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Abstract Thousands of articles using metabolomics

approaches are published every year. With the increasing

amounts of data being produced, mere description of

investigations as text in manuscripts is not sufficient to

enable re-use anymore: the underlying data needs to be

published together with the findings in the literature to

maximise the benefit from public and private expenditure

and to take advantage of an enormous opportunity to

improve scientific reproducibility in metabolomics and

cognate disciplines. Reporting recommendations in meta-

bolomics started to emerge about a decade ago and were

mostly concerned with inventories of the information that

had to be reported in the literature for consistency. In recent

years, metabolomics data standards have developed exten-

sively, to include the primary research data, derived results

and the experimental description and importantly the meta-

data in a machine-readable way. This includes vendor

independent data standards such as mzML for mass spec-

trometry and nmrML for NMR raw data that have both

enabled the development of advanced data processing
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algorithms by the scientific community. Standards such as

ISA-Tab cover essential metadata, including the experi-

mental design, the applied protocols, association between

samples, data files and the experimental factors for further

statistical analysis. Altogether, they pave the way for both

reproducible research and data reuse, including meta-anal-

yses. Further incentives to prepare standards compliant data

sets include new opportunities to publish data sets, but also

require a little ‘‘arm twisting’’ in the author guidelines of

scientific journals to submit the data sets to public reposi-

tories such as the NIH Metabolomics Workbench or Meta-

boLights at EMBL-EBI. In the present article, we look at

standards for data sharing, investigate their impact in meta-

bolomics and give suggestions to improve their adoption.

Keywords Metabolomics � Data standards � Mass

spectrometry � NMR � Experimental metadata � Data
sharing

Abbreviations

HDF5 Hierarchical Data Format, version 5

InChI IUPAC International Chemical Identifier

ISA Investigation Study Assay

IUPAC

CPEP

International Union of Pure and Applied

Chemistry, Committee on Printed and

Electronic Publications

JCAMP Joint Committee on Atomic and Molecular

Physical Data

MASS mzXML-associated standard solutions

netCDF Network Common Data Format

PSI Proteomics Standardisation Initiative

SMILES Simplified molecular-input line-entry system

XML eXtensible Markup Language

1 Introduction

Data standardisation efforts can trigger ambivalent and

often polarised reactions. Already when reading the normal

scientific literature, experiments are described in a rather

heterogeneous way with different levels of detail, or

ambiguous and sometimes underspecified concepts such as

‘‘replicate’’, where the true meaning is often buried in

traditions specific to human/plant or bacterial research

disciplines. With biological assays increasingly represented

in digital form, biology has become a data-intensive field

of disparate methods, with images, sequence reads and

spectra, to name only a few, all being acquired by the

droves. Modern scientists and data managers are therefore

faced with the tremendous challenge of handling, pre-

serving and archiving large amounts of data.

Metabolomics is no exception: PubMed returns 2460

hits for the search terms ‘‘metabolomics or metabonomics’’

from the year 2014 alone. Yet, only a tiny fraction of the

data from this scientific output has been made available to

the scientific community, data-miners and so-called data-

wranglers through public repositories. In recent years, the

notion of FAIR (Findable, Accessible, Interoperable and

Reusable) research data objects has been endorsed by an

increasing number of researchers and organisations,

including the Dutch Techcenter for Life Sciences (DTL,

http://www.dtls.nl/) and the FORCE11 (https://www.

force11.org) or the Data FAIRport (http://datafairport.org/)

initiatives. Data standards help to make data FAIR and

contribute to the Open Access philosophy.

Furthermore, in the wake of recent scientific malpractice

scandals, see (Fang et al. 2012), (Obokata et al. 2014),

(Editorial 2014), (Stern et al. 2014) and news on the con-

sequences,1 and in general the growing concern over the

rise in paper retractions,2 governments and funding agen-

cies are increasingly mandating reproducible research and

the release3 and long-term archival of raw data with

guaranteed rights to assess, review and appraise claims.

Finally, the call for making publicly funded data be pub-

licly available has resonated loudly and many groups are

weighing-into end data retention by scientists4 (Molloy

2011).

The required infrastructure for open metabolomics data

is getting into shape. The MetaboLights (Haug et al. 2013)

repository at EMBL-EBI, for example, is experiencing a

rapid growth and currently (as of July 2015) has about 165

complete metabolomics experiments, with about 53,000

samples and 1120 protocols captured. The cross-repository

metabolomeXchange5 data-hub lists in total 270 (as of July

2015) publicly-accessible studies. Due to the submission

and curation processes, these data sets are already stan-

dards-compliant at various levels.

One hurdle towards easy data access stems from the

diversity of instrument vendor specific data formats.

Working with these formats often involves commercial

software or proprietary libraries, possibly with associated

licensing costs and a restricted choice of operating systems.

1 ‘‘Japanese lab at centre of stem-cell scandal to be reformed…’’

2014. 10 Mar. 2015\http://blogs.nature.com/news/2014/08/japanese-

lab-at-centre-of-stem-cell-scandal-to-be-reformed.html[.
2 ‘‘The Importance of Being Reproducible: Keith Baggerly tells…’’

2013. 10 Mar. 2015 \http://retractionwatch.com/2011/05/04/the-

importance-of-being-reproducible-keith-baggerly-tells-the-anil-potti-

story/[.
3 ‘‘NIH Sharing Policies and Related Guidance on NIH-Funded…’’

2007. 10 Mar. 2015\http://grants.nih.gov/grants/sharing.htm[.
4 Free the Data Activity by Genetic Alliance\http://www.free-the-

data.org/[.
5 http://metabolomexchange.org/.

