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ABSTRACT 45 
Medicine is, in its essence, decision making under uncertainty; The decisions are made 46 
about tests to be performed and treatments to be administered. Traditionally the 47 
uncertainty in decision making was handled using expertise collected by individual 48 
providers, and more recently systematic appraisal of research in the form of evidence-49 
based medicine. The traditional approach has been successfully used in medicine for a 50 
very long time. However, it has significant limitations due to the complexity of the 51 
system of the human body and health care. The complex systems are networks of 52 
highly coupled components intensely interacting with each other. These interactions 53 
give those systems redundancy, thus robustness to failure, and, at the same time, 54 
equifinality, that is, many different causative pathways leading to the same outcome. 55 
The equifinality of the complex systems of the human body and health care system 56 
demand the individualization of medical care, medicine, and medical decision making. 57 
Computational models excel in modeling complex systems and, in consequence, 58 
enabling individualization of medical decision making and medicine. Computational 59 
models are theory- or knowledge-based models, data-driven models, or models that 60 
combine both approaches. Data are essential, although to a different degree, for 61 
computational models to successfully represent complex systems. The individualized 62 
decision making, made possible by the computational modeling of complex systems, 63 
has the potential to revolutionize the entire spectrum of medicine from individual 64 
patient care to policymaking. This approach allows applying tests and treatments to 65 
individuals who receive a net benefit from them, for whom benefits outweigh the risk, 66 
rather than treating all individuals in a population because on average the population 67 
benefits. Thus, the computational-modeling-enabled individualization of medical 68 
decision making has the potential to both improve health outcomes and decrease the 69 
costs of health care. 70 
 71 
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“Medicine is a science of uncertainty and an art of probability.”1 This is how Sir William 89 
Osler described medicine over a century ago, a statement that resonates with us as 90 
strongly today. The considerable and ever-present multi-faceted uncertainty, in 91 
comparison to other disciplines, is what makes the practice of medicine so 92 
challenging. This is mainly because in medicine we face a very complex system and we 93 
lack fundamental natural laws describing its function to inform our models. The 94 
uncertainty and complexity are especially pronounced in the practice of obstetrics, 95 
where two or more young and usually otherwise healthy patients with long life 96 
expectancies and with frequently conflicting health interests are being cared for and 97 
where the stakes and expectations are very high2, 3. Thus, medicine is, in its essence, 98 
decision making under uncertainty; decisions about the tests to be performed and 99 
treatments to be administered. The inescapable and pervasive uncertainty is the 100 
consequence of two issues facing every, although to a different degree, medical 101 
decision: the incomplete information to make the decision and the element of chance, 102 
randomness or luck. As a consequence, there are neither perfect tests nor treatments. 103 
Although not intuitive, the false positive rate of a test—the  probability that the positive 104 
test is false—varies  widely among patients depending on the patient’s prior (before the 105 
test) probability of having a disease. One of the most accurate tests available is the HIV 106 
antibody test. The false-positive rate of the HIV test varies from 3.2% in high-risk for 107 
HIV populations to 99.5% in low-risk populations4. Thus, if a patient is at low risk for 108 
HIV, a positive HIV test is falsely positive in 99.5% of cases. However, when the risk 109 
level or prior probability of the disease is not known before testing, the uncertainty of 110 
testing vastly affects the decision making for an individual patient. Similarly, among the 111 
top ten grossing medications in the U.S., only 1 in 4 to 1 in 25 patients receiving them 112 
benefit from the treatment5. Thus, some patients benefit, however many do not, and it 113 
is uncertain who will respond and who will not. Therefore, in choosing a test or 114 
treatment, uncertainty plays a significant role and substantially affects the decision 115 
making.  116 
 117 
Patients, physicians, and policymakers have been shown to have difficulty with 118 
interpretation of the meaning of numbers, especially probabilities. This difficulty is 119 
common and has serious consequences for healthcare6. A study of 160 obstetricians 120 
and gynecologists have shown that 80% of them incorrectly interpreted the risk of 121 
breast cancer associated with a positive mammogram. “The majority of them grossly 122 
overestimated the probability of cancer,” overestimating the risk by almost an order of 123 
magnitude 80-90% instead of 10% in the given clinical scenario.7 US obstetricians and 124 
gynecologists also had difficulty in interpretation uncertainty and probabilities related 125 
to ovarian cancer screening.8 The difficulty in interpreting uncertainty and the related 126 
probabilities by obstetricians, gynecologists, and other specialty physicians and 127 
patients has been shown regarding ovarian cancer screening and other areas.8, 9 128 
 129 
Because of the uncertainty, the best decision is not the one which results in a good 130 
outcome, but one which carefully considers all potential future outcomes, their 131 
probabilities and consequences as well as relates to the decision maker’s individual 132 
preferences10. Two approaches emerge to handle uncertainty in medicine. The 133 
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traditional approach has been used in medicine from its origins. Yet, recent 134 
developments of computational methods and computer capabilities have placed us at 135 
a point in time when these advances can revolutionize medical decision making and 136 
medicine in general.  137 
 138 
The traditional approach to handling uncertainty has been successfully used in 139 
medicine for a very long time. For centuries it was based on expertise, experience 140 
collected in the process of practicing medicine. Expertise is undoubtedly very effective 141 
and saved countless lives. It is especially useful, however, when used with the 142 
awareness of its limitations. These limitations of expertise are due to the heuristics we 143 
use in intuitive decision making. They were first described by Tversky and Kahneman 144 
over 40 years ago, and the latter received for it the Nobel Memorial Prize in Economic 145 
Sciences11. Heuristics are used by every human being and probably constitute an 146 
evolutionary advantage. They allow quick decision making and are usually very 147 
effective. However, they may also lead us to make predictable mistakes resulting in a 148 
bias in our decision making. 149 
 150 
One of these biases is our tendency to overestimate the probability of the events we 151 
can more easily retrieve from our memory, the events which are common in our 152 
experience and events that are emotionally charged. That is why we all have a biased 153 
tendency to overestimate the probability of good outcomes, especially in obstetrics, or 154 
specific rare adverse outcomes that have happened to one of our patients2, 3. The use 155 
of expertise in the handling of uncertainty in medical practice is also hindered by 156 
limitations of individual experience. An obstetrician in the U.S. delivers, on average, 157 
about 140 patients a year12. This means, on average, an obstetrician will experience 158 
one cerebral palsy associated with intrapartum hypoxia in 174 years13, 14, one 159 
permanent brachial plexus palsy in 40 years15, one cerebral palsy due to uterine rupture 160 
in 694 years16, 17, and one maternal death in 38 years18, 19. Thus, it is very difficult to 161 
collect sufficient experience and use it effectively in estimating uncertainty in medical 162 
decision making. The limited possible individual experiences, together with cognitive 163 
biases, limits the effectiveness of expertise in handling uncertainty in decision making. 164 
These limitations of expertise are well illustrated by words spoken in an area outside of 165 
medicine but very well suited to it, by Captain Edward Smith in 1907 “I never saw a 166 
wreck and never have been wrecked, nor was I ever in any predicament that 167 
threatened to end in disaster.” Five years later, on April 14th, 1912, he was the captain 168 
of RMS Titanic. 169 
 170 
Mainly in response to the limitations of expertise, as well as the quality and use of 171 
evidence, evidence-based medicine was introduced in the 1990s. It was developed 172 
with the goal to guide clinical practice by using the results of high-quality evidence, 173 
especially in randomized controlled trials (RCTs). This approach was expected to 174 
minimize the uncertainty in medical decision making and, in consequence, improve 175 
outcomes through consolidation of high-quality-of-evidence in systematic reviews and 176 
clinical guidelines. Much progress in medicine has been achieved in the last 30 years 177 
thanks to the evidence-based medicine paradigm20. However, its limitations and 178 
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misapplications have also become evident21. Over two decades later, a review of the 179 
state of evidence-based medicine shows that many evidence-based guidelines are not 180 
based on RCTs and perhaps as few as 11% in some areas of medicine22. A review of 181 
approximately 3,000 treatments classified 50% of them as having insufficient 182 
supporting evidence. Among the other half, judged to be evidence-based, 24% of 183 
treatments were considered likely to be beneficial, 7% required trade-offs between 184 
benefits and harms, 5% were unlikely to be beneficial, 3% were likely to be ineffective 185 
or harmful, and only 11% were clearly beneficial22. 186 
 187 
Perhaps, even more importantly, when the clinical guidelines make recommendations 188 
based on RCTs, the recommendations frequently differ between the guidelines even 189 
when the same RCTs are cited as evidence for the different recommendations23, 24. This 190 
is a consequence of the focus of the guidelines’ appraisal tools on the internal validity 191 
of the referenced RCTs. These appraisal tools focus on the methodology and quality of 192 
reporting of the cited studies rather than on their external validity, generalizability, and 193 
clinical relevance and applicability besides their internal validity25. Therefore, the RCTs 194 
may not be applicable to the populations, interventions, and outcomes specified in the 195 
recommendations made in the guidelines. Analysis of national clinical guidelines issued 196 
by professional organizations from the U.S., Canada, and Europe, showed that of the 197 
338 treatment recommendations made in the nine guidelines, a third had not been 198 
based on evidence from RCTs, considered to be the highest quality level of evidence. 199 
Another third of recommendations did cite RCTs in support but were found to provide 200 
evidence of low quality. The low quality of the evidence in those recommendations was 201 
due to lack of applicability of the RCTs to the population targeted by the 202 
recommendations, or because the cited trials reported surrogate outcomes rather than 203 
the outcomes addressed by the recommendations25. 204 
 205 
