indirect method is used to model a pile-group as a source-receiver system by dividing it59

into two isolated sub-systems, representing the source and receiver, which are then coupled60

together using an iterative wave-scattering approach.61

The direct method is used to investigate the influence of neighbouring and intermediate piles on62

the interaction factors, whilst the indirect method is explored as an alternative means of accounting63

for the PSPI between multiple soil-embedded structures.64

1.2. The iterative wave-scattering approach65

There are a variety of techniques used to solve problems where waves interact with multiple neigh-66

bouring obstacles in a medium [10]. An iterative approach can be used to dynamically couple all67

the obstacles in the system by treating each obstacle as an isolated sub-system and accounting for68

waves that propagate back-and-forth between them.69

As previously stated, the uncoupled source-receiver approach accounts only for the initial ‘out-70

going’ wave-field from the source that interacts with the receiver; this is equivalent to the first71

iteration in the iterative approach. In the second iteration, the ‘incoming’ wave-field that propa-72

gates back towards the source, due to the scattered field at the receiver, is calculated. The motion of73

the source, due to both the pile-head load and the incident field from the receiver, causes another in-74

cident field to propagate towards the receiver, which gives a revised solution for the response of the75

two piles compared to the first iteration. During each iteration, the source and receiver sub-systems76

are therefore weakly coupled. When this process is repeated for multiple iterations, the response77

converges to the solution for when the source and receiver are fully coupled. An advantage of the78
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approach is that it provides additional insight into the wave-scattering behaviour, compared to a79

coupled system: if multiple iterations are required to converge to the coupled solution, then the80

wave-scattering effect is clearly more significant than if only one iteration is required. It is worth81

noting that the approach does not offer significant computational advantages over the direct method82

(the element meshes are comparable and more memory is required to manage the iterations).83

The iterative approach has been used to analyse wave-scattering problems in electromagnetism84

[11], [12], acoustics [13] and elastodynamics [14], [15]. Ongoing research is investigating an85

iterative approach to predict the soil response around underground railway tunnels [16].86

2. Modelling87

This section presents the single-pile model that provides the fundamental unit for coupling N88

piles together in a generalised pile-group, using either the direct or indirect methods. The applied89

loads are assumed to be time-harmonic, with the models formulated in the space-frequency (x, ω)-90

domain, where x is a position vector and ω is the excitation angular frequency. For example, the91

displacement response vector ū in the space-time (x, t)-domain is given by92

ū (x, t) = Re
(
u (x, ω) eiωt

)
(1)

where u a vector of complex (i =
√
−1) amplitudes in the (x, ω)-domain. For clarity, the expo-93

nential term is omitted from the remainder of the paper. Linear behaviour is assumed because of94

the low strain amplitudes associated with ground-borne vibration [17].95

2.1. Modelling the soil96

In common with much of the previous work on pile dynamics, the soil domain in this study is97

modelled using the BEM [8], [18]–[20]. Since no artificial boundaries are imposed, this method98

accounts properly for the semi-infinite nature of the domain, avoiding spurious reflections and en-99

suring that radiation damping is inherently accounted for. The BEM models used here incorporate100

the Green’s functions for a homogeneous, isotropic full-space, of mass density ρs, Poisson’s ratio101

νs, shear modulusGs and hysteric loss factor ηs. This accounts for the essential dynamic behaviour102
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of the soil, although alternative Green’s functions may be employed if necessary, such as those for103

layered soil. Constant boundary elements are used, so the field variables are assumed to be uniform104

over each element.105

The three-dimensional, half-space domain of the soil is defined by two boundaries: the free106

surface and the soil-pile interface, which defines the cavity into which the pile model is coupled.107

Square elements are used for both boundaries, and the pile cross-section is assumed to be square.108

By comparing more refined BEM models, the latter has been found to offer a good compromise109

between accuracy and computational efficiency [19], [20]. Further convergence studies at higher110

frequencies (a0 = 3.2), which consider the pile-head compliance of a single pile with increasingly111

circular cross-sections (4-element square, 8-element octagonal and 16-element sections), support112

this choice. The mesh consists of NT elements in total. The minimum numbers of elements N1113

and N2 that form the edges of the free surface are found by increasing these until convergence is114

achieved in the particular response of interest. For a group of N piles, the free surface and soil-pile115

interface comprise NFS = N1N2 − N and NSP =
∑N

k=1 n
(k)
SP elements, where n(k)

SP is the number116

of elements associated with pile k. The mesh density is varied depending on the frequency, so that117

at least six elements per shear wavelength are used, as recommended by Domı́nguez [21]. For the118

material properties adopted here, the elements have side-length b = 0.5 m for frequencies below119

80 Hz, while at higher frequencies b = 0.25 m.120

The field variables are defined by two vectors that give the complex amplitudes of the displace-121

ment and traction fields evaluated at the central node of each element. The displacement field u in122

the Cartesian x, y, z directions is defined as123

u =
{
ux

1, uy
1, uz

1 | ux2, uy
2, uz

2 | . . . | uxNT , uy
NT , uz

NT

}T

(2)

where uj =
{
ux

j, uy
j, uz

j
}T is the displacement vector at node j and the superscript T denotes124

the vector transpose, with the traction field p defined similarly. The BEM relationship between the125

field variables is then126

Hu = Gp (3)
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where H and G are the frequency-dependent collocation matrices, which are assembled using the127

formulation described by Domı́nguez [21].128

Equation (3) can be rearranged as129

u = H−1Gp = HSp (4)

and HS, the resulting displacement frequency-response function (FRF) matrix of the soil, can be130

partitioned into sub-matrices:131 

uFS

u1
SP

u2
SP

...