14 Page 2 of 13 P. Rocca-Serra et al.

123

http://www.dtls.nl/
https://www.force11.org
https://www.force11.org
http://datafairport.org/
http://blogs.nature.com/news/2014/08/japanese-lab-at-centre-of-stem-cell-scandal-to-be-reformed.html
http://blogs.nature.com/news/2014/08/japanese-lab-at-centre-of-stem-cell-scandal-to-be-reformed.html
http://retractionwatch.com/2011/05/04/the-importance-of-being-reproducible-keith-baggerly-tells-the-anil-potti-story/
http://retractionwatch.com/2011/05/04/the-importance-of-being-reproducible-keith-baggerly-tells-the-anil-potti-story/
http://retractionwatch.com/2011/05/04/the-importance-of-being-reproducible-keith-baggerly-tells-the-anil-potti-story/
http://grants.nih.gov/grants/sharing.htm
http://www.free-the-data.org/
http://www.free-the-data.org/
http://metabolomexchange.org/


Such hurdles can rapidly impede access to data and limit

seamless and efficient data flow in analysis pipelines. They

also hamper the comparability of the results if data is to be

processed by different vendor-specific software with pos-

sibly different algorithms. Such difficulties in data re-use

are well known among bioinformaticians, and one of the

main reason for standardisation efforts.

On one hand, it is fruitful to reduce the notational and

semantic heterogeneity in experimental descriptions and

results, to increase data interoperability and accelerate data

integration. On the other hand, compliance with data

standards is often perceived as an added burden. This is

especially the case when data are produced and consumed

locally in an insular manner, as compliance with the data

standard requires extra—seemingly unnecessary efforts.

However, considering the scientific enterprise as an

increasingly interconnected activity, data exchange and

preservation are both becoming essential requirements.

Furthermore, national and international funding agencies

are increasingly requesting publicly-funded research data

to become Open Access.

But how are standards born in the first place? There are

two main approaches: a ‘‘bottom-up’’ approach, usually by

grass-root community efforts leading to an open (commu-

nity agreed) standard, and a ‘‘top-down’’ approach, usually

governed by a formal standardisation body. The eventual

uptake and usage determines whether a specification

becomes a ‘‘de facto’’ standard, or simply a ‘‘de jure’’

standard, which might be approved formally but not nec-

essarily adopted widely. Most people working on such

standards will understand the famous anecdote like ‘‘How

Standards Proliferate’’ cartoon,6 describing a scenario

where several standards already exist, but are found inad-

equate therefore yet another standard is proposed. This

phenomenon can result in fragmentation among the

developer- and user communities and cause friction

resulting in an even lower adoption.

Standards are therefore social constructs and represent

social agreements. To be successful, i.e. broadly adopted,

the development needs to achieve a careful balancing act,

ensuring both accurate description and ease of use. The

Pareto rule could be the guiding principle, where the initial

effort should cover 80 % of the use cases while the last

20 % would be the hardest to achieve.

In this manuscript, several areas where data standards

are relevant in metabolomics will be covered. Examples

will be given where standards succeeded, and ‘‘recipes’’

given on how to repeat such successes.

2 Standards for vendor independent raw data
in metabolomics

Excellent examples of how standards have evolved over

time include the multiple data standards for mass spec-

trometry (MS) and NMR spectroscopy raw data, as

described below, resulting in the widely used mzML for-

mat and emerging nmrML format.

2.1 Mass spectrometry raw data standards

Early mass spectra were intended for human inspection,

initially as images on photo plates, or printed as spectra or

peak lists on paper. In the 1990s, the IUPAC CPEP Sub-

committee on Electronic Data Standards developed the

JCAMP formats7 for NMR and MS (Lampen et al. 1994) to

harmonise the peak lists and associated spectral metadata

in a human and computer readable manner. The human

readability had disadvantages as the storage space for the

textual representation required a whole byte for each digit.

The Network Common Data Form (netCDF) was devel-

oped about 25 years ago (Rew and Davis 1990) for data in

vector and array representations, such as geospatial data in

climate models. The benefits of netCDF, which was opti-

mised for efficient storage and access, lead to the specifi-

cation of Analytical Data Interchange Protocol for

Chromatographic Data8 or ANDI-MS for short (Erickson

2000), which was adopted by the American Society for

Testing and Materials (ASTM).9

About 10 years ago, two separate XML standards were

developed independently, mzXML (Pedrioli et al. 2004)

under the guidance of the ‘‘mzXML-associated standard

solutions’’ (MASS) Committee, and mzData (Orchard

et al. 2004) within the proteomics standardisation initiative

(PSI). By 2009, the best aspects of both mzXML and

mzData were consolidated into a new standard called

mzML (Martens et al. 2010) and resulted in joint support

for a single open standard, thus eliminating duplicated

efforts.

For all three XML based formats, the following factors

were vital for broad adoption: (1) the support by vendors of

MS instruments and the existence of freely available con-

verters from vendor formats to the corresponding XML, (2)

the availability of Open Source parser libraries, including

validators to ensure completeness, consistency and unam-

biguous encoding of information. These in turn facilitate:

(1) the broad support in Open Source research software and

6 http://xkcd.com/927/.

7 http://www.jcamp-dx.org/.
8 http://www.astm.org/DATABASE.CART/HISTORICAL/E1947-

98.htm.
9 ‘‘ASTM International—Standards Worldwide.’’ 27 Mar. 2015

\http://www.astm.org/[.
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consequently (2) the adoption of mzML by major data

repositories such as MetaboLights (Haug et al. 2013) and

PRIDE (Jones et al. 2006), which both encourage or even

enforce data deposition in vendor independent (non-pro-

prietary) formats.

