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Abstract

Understanding the uncertainty of a neural net-
work’s (NN) predictions is essential for many
purposes. The Bayesian framework provides
a principled approach to this, however ap-
plying it to NNs is challenging due to large
numbers of parameters and data. Ensembling
NNs provides an easily implementable, scal-
able method for uncertainty quantification,
however, it has been criticised for not being
Bayesian. This work proposes one modifica-
tion to the usual process that we argue does
result in approximate Bayesian inference; reg-
ularising parameters about values drawn from
a distribution which can be set equal to the
prior. A theoretical analysis of the procedure
in a simplified setting suggests the recovered
posterior is centred correctly but tends to
have underestimated marginal variance, and
overestimated correlation. However, two con-
ditions can lead to exact recovery. We argue
that these conditions are partially present in
NNs. Empirical evaluations demonstrate it
has an advantage over standard ensembling,
and is competitive with variational methods.

Interactive demo: teapearce.github.io.

1 Introduction

Neural networks (NNs) are the current dominant force
within machine learning, however, quantifying the un-
certainty of their predictions is a challenge. This is
important for many real-world applications (Bishop,
1994) as well as in auxiliary ways; to drive exploration
in reinforcement learning (RL), for active learning, and
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to guard against adversarial examples (Smith and Gal,
2018; Sünderhauf et al., 2018)

A principled approach to modelling uncertainty is pro-
vided by the Bayesian framework. Bayesian Neural Net-
works (BNNs) model the parameters of a NN as proba-
bility distributions computed via Bayes rule (MacKay,
1992). Whilst appealing, the large number of param-
eters and data points used with modern NNs renders
many Bayesian inference techniques that work well in
small-scale settings infeasible, e.g. MCMC methods.

Ensembling provides an alternative way to estimate
uncertainty: it aggregates the estimates of multiple
individual NNs, trained from different initialisations
and sometimes on noisy versions of the training data.
The variance of the ensemble’s predictions may be
interpreted as its uncertainty. The intuition is simple:
predictions converge to similar results where data has
been observed, and will be diverse elsewhere. The
chief attraction is that the method scales well to large
parameter and data settings, with each individual NN
implemented in precisely the usual way.

Whilst ensembling has proven empirically success-
ful (Tibshirani, 1996; Lakshminarayanan et al., 2017;
Osband et al., 2016), the absence of connection to
Bayesian methodology has drawn critics and inhibited
uptake, e.g. Gal (2016) [p. 27].

3xNNs, Initialised

NN1

NN2

NN3

3xNNs, Trained

3xNNs Predictive Dist. GP Predictive Dist.

Figure 1: An ensemble of NNs, starting from different
initialisations and trained with the proposed modifica-
tion, produce a predictive distribution approximating
that of a GP. This improves with number of NNs.

ar
X

iv
:1

81
0.

05
54

6v
5 

 [
st

at
.M

L
] 

 2
6 

Fe
b 

20
20

https://teapearce.github.io/portfolio/github_io_1_ens/


Uncertainty in Neural Networks: Approximately Bayesian Ensembling

1.1 Contribution

This paper proposes, analyses and tests one modifi-
cation to the usual NN ensembling process, with the
purpose of examining how closely the resulting proce-
dure aligns with Bayesian inference. The modification
regularises parameters about values drawn from an
anchor distribution, which can be set to be equal to the
prior distribution. We name this procedure anchored
ensembling - see figure 1 for an illustration. This falls
into a family of little known Bayesian inference meth-
ods, randomised MAP sampling (RMS) (section 2.2).

Our first contributions do not specifically consider NNs;
we derive an abstracted version of RMS in parameter
space rather than output space. (This abstraction later
allows us to propose RMS for classification tasks for
the first time.) Under the assumption that the joint
parameter likelihood and prior obey a multivariate nor-
mal distribution, we show that it is always possible to
design an RMS procedure to recover the true posterior.

This design requires knowing the parameter likelihood
covariance a priori, which is infeasible except in the
simplest models. We propose a workaround that results
in an approximation of the posterior. In general this
approximation has correct mean but underestimated
variance and overestimated correlation. However, two
conditions lead to an exact recovery: 1) perfectly cor-
related parameters, 2) parameters whose marginal like-
lihood variance is infinite (‘extrapolation parameters’).

We proceed by considering the applicability of RMS to
NNs. We discuss the appropriateness of assumptions
used in the theoretical analysis, and argue that the
two conditions leading to exact recovery of the poste-
rior are partially present in NNs. We postulate this
as the reason that predictive posteriors produced by
anchored ensembling appear very similar to those by
exact Bayesian methods in figures 4, 6, 7 & 8.

The performance of anchored ensembling is assessed
experimentally on regression, image classification, sen-
timent analysis and RL tasks. It provides an advantage
over standard ensembling procedures, and is competi-
tive with variational methods.

2 Background

2.1 Bayesian Neural Networks

A variety of methods have been developed to per-
form Bayesian inference in NNs. Variational infer-
ence (VI) has received much attention both explic-
itly modelling parameters with distributions (Graves,
2011; Hernández-Lobato and Adams, 2015) and also
implicitly through noisy optimisation procedures - MC
Dropout (Gal and Ghahramani, 2015), Vadam (Khan

et al., 2018). Correlations between parameters are
often ignored - mean-field VI (MFVI).

Other inference methods include: Hamiltonian Monte
Carlo (HMC), a MCMC variant which provides ‘gold
standard’ inference but at limited scalability (Neal,
1997); The Laplace method fits a multivariate nor-
mal distribution to the posterior (Ritter et al., 2018).
Whilst ensembling is generally seen as a non-Bayesian
alternative, Duvenaud et al. (2016) interpreted it, with
early stopping, as approximate inference. Aside from
doing Bayesian inference, recent works have begun ex-
ploring prior design in BNNs, e.g. Pearce et al. (2019).

BNNs of infinite width converge to GPs (Neal, 1997).
Analytical kernels exist for NNs with certain activation
functions, including sigmoidal (Error Function, ERF)
(Williams, 1996), Rectified Linear Unit (ReLU) (Cho
and Saul, 2009), and leaky ReLU (Tsuchida et al., 2018).
Whilst GPs scale superlinearly with data (though see
(Wang et al., 2019)), they provide a convenient method
for doing exact inference on small problems. In this
paper we use these GPs as ‘ground truth’ predictive
distributions to compare to wide NNs. In section 5, we
benchmark the ReLU GP on UCI datasets.

2.2 Randomised MAP Sampling

Recent work in the Bayesian community, and indepen-
dently in the RL community, has begun to explore a
novel approach to Bayesian inference. Roughly speak-
ing, it exploits the fact that adding a regularisation
term to a loss function returns a maximum a posteri-
ori (MAP) parameter estimate - a point estimate of
the Bayesian posterior. Injecting noise into this loss,
either to targets or regularisation term, and sampling
repeatedly (i.e. ensembling), produces a distribution
of MAP solutions mimicking that of the true poste-
rior. This can be an efficient method to sample from
high-dimensional posteriors (Gu et al., 2007; Chen and
Oliver, 2012; Bardsley et al., 2014).

Whilst it is possible to specify a noise injection that
produces exact inference in linear regression, there is
difficulty in transferring this idea to more complex set-
tings, such as NNs or classification. Directly applying
the noise distribution from linear regression to NNs has
had some empirical success, despite not reproducing the
true posterior (Lu and Van Roy, 2017; Osband et al.,
2018) (section 3.2). A more accurate, though more
computationally demanding solution, is to wrap the
optimisation step in an MCMC procedure (Bardsley,
2012; Bardsley et al., 2014).