uNSP


=

HS11 HS12

HS21 HS22





pFS

p1
SP

p2
SP

...

pNSP


(5)

uFS = HS11pFS + HS12pSP (6)

uSP = HS21pFS + HS22pSP (7)

where the subscripts FS and SP denote the field variables at the free surface and soil-pile interface,132

with uSP =
{
u1

SP,u
2
SP, . . . ,u

N
SP

}T and pSP =
{
p1

SP,p
2
SP, . . . ,p

N
SP

}T.133

Eqs. (6) and (7) can only be used to calculate the displacement and traction fields at the bound-134

aries of the soil domain. Whilst this is suitable for coupling the pile model, a variation of the135

integral formulation is required to find the field variables at internal points within the domain.136

Domı́nguez [21] describes the process of finding the displacements at internal points, but not the137

tractions. The latter are derived in Appendix A from the integral form of the displacements, using138

the same notation as Domı́nguez. From there, Eq. (A.12) can be expressed in matrix form to give139

the vector of displacements at selected internal points:140

uint = Gup−Huu (8)

where Gu and Hu are the displacement-state matrices.141
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Similarly, Eq. (A.13) can be expressed to give the corresponding vector of tractions:142

pint = Gpp−Hpu (9)

where Gp and Hp are the traction-state matrices.143

By substituting the field variables at the boundaries of the soil domain, as expressed in Eqs. (6)144

and (7), into Eqs. (8) and (9), the final expressions for the internal displacements and tractions are:145

uint = Gu

pFS

pSP

−Hu

uFS

uSP

 (10)

pint = Gp

pFS

pSP

−Hp

uFS

uSP

 . (11)

2.2. Modelling the pile146

The pile model uses the analytical solutions for an elastic bar and Euler-Bernoulli beam to describe147

the longitudinal and transverse motion of a three-dimensional pile, as adopted by Talbot and Hunt148

[19]. The model is characterised by its length L, mass density ρp, diameter d, Young’s modulus Ep149

and second moment of inertia Ip. Material damping in the pile is neglected because its response150

is dominated by radiation damping in the soil, although this can be easily included by specifying151

a complex Young’s modulus. The effects of rotational inertia and shear deformation are also ne-152

glected, the errors introduced by Euler’s assumptions being minimal at the frequencies associated153

with ground-borne vibration. Loading may be applied at the pile-head as a combination of forces154

and moments, although torsion about the longitudinal (vertical) axis is ignored.155

uz

uy 

θx

Pile-headPile-toe Intermediate nodes

ex

ey

ez

Figure 1: The pile model, based on the solutions for an elastic bar and Euler-Bernoulli beam (drawn horizontally in
the (y, z)-plane). The dots represent the nodes for coupling to the boundary elements of the soil-pile interface.
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To enable coupling to the soil, equally-spaced intermediate nodes are defined along the pile’s156

centroidal axis, with a further two nodes at the pile head and toe, as shown in Fig. 1. By considering157

unit forces at each node, and the additional application of a unit moment at the pile-head node, the158

displacement FRF matrix H
(k)
P for pile k can be computed. This is then partitioned into sub-159

matrices:160 u
(k)
PH

u
(k)
P

 =

H(k)
P11 H

(k)
P12

H
(k)
P21 H

(k)
P22


f

(k)
PH

f
(k)
P

 (12)

where the subscripts PH and P denote variables at the pile head and intermediate nodes respec-161

tively. Expanding the first and second rows of Eq. (12) gives:162

u
(k)
PH = H

(k)
P11f

(k)
PH + H

(k)
P12f

(k)
P (13)

u
(k)
P = H

(k)
P21f

(k)
PH + H

(k)
P22f

(k)
P . (14)

Note that, unlike HS, H(k)
P relates displacements and forces, rather than tractions.163

Finally, consider the coupling conditions between the soil and a pile. The pile is assumed164

to be perfectly bonded to the soil, which is justified given the low amplitudes of ground-borne165

vibration. Each pile node, with the exception of that at the pile head, is therefore coupled directly166

to the surrounding nodes of the four boundary elements representing the soil–pile interface. Thus,167

satisfying compatibility and equilibrium at the soil-pile interface requires168

u
(k)
SP = Q

(k)
1 u

(k)
P (15)

and169

f
(k)
P = −b2Q

(k)
1

T
p

(k)
SP = −Q(k)

2 p
(k)
SP (16)

where Q
(k)
1 is a transformation matrix assembled from 3× 3 identity matrices [19].170
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3. Calculation of Pile-Group Response171

This section describes the calculation of the inertial response of a general pile-group containing172

N piles, when excited at the head of one of the piles. Details are provided for both the direct and173

indirect methods, using the models described in Section 2.174

3.1. The direct method175

By generalising Eq. (13) for N piles, the pile-head displacements at all piles in the group are given176

by177

uPH = HP11fPH + HP12fP (17)

where HP11 and HP12 are global block-diagonal matrices that contain the sub-matrices H(k)
P11 and178