The mzML schema is generic enough to even support

imaging mass spectrometry (Schramm et al. 2012). The

imzML format includes the required controlled vocabulary

and optimised data layout, but can be interconverted to

‘‘standard’’ mzML without information loss (Race et al.

2012). The optimized imzML is supported by both com-

mercial and Open Source software, e.g. the Matlab-based

MSiReader (Robichaud et al. 2013) or the R-Bioconductor

based Cardinal package (Bemis et al. 2015).

There are remaining challenges for mzML and contin-

ued developments have been reported: for example, the

mz5 format (Wilhelm et al. 2012) uses the same structure

and all the ontology terms in mzML, but uses HDF5 as a

container format, thus allowing full inter-conversion while

benefitting from rapid access. Another improvement is the

‘‘numpress’’ compression scheme (Teleman et al. 2014)

that allows a ‘‘lossy’’ representation of the binary spectral

data, where the actual accuracy can be chosen at com-

pression time.

But what are the practical implications for the end users

(biologists and analytical chemists) of a standard? At some

stage, they need to convert MS raw data files from pro-

prietary formats into an open format such as mzML. This

will happen, either early and integrated with the experi-

mental process, or only later nearer the time of (eventual)

publication and data submission as shown in Fig. 1. An

early conversion is necessary if vendor agnostic or open

source data analysis tools are to be used. The reason that

only a few open tools support proprietary formats is the

added development effort and time required to enable

import of these formats and keep them up to date. Usually,

the vendors provide software libraries to access their own

formats. The downside is that these often have rather

complex application programming interfaces (APIs), and

worse, each vendor has their own proprietary API. Cur-

rently, most of these interfaces require Windows dynamic

link libraries (DLLs) for the actual file access, which are

not compatible with other operating systems such as

MacOSX or Linux.

The second reason to convert the vendor files is that the

open formats can later be read by anyone, anywhere.

Researchers can transfer data between institutions and

collaborators, without the need for proprietary software

Fig. 1 Experimental workflows in metabolomics. Shown in light

blue are the relevant parts where data standards come into play.

Annotated data deposition in open repositories allow for data re-

analysis and re-use. a Traditional workflow using tools which do not

depend on data standards, and where data annotation and data

publication happen together with manuscript submission. b Fully

standards embedded workflow, where data annotation is part of the

standard operational procedures, data processing can use open

software, and data publication is an integral part of the dissemination

(Color figue online)
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(which might not be available at another location or lab-

oratory). Another unwelcome but realistic scenario is that

the software for older instrumentation is neither compatible

with modern operating systems nor receives updates from

the vendor for economic reasons. This is an extremely

important aspect for long-term sustainability of data man-

agement in a research institution.

For these reasons, it is recommended to convert all files

of a study to an open format soon after data collection, and

retain them alongside the raw data in the original vendor

format. One of the two main routes to mzML-formatted

data is using Open Source converters such as the msconvert

tool developed by the Proteowizard team (Chambers et al.

2012), which is one of the reference implementations for

mzML. It can convert to mzML from Sciex, Bruker,

Thermo, Agilent, Shimadzu, Waters and also the earlier file

formats like mzData or mzXML and is consequently

widely used. As the developers do not have access to all

available instruments, support for the latest might take a

while to implement, and in some cases the vendor-provided

DLLs do not allow access to all features of the instrument.

Although Proteowizard was initially targeting LC/MS data,

it can also readily convert GC/MS data for example from

the Waters GCT Premier or Agilent instruments. The other

main route to mzML formatted data is by using vendor

supplied converters where available, such as the Bruker

CompassXport,10 AB SCIEX\MS Data Converter11 or in

case of GC/MS for example the LECO ChromaTOF-HRT

software. Only few vendor supplied converters are freely

available and some require a commercial license. The

wider community has to maintain constant pressure on all

vendors to implement full access to our data in open for-

mats. In the end, we are all their customers.

An important aspect is that metabolomics studies might

comprise many raw data files, so the conversion from the

vendor formats should not involve expensive manual

intervention to add information beyond what is already

stored in the instrument software. Furthermore, command

line converters are easier to incorporate into local data

processing pipelines. For bioinformaticians developing

either software or databases, it is highly recommended to

use existing I/O parsing software and libraries. Several

such mzML libraries have been developed for different

programming languages and software frameworks, sum-

marised in Table 1.

2.2 NMR raw data standards

For NMR data, The Metabolomics Innovation Centre

(TMIC) in Canada and the COordination of Standards in

MetabOlomicS (COSMOS) consortium (Salek et al. 2015)

in Europe as well as other interested groups have devel-

oped the XML based, vendor-neutral open exchange and

data storage format nmrML, which builds on efforts

(Sansone et al. 2007) within the Metabolomics Standards

Initiative (MSI) and work at the Wishart lab12 and earlier

reporting requirements (Rubtsov et al. 2007). The format

has also heavily borrowed ideas from the HUPO-PSI

mzML standard (Martens et al. 2010), including an XML

schema that defines the structure of an nmrML13 file and a

supporting controlled vocabulary (nmrCV14), which allows

the reuse of nmrCV terms in other formats and tools. The

development of nmrML takes place on www.nmrml.org,

Table 1 A selection of open source software libraries for reading, and for some writing, mzML

Language Library/API URL License

Java jmzML https://code.google.com/p/jmzml/ Apache license 2.0

jmzreader https://code.google.com/p/jmzreader/ Apache license 2.0

C?? OpenMS http://open-ms.sourceforge.net/ BSD

Proteowizard http://proteowizard.sourceforge.net/ Apache license 2.0

Python pymzML http://pymzml.github.io/ LGPL v3

R mzR http://bioconductor.org/packages/mzR/ https://github.com/sneumann/mzR Artistic-2.0