These works have been proposed under several names
including randomise-then-optimise, randomised prior
functions, and ensemble sampling. We refer to this fam-
ily of procedures randomised MAP sampling (RMS).
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µµµpriorθ2
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Ground truth:
Analytical Bayesian
Inference

Original prior centre

Anchor dist.

Samples from anchor dist.

θθθanc

Step 1: Set anchor dist.
as N (µµµanc,ΣΣΣanc) from eq.
4 & 5. Sample θθθanc once.

Recentered prior

Original likelihood

Anchored MAP estimates

fffMAP (θθθanc)

Step 2: Return fffMAP (θθθanc)
from eq. 3 with θθθanc sampled
from step one.

Original Posterior

Step 3: Repeat steps 1 & 2.
The distribution of fffMAP (θθθanc)
recovers original posterior.

Figure 2: Demonstration of (exact) RMS in a 2D parameter space.

3 RMS Theoretical Results

This section presents several novel results. We first de-
rive a general form of RMS by analysing the procedure
in parameter space, using the simplifying assumption
that both prior and parameter likelihood are multi-
variate normal distributions. This is an abstraction
compared to previous works. Appendix A contains
definitions and proofs in full.

If the parameter likelihood covariance is known a priori,
we show how RMS can be designed to recover the true
posterior. In general, this will not be known, and we
propose a practical workaround requiring knowledge
only of the prior distribution.

This workaround no longer guarantees exact recovery
of the posterior. We derive results specifying in what
ways the estimated RMS posterior is in general bi-
ased, including underestimated marginal variance, and
overestimated correlation coefficient. We discover two
special conditions that lead to an exact recovery.

The appropriateness of the normal assumption in non-
linear models for general data likelihoods will be dis-
cussed in section 4, when we consider applying this
RMS scheme with workaround to NNs.

3.1 Parameter-Space Derivation

Consider multivariate normal prior and parameter
likelihood distributions, P (θθθ) = N (µµµprior,ΣΣΣprior),
Pθθθ(D|θθθ) ∝ N (µµµlike,ΣΣΣlike). We make a distinction be-
tween two forms of likelihood: data likelihood, which
is defined on the domain of the target variable, and
parameter likelihood, which is specified in parameter
space. (See definition 1.)

From Bayes rule the posterior, also normal, is,

N (µµµpost,ΣΣΣpost) ∝ N (µµµprior,ΣΣΣprior)N (µµµlike,ΣΣΣlike)
(1)

The MAP solution is simply θθθMAP = µµµpost,

θθθMAP = ΣΣΣpostΣΣΣ
−1
likeµµµlike + ΣΣΣpostΣΣΣ

−1
priorµµµprior, (2)

where ΣΣΣpost = (ΣΣΣ−1
like + ΣΣΣ−1

prior)
−1. In RMS we assume

availability of a mechanism for returning θθθMAP, and
are interested in injecting noise into eq. 2 so that a
distribution of θθθMAP solutions are produced, matching
the true posterior distribution.

A practical choice of noise source is the mean of the
prior, µµµprior, since a modeller has full control over this
value. Let us replace µµµprior with some noisy random
variable, θθθanc. This is the same place as a hyperprior
over µµµprior, though with a subtly different role. Denote
fffMAP(θθθanc) a function that takes as input θθθanc and
returns the resulting MAP estimate,

fffMAP(θθθanc) = ΣΣΣpostΣΣΣ
−1
likeµµµlike + ΣΣΣpostΣΣΣ

−1
priorθθθanc. (3)

Accuracy of this procedure hinges on selection of
an appropriate distribution for θθθanc, which we term
the anchor distribution. The distribution that will
produce the true posterior can be found by setting
E[fffMAP (θθθanc)] = µµµpost and Var[fffMAP (θθθanc)] = ΣΣΣpost.

Theorem 1. In order that, P (fffMAP(θθθanc)) = P (θθθ|D),
the required distribution of θθθanc is also multivariate
normal, P (θθθanc) = N (µµµanc,ΣΣΣanc), where,

µµµanc = µµµprior (4)

ΣΣΣanc = ΣΣΣprior + ΣΣΣpriorΣΣΣ
−1
likeΣΣΣprior. (5)

Figure 2 provides a demonstration of the RMS algo-
rithm in 2D parameter space.

3.2 Comparison to Prior Work

Previous work on RMS (Lu and Van Roy, 2017; Osband
et al., 2019) was motivated via linear regression. Noting
that the MAP solution is given by,

θθθMAP = (
1

σ2
ε

XTX+ΣΣΣ−1
prior)

−1(
1

σ2
ε

XTy+ΣΣΣ−1
priorµµµprior),

(6)
these works added Gaussian noise to µµµprior, in addition
to adding noise to y, either by additive Gaussian noise
or bootstrapping. Eq. 6 is a special case of our own
derivation, substituting ΣΣΣ−1

like = 1/σ2
εX

TX into eq. 2.
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3.3 Practical Workaround: General Case

The previous section showed how to design an RMS
procedure that will precisely recover the true Bayesian
posterior. Unfortunately, in eq. 5 one must specify
the parameter likelihood covariance in order to set the
anchor distribution. For most models, this is infeasible.

A practical workaround is to simply ignore the second
term in eq. 5 and set ΣΣΣanc := ΣΣΣprior. Using RMS with
this anchor distribution will not generally lead to an ex-
act recovery of the true posterior, however the resulting
distribution can be considered an approximation of it.
Corollary 1.1 derives this RMS approximate posterior
in terms of the true posterior.

Corollary 1.1. Set µµµanc := µµµprior and ΣΣΣanc := ΣΣΣprior.
The RMS approximate posterior is P (fffMAP(θθθanc)) =
N (µµµpost,ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost).

Proof sketch. This follows similar working to the-
orem 1, but instead of enforcing E[fffMAP (θθθanc)] =
µµµpost,Var[fffMAP (θθθanc)] = ΣΣΣpost and solving for
µµµanc,ΣΣΣanc, we now enforce µµµanc := µµµprior, ΣΣΣanc :=
ΣΣΣprior and solve for E[fffMAP (θθθanc)],Var[fffMAP (θθθanc)].

This corollary shows that the means of the two distri-
butions are aligned, although the covariances are not.
Next we state several results quantifying how the RMS
approximate posterior covariance differs compared to
the true posterior covariance. All results assume multi-
variate normal prior and parameter likelihood. They
can be observed in figure 3 (A).

Lemma 1.1. When µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior
the RMS approximate posterior will in general under-
estimate the marginal variance compared to the true
posterior, Var[fffMAP(θanc)] < Var[θ|D].

Proof sketch. ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost can be rearranged as

ΣΣΣpost −ΣΣΣpostΣΣΣ
−1
likeΣΣΣpost. The second term will be pos-
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Figure 3: Examples of the RMS approximate posterior
when µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior. MFVI also shown.

itive definite, so the diagonal entry is positive, and
hence, diag(ΣΣΣpost −ΣΣΣpostΣΣΣ

−1
likeΣΣΣpost)i < diag(ΣΣΣpost)i.

Lemma 1.2. Additionally assume the prior is
isotropic. When µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior the
eigenvectors (or ‘orientation’) of the RMS approximate
posterior equal those of the true posterior.

Proof sketch. ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost = 1/σ2

priorΣΣΣ
2
post. Squar-

ing a matrix only modifies eigenvalues not eigenvectors.
As does multiplying by a constant.

Theorem 2. Additionally assume the prior is
isotropic. For a two parameter model, when µµµanc :=
µµµprior,ΣΣΣanc := ΣΣΣprior, the RMS approximate poste-
rior will in general overestimate the magnitude of the
true posterior parameter correlation coefficient, |ρ|. If
|ρ| = 1, then it will recover it precisely.