RCTs are traditionally considered to be the strongest form of evidence for clinical 206 
decision making. However, 20% of all published medical research was shown to have 207 
methodological flaws, with RCTs having as many limitations as other studies26.  208 
Some estimates of the non-reproducibility of the RCTs are even higher. Furthermore, 209 
even the highest quality medical evidence is itself uncertain. Analysis of 49 studies, 210 
each cited over 1,000 times and published in the leading journals, showed that a third 211 
of their findings could not be reproduced by subsequent studies of similar or larger 212 
size, or the effect sizes of the subsequent studies were substantially smaller27. 213 
 214 
The RCTs are widely considered the “gold standard” of evidence, and their integration, 215 
the meta-analyses, are thought by many as the “platinum standard” of evidence-based 216 
medicine28. They are considered to be the highest level of evidence, thus the best way 217 
to handle uncertainty in medicine. However, despite many tremendous contributions 218 
made to the practice of medicine, the RCTs and their meta-analyses have a large 219 
number of potentially serious limitations, making them less than optimal to be the sole 220 
source of evidence in managing uncertainty in medicine. A. L. Cochrane, the pioneer of 221 
the use of RCTs in medicine, warned in 1971, “Between measurements based on 222 
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RCTs and benefit . . . in the community there is a gulf which has been much under-223 
estimated”29. 224 
 225 
Today it is evident that treatments used across the medical specialties are consistently 226 
less effective in clinical practice than they are reported in RCTs29-35. The low 227 
effectiveness of medications in clinical practice appears to result from poor external 228 
validity or generalizability of clinical trials. Research into the internal validity of RCTs 229 
dwarfs the evaluation of their generalizability, and their use in the clinical practice. The 230 
RCTs’ appraisal tools evaluating their performance, and thus the quality of their 231 
evidence usually do not consider generalizability of RCTs, the quality critical to 232 
managing uncertainty in clinical practice. In RCTs, only a subset of a population in 233 
which an intervention or medication is applied benefits from it33, 36, 37. Frequently the 234 
benefiting subset is a minority of patients receiving a medication33. A still smaller 235 
subset of patients may receive a net benefit from medication, the benefit minus harm 236 
related to medication38, 39. The low generalizability or external validity of clinical trials 237 
and, in consequence, low effectiveness of medications in clinical practice is due in 238 
large part to heterogeneity of treatment effect (HTE), which has been observed across 239 
the spectrum of interventions and domains of medicine29, 35, 40, 41. HTE has four sources: 240 
heterogeneity of baseline disease risk, heterogeneity of treatment effect, heterogeneity 241 
of treatment-related harm and heterogeneity of competing risks, risks related to 242 
conditions other than one studied32, 33, 35, 42, 43. 243 
 244 
The limited generalizability of the RCTs is also due to a very narrow selection of study 245 
populations in RCTs, and the extensive inclusion and exclusion criteria applied44. 246 
Thus, the RCTs and the guidelines cannot always be assumed to provide high-quality 247 
evidence for the recommendations they make. RCTs and their meta-analyses answer 248 
the question “does it work” rather than the question more critical to medical decision 249 
making: “in whom might it work.” Evidence-based medicine in general and RCTs 250 
specifically are substantially limited in handling uncertainty, which is critical in medical 251 
decision making and the practice of medicine.  252 
 253 
Complex systems 254 
The traditional approaches to handling uncertainty, based on expertise or evidence-255 
based, are shown to have severe limitations. One could argue that these limitations 256 
underlie a large part of the health care crisis by enabling abuses of the fee for service 257 
system and defensive medicine. The difficulty in managing inherent-in-medicine 258 
uncertainty comes from the traditional understanding of the human body and health 259 
care as linear cause and effect systems. However, the human body and health care 260 
are complex systems, systems composed of a vast number of relatively simple 261 
components, which intensely interact with each other, and lead to the emergence of 262 
unique system behaviors. The complex systems are networks of tightly coupled 263 
components, e.g., genes, proteins, cells, etc. interacting in a non-linear manner45-48.  264 
The unique behaviors of the system emerge from the interactions of the simple 265 
components. The number of possible interactions grows exponentially with the number 266 
of elements in the system. To put this in a proper perspective, a moderate number of 267 
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25 elements, for example, risk factors and protective characteristics, could have up to 268 
225 or 33,554,432 interactions among them. If one considers that the human body is 269 
made of an order of 1013 cells, and each cell contains 42 x 106 protein molecules, the 270 
number of potential interactions is genuinely staggering. Interactions, where almost 271 
everything affects everything else and does so in a non-linear manner, result in 272 
redundancies which make the complex systems robust to failures, such as disease in 273 
an individual patient or inability to provide health care to patients in need in a health 274 
care system49. However, these redundancies also result in multiple ways that failure 275 
can occur rather than a single “root cause,” leading to failure. Due to that structure, 276 
complex systems have many different causative pathways, and thus many different 277 
ways an outcome can occur; the phenomenon known as equifinality50. Equifinality, the 278 
many different causative pathways and ways an adverse outcome can occur, 279 
requires individualization of care:  The individualization of decision making, 280 
individualization of testing and treatments (Figure 1). For example, in a predictive model 281 
using a combination of 13 continuous and categorical predictors, 80% of the 2 M 282 
pregnant women have a unique combination of those predictors - risk factors and 283 
protective characteristics. 284 
 285 

 286 
 287 
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Figure 1. Simplified idealized representation of a complex system, such as the human 288 
body or health care system. The system is made of a vast number of components 289 
highly interacting with each other. Complex systems have, due to their structure, many 290 
different ways or causative pathways through which an outcome can occur; the 291 
phenomenon known as equifinality. Equifinality demands individualization as an 292 
approach to complex systems such as the individualization of medical decision 293 
making. 294 
 295 
Thus, any contemplated preventive or therapeutic intervention, test or health policy 296 
considered must be based on a balance between individual associated risks and 297 
benefits, and an individual decision maker's risk preferences. The human mind is ill-298 
equipped to understand and manage the level of complexity needed for optimal 299 
medical decision making. Despite that, these complex decisions are made daily by a 300 
broad spectrum of decision-makers ranging from an individual patient to a health 301 
policymaker.  302 
 303 
Computational models are uniquely suited to handle the intensity of interactions and 304 
the uncertainty and complexity associated with them. They excel in modeling complex 305 
systems. The word model in this context is a simplified approximate representation of 306 
the complex system, which allows analysis of the complex system behavior. The 307 
computational part is the mathematical and quantitative representation of the complex 308 
system, which prevents ambiguity of the model specification and representation in the 309 
form that is executable using a computer. Computational modeling of complex 310 
systems can be achieved by using data-driven and/or theory- or knowledge-driven 311 
models. In very general terms, the data-driven models require a limited amount of 312 
knowledge about the system but a large amount of data. The theory- or knowledge-313 
driven models require a limited amount of data, but substantial knowledge of the 314 
system. The computational models predict the behavior of the system, e.g., patients, in 315 
the future, and this ability is expressed as external validation of the model. The 316 
computational model, which predicts well, also provides a good understanding of the 317 
complex system it represents. Prediction is an essential component of medical 318 
decision making. Because of the inherent uncertainty in medical decision making and 319 
complex systems in general,  the computational models are stochastic. That means 320 
that the models limit the number of possible outcomes by eliminating some 321 
possibilities, and giving a higher probability to other outcomes that are among a pool of 322 
potential outcomes known before modeling and ones which become a possibility 323 
through the use of the model. Familiar examples of computational models are weather 324 
forecasts or hurricane predictions.  325 
 326 
The computational models excel in modeling complex systems and at solving these 327 
kinds of complex problems. They are ideally suited to address the critical and 328 
complex elements of individualized medical decision making. Computational methods 329 
are unrivaled and can play central role in individual predictions and weighing individual, 330 
frequently conflicting risks and benefits with their preferences. Computational 331 
approaches can account for these types of complexities, aiding optimal medical 332 
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decision making for an individual patient as well as simulating a suite of decisions for 333 
policymakers. 334 
 335 
Computational Medicine can thus be defined as the discipline that uses advanced 336 
mathematical approaches to model complex systems along a spectrum from the 337 
human body to the health care system. To accurately represent these complex 338 
systems, the models need to capture the individuality of health and disease for 339 
accurate decision making at all levels. Ranging from the patient to the policy, these 340 
require substantial computational capabilities to make accurate decisions. The models 341 
can be theory- or knowledge-driven or data-driven, or a combination of these. 342 
To define the future direction of computational medicine, the Computational Health 343 
Conference, held in Austin, TX in 2018, brought together key stakeholders in health 344 
care and experts in computation and health from academia, government, industry, 345 
philanthropy, and communities, with the goal of identifying future directions and 346 
opportunities for computational health and medicine (Figure 2). In addition to 347 
establishing a consensus that advances in computation are creating a new paradigm 348 
for medicine and health care, a primary outcome of the conference was a 349 
recommendation to create a multidisciplinary Center or Think Tank to research and 350 
develop computational solutions to problems of interest for health care stakeholders 351 
from academia, government, industry, philanthropy, and communities. Such a 352 
collaborative partnership would most efficiently use computational methods to exploit 353 
data at a deeper level and assure the use of the computational solutions for a range of 354 
the stakeholders' interests, from clinical practice to policymaking.   355 