MatLab MSiReader http://www4.ncsu.edu/*dcmuddim/msireader.html BSD 3-clause

Ruby mspire https://github.com/princelab/mspire MIT

Perl MzML::Parser

(CPAN)

https://github.com/Leprevost/MzML-Parser http://search.cpan.org/dist/

MzML-Parser/

Dual: GPL or artistic

license

See also http://www.ms-utils.org/wiki/pmwiki.php/Main/SoftwareList for a growing link of MS related software

10 ‘‘Software Downloads | Bruker Corporation.’’ 2012. 15 Feb. 2015

\http://www.bruker.com/service/support-upgrades/software-down

loads.html[.
11 ‘‘Download—AB Sciex.’’ 2011. 10 Mar. 2015 \http://www.

absciex.com/Documents/Downloads/Software/ABSCIEX-MS%20Data-

Converter-User-Guide.pdf[.

12 http://www.metabolomicscentre.ca/exchangeformats.htm.
13 ‘‘nmrML—home.’’ 2012. 26 Mar. 2015\http://nmrml.org/[.
14 http://nmrml.org/cv/.
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where the specification documents, example files, and

converters can be found. Java, Python, R and Matlab par-

sers have been developed to convert raw vendor formats to

and from nmrML. Validator tools are available for quality

control of the generated nmrML files, especially their

completeness and correct semantics. The schema of

nmrML has already been designed with 2D NMR experi-

ments in mind, but the converters do not yet support 2D

data. We would like to make developers of NMR data

analysis software aware of our effort, and to welcome them

to contact us and implement access to this open format.

Likewise, users should start to consider submitting their 1D

NMR data to metabolomics repositories such as Metabo-

Lights (Haug et al. 2013) in the nmrML format.

3 Study design and experimental metadata
standards

We now discuss the differences between standards for

instrument output and standards for experimental metadata

and analysis reporting. The purpose of creating descriptive

metadata is to facilitate discovery of relevant experimental

data and to enable integrative and meta-analysis. The

outcome of biological experiments is highly influenced not

only by the experimental design or by the standard oper-

ating procedures used, but also by the many processing

steps for peak picking, aligning, cleaning, transforming and

the modelling of raw data. Therefore, to enable the precise

reproduction of results, it is important to define reporting

requirements associated with experimental design, data

acquisition and variable manipulation during data pro-

cessing and downstream statistical analysis. This is prob-

ably one of the most arduous tasks as the standardisation

efforts need to be sufficiently generic to support a broad

array of research questions and their particular experi-

mental setup, but at the same time specific enough to

ensure consistency, accuracy and reproducibility.

Several reporting guidelines have been created over the

years, some of the first include the recommendations

(Lindon et al. 2005) by the Standard Metabolic Reporting

Structure (SMRS) initiative, a consortium of academic,

government and industrial scientists which first met in

2003. Later, the Metabolomics Standards Initiative (MSI)

was formed, and created a set of Core Information for

Metabolomics Reporting (CIMR) guidelines, which were

later published (Fiehn et al. 2007) as a set of articles in the

Metabolomics journal.

3.1 Formats for standardised metadata capture

More structured (digital) schemata have been proposed,

including elaborate XML schema definitions (XSDs) or

database models like ArMet (Jenkins et al. 2004) or

SetupX (Scholz and Fiehn 2007), but also lightweight

spreadsheet templates (Fernie et al. 2011). A nice summary

of community accepted minimal information was presented

in a recent editorial (Goodacre 2014).

Although the benefits of standard compliant reporting is

undeniable, adoption is hampered by what is often viewed

as a steep learning curve that can be time consuming for

first time users. One remedy is to provide efficient software

tools that integrate better with experimental workflows and

provide configuration templates– sets of pre-defined attri-

butes for different sample types used to capture metadata.

Drop-down lists that limit the selection of particular fields

would also improve software usability, as would

improvements to available validation rules. However, it is

just as important to provide appropriate training to scien-

tists, to ensure they know how to perform and report

reproducible research. Institutions increasingly have dedi-

cated data managers who take care of the local data man-

agement infrastructure and can potentially provide such

training.

The ISA-Tab format (Sansone et al. 2012) is a metadata

standard that has gained a lot of momentum since its first

release in 2008, and many of the reporting guidelines and

considerations mentioned above have influenced its cre-

ation. The format comprises a set of tab delimited

spreadsheet-like files that describe a given Investigation,

including one or more Studies comprising a set of samples,

and one or more Assays per study. The Investigation file

captures the title, authors and a brief description of the

underlying aim of a given investigation, a list of protocols

applied, bibliographic information and contact data. Study

files describe the origin of the sample material, its char-

acteristics, protocols and experimental design factors rel-

evant to the individual samples. Assay files specifically for

metabolomics assays require information on how individ-

ual samples were extracted, possibly derivatized, and how

the analytical protocols were performed for the actual

measurements. For metabolomics, an additional fourth file

type was specified by the developers of MetaboLights,

which include tables of the intensities or concentrations of

spectral features or metabolites in the samples. Depending

on the platform technology, the table can be used to capture

the metabolite-relevant analytical information such as

chemical shift and multiplicity in NMR-based experiments,

and m/z, retention index, fragmentation and charge for

mass spectrometry. For identified spectral features, the

metabolite information includes the name, external data-

base identifiers, formula, and chemical structure as a

SMILES or an InChI string.

ISAcreator (Rocca-Serra et al. 2010) is a standalone,

Java-based, platform-independent desktop application with

a range of facilities to enable standards-compliant creation
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of ISA-Tab archives. The software enables ontology sear-

ches and term lookup with a great deal of flexibility for

capturing metadata at various stages of the experimental

workflow.