H
(k)
P12, respectively, for each pile k along the leading diagonal, as defined in Appendix B. The global179

displacement and force vectors for the pile-group are represented by uPH, fPH and fP. Similar180

matrix expressions can be obtained by generalising Eqs. (14)–(16):181

uP = HP21fPH + HP22fP (18)

uSP = Q1uP (19)

fP = Q2pSP (20)

where HP21, HP22, Q1 and Q2 are global block-diagonal matrices, also defined in Appendix B.182

The governing equations for the pile-group, Eqs. (17)–(20), and the soil, Eqs. (7) and (8), are183

rearranged to get an expression for the tractions at the soil-pile interface pSP as a function of the184

applied pile-head load fPH:185

pSP = AQ1HP21fPH (21)

where186

A = (HS22 + Q1HP22Q2)−1 . (22)
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Note that a traction-free boundary condition is applied at the free surface (pFS = 0) because this187

study is only concerned with pile-head excitation. By substituting Eq. (21) back into Eqs. (7), (8)188

and (17)–(20), the other field variables can be found.189

3.2. The indirect method190

The pile-group is divided into two sub-systems: the excited pile is referred to as the source, while191

all other piles in the group are collectively referred to as the receiver. Each iteration i of the192

method involves calculating the incident fields at the soil-pile interface of the receiver, when the193

source is excited, and vice-versa when the receiver is excited. Figure 2 illustrates the case for the194

displacement fields at the source
(
uS,inc

SP

)i and receiver
(
uR,inc

SP

)i. The same approach is applied to195

compute the incident traction fields
(
pS,inc

SP

)i and
(
pR,inc

SP

)i.196

(       )uSP
R,inc 1

(       )uSP
S,inc 2

(       )uSP
R,inc 2

(       )uSP
R,inc 3

(       )uSP
S,inc 3

fPH
S

ReceiverSource

Iterations

Figure 2: Schematic diagram illustrating the implementation of the indirect method for a pile-group containing four
piles using three iterations. The pile-group is divided into two sub-systems: source and receiver.

Fig. 3 illustrates the BEM meshes used for the soil boundaries in both the direct and indirect197

methods. The BEM mesh for the source sub-system contains NS
FS free surface elements and NS

SP198

soil-pile interface elements. Similarly, the BEM mesh for the receiver sub-system contains NR
FS199

and NS
SP elements for the free surface and soil-pile interface. The receiver sub-system may consist200

of one or more piles, as illustrated in Figs. 2 and 3, where all the piles in the receiver are coupled201
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(a) Complete pile-group (b) Source sub-system (c) Receiver sub-system

Free surface

Soil-pile interface Internal points

Figure 3: The pile-group in Fig. 2 is modelled using three BEM meshes: (a) the complete pile-group, using the direct
method; and (b) the source and (c) receiver sub-systems of the indirect method. Coloured elements represent the
free surface (green) and the soil-pile interfaces for the source (red) and receiver (yellow). Internal points within the
respective sub-systems are represented by blue dots.

together at their respective soil-pile interfaces. Note that the free surface in the source and receiver202

meshes is discretised to the same extent.203

The following two sections derive the incident fields at the receiver and source, for each iter-204

ation, so that the two sub-systems can be weakly coupled together. For clarity, the superscript i,205

denoting the field variables for each iteration, is omitted.206

3.2.1. The source sub-system207

This section derives the scattered (radiated) fields induced at the source when this is excited in208

isolation, and then derives the incident fields that arrive, as a consequence, at the soil-pile interface209

of the receiver. Figure 4 illustrates the BEM meshes used for the source sub-system in a pile-group210

containing two piles, where mesh 1 is used to excite the source (pile 1) and mesh 2 is used to find211

the incident fields at the soil-pile interface of the receiver (pile 2). The free surface and soil-pile212

interface of pile 1 is discretised in both meshes, while mesh 2 also defines the soil-pile interface of213

pile 2 as a group of internal points within the unbounded domain of the source sub-system.214

By applying the superposition principle, the total displacement field at the soil-pile interface of215

pile 1 u1
SP can be decomposed into a scattered field u1,sca

SP and an incident field u1,inc
SP component,216

such that u1
SP = u1,sca

SP + u1,inc
SP . Similarly, for the total traction field: p1

SP = p1,sca
SP + p1,inc

SP .217

When the BEM is applied using mesh 1, the soil displacement FRF matrix H1
S of pile 1 can be218

12



Pile 1

Free surface

Pile 1

soil-pile
interface

uSP
1,inc

pSP
1,inc

f PH
1

(a) Mesh 1 (b) Mesh 2

Pile 2

Pile 1 Pile 2
soil-pile

Free surface
interface

soil-pile
interface

uSP
2,inc

pSP
2,inc

Figure 4: Schematic diagram illustrating the BEM meshes used for the unbounded domain of the isolated source sub-
system in a pile-group containing two piles. Internal points within the source’s domain lie along the dashed line in
mesh 2. The darker and lighter shaded regions represent material of the pile and soil.

expressed in terms of the scattered fields at the mesh boundaries:219  u1
FS

u1
SP − u1,inc

SP

 = H1
S

 p1
FS

p1
SP − p1,inc

SP

 (23)

where u1
FS and p1

FS = 0 denote the displacement field and traction-free boundary condition at the220

free surface of pile 1. There are no (artificial) incident fields at the free surface because this is221

discretised to the same extent in both meshes. The H1
S matrix can be partitioned into sub-matrices:222  u1