 356 
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 357 
 358 
Figure 2. The Computational Health Conference, held in Austin, TX in October of 2018.  359 
The conference brought together key stakeholders in health care and experts in 360 
computation and health from academia, government, industry, philanthropy, and 361 
communities with the goal of identifying future directions and opportunities for 362 
computational health and medicine. 363 
 364 
 365 
 366 
Computational models allow to explore a very large number of predictors and many 367 
more interactions among them, inherent to every complex system, thus to extract a 368 
deeper level of information contained in the data. The deeper, more refined insights 369 
allow in consequence better modeling of complex systems by capturing their individual 370 
facets and thus allowing individualization of medicine through individualized decision 371 
making.  372 
Data are essential, although to a different degree, for computational models to 373 
successfully model complex systems. However, having more data on an individual 374 
level, higher granularity data, does not necessarily equate to more information. Indeed, 375 
there is no perfect data source, neither for traditional nor for computational solutions. 376 
Each data source in medicine has its own advantages and limitations. However, 377 
computational methods appear to extract more information from the same data than 378 
traditional solutions.  379 
 380 
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 381 
DATA 382 
Traditional Sources of Data 383 
Using information to make and inform clinical decisions is innate within medicine. 384 
Teaching and personal experience lead to decision making which can be interpreted in 385 
light of statistical theory.  Bayesian statistical methods estimate posterior risk by 386 
combining prior risk with disease associations, which increase or decrease the odds of 387 
disease. Clinicians do this every day without formalizing – or possibly even thinking 388 
about – the analysis. The experience of sudden onset dyspnea is a possible presenting 389 
symptom of pulmonary embolism. The proportional increase in risk (the positive 390 
likelihood ratio) will be greater still if it is associated with pleuritic chest pain. The 391 
likelihood of the diagnosis of pulmonary embolism will also depend on the prior risk. It 392 
will be higher in a pregnant woman with a recent history of long haul travel whereas it 393 
will be lower in a febrile but previously healthy child. 394 
 395 
Computational methods allow data to be explored at a deeper level by exploring very 396 
large number of predictors and many more interactions among them. Hence, complex 397 
combinations of positive and negative factors can be combined into a single estimate 398 
of risk in a way that an individual clinician would be unable to achieve. Moreover, 399 
whereas a clinician may be biased by individual experience of a relatively small number 400 
of cases, computational methods attach weights to risk factors which are based on the 401 
observed data and can use far more cases than any clinician could ever see. However, 402 
there is no perfect data source, either for analytic or for numeric solutions. Each data 403 
source in medicine has its own advantages and limitations.  404 
 405 
Real World Data 406 
Every data source can be criticized and there is no such thing as a perfect data source: 407 
they are all imperfect but they are imperfect in inherently different ways. 408 
 409 
Administrative database 410 
The strength of administrative databases is that they tend to have large numbers of 411 
subjects and they are available for analysis, i.e. it is usually straightforward to obtain 412 
permission for research and the data usually come in a format which is easy to 413 
accommodate. This means that rare outcomes can be studied and that the costs of the 414 
research are often modest when compared with alternative approaches. There are, 415 
however, multiple drawbacks of using administrative datasets. The data are generally 416 
of rather low granularity. Hence, outcomes, such as preeclampsia will simply be 417 
recorded in a binary fashion with little or no information of the different phenotypes. 418 
Key exposure data might also be absent. Consequently, associations may be observed 419 
through residual confounding by rather obvious and well recognized confounders. The 420 
lack of granularity also affects covariates. For example, a woman may be documented 421 
as a smoker. However, it might only be recorded at one stage in pregnancy, the 422 
number or type of tobacco might not be documented and there may be no information 423 
on whether she subsequently quit smoking during the pregnancy. The other major 424 
issue with administrative data sources is the quality. Hence, taking the example above, 425 
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not only is the diagnosis of preeclampsia binary, in many cases the definition of 426 
preeclampsia may be completely incorrect, being documented as absent in a woman 427 
with severe disease and documented as present in a healthy woman. There could also 428 
be conflicting information contained in the different parts of patient records. 429 
The strengths of administrative data mean that it is very likely that they will continue to 430 
be used for the purposes of research. The appropriate response to weaknesses is their 431 
recognition by those generating and using research. The researcher may use multiple 432 
sensitivity analyses to determine whether their associations are likely to be true. For 433 
example, where there is an analysis of an association with preeclampsia, they might 434 
perform exploratory analyses to determine whether the pattern is consistent with a real 435 
association. Was the diagnosis of preeclampsia associated with known risk factors, 436 
such as nulliparity and obesity? When the outcome was confined to women with other 437 
features consistent with the disease, such as preterm birth and fetal growth restriction, 438 
were the key observations still present? 439 
 440 
Electronic Medical Record (EMR) 441 
The future prospects for researchers planning a career in the analysis of routinely 442 
collected data look quite bright and this is due to the increasing use of the EMR. 443 
Administrative databases, as described above, have existed since the second half of 444 
the 20th century and would have involved records’ staff entering data to a dedicated 445 
database from a patient’s paper case record. However, with the development of the 446 
EMR, in some hospitals every piece of information that is held on a patient may be kept 447 
in an EMR. This means that the information available is much greater in scope and 448 
much more detailed. Moreover, the data are being entered by clinicians who have a 449 
much more highly developed clinical knowledge than records’ staff. However, research 450 
analysis of the data is a secondary purpose of the EMR. As the primary purpose is to 451 
facilitate the delivery of and billing for care, the data are entered prioritizing this end. 452 
Moreover, although the clinical staff will have greater knowledge, data entry is the 453 
means to an end and not their primary purpose. Hence, when compared with records’ 454 
staff, they may apply definitions less consistently and incompletely. A great strength of 455 
analysis of the EMR is the access to observed numerical data. This includes vital signs 456 
(e.g. temperature, blood pressure, and respiratory rate) and the result of lab tests, (e.g. 457 
biochemistry, hematology, and microbiology). Hence, if studying preeclampsia, a 458 
researcher might hesitate to accept the presence or absence of the diagnosis being 459 
documented in the EMR as defining the presence or absence of the condition. 460 
However, considering the ACOG Guidelines51 for definition, every single blood pressure 461 
measurement recorded during a stay could be analyzed to define hypertension, every 462 
point of care and laboratory analysis of urine could be used to define proteinuria, and 463 
every laboratory test performed during the admission (such as creatinine, platelet count 464 
or alanine transaminase) could be used to define the renal, hematological or hepatic 465 
features (respectively) of severe disease.  466 
 467 
The practical utility of EMR data also depends on other issues. Whereas administrative 468 
databases are typically available in a simple spreadsheet format of columns and rows, 469 
although the very large databases may have a more complex structure, EMR data will 470 
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reflect the complexity of the clinical environment. Some members of a cohort of 471 
pregnant patients may have 10 measurements of blood pressure, others may have 472 
200. The researcher needs to consider whether they wish a raw data dump, or whether 473 
the information is pre-processed. Whatever the case, additional resources will be 474 
required to format the dataset prior to analysis, when compared with an administrative 475 
dataset. Statistical power is likely to be better than in many research studies, as the 476 
entire population attending a hospital will, over a short period of time, generate the 477 
sorts of numbers of patients that would be extremely expensive to study in a 478 
prospective fashion. However, outcomes such as perinatal or maternal death may still 479 
be too infrequent for the analysis of a single institution to be informative. Perhaps one 480 
of the most promising avenues is the analysis of a common EMR used by a network of 481 
hospitals, perhaps covered by the same provider, or where different providers have 482 
used the same EMR. For example, a national randomized controlled trial in the UK is 483 
going to collect outcome data from a widely used neonatal intensive care EMR to 484 
ascertain outcomes52. 485 
 486 
Research Studies 487 
Study design is key when assessing the evidence around a given belief in medicine. 488 
This has led to the widely adopted use of “levels of evidence” (Figure 3). However, the 489 
prioritization of study design above many other important issues is open to criticism53. 490 
For example, for some outcomes, the main challenge might be to perform a study that 491 
has a large sample size, as the outcome in question is rare, which is true for the most 492 
important outcomes, such as moratlities or severe morbidities. Randomized controlled 493 
trials are biased to report negative results for rare outcomes as conducting a trial which 494 
is powered is prohibitively expensive. Similar arguments apply for remote outcomes, 495 
due to the expense of long term follow up. Hence, the “pyramid of evidence” could be 496 
an unhelpful metaphor, as it oversimplifies a complex question. 497 
 498 
Observational studies 499 
There are multiple observational study designs and a description of these is outside the 500 
scope of this review. The key issue around observational designs is that the exposure 501 
of interest is observed, but not determined by the investigator. This is in contrast to the 502 
RCT (described below), where the exposure is applied experimentally. The major 503 
weakness of observational study designs is that associations between the given 504 
exposure and the outcome are not causal but are related to their mutual dependence 505 
on a third characteristic, a confounder. Controlling for confounding can be attempted 506 
statistically, for example, using multivariable statistical models. However, the concern 507 
is that an association which is observed after statistical adjustment for the measured 508 
potential confounders could be explained by an unmeasured confounder. For this 509 