Large portions of the data types, the actual Study layout,

label descriptions, column names and recommended

ontologies, are specified through a set of ISA configura-

tions created with the ISAconfigurator. Several configura-

tions exist for specific assay technologies, such as gene

expression analysis, flow cytometry and different assay

types in metabolomics. With these configurations, it is also

possible to validate the metadata to ensure whether it

complies with available ‘Metabolomics Standards Initia-

tive’ (MSI) reporting recommendations. The ISAcreator

metabolomics plugin developed at the EMBL-EBI captures

the metabolites measured, with their quantification as

described above.

As mentioned earlier, a factor that contributed to the

widespread adoption of raw data standards was the support

shown by vendors of MS instruments and the incorporation

of the standards into their software. Similarly, incorporat-

ing the study design and experimental metadata standards

into data processing and data management software pro-

motes adoption of standards. The addition of standards into

data management software, however, is not straightfor-

ward. This is because software such as Laboratory Infor-

mation Management Systems (LIMS) and Electronic Lab

Notebooks (ELN) are usually designed to be, and marketed

as, generic products adaptable to a wide range of scenarios.

Incorporating standards as part of these data management

solutions attempts to make a generic solution work in a

specific (standardised) way. However, with well-defined

standards, this amalgamation should be achievable. Suc-

cessful incorporation of standards into data processing and

data management software would to some extent reduce

the researcher’s manual data analysis efforts, thus yielding

a tangible benefit for making data standards compliant

earlier. Table 2 gives an overview of the software

ecosystem around the ISA-Tab standard.

Another approach is the development of interoperable

tools, i.e., ‘‘metadata crosswalks’’ that facilitate exchange

of metadata. A crosswalk is a data conversion that maps

elements, semantics, or syntax from one metadata

scheme to those of another. The degree to which these

crosswalks are successful depends on the similarity of the

two schemes, the granularity of the elements, and the

compatibility of the content rules used to fill the elements

of each scheme.

An example of such crosswalk in the case of metabo-

lomics is the eXtensible Experiment Markup Language

(XEML). The XEML-Lab (Hannemann et al. 2009)

(https://github.com/cbib/XEML-Lab) is an XML-based

framework for designing and documenting experiments in

an intuitive yet machine readable format, and to link

experimental metadata with any type of data generated in

the corresponding experiments, and ultimately, to make

both metadata and data available for data mining. XEML

descriptions are used in both the Golm Metabolome data-

base (Hummel et al. 2007; Kopka et al. 2005) (GMD,

http://gmd.mpimp-golm.mpg.de) and the PLATO database

(https://plato.codeplex.com) at INRA Bordeaux, which is a

micro plate processing pipeline that supports enzyme

activities and metabolite assays. The crosswalk is imple-

mented in the XEML-Lab software, which can load

experiments from these databases and export to ISA-Tab. If

required, information that is missing can be added from

within the XEML-Lab software. Other academic efforts

also demonstrated the feasibility to export experimental

data via metadata conversion to the ISA-Tab format as

shown by the MASTR-MS LIMS solution.15,16 Another

example for the export of metabolomics data into standard

formats is the very positive interaction with software

vendors such as Biocrates AG (PRS, personal communi-

cation), showing that standard compliance does not have to

be taxing for the users.

While such metadata crosswalks are essential, they are

also labour intensive to develop and maintain. The map-

ping of schemes with fewer elements (less granularity) to

those with more elements (more granularity) can be

problematic.

4 How to weave data standards into life-science
experiments

Figure 1 shows two potential scenarios for standards

compliant reporting of experiments. In Fig. 1a, the exper-

iment is performed in the traditional manner from con-

ception through to the manuscript writing. Journals are

increasingly requiring that the underlying study data are

made publicly available, so the relevant data and infor-

mation are prepared for upload at the end of the process.

Getting familiar with the data management life cycle and

tooling before starting a study can be very useful, since

some kind of data organisation is always required. This

moves data management from a retrospective activity to a

prospective one. So making sure from the beginning that

all information required later for publishing and data

sharing is available in one place, rather than scattered

across the hard drive and lab books, can be a time saver

15 ‘‘Mastr-ms code.’’ 2013. 28 Mar. 2015 \https://bitbucket.org/

ccgmurdoch/mastr-ms[.
16 ‘‘Mastr-MS — Mastr-MS 1.11.2 documentation.’’ 2013. 18 Feb.

2015 \https://mastr-ms.readthedocs.org/https://mastr-ms.readthedo-

cs.org/[
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later. Standards need not be a hindrance, but should be

perceived and understood as vehicles to increased trust,

secondary usage and higher visibility of scientific output.

Reused data is useful data and is data that gets cited (Pi-

wowar et al. 2007). Standards compliance is just another

standard operating procedure applied to the dissemination

of the research output. This alternative approach is shown

in Fig. 1b, where the whole experiment is driven by stan-

dards compliant results generation, here demonstrated

using the ISA-Tab terms and concepts.

While it may sound trivial, creating a crisp title and

short description of the Investigation as part of the ISA-Tab

metadata helps focus on the question at hand. It is also

beneficial if the institute or laboratory has established short

guidelines on naming and the directory hierarchy. This

helps to pass on institutional best practice to newcomers,

just as for the laboratory SOPs. The ISA files can for

example be kept close to experimental data, e.g. in the

same directory.