Proof sketch. We compute the individual entries result-
ing from the required 2× 2 matrix multiplications.

We were unable to generalise theorem 2 beyond a two
parameter model, but numerical examples (appendix
B.1) suggest that it holds for higher dimensionality.

3.4 Practical Workaround: Special Cases

Having described the covariance bias that in general
will be present in the RMS approximate posterior, we
now give two special conditions under which there is
no bias, and the true posterior is exactly recovered.
Illustrations of these cases are shown in figure 3 (B, C).

Theorem 3. For extrapolation parameters (def. 2 - pa-
rameters which do not affect data likelihood but may af-
fect new predictions) of a model, setting µµµanc := µµµprior,
ΣΣΣanc := ΣΣΣprior, means the marginal RMS approximate
posterior equals that of the marginal true posterior.

Proof sketch. We show that the required matrix multi-
plications, ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost, do not affect rows corre-

sponding to extrapolation parameters.

Theorem 4. Set µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior. The
RMS approximate posterior will exactly equal the true
posterior, ΣΣΣpost, when all eigenvalues of a scaled ver-
sion of ΣΣΣpost (scaled such that the prior equals the
identity matrix) are equal to either 0 or 1. This cor-
responds to posteriors that are a mixture of perfectly
correlated and perfectly uncorrelated parameters.

Proof sketch. We are searching for solutions to
ΣΣΣpost = ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost. Applying a scaling, ΣΣΣ′post =

ΣΣΣ
−1/2
priorΣΣΣpostΣΣΣ

−1/2
prior, results in a slightly simpler equation

to find a solution to, ΣΣΣ′post = ΣΣΣ′2post. Results for idem-
potent matrices tell us that if ΣΣΣ′post is singular with all
eigenvalues equal to 0 or 1, this will be a solution.

To provide intuition behind theorem 4 consider a two
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Figure 4: Predictive distributions produced by various inference methods (columns) with varying activation
functions (rows) in single-layer NNs on a toy regression task.

parameter model. If parameters are perfectly corre-
lated, the effect on the data likelihood of an increase in
the first can be exactly compensated for by a change
in the second. If the region over which this applies is
large relative to the prior, the likelihood is a line of
negligible width. This leads to a posterior of negligible
width spanning the prior. Examples in appendix B.1
show what combinations of parameters this holds for.

This section’s proofs show that if these two conditions
exist, RMS makes a precise recovery. In practise, one
would expect to see an increasingly accurate RMS
approximation as these conditions are approached.

4 RMS for Neural Networks

We now apply RMS with practical workaround to NNs.
We will refer to this as ‘anchored ensembling’.

First, we define the NN loss function to be optimised
that corresponds to RMS. We then discuss the validity
of the RMS procedure in the context of NNs, given the
assumptions made. Finally we consider some matters
arising in implementation of the scheme. Appendix,
algorithm 1 details the full procedure.

4.1 Loss Function

Consider a NN containing parameters, θθθ, making pre-
dictions, ŷ, with H hidden nodes and N data points.
If the prior is given by P (θθθ) = N (µµµprior,ΣΣΣprior), max-
imising the following returns MAP parameter estimates.
(See appendix A.1 for the standard derivation.)

θθθMAP = argmaxθθθ log(PD(D|θθθ))−1

2
‖ΣΣΣ−1/2

prior·(θθθ−µµµprior)‖22
(7)

When µµµprior = 0, this is standard L2 regularisation.
In order to apply RMS we instead replace µµµprior with
some random variable θθθanc. To use the practical form
of RMS, we will draw θθθanc ∼ N (µµµprior,ΣΣΣprior).

Conveniently, no parametric form of data likelihood
has yet been specified. For a regression task assuming
homoskedastic Gaussian noise of variance σ2

ε , MAP
estimates are found by minimising,

Lossj =
1

N
||y− ŷj ||22 +

1

N
||ΓΓΓ1/2 · (θθθj −θθθanc,j)||22. (8)

We have defined a diagonal regularisation matrix, ΓΓΓ,
where the ith diagonal element is the ratio of data noise
of the target variable to prior variance for parameter
θi, diag(ΓΓΓ)i = σ2

ε /σ
2
priori

. Note a subscript has been
introduced, j ∈ {1...M}, with the view of an ensemble
of M NNs, each with a distinct draw of θθθanc.

For classification tasks, cross entropy is normally max-
imised, which assumes a multinomial data likelihood,

= − 1

N

N∑
n=1

C∑
c=1

yn,c log ŷn,c,j +
1

N
||ΓΓΓ1/2 · (θθθj−θθθanc,j)||22,

(9)
where yc is the label for class c ∈ {1...C}. Here,
diag(ΓΓΓ)i = 1/2σ2

priori
.

4.2 Validity of RMS in NNs

Theory derived to motivate and analyse RMS assumed
a simplified setting of multivariate normal parameter
likelihoods. This section discusses this assumption,
then considers the prevalence of special conditions (sec-
tion 3.4) that would lead to a close approximation of
the true posterior.

4.2.1 Normal Distribution

Earlier proofs assumed parameter likelihoods follow
a multivariate normal distribution. We provide two
justifications for using this assumption in NNs.

1) Other approximate Bayesian methods incorporate
similar assumptions into their methodologies. MFVI
commonly fits a factorised normal distribution to the
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posterior. The Laplace approximation fits a multivari-
ate normal distribution to the mode of a MAP solution.

2) In figure 5 we visualise conditional parameter likeli-
hoods for actual NNs trained on regression and classi-
fication tasks. After training, a parameter is randomly
selected, and all others are frozen. The chosen parame-
ter is varied over a small range and the data likelihood
calculated at each point. Hence conditional distribu-
tions may be plotted. The plots suggest that thinking
of local modes as approximately normally distributed
is not unreasonable for the purpose of analysis.

This justifies modelling a single mode of the param-
eter likelihood as multivariate normal. However, the
parameter space of a NN is likely to contain many such
modes, with each member of an anchored ensemble
ending up at a different one. We believe that many of
these modes would be exchangeable, for example aris-
ing from parameter symmetries. In this case we believe
that MAP solutions would also be exchangeable.

Empirically we did not observe this multimodality be-
ing problematic - plots such as figure 8 show predictive
posteriors with low bias compared to the true posterior.

4.2.2 Presence of Special Cases

Setting the anchor distribution equal to the prior leads
to an RMS approximate posterior that, in general, has
underestimated variance and overestimated correlation.

Figures 4, 6 & 8 show predictive distributions for an-
chored ensembles that very closely approximate the
true Bayesian posterior, with little sign of bias. This
demands an answer to why, rather than if, anchored
ensembling performs such accurate inference in these
examples. We believe the reason is the presence of the
two special conditions that can lead to exact recovery.

It should be straightforward to see that extrapolation
parameters (definition 2) exist in the figures. Many
hidden nodes will be dead across the range which con-
tains data. Their corresponding final layer weight then
has no effect on the data likelihood, but they do affect
predictions outside of the training data.

0.25 0.50 −2.00 −1.75 0.0 0.5 0.00 0.25

0.00 0.25 0.25 0.50 0.75−1.0 −0.5 0.0 0.5

−0.75 −0.50 −0.25 0.00 0.25 0.00 0.25 0.25 0.50

0.00 0.25 0.0 0.5 −0.25 0.00 0.25 0.50

−0.25 0.00 −0.75 −0.50 −0.25 0.00 0.25 0.00 0.25

Regression: Boston Housing

W1

b1

W2

b2

W3

−5 0 5 −5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 −5 0 5

−5 0 5 −5 0 5 −5 0 5 −5 0 5

Classification: MNIST

Figure 5: Empirical plots of conditional likelihoods for
4 randomly sampled parameters in two-layer NNs.