reason, the associations described in observational studies are interpreted cautiously.  510 
The reality is, however, that many major questions can only be assessed using 511 
observational studies. Sometimes, this is because women will not agree to be 512 
randomized to a trial. Virtually the entirety of the evidence around vaginal birth after 513 
cesarean (VABC) is based on observational data. A group who attempted a large scale 514 
trial RCT of VBAC versus planned repeat cesarean delivery in 14 Australian maternity 515 
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hospitals only managed to recruit 22 women out of a cohort of 2,345 (i.e. <1% of those 516 
recruited)54. Other questions will only ever be addressable using observational studies 517 
because an adequately powered trial is prohibitively expensive. For example, there is 518 
strong evidence from observational studies that there is an increased risk of perinatal 519 
death of the second twin at term, but not preterm55. Observational studies also indicate 520 
a reduced risk of perinatal death of twins with planned cesarean at term55. However, a 521 
multicenter, international RCT was only able to study about 1,500 term twin births56, 522 
less than a quarter of the required sample size to study the effect of planned cesarean 523 
on the risk of perinatal death57. Interestingly, a recent re-analysis of the Twin Birth 524 
Study has shown that planned cesarean delivery reduced the risk of a composite 525 
adverse outcome, including death, when delivery occurred at term but not preterm (as 526 
predicted by observational studies)58. 527 
 528 
Randomized controlled trials 529 
There is no doubt that an adequately powered randomized controlled trial, conducted 530 
in a methodologically rigorous fashion (e.g. prospective registration, pre-specified 531 
primary outcome, pre-defined analysis plan, overseen by independent steering and 532 
data monitoring committees) provides the strongest evidence in relation to the effects 533 
of interventions in medicine. Furthermore, meta-analysis of multiple such trials, 534 
conducted in different settings, will generate more precise estimates of effect size and 535 
assess whether the intervention works consistently in different settings. However, a 536 
minority of clinical decisions in obstetrics and gynecology that are made using such an 537 
evidence base.  538 
An increasingly recognized concern is that we may end up making clinical decisions 539 
based on meta-analysis of randomized controlled trials but the decisions made may be 540 
flawed due to issues with the evidence base, despite being composed of RCTs. As 541 
recently stated by the Editor of The Lancet “But what if the astonishing energy, 542 
commitment, and productivity of the systematic review community are poisoning rather 543 
than nourishing medical practice?”59. The issue being addressed was concerns about 544 
the quality and accuracy of many of the small trials included in systematic reviews. 545 
However, even well conducted trials have the potential to mislead. The women 546 
recruited to a trial might not be representative of the general population: this 547 
undermines the external validity of the conclusions. RCTs are difficult and expensive, 548 
hence, the number of women recruited may have been limited by cost meaning that 549 
only relatively common outcomes could be studied. Hence a treatment might be 550 
recommended or not based on its effect on mild adverse outcomes which are common 551 
when it has the opposite effect on severe adverse outcomes which are rare. Cost may 552 
also limit the duration of follow up. Hence, an intervention might be recommended on 553 
the basis of a short term benefit but in the absence of evidence about its long term 554 
effect.  555 
Further issues relate to type 1 and type 2 statistical error. Whereas best practice 556 
recognizes that reliable conclusions from RCTs can only be drawn from the pre-557 
specified primary outcome, “p-hacking” still occurs. Multiple hypothesis tests make it 558 
more likely that a null hypothesis is incorrectly rejected, type 1 error60. Conversely, type 559 
2 error is the major concern in relation to statistical power. If the sample size is too 560 
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small, a study will be biased to produce a negative result. In an ideal world, clinicians 561 
would look at the 95% confidence interval of the effect and understand that no safe 562 
conclusion can be drawn. However, with an over-emphasis on p values, the 563 
statistically uninformed may equate absence of evidence with evidence of absence and 564 
utter “evidence-based medicine’s six most dangerous words”61: “there is no evidence 565 
to suggest that...”  566 
In summary, clinical decisions involve drawing conclusions from a large body of 567 
evidence. For most clinical decisions, the task of relating the research evidence to 568 
making a given decision is highly complex. Analysis of routinely collected data, 569 
whether administrative or EMR, has the advantage that the entire population can be 570 
studied, but has the drawback that the approach is much more complicated and the 571 
output can be difficult to assess. RCTs are attractive by their relative simplicity and 572 
their experimental design. However, considering complex questions about 573 
recommending a given approach in a simplistic manner, e.g. study design is the only 574 
major concern, has the capacity to lead to widespread harm. 575 
 576 
 577 

 578 
 579 
Figure 3. Schematic representation of the “levels of evidence”. RCT denotes 580 
randomized controlled trial and SR denotes systematic review. 581 
 582 
 583 
Novel Sources of Data 584 
 585 
Digital phenotyping 586 
Digital phenotyping is an all-encompassing term for the trail of digital data that people 587 
leave behind in their daily lives – interactions with the internet, social media, and 588 
technology. This data is largely untapped and has significant potential for use in the 589 
health care industry. People generate an enormous amount of digital data each day, 590 
and this moment-by-moment computation of an individual’s phenotype measured in-591 
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situ from ubiquitous personal devices has enormous potential to revolutionize the way 592 
we understand and make sense of health and health-related conditions62.  593 
81% of Americans now own smartphones, and this rate has dramatically increased 594 
over time63 (Figure 4). The ubiquity of smartphones makes them ideal to collect detailed 595 
patterns of true behavior from individuals in an objective manner. Additionally, passive 596 
methods for collecting data – those mechanisms that automatically collect, with the 597 
individual’s consent, but without the need for explicit input – provide a continuous 598 
means of collecting data in the background and allow for a more fine-grained collection 599 
of behavioral, health-related, environmental, and lifestyle data64. This data, in 600 
combination with traditional clinical data, provides a powerful tool to understand and 601 
develop a digital phenotype of both health and disease, at the individual level but also 602 
across a given population (Figure 5). With rapid advances in the broad availability of 603 
machine learning and the application of numerical simulations, digital phenotyping 604 
holds tremendous promise to provide a plethora of insight not previously possible.  605 
Novel approaches such as digital phenotyping allow wider applications of N-of-1 trials 606 
or studies and are more effectively performed using computational methods. By 607 
connecting aggregate multi-level and multi-scale clinical, biomedical, personal, social, 608 
contextual, environmental, and organizational data and using it to individualize 609 
decision-making in health and medicine, we would get not only a more informed 610 
picture of an individual’s health, but also a greater promise for transforming and 611 
optimizing health care for populations as well.   612 
 613 
 614 
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 615 
 616 
Figure 4. Proportion of U.S. adults who own cellphones and smartphones. 617 
 618 
 619 
 620 
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 621 
 622 
Figure 5. Monitoring interface of digital phenotype data streamed real-time from a 623 
patient’s cell phone to the supercomputer. 624 
 625 
 626 
Wearables and internet connected sensors 627 
Current and emerging wearable and internet-connected devices/sensors are poised to 628 
address many deficiencies of traditional data sources by enabling the longitudinal 629 
collection of contextually rich, multifaceted, and individual-level data at unprecedented 630 
scales. The use of wearables or smart devices (e.g. activity trackers, smartwatches, 631 
glucometers)  for health and wellness is rapidly proliferating among consumers from an 632 
estimated 9% in 2014 to 33% in 201865. They also continue to be incorporated into 633 
clinical practice as a means of remote patient monitoring (e.g. chronic disease 634 
management, acute health event detection) and population based health research(4). A 635 
detailed review of these devices is beyond the scope of this article and we refer the 636 
reader to Dunn et al.66 for a thorough discussion of health-related applications. The 637 
diverse data generated by sensors embedded in wearables or smart devices can 638 
report on, for example, an individual’s mobility and physical behaviors using 639 
accelerometers, gyroscopes, and GPS; physiological parameters like heart rate, 640 
temperature, and oxygen saturation; biological analyte concentrations like blood 641 
glucose measured from continuous, internet-connected glucose monitors; and real-642 
time air pollution exposure via personal air quality monitors67. Furthermore, an 643 
individual’s social behaviors and mental health may be assessed, for example, through 644 
the analysis of phone call and text message logs (i.e. frequency, duration, 645 
incoming/outgoing)68 or through psycholinguistic analyses of user-generated social 646 
media content69. These technologies have been used in a variety of health domains 647 
including weight management, metabolic and cardiovascular disease, maternal and 648 
neonatal care, sleep quality and assessment, and neurology, among others66, 70. 649 
While it is likely that the next decade will see networks of wearable devices being 650 
routinely used in medical practice, there are a number of challenges to be addressed. 651 
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These include, but are not limited to, the development of a robust cyber-infrastructure 652 
capable of the real-time fusion and analysis of disparate data streams and flexible 653 
enough to accommodate the rapid pace of consumer technology development; 654 
development of analytical methods and algorithms to extract or discover signatures 655 
(i.e. digital biomarkers) or leading indicators of health or disease status from ‘real-656 
world’, “messy” data; execution of large randomized controlled trials to assess efficacy 657 
of using these novel data sources in treatments or interventions; and interoperability 658 
with existing electronic medical records and medical decision-making workflows.  659 
 660 
Contrary to popular belief, the data or “big data” itself is not the focus of computational 661 
medicine. Its focus is the modeling of complex systems such as the human body or the 662 
healthcare system. Data in this context is an essential prerequisite to building a model, 663 
but as highlighted in the section on the theory-based model, a large amount of data 664 
and especially “big data” is not a necessary condition for those models71.  665 