FS

u1
SP − u1,inc

SP

 =

H1
S11 H1

S12

H1
S21 H1

S22


 0

p1
SP − p1,inc

SP

 . (24)

Since pile 1 represents the source, the superscript ‘1’ can be replaced by S to denote this. The rows223

in Eq. (24) can then be expanded into two governing equations for the soil of the isolated source:224

uSFS = HS
S12

(
pSSP − pS,inc

SP

)
(25)

uSSP − uS,inc
SP = HS

S22

(
pSSP − pS,inc

SP

)
(26)

Rearranging Eqs. (25) and (26), and the other governing equations for the source, which are225

similar to Eqs. (17)–(20), gives expressions for the field variables at all points on the source bound-226

ary, which are referred to as the boundary values. The equation for the boundary value pSSP, as a227
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function of the excitation
(
fSPH,u

S,inc
SP ,pS,inc

SP

)
at the source, is228

pSSP = AS
(
QS

1H
S
P21f

S
PH + HS

S22p
S,inc
SP − uS,inc

SP

)
(27)

where AS is similar to A in Eq. (22). The other boundary values, uSFS and uSSP, can be found by229

substituting Eq. (27) into Eq. (25) and Eq. (26), respectively.230

It is important to note that, for the first iteration, there are no incident fields at the soil-pile231

interface of the source (uS,inc
SP = pS,inc

SP = 0) because the receiver has not yet been excited. For232

all subsequent iterations, the expressions for uS,inc
SP and pS,inc

SP are derived in Eqs. (35) and (36), as233

detailed below.234

Once the boundary values are known for the source excited in isolation, the incident fields that235

propagate through the soil towards the soil-pile interface of the receiver must be calculated. The236

modified BEM for internal points is used to calculate these, with the receiver’s soil-pile interface237

regarded as a group of internal points within the domain of the source sub-system. Thus, Eqs. (10)238

and (11) can be used to calculate the incident displacement uR,inc
SP and traction pR,inc

SP fields arriving239

at all N − 1 piles in the receiver:240

uR,inc
SP =



u2,inc
SP

u3,inc
SP

...

uN,inc
SP


= GRS

u

 0

pSSP

−HRS
u

uSFS

uSSP

 (28)

pR,inc
SP =



p2,inc
SP

p3,inc
SP

...

pN,inc
SP


= GRS

p

 0

pSSP

−HRS
p

uSFS

uSSP

 (29)

where the superscript RS denotes that the displacement-state and traction-state matrices contain-241

ing the transfer functions relating to the propagation of the field variables from the source to the242

receiver.243
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3.2.2. The receiver sub-system244

This section derives the incident fields that arrive at the soil-pile interface of the source as a result245

of the scattered field induced at the isolated receiver. The receiver is excited by incident fields that246

travel from the source, as derived in the previous section. Figure 5 illustrates the BEM meshes used247

for the receiver sub-system in the same pile-group of two piles, where mesh 3 is used to excite the248

receiver (pile 2) and mesh 4 is used to find the incident fields at the soil-pile interface of the source249

(pile 1). The free surface and soil-pile interface of pile 2 is discretised in both meshes, while mesh250

4 also defines the soil-pile interface of pile 1 as a group of internal points within the domain of the251

receiver sub-system.252

(a) Mesh 3 (b) Mesh 4

Pile 1

Pile 1 Pile 2
soil-pile

Free surface
interface

soil-pile
interface

uSP
1,inc

pSP
1,inc

Pile 2
soil-pile
interface

Pile 2

Free surface

uSP
2,inc

pSP
2,inc

Figure 5: Schematic diagram illustrating the BEM meshes used for the unbounded domain of the isolated receiver
sub-system in a pile-group containing two piles. Internal points within the receiver’s domain lie along the dashed line
in mesh 4. The darker and lighter shaded regions represent material of the pile and soil.

When the BEM is applied using mesh 3, the soil displacement FRF matrix H2
S around pile 2253

can be derived. Similar to Eqs. (23) and (24), the matrix H2
S can be partitioned into sub-matrices:254  u2

FS

u2
SP − u2,inc

SP

 =

H2
S11 H2

S12

H2
S21 H2

S22


 p2

FS

p2
SP − p2,inc

SP

 (30)

where u2
FS and p2

FS = 0 denote the displacement field and traction-free boundary condition at the255

free surface of pile 2. As with the source sub-system, there are no incident fields at the free surface.256

When Eq. (30) is extended to model the BEM mesh of a pile-group containing N − 1 pile cavities,257
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the resulting soil displacement FRF matrix HR
S of the receiver can be partitioned into sub-matrices:258 

uRFS

u2
SP − u2,inc

SP

...

uNSP − uN,inc
SP


=

HR
S11 HR

S12

HR
S21 HR

S22




pRFS

p2
SP − p2,inc

SP

...

pNSP − pN,inc
SP


. (31)

The rows in Eq. (31) can then be expanded into two governing equations for the soil surrounding259

the isolated receiver:260

uRFS = HR
S12

(
pRSP − pR,inc

SP

)
(32)

uRSP − uR,inc
SP = HR

S22

(
pRSP − pR,inc

SP

)
. (33)

Note that the off-diagonal components in the sub-matrix HR
S22 inherently account for the PSPI261

within the pile-group receiver when the soil is coupled to the piles. This is because all the bound-262

ary elements corresponding to the soil cavities of the receiver are used to calculate the transfer263

functions that fully populate HR
S22.264

Similar to Eq. (27), the equation for the boundary value pRSP, as a function of the excitation265 (
uR,inc