It is more difficult to see that perfect correlations also
exist, and we provide a numerical example illustrating
this in appendix B.3. Essentially it relies on two hidden
nodes becoming live in between the same two data
points. The associated final layer weights are then
perfectly correlated. Whether these special conditions
exist beyond fully-connected NNs is something tested
indirectly in later experiments with CNNs.

One obvious way to further encourage these condi-
tions is to increase the width of the NN, creating more
parameters and an increasing probability of strong cor-
relations. See also a study of multicollinearity in NNs
(Cheng et al., 2018) [7.1].

4.3 Implementation Practicalities

How many NNs to use in an RMS ensemble? A large
number of samples (and therefore NNs) would be re-
quired to fully capture the posterior parameter distri-
butions. By contrast, if one thinks of each NN as an
iid sample from a posterior predictive distribution, a
much smaller number are required, given output di-
mensionality is typically small. Note this is unaffected
by input dimension. Our experiments in section 5 used
5-10 NNs per ensemble, delivering good performance
on tasks ranging from 1-10 outputs. See also figure 8.
This results in anchored ensembles scaling by O(MN).

Should the NNs be initialised at anchor points? It is con-
venient to draw parameter initialisations from the an-
chor distribution, and regularise directly around these
initialised values, however, we found decoupling initial-
isations from anchor points benefited experiments.

5 Experiments

This section shares high-level findings from experiments.
Further details and hyperparameter settings are given
in appendix E. Appendix C additionally includes two
RL experiments; one testing uncertainty-aware agents
for model-free RL, and one applying anchored ensem-
bles to noisy environments for model-based RL. Code
is available online (github/TeaPearce). Also see our
interactive demo.

5.1 Qualitative Tests

We first examine anchored ensembles on toy problems
to gain intuition about its behaviour compared to pop-
ular approximate inference and ensembling methods.

Figure 4 compares popular Bayesian inference meth-
ods in single-layer NNs for ReLU and sigmoidal non-
linearities. GP and HMC produce ‘gold standard’
Bayesian inference, and we judge the remaining meth-
ods, which are scalable approximations, to them. Both

http://www.github.com/TeaPearce/Bayesian_NN_Ensembles
https://teapearce.github.io/portfolio/github_io_1_ens/
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A. 10x Unconstrained NNs

Toy Regression Task Toy Classification Task

B. 10x Regularised NNs

C. 10x Anchored NNs

D. Ground Truth

Figure 6: Comparison of NN ensemble loss choices.

MFVI (with a factorised normal distribution) and MC
dropout do a poor job of capturing interpolated uncer-
tainty. This is a symptom of the posterior approxima-
tion ignoring parameter correlations - see also figure 3
which shows MFVI failing to capture correlations in
the posterior. This was explored in Foong et al. (2019).

Figure 6 contrasts anchored ensembles trained on eq. 8
& 9, with NN ensembles using standard loss functions,
either with no regularisation term (‘unconstrained’, ΓΓΓ =
0), or regularised around zero (‘regularised’, θθθanc,j = 000).
Regularised produces poor results since it encourages
all NNs to the same single solution and diversity is
reduced. Unconstrained is also inappropriate - although
it produces diversity, no notion of prior is maintained

101
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Figure 7: Difference in predictive distributions of an
anchored ensemble and a ReLU GP as a function of
width and number of NNs. Mean ±1 standard error.

and it overfits the data.

Figure 8 shows the predictive distribution improving
with number of NNs compared to a ReLU GP, however
it appears a small residual difference remains.

5.2 Convergence Behaviour

To assess how precisely anchored ensembling performs
Bayesian inference on a real dataset, we compared its
predictive distribution with that of an exact method
(ReLU GP) on the Boston housing dataset. Figure 7
quantifies the difference when varying both the width
of the NN, and number of NNs in the ensemble. KL
divergence between the two predictive distributions
was measured and found to decrease as both NN width
and number of NNs was increased. As in figure 8 a
small amount of residual difference remains even for
40xNNs of 1, 024 nodes.

5.3 UCI Regression Benchmarks

In order to compare anchored ensembles against popu-
lar approximate inference methods, we used a standard
BNN benchmark. This assesses uncertainty quality for
UCI regression tasks on data drawn from the same
distribution as the training data (Hernández-Lobato
and Adams, 2015). We also implemented the ReLU
GP to assess the performance limit on these datasets.

Table 1 lists our results. We include results re-
ported for Deep Ensembles (Lakshminarayanan et al.,
2017), which is considered the state-of-the-art ensemble
method. Appendix C.3 provides a full comparison with
other approximate Bayesian methods including Proba-
bilistic Backpropagation, MC Dropout, and Stochastic
Gradient HMC.

Ordering results according to the level of estimated data
noise, σ̂2

ε , shows a clear pattern - anchored ensembles
perform best in datasets with low data noise, surpassing
both Deep Ensembles and all approximate inference
methods listed in appendix C.3. This may be due to an
increased importance of interpolation uncertainty when
data noise is low, which anchored ensembles models
well. On other datasets, the method is also competitive
(the Deep Ensemble implementation used additional
complexity to capture heteroskedastic uncertainty and
has an advantage on higher data noise datasets).

5.4 Out-of-Distribution Classification

We now test on classification tasks, for out-of-
distribution (OOD) data, with complex NN architec-
tures, and compare against other ensemble methods.

An uncertainty-aware NN should make predictions of
decreasing confidence as it is asked to predict on data
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3xNNs 5xNNs 10xNNs 20xNNs
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Figure 8: The predictive distribution of an anchored ensemble approaches that of a ReLU GP.

Table 1: NLL regression benchmark results. See ap-
pendix C for RMSE and variants of our method. Mean
±1 standard error.

Deep Ens. Anch. Ens. ReLU GP1

σ̂2
ε State-Of-Art Our Method Gold Standard

High Epistemic Uncertainty
Energy 1e-7 1.38 ± 0.22 0.96 ± 0.13 0.86 ± 0.02
Naval 1e-7 -5.63 ± 0.05 -7.17 ± 0.03 -10.05 ± 0.02
Yacht 1e-7 1.18 ± 0.21 0.37 ± 0.08 0.49 ± 0.07

Equal Epistemic & Aleatoric Uncertainty
Kin8nm 0.02 -1.20 ± 0.02 -1.09 ± 0.01 -1.22 ± 0.01
Power 0.05 2.79 ± 0.04 2.83 ± 0.01 2.80 ± 0.01
Concrete 0.05 3.06 ± 0.18 2.97 ± 0.02 2.96 ± 0.02
Boston 0.08 2.41 ± 0.25 2.52 ± 0.05 2.45 ± 0.05

High Aleatoric Uncertainty
Protein 0.5 2.83 ± 0.02 2.89 ± 0.01 *2.88 ± 0.00
Wine 0.5 0.94 ± 0.12 0.95 ± 0.01 0.92 ± 0.01
Song 0.7 3.35 ± NA 3.60 ± NA **3.62 ± NA

1 For comparison only (not a scalable method). * Trained on 10, 000 rows
of data. ** Trained on 20, 000 rows of data, tested on 5, 000 data points.

further from the distribution seen during training. To
test this, we report the proportion of high confidence
predictions (defined as a softmax output class being
≥ 90%) made by various ensemble systems - uncon-
strained, regularised, and anchored (as in section 5.1).

We trained on three different datasets, using a NN
architecture appropriate to each: 1) Fashion MNIST
image classification; 3 fully-connected layers of 100
hidden nodes. 2) IMDb movie review sentiment classifi-
cation; embedding + 1D convolution + fully-connected
layer. 3) CIFAR-10 image classification; convolutional
NN (CNN) similar to VGG-13 (9 million parameters).