Second, currently, data gathering is primarily driven by convenience and is empirical in 666 
nature. Such an approach must necessarily lead to many areas where data is either not 667 
collected or not useable for model development. It has been proposed that the models, 668 
especially the computational models, should define what data is needed and to direct 669 
the design of experiments allowing better model development. The area where such an 670 
approach would be especially useful is genomics71, 72. 671 
 672 
 673 
 674 
MODELS 675 
 676 
However, even when the data contains the necessary information, it is by itself  677 
insufficient to individualize decision making and medicine in general. Indeed, an 678 
accurate model of the complex system has to be developed, a model which captures 679 
the equifinality, the multiple causative pathways in the system leading to the same 680 
outcome, requiring individualization of medicine. The capture of equifinality and hence, 681 
enabling of individualization of medicine can be achieved by data being used by 682 
computational models, theory- or knowledge-based models, data-driven models, or 683 
models that combine both approaches. As mentioned earlier and using broad strokes, 684 
the data-driven models require a limited amount of knowledge about the system but a 685 
large amount of data. The theory- or knowledge-based models require a limited 686 
amount of data, but substantial knowledge of the system. 687 
 688 
Theory- or knowledge-based models 689 
What is a “model”: a mouse model for laboratory experiments that try to mimic human 690 
physiology, a toy airplane model, a model community, …? No, the notion of a model 691 
addressed here is a mathematical construct that represents an abstraction of physical 692 
phenomena described by a scientific theory – a mathematical characterization of a set 693 
of inductive hypotheses, often based on observation and moving towards generalized 694 
conclusions, put forth to explain events that occur in the physical universe. Such 695 
scientific models thus form the essence of the second pillar of science, along-side 696 
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empirical observations, as a fundamental source of knowledge. To qualify as a 697 
scientific theory, or as a meaningful model based on theory, the theory must be 698 
“falsifiable”, according to philosopher Karl Popper – that is, it must be capable of being 699 
contradicted and abandoned if predictions contrary to theoretical predictions are 700 
observed73. Today, we deal with computational models to make predictions of the 701 
behavior of complex systems – they are corruptions (discretizations) of mathematical 702 
models constructed so as to be implemented on digital computers. The selection of a 703 
model to describe a class of physical realities is the most important and difficult 704 
component of predictive science. Models involve parameters that are usually unknown 705 
and can be random variables; the calibration of model parameters, the adjustment of 706 
the model parameters for the model to better reflect the modelled complex system,  707 
requires the acquisition of data which can be noisy and expensive to access, and the 708 
discretization of the model to produce a viable computational model introduces 709 
additional uncertainties. The quantification of these uncertainties is essential for reliable 710 
model predictions. 711 
 712 
Science and scientific prediction without models are meaningless. It must be 713 
emphasized that the development of predictive computational models is critical to the 714 
advancement of science; it is a fundamental challenge that must be met in all areas of 715 
science, medicine, and technology. 716 
 717 
The construction of predictive computational models in medical science and practice 718 
could lead to one of the most important developments in human history. For example, 719 
the development of predictive computational models of cancer74 and of the effects of 720 
various cancer therapies for specific individuals, where patient -specific observational 721 
data is used to calibrate and validate models, would make possible breakthrough 722 
effective and non-invasive treatments of the disease, revolutionize  medicine 723 
worldwide, and forever enrich and expand the scope of medical science. 724 
 725 
 726 
Data driven models 727 
Data driven models are those for which predictions are performed by examining 728 
relationships between a number of available state variables (predictors) related to a 729 
particular quantity (outcome) of interest. Unlike theory-or knowledge-based models, 730 
explicit knowledge of the underlying physical, biological, and psychological 731 
mechanisms impacting the outcome is not a pre-requisite. Instead, the goal is to 732 
develop predictive models that infer relationships directly from available data. 733 
Fundamental to the development of these models is the availability of sufficient data 734 
containing input features (predictors, confounders, and mediators) which have 735 
observed influence (either directly or indirectly) on the outcome of interest.  Historically, 736 
data driven models used in health care have been fairly simple via the deployment of 737 
regression models leveraging a relatively small number of input parameters.  These 738 
regression models typically have very modest computational requirements.  More 739 
recently though, more advanced machine-learning models are being exploited in a 740 
variety of health-care areas.  Relevant examples of modeling algorithms in this space 741 
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include feature detection/pattern matching (useful in imaging/radiology), clustering (the 742 
detection of like groups and structures), and classification (formulating predictions into 743 
a predefined set of relevant outcome classes).  Clustering is an example of 744 
unsupervised learning where labeled data (data with defined outcomes) is not required 745 
as an input, whereas classification is an example of supervised learning that requires a 746 
set of data with known outcomes that serves as the basis for training the classification 747 
algorithm.  Performance and range of applicability of these machine-learning models 748 
often improves with larger amount of data, and consequently, these types of data-749 
driven models can lead to more demanding computational requirements requiring 750 
parallel processing and high-speed I/O subsystems during their formulation, 751 
particularly for model training in supervised learning approaches.  While very promising 752 
in a variety of industries, there are challenges in the U.S. health care industry related to 753 
development and adoption of machine-learning models.  Examples of these challenges 754 
include data inconsistencies and limited widespread availability of high-quality data for 755 
model development due to the proprietary nature of EHR systems, lack of 756 
understanding and exposure to more advanced data analytics within the medical 757 
community, and difficulty in disseminating machine learning results by health 758 
care professionals which can be perceived as  “black-box” models. 759 
 760 
Combined theory- knowledge-based and data driven models 761 
The proponents of the two types of computational models, the theory- or knowledge-762 
based models and data driven models, often argue about their relative merits, but 763 
experience indicates both are very important in computational medicine.  An example 764 
is illustrative.  765 
  766 
HeartFlow, Inc., is a pioneering computational medicine company providing 767 
individualized, noninvasive diagnosis of coronary artery disease to determine whether 768 
or not coronary artery narrowings are obstructing blood flow and would benefit from 769 
coronary artery stenting or coronary bypass surgery.  The primary source of patient 770 
data is a coronary CT scan, which is uploaded by way of a secure web-based 771 
interface. The first aspect of modeling is construction of an individual quantitative 772 
three-dimensional anatomic model of the aortic root and coronary arteries.  This step,- 773 
performed using data-driven modeling, specifically deep learning, is referred to as 774 
“segmentation” and is particularly challenging.  Construction of a high-accuracy 775 
geometric model of the coronary vessels on a patient-by-patient basis, even with the 776 
assistance of computer algorithms, may take an inordinate amount of time and is 777 
prone to error.  However, due to compilation of an enormous data trove of coronary 778 
trees of over 50,000 patients Deep Learning algorithms could be trained to develop the 779 
data driven models in order to more quickly and accurately segment coronary arteries 780 
of new patient data.  Data driven models, developed using machine learning, e.g. deep 781 
learning, are very effective for visual tasks and constructing geometry from a CT scan 782 
is in essence a visual task.  783 
 784 
Once the coronary arteries are segmented, an analysis of blood flow is performed 785 
through theory- or knowledge-based modeling.  The Navier-Stokes equations of fluid 786 
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dynamics theory are employed because they are capable of accurately representing 787 
blood flow phenomena in the coronary arteries.  Additional data is not needed to 788 
establish this fact.  The Navier-Stokes equations are based on the foundation of 789 
Newtonian Mechanics and have been corroborated through untold numbers of 790 
physical experiments over hundreds of years.  Very accurate, efficient and robust 791 
computer algorithms are employed for their solution.  The end result is a precise 792 
prediction of flow velocity and pressure in the coronary arteries.  Clinicians are 793 
particularly interested in Fractional Flow Reserve (FFR), which is the pressure drop 794 
across obstructed regions in the coronaries caused by disease under conditions of 795 
maximal coronary blood flow (hyperemia).  This predicts whether or not coronary 796 
revascularization is needed and is the gold standard for guiding treatment.  During 797 
cardiac catheterization, hyperemia is induced by administering a drug (adenosine).  798 
HeartFlow analysis simulates this hemodynamic condition computationally, thus 799 
making it possible to non-invasively determine which patients should be treated 800 
medically and which should be sent for coronary angiography and possible 801 
revascularization.  The computational model can also be manipulated to simulate stent 802 
implantation with prediction of the potential outcome of stenting before the procedure 803 
is performed.  The benefits of HeartFlow’s synthesis of theory- or knowledge- based 804 
and data driven modeling have been demonstrated by the Platform Trials75.   Among 805 
patients with planned invasive coronary angiography (ICA), 73 percent showed no 806 
significant blockage or obstruction and in 61 percent of patients, the use of 807 
computational modeling resulted in the cancellation of a planned ICA.  After one year, 808 
none of the 117 patients who had ICA cancelled had suffered an adverse clinical event.  809 
There are over 1 million ICAs in the U.S. each year, and over 2 million in Japan, and a 810 
similar number in Europe.  The cost of an ICA in the U.S. is over $12,000; about 2/3 811 
seem to be unnecessary and can be eliminated, representing potential savings in 812 
billions of dollars. In summary, there are well established and highly-reliable theory- or 813 
knowledge- based models that can be effectively used in computational medicine, but 814 
where these models do not exist, we can utilize powerful data driven modeling 815 
approaches. 816 
 817 
Computational models, as any other models in medicine, are developed to be clinically 818 