SP ,pR,inc
SP

)
at the receiver, is266

pRSP = AR
(
HR

S22p
R,inc
SP − uR,inc

SP

)
. (34)

The other boundary values, uRFS and uRSP, are found by substituting Eq. (34) into Eq. (32) and267

Eq. (33), respectively.268

Once the boundary values at the receiver are known, Eqs. (10) and (11) are used to calculate269

the incident displacement uS,inc
SP and traction pS,inc

SP fields at the soil-pile interface of the source pile,270

which are defined by the internal points within the domain of the receiver:271

uS,inc
SP = u1,inc

SP = GSR
u

 0

pRSP

−HSR
u

uRFS

uRSP

 (35)
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pS,inc
SP = p1,inc

SP = GSR
p

 0

pRSP

−HSR
p

uRFS

uRSP

 (36)

where the superscript SR denotes the displacement-state and traction-state matrices containing the272

transfer functions relating to the propagation of the field variables from the receiver to the source.273

4. Validation274

In this section, results predicted using the direct and indirect methods are compared against pub-275

lished results for the dynamic interaction factors for two neighbouring piles. Both piles have the276

same material properties and dimensions, with pile diameter d and centre-to-centre pile separation277

s, as shown in Fig. 6. All results are computed by implementing the equations of Section 3 using278

the technical computing software, MATLAB [22].279

L

s

d

Pile 1 Pile 2 ex

ey

ez

Figure 6: Schematic diagram of two neighbouring piles, with equal length L and diameter d, and centre-to-centre
separation s.

The dynamic interaction factors αij between two piles in isolation are defined as280

αij =
Dynamic motion i at pile-head 2 due to load j at pile-head 1

Static motion i at pile-head 1 due to load j at pile-head 1
. (37)

These can also be expressed as functions of the following non-dimensional groups:281

αij = gij

(
a0,

L

d
,
s

d
,
Es
Ep
,
ρs
ρp
, νp, νs, ηs

)
(38)
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where a0 = ωd/cS is the non-dimensional frequency, cS =
√
Gs/ρs is the shear wave speed in the282

soil and Es = 2Gs(1 + νs). For typical London Clay, Gs = 96 MPa and ρs = 1980 kg/m3, giving283

cS = 220 m/s [23].284

Figure 7 plots the real and imaginary parts of six dynamic interaction factors against a0, using285

Kaynia’s model [7] and both the direct and indirect methods, for different pile separation ratios286

(s/d = 2, 5, 10). The non-dimensional soil and pile parameters are: L/d = 15, Es/Ep = 10−3,287

ρs/ρp = 0.7, νp = 0.25, νs = 0.4 and ηs = 0.05. Note that Kaynia’s results are only plotted288

for frequencies up to a0 = 1.0 (≈ 50 Hz for London Clay). The results from the direct and289

indirect methods are plotted up to a0 = 3.2 (≈ 160 Hz), to include the frequency range of interest290

for ground-borne vibration. The complex nature of the interaction factors accounts for the phase291

difference between the applied force and the resulting displacements. Hence, under static loading,292

there is no phase difference and the interaction factors are purely real.293

There is very good agreement between the results from all three methods. The reciprocity294

relationships for αφxfy = αuyqx and αφyfx = αuxqy (omitted in Fig. 7 for conciseness) are also295

satisfied. For piles in close proximity to each other (s/d = 2), and when a0 > 1.2, two iterations296

are required for the indirect method to converge with the direct method when the excitation is either297

the force fy or moment qx. These both result in pile deflections in the direction of the propagating298

waves between the piles, which means that the incident fields are more likely to be influenced by299

the presence of the receiver. For all other interaction factors, just one iteration is sufficient for300

convergence. Indeed, one iteration, which is equivalent to the uncoupled source-receiver model,301

may be regarded as providing a good approximation for all interactions factors over the frequency302

range of interest.303

As expected, the influence of the receiver on the pile-group response decreases with increasing304

pile separation: when s/d ≥ 5, one iteration is sufficient for convergence across the frequency305

range. Note that, in general, as the pile separation is increased, the magnitude of the interaction306

factors decreases due to increased attenuation in the soil. Furthermore, the number of peaks and307

troughs in the factors increases as the number of half-wavelengths in the soil between the piles308
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Figure 7: Continues over page.
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Figure 7: The real and imaginary parts of six dynamic interaction factors plotted against non-dimensional frequency
a0 for two neighbouring piles with different pile separation ratios (s/d = 2, 5, 10). The responses are predicted using
Kaynia’s model, the direct method (DM) and the indirect method (IM), for non-dimensional soil and pile parameters
L/d = 15, Es/Ep = 10−3, ρs/ρp = 0.7, νp = 0.25, νs = 0.4 and ηs = 0.05.
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increases, leading to more incidences of constructive and destructive interference.309

5. Parametric Study310

This section investigates the influence of different material parameters, and of neighbouring and311

intermediate piles, by focusing on the lateral (αuxfx , αuyfy) and vertical (αuzfz) interaction factors.312

All piles in the pile-group are separated by s/d = 2, and the results are predicted using both the313

direct and indirect methods. Typical non-dimensional parameters for concrete piles embedded in314