The confidence of predictions on novel data categories
not seen during training was assessed. Table 2 shows
example OOD images shown to the NNs trained on
CIFAR-10. Edge refers to two CIFAR classes held out
during training (ships, dogs). Appendix E provides
OOD examples for other datasets.

The three tables show similar patterns. Whilst all meth-
ods predict with similar confidence on the training data,
confidence differs greatly for other data categories, with
anchored ensembles generally producing the most con-
servative predictions. This gap increases for data drawn
further from the training distribution. Encouragingly,
we observe similar (though less extreme) behaviour to
that in the toy examples of figure 6.

Table 2: Proportion of predictions that were high con-
fidence on out-of-distribution data, e.g. a single regu-
larised NN trained on CIFAR-10 made high confidence
predictions 54% of the time when asked to predict on
MNIST. Mean over five runs (three for CIFAR).

CIFAR-10 Image Classification, VGG-13 CNN

Train — Edge — Fashion MNIST Scramble Invert Noise

– Accuracy – – Train – Edge Fashion MNIST Scramble Invert Noise
1xNNs Reg. 81.6% 0.671 0.466 0.440 0.540 0.459 0.324 0.948
5xNNs Uncons. 85.0% 0.607 0.330 0.208 0.275 0.175 0.209 0.380
5xNNs Reg. 86.1% 0.594 0.296 0.219 0.188 0.106 0.153 0.598
5xNNs Anch. 85.6% 0.567 0.258 0.184 0.149 0.134 0.136 0.118
10xNNs Anch. 86.0% 0.549 0.256 0.119 0.145 0.122 0.124 0.161

IMDb Text Sentiment Classification, Embedding+CNN

– Accuracy – – Train – – Reuters – Rand. 1 Rand. 2 Rand. 3
1xNNs Reg. 85.3% 0.637 0.119 0.153 0.211 0.326
5xNNs Uncons. 89.1% 0.670 0.102 0.141 0.100 0.075
5xNNs Reg. 87.1% 0.612 0.051 0.091 0.076 0.055
5xNNs Anch. 87.7% 0.603 0.049 0.075 0.061 0.009

Fashion MNIST Image Classification, Fully-Connected NN

Accuracy – Train – Edge CIFAR MNIST Distort Noise
1xNN Reg. 86.8 % 0.660 0.584 0.143 0.160 0.429 0.364
5xNNs Uncons. 89.0 % 0.733 0.581 0.301 0.104 0.364 0.045
5xNNs Reg. 87.8 % 0.634 0.429 0.115 0.072 0.342 0.143
5xNNs Anch. 88.0 % 0.631 0.452 0.065 0.041 0.246 0.006

6 Conclusion

This paper proposed, analysed, and tested a modifica-
tion to the usual NN ensembling process that results in
approximate Bayesian inference - regularising parame-
ters around values drawn from a prior distribution.

Under simplifying assumptions, we derived an ab-
stracted form of RMS motivating this. We analysed
a practical RMS variant to understand the bias of its
approximate posterior. Two special conditions were
shown to lead to recovery of the true posterior: per-
fectly correlated parameters and extrapolation param-
eters. We discussed the validity of applying RMS to
NNs, arguing that these two special conditions are
partially present in NNs.

On regression benchmarking experiments, state-of-the-
art performance was achieved on 3/10 datasets - out-
performing popular approximate inference methods.
On image and text classification tasks, anchored en-
sembles were shown to be more robust than alternative
ensemble methods.
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Appendix to
Uncertainty in Neural Networks:

Approximately Bayesian Ensembling

A Proofs

Definition 1. Data likelihood and parameter likelihood

We take care to define two versions of the likelihood, one in output space, PD(D|θθθ) (data likelihood), and one
in parameter space, Pθθθ(D|θθθ) (parameter likelihood). Both return the same values given some data set D and
parameter values θθθ, and hence are exchangeable, but their forms are subtly different.

The data likelihood, PD(D|θθθ), is defined on the output domain. Typically the log of this, log(PD(D|θθθ)), might be
optimised as the cross entropy loss or (negative) mean squared error.

In contrast, Pθθθ(D|θθθ) defines a likelihood function in the parameter domain.

Illustrative Example

Consider a linear regression model with dataset, D, consisting of tuples, {x, y}; a vector of predictor variables
x ∈ Rp, predicting a single scalar y ∈ R. If the model is of the form, θθθTx, a Gaussian data likelihood with
variance σ2

ε on the output might be assumed.

This leads to a data likelihood for the target, y,

PD(D|θθθ) = N (y|θθθTx, σ2
ε ). (10)

For this linear model, the corresponding parameter likelihood is a multivariate normal distribution,

Pθθθ(D|θθθ) ∝ N (θθθ|µµµlike,ΣΣΣlike). (11)

where, µµµlike ∈ Rp & ΣΣΣlike ∈ Rp×p, can be found analytically. They are implicitly functions of the dataset, D,
although to lighten notation we do not write this. Subsequently we also drop the explicit referral to θθθ.

Note that whilst both the data and parameter likelihood follow a normal distribution, they are defined in different
domains.

The correspondence between a Gaussian data likelihood and multivariate normal parameter likelihood is only exact
for a linear regression model. For non-linear models with Gaussian data likelihoods, and other data likelihoods,
the parameter likelihood is not in general multivariate normal. Nevertheless it can be convenient to model it as
such.

Standard Result 1. Product of two multivariate Gaussians (§8.1.8, The Matrix Cookbook, 2008)

N (µµµlike,ΣΣΣlike)N (µµµprior,ΣΣΣprior) ∝ N (µµµpost,ΣΣΣpost) (12)

ΣΣΣpost = (ΣΣΣ−1
prior + ΣΣΣ−1

like)
−1, (13)

µµµpost = ΣΣΣpostΣΣΣ
−1
priorµµµprior + ΣΣΣpostΣΣΣ

−1
likeµµµlike. (14)

Standard Result 2. Affine transform of a normal random variable (§8.1.4, The Matrix Cookbook, 2008)

x ∼ N (µµµ,ΣΣΣ), (15)

y = Ax + b, (16)

y ∼ N (Aµµµ+ b,AΣΣΣAT ). (17)
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Theorem 1. Assume that a model’s parameter likelihood follows a multivariate normal distribution, Pθθθ(D|θθθ) ∝
N (µµµlike,ΣΣΣlike), and the prior also, P (θθθ) = N (µµµprior,ΣΣΣprior). The posterior is then also multivariate normal,
P (θθθ|D) = N (µµµpost,ΣΣΣpost).

Further assume availability of some function which returns MAP parameter estimates taking as input the location
of the prior centre, fffMAP(θθθanc). In order that, P (fffMAP(θθθanc)) = P (θθθ|D), then the required distribution of θθθanc is
also multivariate normal, P (θθθanc) = N (µµµanc,ΣΣΣanc), where, µµµanc = µµµprior, and, ΣΣΣanc = ΣΣΣprior +ΣΣΣpriorΣΣΣ

−1
likeΣΣΣprior.

Proof. Consider a model’s parameters having a multivariate normal prior,

P (θθθ) = N (µµµprior,ΣΣΣprior), (18)

where, θθθ ∈ Rp, µµµprior ∈ Rp, ΣΣΣprior ∈ Rp×p.

This theorem makes the assumption that the form of the parameter likelihood (def. 1) is multivariate normal,

Pθθθ(D|θθθ) ∝ N (µµµlike,ΣΣΣlike) (19)

where, µµµlike ∈ Rp, ΣΣΣlike ∈ Rp×p. Here ∝ is used since it is not a true probability distribution in θθθ so need not
sum to 1.