useful to make optimal medical decisions and thus improve patients' health. To 819 
improve decision making, the models need to enable both individual decision making 820 
and determination of individual net benefit for contemplated tests, or treatments76. To 821 
aid in clinical decision making and especially in individualized decision making, the 822 
models need to have high discriminatory power and be well calibrated77. Discrimination 823 
is the ability of the model to predict a higher probability of the event in patients who will 824 
ultimately experience the event – outcome than in patients who will not have it78. If a 825 
model always predicts a higher probability of the event in patients who have it than in 826 
patients who do not experience it, then the discrimination of this model is perfect, and 827 
its measures, Area Under the Receiver Operating Characteristic Curve and c-statistics 828 
are equal to 1.0. However, the relationship between true positives and false positives 829 
for different cut-off points of the model predictions those statistics describe has to be 830 
balanced. Thus, choosing cut-off, which maximizes true positives, leads to an increase 831 
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in false positives and vice versa78. Calibration, on the other hand, is the ability of the 832 
model to predict probabilities of the event (the absolute risk) that are in agreement with 833 
observed frequencies of the event78. In other words, if a well-calibrated model predicts 834 
risk of the outcome of 60% in 10 women, six of the ten or 60% of them will experience 835 
the predicted event. 836 
 837 
Good discrimination is an essential first step without which the model is generally not 838 
useful for decision making. However, good discrimination is insufficient for effective 839 
decision making. The measures of discrimination assume an equal value of sensitivity 840 
and specificity, thus of false negatives and false positives. In real life, however, the 841 
consequences of false negatives (e.g., missed diagnosis) are more severe than 842 
consequences of false positives (e.g., unnecessary tests)76. As a consequence, a 843 
model with good discrimination can still have an unacceptable rate of false negatives – 844 
missed diagnoses76. A poorly calibrated model can lead to a situation where an 845 
individual with a high risk of disease has assigned a low probability of it occurring and 846 
thus misses the opportunity of effective preventive intervention76. Although both the 847 
discrimination and calibration are critical for the clinical usefulness of the model for 848 
medical decision making, they are rarely both provided in the literature78. A systematic 849 
review in cardiovascular medicine showed that discrimination was reported in 63% and 850 
calibration in 36% of the studies79. Good discrimination and good calibration of the 851 
computational model or any other model is necessary for the model's clinical 852 
usefulness for individual patient and individualization of medical decision making77, 80. 853 
The rarer the event the model predicts, the more difficult it is to achieve good 854 
calibration. This is because the model is much more likely to be right by predicting the 855 
overwhelmingly more common non-event, and thus the prediction of higher risk of the 856 
event is underestimated. However, the outcomes of highest interest are the rare most 857 
severe morbidities and mortalities, rather than more common proxy outcomes. Finally, 858 
because decision making is about the prediction of future outcomes in individuals and 859 
populations, the model's discrimination, calibration, and usefulness in decision making 860 
can only be accurately evaluated in the process of external validation81. That is in the 861 
population of individuals whose data were not used in model development and who 862 
are from a population that would be a potential target population for the clinical use of 863 
the model. Therefore, external validation should be the final adjudicator of the model's 864 
performance and clinical usefulness for decision making. 865 
 866 
Clinical practice can only be informed by very good models that well represent the 867 
complex system of the human body in health and disease accurately. The data are 868 
critically important but are, conceptually, insufficient to the development of such 869 
models.  Building meaningful models requires a much broader analytic and quantitative 870 
medical expertise, much beyond empirical inputs. Novel sources of data, the signals of 871 
wearables, digital phenotype data including environmental or social media data, etc. 872 
carry a promise of improving the accuracy of the models and, as a consequence, 873 
individualization of health care that utilizes those models. However, at this point, it is 874 
not clear which sources of data and to what extent will inform the development of the 875 
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models in general and computational models specifically. In short, more data does not 876 
mean more information and, thus, better health care. 877 
Computational models offer an opportunity to integrate the different sources of 878 
multimodal data into actionable information, which will inform the clinical practice. 879 
Computational models were shown to provide real insights, for example, into breast 880 
cancer therapy82. However, although promising, the clinical usefulness of those models 881 
has not yet been demonstrated, including those proposed in obstetrics and 882 
gynecology76, 80, 83, 84. 883 
 884 
	885 
 886 

 887 
 888 
Figure 6. The role of computation in medicine. The human body and the health care 889 
system are complex systems, networks of highly coupled components intensely 890 
interacting with each other. These interactions give those systems redundancy, thus 891 
robustness to failure and, at the same time, equifinality, many different causative 892 
pathways leading to the same outcome. The equifinality demands individualization of 893 
medical care, which is urgently needed. Computational models excel in accounting for 894 
a very large number of interactions, thus in the modeling of complex systems, and 895 
hence enable in the individualization of medicine. They have the potential to enable 896 
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individualization of medical decision making and, in consequence, better health 897 
outcomes and lower costs. 898 
 899 
 900 
MEDICAL DECISION MAKING 901 
 902 
As we have argued in the beginning, the human body, as well as the health care 903 
system, are complex systems. Those systems are made of a very large number of 904 
intensely interacting elements forming highly coupled networks with a vast number of 905 
feedback loops and redundancies. This structure makes complex systems robust to 906 
failure, but also due to equifinality, difficult to predict their behavior. Due to this 907 
pervasive and inescapable uncertainty, medicine is, in its essence, decision making 908 
under uncertainty. The decisions about tests to be performed and treatments to be 909 
administered range the entire spectrum of health care from decisions regarding 910 
individual patients to policymaking. Traditionally, decisions are being made based on 911 
experience and traditional evidence from research studies, both limited by a number of 912 
factors including limited possible personal experience of a single physician and 913 
average effects reported by the clinical research studies, respectively. In complex 914 
systems, characterized by many causative pathways, basing the decision on an 915 
average effect in a population of patients is limiting the optimality of the decision. Since 916 
medications are only effective in a relatively small fraction of patients receiving them5 917 
and tests' predictive performance depends strongly on the patients' characteristics 918 
defining their pretest risk of the disease tested for4, decision making has to be 919 
individualized to be optimal. Specifically, it has to be optimal under the condition of 920 
uncertainty, optimal when the decision is being made prospectively and not after the 921 
outcome is already known,10 and for an individual or a population of individuals, and 922 
not for a population average. However, to individualize medical decision making 923 
requires accounting for very large numbers of constellations of risk factors and 924 
protective characteristics. The number of those unique combinations grows 925 
exponentially. For example, just 5 characteristics with 3 categories each would result in 926 
243 unique combinations of those characteristics potentially affecting the individual 927 
outcome (Figure 6). 928 
 929 
Traditional methods of analysis are limited in handling this type of complex data. 930 
However, computational models excel in modeling the behavior of complex systems, 931 
enabling individualization of decision making. The individualized medical decision 932 
making is dependent on the individual prediction of outcomes, individual weighing of 933 
probabilities of outcomes and individual (patient to policymaker) preferences, and 934 
individual risk communication (Figure 7). 935 
 936 
Individualized prediction of outcomes 937 
"Prediction is an essential feature of non-arbitrary decision making"50 and individual 938 
prediction is an essential feature of the individual decision making, critical in medicine. 939 
While the perfect prediction of behavior of complex systems may never be achievable, 940 
computational models can eliminate, from a pool of potential alternatives, ones which 941 
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are inconsistent with the data for an individual and assign individual probabilities to the 942 
remaining alternatives50. This probabilistic approach is very effective in real-world 943 
individualized decision making, especially when we accept that deterministic solutions 944 
(0% or 100% probabilities) are not possible in predicting the behavior of a complex 945 
system such as human body85. Perfectly accurate tests or perfectly effective 946 
interventions are not and are not likely to ever be available.  947 
 948 
 949 
Decision theory: weighing individual probabilities of outcomes and individual 950 
(from the patient’s to policy maker’s) preferences 951 
Building models of individual optimal decision making under uncertainty in health and 952 
medical care is of tantamount importance. The modeling cornerstone, besides the 953 
individual outcome prediction, is to describe the preferences towards uncertainty, 954 
capturing individuals’ attitudes towards risk, loss, incomplete information, and other 955 
ingredients that affect personal choices, both statically and dynamically85. Building risk-956 
preference models is a challenging task as similar notions in economics (expected 957 
utility theory, behavioral finance, bounded rationality, rational inattention, etc.), albeit 958 
foundational, cannot be directly applied due to how detrimental certain risks might be 959 
for the health and wellbeing of the patient. Indeed, traditional risk criteria, based on 960 
averaging and smoothing formulations, are not very suitable to model loss aversion, 961 
fear, prudence, impatience and other (frequently, acute and also path-dependent) 962 
sentiments arising in the course of a medical treatment. Furthermore, traditional criteria 963 
are typically one-dimensional and, thus, cannot capture the multi-attribute risks a 964 
patient faces. 965 
 966 
An additional challenge is how to solve the associated stochastic optimization 967 
problems. Indeed, such complex risk preferences criteria often give rise to “time-968 
inconsistency”, a well-documented phenomenon even for financial and insurance risks. 969 