London Clay are specified: Es/Ep = 1.4×10−2, ρs/ρp = 0.8, νs = 0.49, νp = 0.15 and ηs = 0.08.315

5.1. Influence of the soil-to-pile stiffness ratio Es/Ep316

Figure 8 plots the interaction factors predicted for two neighbouring piles for a range of soil-to-pile317

stiffness ratios, from flexible (Es/Ep = 10−2, 10−3) to effectively rigid (Es/Ep = 10−4, 10−5)318

piles. In all cases, the first iteration of the indirect method provides a good approximation to the319

direct method, even at high frequencies. This implies that varying the stiffness ratio does not have320

a significant influence on the wave-scattering effect.321

The effect of the stiffness ratio on the lateral factors, αuxfx and αuyfy , is to reduce the static and322

low-frequency (a0 < 0.8) amplitudes as the piles become more flexible (i.e. Es/Ep increases). For323

a0 > 0.8, the effect becomes less significant. In contrast, there is almost no change in αuzfz over324

the frequency range of interest, except with very flexible piles (Es/Ep = 10−2). In this case, the325

increased flexibility reduces the amplitude across the frequency range, although the frequencies at326

which the peaks and troughs occur do not shift when a0 < 2.0.327

5.2. Influence of the soil-to-pile density ratio ρs/ρp328

The interaction factors predicted for two neighbouring piles with different soil-to-pile density ra-329

tios, corresponding to light (ρs/ρp = 1.0) and dense (ρs/ρp = 0.7, 0.4) piles, are plotted in Fig. 9.330

As expected, the static and low-frequency (a0 < 0.8) amplitudes of all interaction factors are inde-331

pendent of ρs/ρp because inertial effects are insignificant at these frequencies. For ρs/ρp between332

1.0 and 0.7, there is also no discernible effect at higher frequencies, which agrees with results333
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published by Gazetas et al. [18] using Kaynia’s model [7]. Reducing the density ratio further, to334

ρs/ρp = 0.4, causes two effects at higher frequencies: (1) an increase in the interaction factor am-335

plitudes; and (2) a decrease in the frequencies at which the peaks and troughs in the factors occur.336

In physical terms, lighter soils offer less resistance to the piles, leading to higher amplitude waves337

in the soil. For the densest piles (ρs/ρp = 0.4), at high frequencies (a0 > 1.2), two iterations of the338

indirect method are required for convergence, which is consistent with the wave-scattering effect339

being most significant when there is a large difference in mechanical impedance between the soil340

and piles.341

5.3. Influence of neighbouring and intermediate piles342

In order to identify if neighbouring and intermediate piles can influence the wave-scattering effect,343

the definition of the dynamic interaction factors for two isolated piles, given in Eq. (37), needs to344

be extended to a generic pile-group. The corresponding factors αabij between any two piles a and b345

in a generic pile-group are therefore defined as346

αabij =
Dynamic motion i at pile-head a due to load j at pile-head b

Static motion i at pile-head b due to load j at pile-head b
. (39)

It is expected that the wave-scattering effect will have a greater influence on the PSPI between347

any two piles when the number of neighbouring piles increases. This is due to an increase in348

the distribution of waves propagating back-and-forth between piles within the group and a greater349

propensity for wave interference than is present with only two isolated piles.350

Figure 10 plots the interaction factors for two adjacent piles (piles 1 and 2) when the number351

of neighbouring piles is increased from a 1 × 2 pile-group to a 3 × 3 pile-group. Slight changes352

are observed, especially at high frequencies (α0 > 1.6), and these coincide with an increase in353

the number of iterations required for the indirect method to converge, which is consistent with the354

expected increase in wave scattering. For example, when a0 > 1.4, the vertical interaction factor355

α21
uzfz

requires two iterations for convergence when the number of piles is increased from a 1 × 2356

to a 2×2 pile-group. Nevertheless, these changes are not significant, and it is clear that an isolated357
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Figure 8: The real and imaginary parts of the (a)–(d) lateral and (e)–(f) vertical dynamic interaction factors plotted
against non-dimensional frequency a0 for two neighbouring piles with different soil-to-pile stiffness ratios (Es/Ep =
10−5, 10−4, 10−3, 10−2). The responses are predicted using the direct method (DM) and the indirect method (IM),
for non-dimensional soil and pile parameters L/d = 15, s/d = 2, ρs/ρp = 0.7, νp = 0.25, νs = 0.4 and ηs = 0.05.
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Figure 9: The real and imaginary parts of the (a)–(d) lateral and (e)–(f) vertical dynamic interaction factors plotted
against non-dimensional frequency a0 for two neighbouring piles with different soil-to-pile density ratios (ρs/ρp =
1.0, 0.7, 0.4). The responses are predicted using the direct method (DM) and the indirect method (IM), for non-
dimensional soil and pile parameters L/d = 15, s/d = 2, Es/Ep = 10−3, νp = 0.25, νs = 0.4 and ηs = 0.05.
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Figure 10: The real and imaginary parts of the lateral and vertical dynamic interaction factors plotted against non-
dimensional frequency a0 for two adjacent piles in a (a)–(b) 1 × 2, (c)–(d) 2 × 2 and (e)–(f) 3 × 3 pile-group. In
each pile-group, pile 1 (shaded black) is excited and the displacement calculated at pile 2 (shaded grey) to give α21,
using the direct method (DM) and the indirect method (IM), for non-dimensional soil and pile parameters L/d = 15,
s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.4, νp = 0.25, νs = 0.4 and ηs = 0.05.
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Figure 11: The real and imaginary parts of the lateral and vertical dynamic interaction factors plotted against non-
dimensional frequency a0 for two diagonally opposite piles in a 3 × 3 pile-group, when the presence of intermediate
piles is (a)–(b) included and (c)–(d) omitted. In each case, pile 1 (shaded black) is excited and the displacement is
calculated at pile 9 (shaded grey) to give α91, using the direct method (DM) and the indirect method (IM), for non-
dimensional soil and pile parameters L/d = 15, s/d = 2, Es/Ep = 10−3, ρs/ρp = 0.4, νp = 0.25, νs = 0.4 and
ηs = 0.05.