Then, the Study table is populated with the sample

details and the experimental design factors, such as geno-

types, treatments or time points and very importantly, the

tracking and annotation of QC samples. Often, such a

table is used anyway using spreadsheet software to keep

track of the samples. Furthermore, some MS or NMR

instrument control software can use this information for the

Table 2 Tools for customising, manipulating and processing ISA-Tab descriptions

Main functionality Name URL Language/

implementation

License

ISA-Tab configuration

(creation of templates for

ISA-Tab for specific

domains)

ISAconfigurator http://www.isa-tools.org/software-suite/,

https://github.com/ISA-tools/ISAconfigurator

Java Common Public

Attribution

License 1.0

(CPAL)

ISA-Tab creation and

annotation

ISAcreator http://www.isa-tools.org/software-suite/ Java CPAL

OntoMaton https://chrome.google.com/webstore/detail/

ontomaton/

dkelbgmogiamnbbballckedaldbombni,

https://github.com/ISA-tools/OntoMaton

Add-on for

Google

Spreadsheets

CPAL

ISA-Tab parser PERL parser https://github.com/bobular/Bio-Parser-ISATab PERL Dual: GPL or

artistic

Python parser https://github.com/ISA-tools/biopy-isatab Python The MIT license

(MIT)

ISA-Tab validation ISAValidator http://www.isa-tools.org/software-suite/,

https://github.com/ISA-tools/ISAvalidator-

ISAconverter-BIImanager

Java CPAL

Browsing/visualisation of

studies

BII web application http://www.isa-tools.org/software-suite/ J2EE MIT

ISA-Tab Viewer https://github.com/ISA-tools/ISATab-Viewer Javascript MIT

Conversion to other formats ISAConverter https://github.com/ISA-tools/ISAvalidator-

ISAconverter-BIImanager

Java Mozilla Public

License (MPL)

1.1, GPL 2.0,

LGPL 2.1

isa2rdf https://github.com/ToxBank/isa2rdf Java LGPL v3

linkedISA http://isa-tools.github.io/linkedISA/ Java CPAL

Link to analysis platforms Risa http://bioconductor.org/packages/Risa/

https://github.com/ISA-tools/Risa

R, BioConductor

package

LGPL

GenomeSpace

(online and

through the

ISAcreator tool)

http://www.genomespace.org and http://www.

genomespace.org/support/guides/tool-guide/

sections/isacreator

through

ISAcreator,

written in Java

LGPL

Refinery http://www.refinery-platform.org/, https://

github.com/parklab/refinery-platform

Django/

Python

MIT-like Harvard

license

MetaDB https://github.com/rmylonas/MetaDB Grails/R MIT and CPAL

XML-based experiment and

metadata description tools

XEML-Lab https://github.com/cbib/XEML-Lab C?? (Windows,

Mac and PC)

BSD

Biocrates http://www.biocrates.com/products/software Windows Commercial

MASTR-MS https://bitbucket.org/ccgmurdoch/mastr-ms/ Django/Python GPL v3
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sample processing control, either directly or with small

custom conversion scripts for each Assay.

Immediately after the measurements are performed,

measured data should be converted to an open format such

as mzML for both the subsequent processing and/or the

later data publication, and the resulting filenames should be

added to the Assay table. The ISA-Tab files now contain all

information up to the data processing and analysis steps.

Several data processing environments can take advantage

of the annotation in ISA-Tab archives, for example the

Galaxy workflow system (Goecks et al. 2010) and the

R/Bioconductor framework (Gentleman et al. 2004). The R

environment allows workflows to be written that combine

the Risa (González-Beltrán et al. 2014) and xcms (Smith

et al. 2006) packages, and the creation for example, of

routine Quality Control reports for the whole experiment,

or after further processing statistics and visualisations. The

MetaDB (Franceschi et al. 2014) is a database and web

application that provides a data processing workflow for

untargeted MS-based metabolomics experiments with the

incremental addition of ISA-Tab data as a core concept.

5 On carrots and sticks, or ‘‘where there is a will,
there is a way’’

One of the hurdles on the road to standard adoption and

uptake can be summarised in the question ‘‘What’s in it for

me?’’ For an individual contributor, there can appear to be

no immediate (short term) return on investment. A more

top down solution is the creation and enforcement of data

release policies which also include the recommendation to

adopt data standards by funding bodies. The US NIH, for

instance, imposes data release within 6 months of pro-

duction. But data management is frequently regarded as the

ugly duckling of bioinformatics, and the burden and costs

of data management are often underestimated. Conse-

quently the funding agencies, while mandating policies and

recommending data standards, need to support data man-

agers and research scientists for the extra expense in time

associated with the additional work that standard compli-

ance requires. Grant applications should thus include data

management costs just like laboratory consumables.

On the bright side, publishers are playing an increasing

role to reward scientists for their efforts in planning,

producing and sharing datasets for the benefit of the sci-

entific community. Datasets (and what are increasingly

known as research objects) are being made citable and

reusable, whose producers can be clearly identified, for

instance by means of ORCID, which allows unambiguous

tracking of persons and organisations. It has been shown

that articles for which the data has been made available

have increased citation rates (Piwowar et al. 2007). Nature

Publishing Group’s Scientific Data and BiomedCentral’s

Gigascience are what is known as ‘data journals’. These

publications allow researchers to release their data and

thereby provide the means for proper scholarly dissemi-

nation of their work via modern means, and without the

need for a ground-breaking biological advance. This also

has the added benefit of countering publication bias, where

only positive results are published. Both journals support

ISA-Tab format for structuring and releasing experimental

metadata and issue DOIs for the data sets. Other journals

such as f1000Research publish ‘‘Data Notes’’, and more

publishers are currently updating their data policies.

Table 3 provides some examples for journal data deposi-

tion policies. A regularly updated list of journal research

data policies is being compiled by the BioSharing Infor-

mation Resource initiative17 in collaboration with a JISC

Table 3 List of several journals publishing metabolomics research with strong data deposition policies as part of the respective instructions for

authors

Journal Policy Journal link

Nature

Scientific

Data

Authors must deposit their data before submission, following the MSI guidelines.