These problems are very hard to solve because all classical optimization approaches 970 
fail and new techniques, both analytical and computational, need to be developed. In 971 
addition, these problems need to be analyzed “in real time”, for model decay always 972 
occurs and adaptive optimization criteria need to be incorporated to capture incoming 973 
information.  974 
 975 
Overall, individualized medical decision making under uncertainty in dynamic settings 976 
is a wide-open area with a plethora of new research directions. While, as mentioned 977 
above, modeling patients’ risk preferences will borrow considerably from fundamental 978 
notions in financial economics, building both sophisticated dynamic models and 979 
solving the associated stochastic control problems present many challenges but, at the 980 
same, a very fertile ground for both cross- and interdisciplinary collaborations. 981 
Furthermore, there is a pressing need to support such developments as, at present, 982 
there is a rather sizable discrepancy between the sophistication that exists in medical 983 
science models and the simplicity, if not absence, of evaluation criteria from the 984 
patients’ point of view. 985 
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The literature and evidence in the area of decision theory in medicine is very limited 986 
and new computational and computer science based approaches promise to offer 987 
progress in this area.  988 
 989 
Individualized risk communication 990 
However, individual prediction and weighing of individual probabilities of outcomes and 991 
individual preferences are insufficient for individual decision making in medicine. Those 992 
individual probabilities and preferences have to be appraised and communicated 993 
efficiently to make the effective decision making. The dominant way risk 994 
communication has been viewed is as an individual-level perception. Uncertainty is 995 
presumed to drive risk, and it’s perception exists when an individual perceives 996 
information to be unavailable, inaccessible, or inconsistent86.  Most  theories of risk 997 
communication conceptualize risk as an individualized perception (e.g., Planned Risk 998 
Information Seeking Model: PRISM)87; Theory of Planned Behavior (TPB)88,Theory 999 
of Motivated Information Management (TMIM)89, Extended Parallel Processing 1000 
Model (EPPM)90, Health Information Acquisition Model (HIAM)91, Risk Information 1001 
Seeking Model (RISP)92, and the Comprehensive Model of Information Seeking 1002 
(CMIS)93. In addition to the view that risk communication is an individual-level 1003 
construct, it is important to realize that perceptions of risk are influenced by 1004 
others—or socially constructed94, 95.  Past research has acknowledged this in 1005 
several communication models (e.g., subjective norms that influence individual 1006 
behavior), but these perceptions are still measured on an individual level.  A more 1007 
recent argument is for health-related risk studies to think of risk communication as 1008 
the “exchange of information among individuals, groups, and institutions related to the 1009 
assessment, characterization, and management of risk”96.  This is an approach that 1010 
resonates with health care providers because they are naturally part of the risk 1011 
communication process.  However, the important others are expanding, and this is 1012 
especially relevant as mobile and social media become a part of the fabric of our 1013 
society.  Specifically, individuals can make their risks visible to others, by posting on 1014 
social media or sending a photo/text to a trusted friend of family member, and 1015 
others can directly respond, thus influencing how individuals internalize and 1016 
potentially act regarding their own risk. Thus, risk decision making is a 1017 
combination of individualized perceptions and influences of others around them.   1018 
 1019 
Medical decision making relies on the understanding of potential outcomes and their 1020 
probabilities. A rational decision would theoretically try to maximize the probability of a 1021 
positive outcome while minimizing the risk, the probability of an adverse outcome. Of 1022 
course the reality is more complex. There are many factors that impact medical 1023 
decision making that may cause a patient to choose a more risky procedure in order to 1024 
achieve a desired outcome. The preferences, values and biases, of the individual 1025 
patient have a large influence on the perception of risk, the value of potential 1026 
outcomes, and ultimately the individual decision making. For example, a patient may 1027 
choose to deliver the baby at home rather than in the hospital even though she knows 1028 
that the risks for home delivery are higher97. Here it is the personal preference and the 1029 
value placed on home delivery that cause the patient to place less importance on the 1030 
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associated risk. Knowing these individual biases can help the clinician formulate an 1031 
effective communication strategy. For instance, knowing that the patient prefers home 1032 
delivery, it would be prudent to ensure the patient truly understands the associated 1033 
risks of home delivery in particular if she has other risk factors. Computer game 1034 
technology has been used in the past to educate patients about the risks and possible 1035 
outcomes of various screenings and procedures. In the future, immersive game 1036 
technology will be used to automatically determine how a patient places value on 1037 
certain outcomes as well as learn what bias the patient has regarding associated risks. 1038 
The use of virtual environments will allow the patient to be less inhibited about their 1039 
responses to questions asked through interactive scenarios. The game itself will use 1040 
these responses to adapt the presentation of information regarding the risks and 1041 
outcomes of the procedure in question. Ultimately the decision lies with the patient, but 1042 
with improved communication provided by computational solutions, the clinician and 1043 
patient will be able to formulate a plan that meets the bias and value structure of the 1044 
individual patient and minimizes the risks involved.   1045 
 1046 
The individualized decision making, made possible by the computational modeling of 1047 
complex systems, has the potential to revolutionize the entire spectrum of medicine 1048 
from individual patient care to health care policymaking. In patient care, computational 1049 
models can enable individual decision making based on the patient individual net 1050 
benefit of contemplated tests and interventions. In making decisions on a strategic 1051 
level of a hospital, a system of hospitals, or on the level of government policy, the 1052 
computational models enable individualized decision making for a population.  Those 1053 
individualized decisions on the population level are based on the benefits of individuals 1054 
comprising the population rather than based on the average benefit of the population. 1055 
This approach allows applying tests and treatments exclusively to individuals who 1056 
receive net benefit, in whom benefits outweigh the risk, rather than to all individuals in 1057 
the population regardless if they do or do not receive the net benefit. Computational 1058 
models enable individual medical decision making that can transform the medicine and 1059 
the health care system, both in urgent need of a substantial disruptive transformation. 1060 
 1061 
 1062 

 1063 
 1064 
 1065 
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Figure 7. Individualized decision making in medicine can be thought of as composed 1066 
of three consecutive parts: prediction of the individual probability of outcome; weighing 1067 
of those individual probabilities of outcomes and individual patient preferences for 1068 
outcomes; communication of the risk, the probability of the outcome and the burden of 1069 
this outcome. 1070 
 1071 
FUTURE OF COMPUTATIONAL MEDICINE: HEALTH CARE STAKEHOLDERS’ 1072 
PERSPECTIVES 1073 
 1074 
 1075 
The substantial potential benefits of computational medicine can only be realized if 1076 
they solve problems important to health care stakeholders. This will ensure that the 1077 
computational medicine solutions will be implemented and thus could transform health 1078 
care. The potential to transform health care exists at all levels of the system, at the 1079 
hospital, hospital system levels, to government policy. This is because health care is a 1080 
complex system, which can be thought of as a highly coupled network system in which 1081 
constituents affect each other46, 48. 1082 
 1083 
Academia 1084 
From an academic standpoint, it is an extremely exciting time to be investing in 1085 
research and educational programs in Computational Medicine. The confluence of 1086 
computing power, scalable algorithms, availability of patient data, and increased 1087 
understanding of physical mechanisms, positions us for a revolution in the way medical 1088 
advances are achieved, as well as in the way medicine is delivered. The 1089 
methodological foundations for concepts such as a "digital twin" are being laid in fields 1090 
as diverse as aviation and medicine, built upon synergistic combinations of predictive 1091 
physics-based models and data, and providing an enabling technology for achieving 1092 
asset/patient-specific data-driven decisions. The research and educational programs 1093 
that will enable this revolution must be highly interdisciplinary in nature. The fields of 1094 
artificial intelligence and data science will play a big role, particularly through the use of 1095 
machine learning methods, but we cannot lose sight of the critical importance of 1096 
physics-based and mechanism-based modeling. Educational programs in 1097 
Computational Medicine must blend these perspectives, training students at the 1098 
interfaces of mathematical modeling, computing, data science, and medicine. 1099 
Partnerships have never been more important, including the sharing of data and digital 1100 
infrastructure -- both partnerships among units within the university system and 1101 
partnerships across universities, government, and health care providers. 1102 
 1103 
Hospital system 1104 
In health care we are awash in data and information. But, it is often in disparate 1105 
systems, discrete data, and largely doesn’t tell the enire “story” of the patient.  With 1106 
computer technology and the introduction of the Electronic Medical Record we have 1107 
lost sight of the entirety of patient care, invested more in small, discrete data elements 1108 
to enter into the system, often to never be harvested. Over the decades we have stored 1109 
more patient-specific data than ever, but at what cost?  Very few, if any health systems 1110 
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maximize the use of data to truly improve quality, patient safety, health outcomes or to 1111 
ultimately improve the health of the communities we serve. We have the ability to make 1112 
profound changes in how care is delivered. Given the current state of health care, the 1113 
variability in care delivered and continued rise in overall cost of care, we need a 1114 
dramatically new approach, and the data we have been feverishly storing, may hold the 1115 
answer to the changes we need.  1116 
 1117 
The discrete data inputs, when provided to computational models, may lead to 1118 
information which results in better decision making, more decisive and coordinated 1119 
care, and ultimately, better outcomes for patients and communities. With 1120 
computational models available, and more robust computing capacity, care delivery 1121 