The posterior is calculated by Bayes rule. Recalling that data likelihood and parameter likelihood are exchangeable
(def. 1), and using Standard Result 1,

P (θθθ|D) =
PD(D|θθθ)P (θθθ)

P (D)
=
Pθθθ(D|θθθ)P (θθθ)

P (D)
∝ N (µµµlike,ΣΣΣlike)N (µµµprior,ΣΣΣprior) ∝ N (µµµpost,ΣΣΣpost), (20)

where, µµµpost & ΣΣΣpost are given by eq. 14 & 13.

We introduce a further distribution, termed ‘anchor distribution’, which we enforce as multivariate normal,

P (θθθanc) = N (µµµanc,ΣΣΣanc). (21)

It will be used as described in the main text (see figure 2 and algorithm 1) so that samples are drawn from the
anchor distribution, θθθanc ∼ P (θθθanc), with a prior then recentred at each sample, denoted Panc(θθθ),

Panc(θθθ) = N (θθθanc,ΣΣΣprior). (22)

Note that this anchor distribution is in the same position as a hyperprior on µµµprior, but will have a subtly different
role. ΣΣΣprior is unchanged from eq. 18,

Denote fffMAP(θθθanc) as the MAP estimates given this recentred prior and the original likelihood from eq. 19.

fffMAP(θθθanc) := argmaxθθθPanc(θθθ)Pθθθ(D|θθθ) (23)

In order to prove the theorem, three things regarding fffMAP(θθθanc) must be shown:

1. Its distribution is multivariate normal - denote mean and covariance µµµRMS
post ,ΣΣΣ

RMS
post ,

P (fffMAP(θθθanc)) = N (µµµRMS
post ,ΣΣΣ

RMS
post ), (24)

2. That µµµanc & ΣΣΣanc can be selected in such a way that the mean of the distribution is equal to that of the
original posterior

µµµRMS
post = µµµpost, (25)
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3. And also so that the covariance of the distribution is equal to that of the original posterior

ΣΣΣRMS
post = ΣΣΣpost. (26)

For a multivariate normal distribution, the MAP solution is simply equal to the mean of the posterior, µµµpost. For
the typical case this is given by eq. 14. In our procedure, the location of the prior mean has been replaced by
θθθanc, so the MAP solution is given by,

fffMAP(θθθanc) = ΣΣΣpostΣΣΣ
−1
priorθθθanc + ΣΣΣpostΣΣΣ

−1
likeµµµlike (27)

= A1θθθanc + b1 (28)

where two constants have been defined for convenience,

A1 = ΣΣΣpostΣΣΣ
−1
prior (29)

b1 = ΣΣΣpostΣΣΣ
−1
likeµµµlike, (30)

which is the same form as eq. 16. Hence, from Standard Result 2, if θθθanc is normally distributed, fffMAP(θθθanc)
will also be normally distributed.

Regarding the mean of fffMAP(θθθanc), we have,

E[fffMAP(θθθanc)] = E[A1θθθanc + b1] (31)

= A1E[θθθanc] + b1. (32)

By choosing the anchor distribution to be centred about the original prior, E[θθθanc] = µµµprior, we have,

= A1µµµprior + b1 (33)

= ΣΣΣpostΣΣΣ
−1
priorµµµprior + ΣΣΣpostΣΣΣ

−1
likeµµµlike, (34)

This is consistent with eq. 14 and proves that the means of the distributions are aligned when µµµanc = µµµprior.

Finally we consider the variance of fffMAP(θθθanc), which we wish to equal ΣΣΣpost by choosing ΣΣΣanc. Using the form
from eq. 28 and applying Standard Result 2,

Var[fffMAP(θθθanc)] = Var[A1θθθanc + b1] (35)

= A1Var[θθθanc]AT
1 (36)

= A1ΣΣΣancA
T
1 (37)

We require Var[fffMAP(θθθanc)] = ΣΣΣpost.

ΣΣΣpost = A1ΣΣΣancA
T
1 . (38)

Note that transposes of covariance matrices may be ignored since they are symmetric.

ΣΣΣanc = A1
−1ΣΣΣpostA1

−1T (39)

= (ΣΣΣpostΣΣΣ
−1
prior)

−1ΣΣΣpost(ΣΣΣ
−1
priorΣΣΣpost)

−1 (40)

= ΣΣΣpriorΣΣΣ
−1
postΣΣΣpostΣΣΣ

−1
postΣΣΣprior (41)

= ΣΣΣpriorΣΣΣ
−1
postΣΣΣprior (42)

= ΣΣΣprior(ΣΣΣ
−1
prior + ΣΣΣ−1

like)ΣΣΣprior (43)

= ΣΣΣprior + ΣΣΣpriorΣΣΣ
−1
likeΣΣΣprior. (44)

This proves that the covariances of the two distributions are aligned when ΣΣΣanc = ΣΣΣprior +
ΣΣΣpriorΣΣΣ

−1
likeΣΣΣprior.
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Corollary 1.1. Following from theorem 1 (and under the same assumptions), set µµµanc := µµµprior and ΣΣΣanc :=
ΣΣΣprior. The RMS approximate posterior is P (fffMAP(θθθanc)) = N (µµµpost,ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost).

Proof. Independent of the choice of anchor distribution covariance ΣΣΣanc, theorem 1 demonstrated that the
resulting posterior, P (fffMAP(θθθanc)) is normally distributed, with mean equal to that of the true posterior µµµpost.

To discover the covariance of the resulting distribution, Var[fffMAP(θθθanc)], we take eq. 37 and simply set,
ΣΣΣanc := ΣΣΣprior.

Var[fffMAP(θθθanc)] = A1ΣΣΣancA
T
1 (45)

= A1ΣΣΣpriorA
T
1 (46)

= ΣΣΣpostΣΣΣ
−1
priorΣΣΣpriorΣΣΣ

−1
priorΣΣΣpost (47)

= ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost (48)

Lemma 1.1. Following from corollary 1.1 (and under the same assumptions), when µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior,
the RMS approximate posterior will in general underestimate the marginal variance compared to the true posterior,
Var[fffMAP(θanc)] < Var[θ|D].

Proof. We consider the marginal posterior of a single parameter, θ := θθθi, again assuming multivariate normal
prior and parameter likelihood. First consider the following rearrangement of eq. 48, beginning by noting,
ΣΣΣ−1
prior = ΣΣΣ−1

post −ΣΣΣ−1
like.

ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost = ΣΣΣpost(ΣΣΣ

−1
post −ΣΣΣ−1

like)ΣΣΣpost (49)

= (I−ΣΣΣpostΣΣΣ
−1
like)ΣΣΣpost (50)

= ΣΣΣpost −ΣΣΣpostΣΣΣ
−1
likeΣΣΣpost (51)

To show that RMS generally underestimates the marginal variance, it must hold that diagonal elements of the
true posterior covariance matrix are greater than or equal to the same diagonal element of the RMS posterior.

Var[fffMAP(θanc)] < Var[θ|D] (52)

diag(ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost)i < diag(ΣΣΣpost)i (53)

substituting in the diagonal of the rearrangement in eq. 51,

diag(ΣΣΣpost)i − diag(ΣΣΣpostΣΣΣ
−1
likeΣΣΣpost)i < diag(ΣΣΣpost)i (54)

We know that ABAT is positive definite if A,B are positive definite, and also that the inverse of a positive definite
matrix is positive definite (§9.6.4, §9.6.10, The Matrix Cookbook, 2008). The diagonal of a positive definite
matrix is positive. Hence, diag(ΣΣΣpostΣΣΣ

−1
likeΣΣΣpost)i > 0, and we have shown that Var[fffMAP(θanc)] < Var[θ|D].