26



two-pile model provides a good approximation, across the frequency range, for the interaction358

factors of larger pile-groups.359

In contrast, the influence of intermediate piles is more significant. Figure 11 plots the corre-360

sponding results for two diagonally opposite piles (piles 1 and 9) in a 3 × 3 pile-group when the361

intermediate piles are either included or omitted. Note that the lateral interaction factors α91
uxfx

and362

α91
uyfy

are equivalent in Fig. 11 because piles 1 and 9 are positioned at 45◦ to the x and y axes.363

There is no discernible difference between the two sets of results at low and intermediate frequen-364

cies (a0 < 1.2). At higher frequencies, when the intermediate piles are included, the peaks and365

troughs in the interaction factors shift to lower frequencies and increase in number. In physical366

terms, when pile 1 is excited, the wave-fields that arrive at pile 9 are scattered by the intermediate367

piles with a different phase. Note that, in this case, the wave-scattering effect is captured well with368

just one iteration because the intermediate piles and pile 9 are together regarded as the receiver369

sub-system (i.e. all the piles in the receiver are coupled together).370

Based on these observations, it is clear that the PSPI between two piles in a large pile-group can371

indeed be approximated by ignoring neighbouring piles, even at the higher frequencies associated372

with ground-borne vibration (1–160 Hz), provided the two piles are adjacent to each other. This373

approximation is also valid when intermediate piles are present but only up to moderate frequencies374

(≈ 60 Hz). At higher frequencies, when the soil wavelengths approach the length scale of the pile375

diameter, the scattered fields generated at the intermediate piles are more significant and influence376

the PSPI to a greater extent.377

6. Conclusions378

This paper has considered the dynamic behaviour of pile-groups under inertial loading, when ex-379

cited by loads applied at a single pile-head. Results are presented over a range of non-dimensional380

frequencies a0, which correspond to ground-borne vibration in London Clay in the range 1 −381

160 Hz. An indirect method has been developed, based on an iterative wave-scattering approach,382

to couple the piles in a source-receiver BEM model. This has been shown to offer an effective383
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alternative to a direct method based on a standard BEM model of a complete pile-group. By com-384

paring dynamic interaction factors, the two methods have been shown to agree very well, and the385

indirect method has provided useful insights into the significance of wave scattering between piles.386

In general, the first iteration of the indirect method provides a good approximation for the cou-387

pled response as the pile separation ratio s/d, soil-to-pile stiffness ratio Es/Ep and soil-to-pile388

density ratio ρs/ρp are all varied; even at frequencies well above those of previously published389

results. These results show that dynamic interaction factors, calculated using uncoupled source-390

receiver models, can account effectively for the pile-soil-pile interaction (PSPI) between piles with-391

out resorting to fully coupled models. An isolated two-pile model provides a good approximation,392

across the frequency range, for the interaction factors between adjacent piles in larger pile-groups,393

although the presence of intermediate piles may need to be considered at high frequencies because394

of the increased influence of wave scattering that these introduce.395

A fundamental assumption in this study is that the ground may be represented as a homoge-396

neous half-space, but this is often not the case due to soil layering. Layering introduces additional397

wave reflections and mode conversions, and this is likely to affect the PSPI at the high frequencies398

associated with ground-borne vibration. The extent to which this is the case remains the subject of399

future research.400
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Appendix A. The boundary-element method (BEM) for internal points472

Consider a homogeneous, isotropic, three-dimensional domain Ω with surface Γ. When an internal473

point y ∈ Ω lies on the surface Γy of sub-domain Ωy, where Ωy ⊂ Ω, as shown in Fig. A.1, the474

integral equation that represents the displacement-state at y is derived by Domı́nguez [21]:475

ul (y) +

∫
Γ

p∗lk (y,x)uk (x) dΓ =

∫
Γ

u∗lk (y,x) pk (x) dΓ (A.1)

where u∗lk and p∗lk are second-order tensors, or matrices, that represent the fundamental solutions476

of the displacement-state between the integration point vector y in the domain and the collocation477

point vector x at the domain surface.478

The closed-form expressions for u∗lk and p∗lk [21] are:479

u∗lk =
1

4πρc2
S

,
(
ψδlk − χr,lr,k

)
(A.2)

p∗lk =
1

4π

[
A

(
∂r

∂n
δlk + nlr,k

)
+Br,lr,k

∂r

∂n
+ Cr,lnk

]
(A.3)
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Γ

Ωy Γy
Ω

n
y

Figure A.1: The domain Ω (lighter shaded region) with boundary surface Γ is defined within an infinite domain,
represented by the dashed line. The internal point y ∈ Ω, with normal unit-vector n, lies on the surface Γy separating
the sub-domain Ωy (darker shaded region) from Ω.