can be more predictive, efficient, and effective in the diagnosis and care of an 1122 
individual patient which improves outcomes for all parties: payers, providers, patients. 1123 
As health systems look ahead toward affordable care and value-based payment 1124 
systems, effective and efficient care of patients is tantamount to health and longevity of 1125 
the organization and the right thing to do for the patient. But, that alone is not enough. 1126 
To create change and to ultimately impact patients, these advances must make it "to 1127 
the bedside" and truly impact the care of the patient at their most vulnerable time and 1128 
in the most expensive setting in health care. Once these advances cross the chasm 1129 
and change the way care is delivered inside the hospital (in a sustainable and lasting 1130 
way for the patients, families, and providers) then it will be transformative and will truly 1131 
change the hospital systems and health care for the better.  1132 
 1133 
State Government 1134 
Responsible stewardship of taxpayer dollars is arguably the paramount duty of 1135 
lawmakers throughout the United States who are tasked with using those dollars to 1136 
maintain government operations while also ensuring that appropriations are made to 1137 
achieve expectations of taxpayers. Achieving this balance is no simple matter. Texas in 1138 
particular faces additional difficulties due to certain limitations, including a 1139 
constitutional balanced budget requirement98 and the adoption of a biennial budget 1140 
which necessitates substantial estimations99. To aid with these constraints, the Texas 1141 
Legislature often involves subject matter experts to educate lawmakers on how to best 1142 
achieve desired policy outcomes with limited resources. However, this type of short-1143 
term partnership - where, for example, experts are only called upon to testify for a 1144 
single committee hearing - has the potential to fall short as facts and data are either 1145 
forgotten in the deluge of legislative issues or overlooked for political expediency. A 1146 
variety of factors can cause this, but notably, the lack of a strong and well-established 1147 
partnership between government and experts is a key contributor. 1148 
 1149 
It is empirically proven in Texas that long-term partnerships, particularly with industry 1150 
and academia, are both effective and fruitful. The Cancer Prevention and Research 1151 
Institute of Texas (CPRIT), which was established by the Legislature and approved by 1152 
Texas voters in 2007 to aid in cancer research and implement the Texas Cancer Plan, 1153 
is a prime example. Since its inception, CPRIT reports recruiting 192 cancer 1154 
researchers and labs, producing a Nobel Prize recipient, and awarding 1,452 grants 1155 
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totaling $2.4 billion100. It has also provided the Legislature with evidence-based 1156 
prevention interventions and services with sixty-six active projects that, combined, 1157 
impacts every single one of the state’s 254 counties101. This partnership has produced 1158 
both desired health outcomes and significant cost-savings for the Legislature and 1159 
Texans, which likely contributed to the Legislature’s overwhelming support, and 1160 
eventual voter approval, for Proposition 6 in 2019 to increase CPRIT’s ability to award 1161 
funding from a total of $3 billion to $6 billion102. Additionally, Texas is now seeking to 1162 
replicate its success with CPRIT in the mental health arena with the recent passage of 1163 
Senate Bill 11 by the 86th Legislature in 2019 to create the Texas Child Mental Health 1164 
Care Consortium103. 1165 
 1166 
The benefits of a strong partnership are clear - improved research capabilities, 1167 
healthier outcomes, and cost-efficient investments. As such, a partnership on 1168 
computational medicine between the Texas government and other health care 1169 
stakeholders has virtually limitless possibilities. Every area of medicine can benefit from 1170 
a more individualized approach, and establishing the infrastructure for various 1171 
computational models paves the path to achieving desired health outcomes, whether 1172 
that outcome is lowering maternal mortality rates or simply increasing wellness visits to 1173 
emphasize preventive care. Further, a computational medicine partnership could assist 1174 
the Legislature with its ongoing efforts to contain health care costs in Texas, 1175 
particularly in Medicaid. The most recent iteration of this initiative is delineated in the 1176 
86th Legislature’s House Bill 1, the state’s budget for fiscal years 2020 and 2021, and 1177 
requires the Health and Human Services Commission (HHSC) realize at least $350 1178 
million in savings104. Currently, HHSC is limited to achieving these services by 1179 
addressing systemic fraud, waste, and abuse as well as maximizing the use of federal 1180 
Medicaid dollars. With computational medicine, the options expand as, for instance, 1181 
expensive treatments are avoided with individualized decision making and preventive 1182 
care, medications best for a patient are prescribed, and unnecessary procedures are 1183 
cut back with individually best practices. Simply put, having the ability to take a 1184 
pertinent health issue and produce cost-efficient solutions that will ensure a healthier 1185 
population with striking accuracy would make the Legislature’s job elementary - to the 1186 
benefit of lawmakers and, more importantly, Texans.  1187 
 1188 
Federal Government 1189 
Federal agencies can serve as enablers or even doers for issues with societal 1190 
implications that are beyond visible market forces. There are elements of 1191 
computational medicine that may require such actions from the federal government. 1192 
The Human Genome Project, which evolved into a multi-agency, international and 1193 
public-private partnership, is an example of a large scale effort that was driven by a 1194 
federal recognition that technological convergence of advancements in robotics, image 1195 
processing, data-base restructuring,  computing, lasers and so forth, all outside of 1196 
medicine, could be foundationally transformative to genomics. The scale of data that 1197 
became to be generated from sequencing has been pivotal to driving data-centered 1198 
analysis into the fabric of medicine. Learning from rich data sets remains a challenge 1199 
as the questions being asked are more complex and the growth of available data 1200 
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continues to stress the leading edge technologies, including artificial intelligence (AI) 1201 
systems.      1202 
 1203 
The promise of computational medicine resides in the complex technical landscape 1204 
that spans more traditional supercomputing, through data sciences, cognitive 1205 
computing and AI. The advancements in computational medicine will be furthered 1206 
when we recognize which efforts are hindered by viewing the computational demands 1207 
as a post-hoc add-on. Our notable successes in the application of computational 1208 
science to decision making in high consequence situations have at their core teams of 1209 
specialists from the outset that co-develop everything from the technologies to tools 1210 
and share in the responsibilities of the outcomes. It is quite likely that AI based analog 1211 
will need to develop in the same way. Many tough problems remain in prediction from 1212 
models or data or both – problems that do not have visible economic drivers behind 1213 
them. It is in this space that federal agencies can play a role in filling gaps that can help 1214 
in making progress in the areas we have discussed. It is likely that at the federal level, 1215 
that progress here will require two or more federal agencies participating. There are 1216 
many means to organize such efforts, and finding the suitable champions is a key 1217 
ingredient. 1218 
 1219 
As enablers, the federal agencies can also help develop the technical base from 1220 
academic programs to support the future workforce as well as key areas such as 1221 
uncertainty quantification for AI, the areas of data trust and integrity as well as decision 1222 
support. The United States has a unique ability today to shape this future. Defining the 1223 
right partnerships and working together can transform health research and health care 1224 
for us all (Figure 8). 1225 
 1226 
 1227 
 1228 
 1229 
 1230 
 1231 
 1232 
 1233 
 1234 
 1235 
 1236 
 1237 
 1238 
 1239 
Figure 8. The Texas Advanced Computing Center at The University of Texas at Austin 1240 
is home to Frontera, the fastest supercomputer at any university and the 5th most 1241 
powerful system in the world. This is the type of computational infrastructure that will 1242 
allow breakthroughs in computational medicine. 1243 
 1244 
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FIGURE LEGENDS 1515 
 1516 
Figure 1. Simplified idealized representation of the complex system, such as the 1517 
human body or health care system. The system made of a vast number of highly 1518 
interacting with each other components. Complex systems have, due to their structure, 1519 
many different ways or causative pathways an outcome can occur, the phenomenon 1520 
known as equifinality. Equifinality demands individualization in approach to the 1521 
complex systems such as individualization of medical decision making. 1522 
 1523 
Figure 2. The Computational Health Conference, held in Austin, TX in October of 2018.  1524 
The conference brought together key stakeholders in health care and experts in 1525 
computation and health from academia, government, industry, philanthropy, and 1526 
communities with the goal of identifying future directions and opportunities for 1527 
computational health and medicine. 1528 
 1529 
Figure 3. Schematic representation of the “levels of evidence”. RCT denotes 1530 
randomized controlled trial and SR denotes systematic review. 1531 
 1532 
Figure 4. Proportion of U.S. adults who own cellphones and smartphones. 1533 
 1534 
Figure 5. Monitoring interface of digital phenotype data streamed real-time from a 1535 
patient’s cell phone to the supercomputer. 1536 
 1537 
Figure 6. The role of computation in medicine. The human body and the health care 1538 
system are complex systems, networks of highly coupled components intensely 1539 
interacting with each other. These interactions give those systems redundancy, thus 1540 
robustness to failure and, at the same time, equifinality, many different causative 1541 
pathways leading to the same outcome. The equifinality demands individualization of 1542 
medical care, which is urgently needed. Computational models excel in accounting for 1543 
a very large number of interactions, thus in the modeling of complex systems, and 1544 
hence enable in the individualization of medicine. They have the potential to enable 1545 
individualization of medical decision making and, in consequence, better health 1546 
outcomes and lower costs. 1547 
 1548 
Figure 7. Individualized decision making in medicine can be thought of as composed 1549 
of three consecutive parts: prediction of the individual probability of outcome; weighing 1550 
of those individual probabilities of outcomes and individual patient preferences for 1551 
outcomes; communication of the risk, the probability of the outcome and the burden of 1552 
this outcome. 1553 
 1554 
Figure 8. The Texas Advanced Computing Center at The University of Texas at Austin 1555 
is home to Frontera, the fastest supercomputer at any university and the 5th most 1556 
powerful system in the world. This is the type of computational infrastructure which will 1557 
allow breakthroughs in the computational medicine. 1558 