Lemma 1.2. This lemma follows from corollary 1.1. Again parameter likelihood and prior are assumed normally
distributed. The prior is additionally assumed isotropic. When µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior the eigenvectors (or
‘orientation’) of the RMS approximate posterior equal those of the true posterior.

Proof. From eq. 48, Var[fffMAP(θθθanc)] = ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost. If the prior is isotropic, ΣΣΣprior = σ2

priorI, then,

Var[fffMAP(θanc)] = 1/σ2
priorΣΣΣ

2
post. Hence the prior only scales the eigenvalues, and doesn’t affect the eigenvectors.

(Note that this won’t be the case for non-isotropic ΣΣΣprior.)

Consider some matrix A and a specific eigenvalue λi and eigenvector vi so that, Avi = λivi. It then follows that
if A is squared, A2vi = A(Avi) = λiAvi = λ2

ivi. Hence eigenvalues are squared but eigenvectors are unaffected.
This applies to the transformation ΣΣΣ2

post.

Hence both the square and the multiplication of prior covariance, 1/σ2
priorΣΣΣ

2
post, do not modify the original

eigenvectors of ΣΣΣpost and its orientation is unaffected.
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Theorem 2. For a two parameter model with normally distributed parameter likelihood and isotropic prior, the
RMS approximate posterior will in general overestimate the magnitude of the true posterior parameter correlation
coefficient, |ρ|. However, if |ρ| = 1, then it will recover it precisely. We set µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior.

Proof. From corollary 1.1, we have that the RMS approximate posterior is given by ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost. Let

ΣΣΣprior := σ2
priorI, the RMS approximate posterior is then given by 1/σ2

priorΣΣΣ
2
post. Denote the true posterior

covariance as the following 2×2 matrix.

ΣΣΣpost =

[
a b
b c

]
(55)

For general covariance matrices, the correlation coefficient, ρ, can be found by solving, b = ρ
√
ac.

Our RMS approximate posterior is given as follows.

1/σ2
priorΣΣΣ

2
post = 1/σ2

prior

[
a b
b c

] [
a b
b c

]
(56)

= 1/σ2
prior

[
a2 + b2 ab+ bc
ab+ bc b2 + c2

]
(57)

The correlation coefficient here, denoted ρRMS, is found by solving, ab+ bc = ρRMS

√
(a2 + b2)(b2 + c2).

To prove the correlation coefficient is generally overestimated, we must show that ρ2
RMS > ρ2 when ρ2 < 1.

ρ2
RMS > ρ2 (58)

(ab+ bc)2

(a2 + b2)(b2 + c2)
>
b2

ac
(59)

(ab+ bc)2ac > b2(a2 + b2)(b2 + c2) (60)

(a+ c)2ac > (a2 + b2)(b2 + c2) (61)

a3c+ ac3 + 2a2c2 > a2b2 + a2c2 + b4 + b2c2 (62)

a3c+ ac3 + a2c2 > a2b2 + b4 + b2c2 (63)

We now note that from the set up of the proof, b2 = ρ2ac. Since ρ2 < 1, we have, b2/ac < 1 =⇒ b2 < ac. We
can use this to provide an upper bound on the right hand side of eq. 63.

a2b2 + b4 + b2c2 < a2(ac) + (ac)2 + (ac)c2 (64)

< a3c+ a2c2 + ac3 (65)

Coincidentally, this is precisely the inequality in eq. 63, that we were proving.

Alternatively, if |ρ| = 1 =⇒ b2 = ac, and ρ2
RMS = ρ2.
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Definition 2. Extrapolation Parameters

We define extrapolation parameters as model parameters which have no effect on the data likelihood of a training
dataset, but which nevertheless could influence model predictions made on a new data point.

Illustrative Example

Consider a fully-connected NN trained on the MNIST digit dataset. Further consider a preprocessing such that
the pixel values by default are set to 0, and where they contain part of the digit take values (0, 1].

Certain pixels may be zero across the entire training dataset, such as those in the corners of the image. First
layer weights connected to such pixels will never receive input across the whole training dataset. Hence, the
values of these parameter weights have no effect on the data likelihood. However, the weights would still
influence predictions for some test image containing values for these pixels. Hence, these are named extrapolation
parameters, since they influence extrapolation properties of the model.

The top row of figure 5 empirically shows examples of flat likelihoods for precisely these types of weights on
MNIST.

Theorem 3. For extrapolation parameters (definition 2) of a model, setting µµµanc := µµµprior, ΣΣΣanc := ΣΣΣprior,
means the marginal RMS approximate posterior equals that of the marginal true posterior. This holds for any
distributional form of parameter likelihood.

Proof. Extrapolation parameters (definition 2) do not have any effect on the data likelihood, therefore their
parameter likelihoods are flat. This means that their marginal posterior equals their marginal prior.

This results in a posterior covariance matrix structure as follows, where parameter i is an extrapolation parameter
(here shown in the first row for convenience), so has marginal variance equal to the prior variance and is
uncorrelated with all other parameters.

ΣΣΣpost =


σ2
prior,i 0 . . . 0

0 a22 . . . a2D

...
...

. . .
...

0 aD2 . . . aDD


From corollary 1.1, Var[fffMAP(θθθanc)] = ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost.

Var[fffMAP(θθθanc)] =


σ2
prior,i 0 . . . 0

0 a22 . . . a2D

...
...

. . .
...

0 aD2 . . . aDD




1/σ2
prior,i 0 . . . 0
0 b22 . . . 0
...

...
. . .

...
0 0 . . . bDD



σ2
prior,i 0 . . . 0

0 a22 . . . a2D

...
...

. . .
...

0 aD2 . . . aDD



=


σ2
prior,i 0 . . . 0

0 c22 . . . c2D
...

...
. . .

...
0 cD2 . . . cDD


This shows that the marginal variance of the RMS approximate posterior equals that of the true posterior,
Var[fffMAP(θθθanc)]i,i = [ΣΣΣpost]i,i, for extrapolation parameters. Note that the values of the rest of the covariance
matrices (a’s, b’s, c’s) are irrelevant since these have no effect on the marginals of interest.

This proof did not assume any specific distributional form of parameter likelihood, only that it is flat for these
extrapolation parameters.
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Theorem 4. Set µµµanc := µµµprior,ΣΣΣanc := ΣΣΣprior. The RMS approximate posterior will exactly equal the true
posterior, ΣΣΣpost, when all eigenvalues of a scaled version of ΣΣΣpost (scaled such that the prior equals the identity
matrix) are equal to either 0 or 1. This corresponds to posteriors that are a mixture of perfectly correlated and
perfectly uncorrelated parameters.

Proof. We will initially consider a scaled version of the parameter space. This conveniently allows standard
results for idempotent matrices to apply to the posterior covariance. A reverse scaling is subsequently applied to
show that results hold for the original unscaled version. Finally, we articulate arguments allowing relaxation of
the distributional assumptions.

Corollary 1.1 showed that the RMS approximate posterior is normally distributed and centered at the true
posterior mean, but with modified variance, N (µµµpost,ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost). This proof requires specifying conditions

that allow ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost = ΣΣΣpost to hold.

One solution is given by ΣΣΣpost = ΣΣΣprior, and is a trivial extension of theorem 3. Here we consider alternative
solutions.

The two inputs into the inference process are the likelihood and prior covariances. Consider a scaling ΣΣΣ′like :=

ΣΣΣ
−1/2
priorΣΣΣlikeΣΣΣ

−1/2
prior and ΣΣΣ′prior := ΣΣΣ

−1/2
priorΣΣΣpriorΣΣΣ

−1/2
prior = I. The posterior for this scaled version will be denoted by

ΣΣΣ′post, and is given as follows.