MetaboLights listed as recommended repository

http://www.nature.com/

scientificdata/

GigaScience Supporting data and source code must be publicly available, GigaScience provides the

affiliated database GigaDB.

http://www.gigasciencejournal.

com/

Metabolomics It expected that data are made publicly available upon publication, suggestion to use

MetaboLights or Metabolomics Workbench

http://link.springer.com/journal/

11306

Metabolites Authors are strongly encouraged to submit all supporting data to public, Open Access

databases such as EMBL-EBI’s MetaboLights

http://www.mdpi.com/journal/

metabolites

PLOS journals All data underlying the findings described in a manuscript must be fully available http://journals.plos.org/plosone/

f1000Research Primary research articles should include the submission of the data underlying the results,

together with details of any software used to process results […] Data are normally

published under the CC0 licence which facilitates data reuse

http://f1000research.com/for-

authors/data-guidelines

17 http://biosharing.org.
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pilot initiative.18 In BioSharing these will be cross-linked to

the standards and databases, enabling access and cross-

search of the information, on which a variety of stakeholders

can base their decisions. Specifically, journals, researchers

and funders will be able to recommend or select mature and

community endorsed databases and standards, and devel-

opers and curators of repositories and content standards will

be aware of the requirements they need to meet to ensure

their products are discoverable and well described so that

they can be used by researchers or recommended by journals

and funders. Biosharing catalogue currently provides a

dedicated collection, which lists standards and databases

relevant to the field: https://biosharing.org/collection/Meta

bolomicsStandardsandDatabases.

This is possibly a game changer as these initiatives pro-

vide a unique incentive for scientists to release their data in

standard compliant fashion. In return? A higher visibility of

the scientific output as data that can be trusted, mined,

reused, mashed up and above all cited and acknowledged.

However, the metabolomics community lags 10 years

behind the transcriptomics and proteomics communities in

terms of learning-curve, maturity and acceptance of its

resources. Metabolomics repositories face the same arduous

situation as ArrayExpress (Brazma et al. 2003) or GEO

(Edgar et al. 2002) when they were launched. MageML

(Spellman et al. 2002) was the metadata scheme for tran-

scriptomics experiments, but the lack of timely software

support for this complex XML format led to the development

of the simpler format MAGE-TAB. Many data standards in

metabolomics such as ISA-Tab (Sansone et al. 2012), mzTab

(Griss et al. 2014) and the mwTab used by the NIH metabo-

lomics workbench have been modelled on, and learned from,

the earlier -Omics formats. The combination of ‘arm twisting’

by publishers and funding agencies and at the same time

loosening the annotation requirements resulted in the US and

European repositories growing considerably. Today, no one

doubts the value of these resources, as exemplified in several

meta-studies (Chen et al. 2010), (Rhodes and Chinnaiyan

2005) and (Dhanasekaran et al. 2014). By now, data deposi-

tion to ArrayExpress and GEO is part of the routine work for

anyone working on transcription profiling, and likewise the

deposition of proteomics data to the member databases of the

ProteomXchange consortium (Vizcano et al. 2014).

6 Examples where data re-use boosted research

In metabolomics, as in other fields, the ability to download

and use legacy data to demonstrate new or to compare

existing data analysis approaches is where data standards

and sharing excel. This was exemplified e.g. in (Gromski

et al. 2014), where the authors used three different data sets

from MetaboLights, including GC–MS and NMR datasets

(MTBLS1, MTBLS24, MTBLS40) to investigate the

effects of scaling metabolomics data prior to analysis with

multivariate methods. The ability to use multiple data sets

allows overall conclusions to be drawn on the most sen-

sible scaling methods, which might then be generally

applicable to similar metabolomics data.

Another example for re-use probably not anticipated by

the original depositors is the MTBLS38 study in Metabo-

Lights, which is a collection of biologically-relevant plant

metabolite standards which were measured for the devel-

opment and validation of MassCascade (Beisken et al.

2014). This data was used by M. Stravs (Eawag, CH),

during a training workshop, to demonstrate the use of

RMassBank (Stravs et al. 2013) to extract, annotate and

recalibrate MS/MS data, and finally create 58 new refer-

ence spectra from MetaboLights (Haug et al. 2013) in

MassBank (Horai et al. 2010).

The deposited data also helps in the development of

novel computational approaches. Stanstrup and Vrhovšek

used metabolite data from nine studies MTBLS4/17/19/20/

36/38/39/4/52 and MTBLS87 along with other data sets for

the development and evaluation of the www.predret.org

retention time mapping database (Stanstrup et al. 2015).

In all these cases, the availability of the data in a stan-

dard format simplified or enabled the re-use. This

demonstrated again that it is critical that publicly funded

datasets are made available to the scientific community for

mining and meta-analysis in a reasonable time frame.

An additional aspect pertains to the didactics of science:

it will make training of data scientists easier, if real datasets

can be used in textbooks and training courses. This requires

trust: trust in the fact that repository content will grow and

data will be discoverable; trust in the fact that enough

individuals and institutes will contribute; trust that contri-

butions will be of good enough quality so as to enable

reuse, and trust that few will have their discoveries

scooped. On this one last point, it seems that very few, if

any, such cases can be documented. On the other hand,

unrestricted access to data leads to critical review and early

detection of reproducibility issues.

7 Conclusion

Metabolomics standards have started to emerge about a

decade ago, and this mostly concerned recommendations

about which information had to be reported in the scientific

literature. With increasing amounts of data being produced,

mere description in manuscripts is no longer sufficient. We

have shown that creating and sharing standards compliant

18 http://www.jisc.ac.uk/rd/projects/journal-research-data-policy-reg

istry-pilot.
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data and metadata for metabolomics experiments is possi-

ble today.