where ρ is the mass density, r = |y − x| is the distance between the integration and collocation480

points, δlk is the Kronecker delta, and nl is the unit normal vector in the direction el. Equa-481

tions (A.2) and (A.3) are expressed in terms of the following variables:482

ψ =
e−kSr

r

(
1 +

1

kSr
+

1

kS
2r2

)
− e−kP r

r

cS
2

cP 2

(
1 +

1

kP r
+

1

kP
2r2

)
(A.4)

χ =
e−kSr

r

(
1 +

3

kSr
+

3

kS
2r2

)
− e−kP r

r

cS
2

cP 2

(
1 +

3

kP r
+

3

kP
2r2

)
(A.5)

A =
dψ

dr
− χ

r
(A.6)

B = 4
χ

r
− 2

dχ

dr
(A.7)

C =
λ

µ

(
dψ

dr
− dχ

dr
− 2

χ

r

)
− 2

χ

r
(A.8)

with wavenumbers483

kP,S =
iω

cP,S
(A.9)

and phase speeds

cP =

√
λ+ 2µ

ρ
(A.10)

cS =

√
µ

ρ
(A.11)

where λ and µ are the elastic Lamé constants, and the subscripts P and S denote variables associ-484

32



ated with the pressure and shear waves, respectively.485

By numerically computing the integrals in Eq. (A.1) using standard Gauss-Legendre quadra-486

ture, and assuming the field variables are uniform at the collocation points, the displacement ul(yi)487

at multiple M internal points can be rewritten as488

ul (yi) +
N∑
j=1

(∫
Γj

p∗lk
(
yi,xj

)
dΓj

)
uk
(
xj
)

=

N∑
j=1

(∫
Γj

u∗lk
(
yi,xj

)
dΓj

)
pk
(
xj
)

for i = 1, 2, . . . ,M

(A.12)

when there are N nodes at the domain surface. It is worth noting that the integral formulation used489

in the standard BEM requires numerical schemes to avoid the weak and strong singularities in u∗lk490

and p∗lk, respectively, when yi = xj . These singularities are not present when finding the response491

at internal points because the integration and collocation points never coincide with each other.492

The generalised Hooke’s Law for an isotropic continuum and Cauchy’s formula are applied to493

Eq. (A.12) to get an integral equation for the traction pl(yi) [24] at M internal nodes:494

pl (yi) +
N∑
j=1

(∫
Γj

p∗lmk
(
yi,xj

)
nm (yi) dΓj

)
uk
(
xj
)

=

N∑
j=1

(∫
Γj

u∗lmk
(
yi,xj

)
nm (yi) dΓj

)
pk
(
xj
)

for i = 1, 2, . . . ,M

(A.13)

where nm (y) is the normal unit-vector at y pointing into domain Ω from sub-domain Ωy, as shown495

in Fig. A.1. The third-order tensors u∗lmk and p∗lmk that represent the fundamental solutions of the496

stress-state [24] can be given as closed-form expressions:497

u∗lmk =− 1

4π

[
A
(
r,lδmk + r,mδlk − r,kδlm

)
+Br,lr,mr,k

]
(A.14)

p∗lmk =
ρc2

S

4π

[
− A2

r
(nlδmk + nmδlk) +D

(
r,kδlm

∂r

∂n
+ r,lr,mnk

)
+

E

(
∂r

∂n

[
r,lδmk + r,mδlk

]
+ r,mr,knl + r,lr,knm

)
+

Fr,lr,mr,k
∂r

∂n
+Gnkδlm

] (A.15)
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where498

D = 2

[
d2ψ

dr2
− 1

r

(
dψ

dr
+
dχ

dr

)
+
χ

r2

]
(A.16)

E = −d
2ψ

dr2
+

1

r

(
dψ

dr
+ 3

dχ

dr

)
− 6

χ

r2
(A.17)

F = 4

[
3

2

d2χ

dr2
− 5

r

dχ

dr
+ 7

χ

r2

]
(A.18)

G = −2

(
d2ψ

dr2
+ 2

d2χ

dr2

)
(A.19)

and the other variables are the same as those defined in Eqs. (A.4)–(A.11).499

Appendix B. Block-diagonal matrices500

The block-diagonal matrices that contain the sub-matrices from each pile’s displacement FRF ma-501

trix in the pile-group are:502

HP11 =



H1
P11 0 . . . 0

0 H2
P11 0

... . . . ...

0 0 . . . HN
P11


, HP12 =



H1
P12 0 . . . 0

0 H2
P12 0

... . . . ...

0 0 . . . HN
P12


,

HP21 =



H1
P21 0 . . . 0

0 H2
P21 0

... . . . ...

0 0 . . . HN
P21


, HP22 =



H1
P22 0 . . . 0

0 H2
P22 0

... . . . ...

0 0 . . . HN
P22


.

(B.1)

The block-diagonal transformation matrices that couple the field variables at the soil-pile inter-503

face to each pile’s centroidal axis are:504
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Q1 =



Q1
1 0 . . . 0

0 Q2
1 0

... . . . ...

0 0 . . . QN
1


, Q2 =



Q1
2 0 . . . 0

0 Q2
2 0

... . . . ...

0 0 . . . QN
2


. (B.2)
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