At the same time, it is important to bear in mind that

coming up with reporting guidelines is only one aspect of

the standardisation process, and possibly even the easiest.

The main challenge is to transform the guidelines into a

robust syntax with defined semantics and to create suc-

cessful reference implementations. These can only be

achieved by building a set of free, vendor and platform

independent software tools around the specifications for

data manipulation, and to foster the buy-in from ‘power-

users’ to ensure that relevant use cases are covered.

Most MS instrument vendors support raw data standards

like mzML either directly or by collaborating with open

source projects like Proteowizard. To be on the safe side, a

tender description for a new instrument should include the

requirement to export complete and fully calibrated raw

data into mzML. If the analytics and data processing are

outsourced, the contract should make sure that in addition

to the results, also the primary and processed data are

provided in open formats.

For metabolomics, metadata capturing has made big

leaps in recent years. Not only have simple-to-process but

versatile standards like ISA-Tab emerged, but tools such as

ISAcreator have explored template generation for factorial

study designs and this example should be followed for

capturing experimental metadata. On top of that, metadata

standards are increasingly used in data processing pipelines

like MetaDB, or frameworks like R/Bioconductor and

Galaxy, providing a carrot for users by simplifying the

downstream data analysis steps.

By regularising how information is structured and

reported, standards make it easier to distribute, disseminate

and exchange information. Metabolomics repositories like

the Metabolomics Workbench or MetaboLights are avail-

able to provide all data, and make it easy for scientists to

fulfill the requirements of the journals to deposit research

data associated with a manuscript. In related disciplines,

annotation standards such as MIAME guidelines (Brazma

et al. 2001) or the Gene Ontology (Ashburner et al. 2000)

controlled vocabulary have become essential resources in

modern molecular and computational biology.

Standards are developed to ensure that scientific infor-

mation is delivered consistently, efficiently and meaning-

fully to the benefit of the community. Building such

infrastructure does not occur overnight, and requires

investment from all parties and also appreciation from

funding agencies and stakeholders to acknowledge that

data management is a new, essential scientific activity. This

should be properly evaluated and factored in by funding

agencies when supporting research efforts.

Therefore, instead of being seen as a burden, standard-

isation efforts and standards should be in fact perceived as

unique helping tools to enhance the impact of the work

carried out by scientists. Indeed, the examples presented

above have shown that new types of research are made

possible by exploiting a growing ‘data lake’, for example

making it easier to assemble virtual cohorts by retrieving

Open Access datasets for testing and evaluating algorithms

or to perform meta-analysis.

Sometimes, it is simply about ‘‘just doing it’’, or as the

old adage goes, ‘‘where there is a will, there is a way’’.
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Pratt, B., Röst, H. L., et al. (2014). Numerical compression

schemes for proteomics mass spectrometry data. Molecular and

Cellular Proteomics, 13(6), 1537–1542. doi:10.1074/mcp.O114.

037879.

Vizcano, J. A., Deutsch, E. W., Wang, R., Csordas, A., Reisinger, F.,

Rós, D., et al. (2014). ProteomeXchange provides globally

coordinated proteomics data submission and dissemination.

Nature Biotechnology, 32(3), 223–226. doi:10.1038/nbt.2839.

Wilhelm, M., Kirchner, M., Steen, J. A. J. & Steen, H. (2012). mz5:

Space- and time-efficient storage of mass spectrometry data sets.

Molecular Cell Proteomics, 11(1), O111.011379. doi:10.1074/

mcp.O111.011379.

Data standards can boost metabolomics research, and if there is a will, there is a way Page 13 of 13 14

123

http://dx.doi.org/10.1038/nbt1031
http://dx.doi.org/10.1038/nbt1031
http://dx.doi.org/10.1371/journal.pone.0000308
http://dx.doi.org/10.1016/j.jprot.2012.05.035
http://dx.doi.org/10.1016/j.jprot.2012.05.035
http://dx.doi.org/10.1038/ng1570
http://dx.doi.org/10.1007/s13361-013-0607-z
http://dx.doi.org/10.1093/bioinformatics/btq415
http://dx.doi.org/10.1007/s11306-006-0040-4
http://dx.doi.org/10.1007/s11306-015-0810-y
http://dx.doi.org/10.1038/nbt0807-846b
http://dx.doi.org/10.1038/ng.1054
http://dx.doi.org/10.1142/9789812772435_0017
http://dx.doi.org/10.1016/j.jprot.2012.07.026
http://dx.doi.org/10.1016/j.jprot.2012.07.026
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1186/gb-2002-3-9-research0046
http://dx.doi.org/10.1021/acs.analchem.5b02287
http://dx.doi.org/10.7554/eLife.02956
http://dx.doi.org/10.7554/eLife.02956
http://dx.doi.org/10.1002/jms.3131
http://dx.doi.org/10.1074/mcp.O114.037879
http://dx.doi.org/10.1074/mcp.O114.037879
http://dx.doi.org/10.1038/nbt.2839
http://dx.doi.org/10.1074/mcp.O111.011379
http://dx.doi.org/10.1074/mcp.O111.011379

	Data standards can boost metabolomics research, and if there is a will, there is a way
	Abstract
	Introduction
	Standards for vendor independent raw data in metabolomics
	Mass spectrometry raw data standards
	NMR raw data standards

	Study design and experimental metadata standards
	Formats for standardised metadata capture

	How to weave data standards into life-science experiments
	On carrots and sticks, or ‘‘where there is a will, there is a way’’
	Examples where data re-use boosted research
	Conclusion
	Acknowledgments
	References