ΣΣΣ′post = (ΣΣΣ′−1
like + ΣΣΣ′−1

prior)
−1 (66)

= (ΣΣΣ
1/2
priorΣΣΣ

−1
likeΣΣΣ

1/2
prior + ΣΣΣ

1/2
priorΣΣΣ

−1
priorΣΣΣ

1/2
prior)

−1 (67)

= ΣΣΣ
−1/2
prior(ΣΣΣ

−1
like + ΣΣΣ−1

prior)
−1ΣΣΣ

−1/2
prior (68)

= ΣΣΣ
−1/2
priorΣΣΣpostΣΣΣ

−1/2
prior (69)

Hence, unsurprisingly the same scaling applies to the posterior covariance, ΣΣΣ′post = ΣΣΣ
−1/2
priorΣΣΣpostΣΣΣ

−1/2
prior.

We now consider conditions under which ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post = ΣΣΣ′post holds. From our choice of rescaling, we have

that ΣΣΣ′−1
prior = I. So we require that ΣΣΣ′2post = ΣΣΣ′post.

This conveniently allows use of results for idempotent matrices - defined as a square matrix, A, for which A2 = A.
Aside from the case when A = I (which corresponds to ΣΣΣpost = ΣΣΣprior), a matrix is idempotent if and only if it is
singular and all eigenvalues are 0 or 1.

In order that, ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post = ΣΣΣ′post, it is therefore sufficient that our scaled posterior, ΣΣΣ′post, is singular with

all eigenvalues 0 or 1. Any possible permutation is allowed.

Naturally, applying a reverse scaling recovers the original parameter space, ΣΣΣpost = ΣΣΣ
1/2
priorΣΣΣ

′
postΣΣΣ

1/2
prior.

Remark. To summarise, we have shown that provided the RMS approximate posterior equals the true posterior
in the scaled space, it will also be equal in the original unscaled space. In order for this equality to hold, eigenvalues
must be 0 or 1 in the scaled space.

See section B.1.2 for numerical examples in a three parameter model when this condition holds.
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A.1 MAP solution and regularisation interpretation

For completeness, we write out the MAP solution for the case of normally distributed prior, and data likelihoods
often used in regression and classification. From this derives our interpretation of the regularisation matrix, ΓΓΓ.

θθθMAP = argmaxθθθP (θθθ|D)

= argmaxθθθPD(D|θθθ)P (θθθ)

= argmaxθθθ log(PD(D|θθθ)) + log(P (θθθ))

If prior is normally distributed, P (θθθ) = N (µµµ,ΣΣΣ),

= argmaxθθθ log(PD(D|θθθ))− 1

2
(θθθ −µµµ)TΣΣΣ−1(θθθ −µµµ) + const.

= argmaxθθθ log(PD(D|θθθ))− 1

2
(θθθ −µµµ)TΣΣΣ−1(θθθ −µµµ).

Typically in BNNs the prior covariance is chosen as diagonal. This is sometimes set as isotropic, ΣΣΣ = λI, but here
we will keep it in matrix form (but assuming it is diagonal) so that different prior variances can be assigned to
different layer weights.

= argmaxθθθ log(PD(D|θθθ))− 1

2
‖ΣΣΣ−1/2 · (θθθ −µµµ)‖22

In the case that the prior mean is zero µµµ = 0,

= argmaxθθθ log(PD(D|θθθ))− 1

2
‖ΣΣΣ−1/2 · θθθ‖22.

One is free to choose any suitable expression for log(PD(D|θθθ)). Next we describe the resulting forms for common
choices of log likelihood in regression and classification tasks.

Regression

For regression, a common choice is that the NN predicts the mean of the function, ŷ, and there is additive noise
on the true targets y, PD(D|θθθ) = N (y|ŷ, σ2

ε )

θθθMAP = argmaxθθθ −
1

2σ2
ε

‖ŷ − y‖22 + const.− 1

2
‖ΣΣΣ−1/2 · θθθ‖22

= argmaxθθθ −
1

2σ2
ε

‖ŷ − y‖22 −
1

2
‖ΣΣΣ−1/2 · θθθ‖22

Generally the mean squared error is minimised,

= argminθθθ
1

N
‖ŷ − y‖22 +

1

N
‖σεΣΣΣ−1/2 · θθθ‖22

More compactly, we can define ΓΓΓ := σ2
εΣΣΣ
−1, as a diagonal matrix with, diag(ΓΓΓ)i = σ2

ε /σ
2
prior,i,

= argminθθθ
1

N
‖ŷ − y‖22 +

1

N
‖ΓΓΓ1/2 · θθθ‖22

Classification

The data likelihood is commonly chosen as a multinomial distribution, PD(D|θθθ) ∝∏N
n=1

∏C
c=1 ŷ

yn,c
n,c , for C classes,

and N data points, where ŷ ∈ [0, 1] denotes predicted probability, and yn,c ∈ {0, 1} the true targets.

θθθMAP = argmaxθθθ

N∑
n=1

C∑
c=1

yn,c log(ŷn,c)−
1

2
‖ΣΣΣ−1/2 · θθθ‖22

Cross entropy is typically minimised,

= argminθθθ −
N∑
n=1

C∑
c=1

yn,c log(ŷn,c) +
1

2
‖ΣΣΣ−1/2 · θθθ‖22

Here we can simply define ΓΓΓ := 1
2ΣΣΣ−1, with diag(ΓΓΓ)i = 1/2σ2

prior,i.
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B Numerical Examples

B.1 Numerical Examples of Proofs

In this section we print covariance matrices that illustrate theoretical results numerically.

B.1.1 General case: Example of lemma 1.1, 1.2, theorem 2

For general ΣΣΣpost, RMS will return a posterior with underestimated marginal variancesa and overestimated
correlations. Since the prior is isotropic, the orientation (eigenvectors) of the RMS approximate posterior will be
unchanged. Here a three parameter is shown. Note ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost represents the RMS approximate posterior.

ΣΣΣprior =

2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

 ΣΣΣlike =

 2.0 0.707 0.283
0.707 1.0 0.4
0.283 0.4 1.0


ΣΣΣpost =

0.953 0.238 0.067
0.238 0.589 0.166
0.067 0.166 0.638

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =

0.485 0.189 0.073
0.189 0.215 0.11
0.073 0.11 0.22


Note, ΣΣΣposti,i > ΣΣΣpostΣΣΣ

−1
priorΣΣΣposti,i,∀i.

Correlation(ΣΣΣpost) =

 1.0 0.317 0.086
0.317 1.0 0.27
0.086 0.27 1.0

 Correlation(ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost) =

 1.0 0.585 0.224
0.585 1.0 0.504
0.224 0.504 1.0


Note, Correlation(ΣΣΣpost)i,j < Correlation(ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost)i,j ,∀i 6= j.

Eigenvalues and eigenvectors of ΣΣΣpost,

λ = 1.1101,v =
[
−0.8352 −0.471 −0.284

]
λ = 0.6667,v =

[
−0.465 0.3288 0.822

]
λ = 0.4032,v =

[
0.2938 −0.8186 0.4936

]
Eigenvalues and eigenvectors of ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost,

λ = 0.6162,v =
[
−0.8352 −0.471 −0.284

]
λ = 0.2222,v =

[
−0.465 0.3288 0.822

]
λ = 0.0813,v =

[
0.2938 −0.8186 0.4936

]

B.1.2 Special case: Examples of theorem 3, 4

We again print out covariance matrices for a three parameter model. Firstly we provide an example where two
parameters are perfectly correlated, and one has no effect on the likelihood. We print unscaled and scaled versions.
Note that all eigenvalues of the scaled posterior, ΣΣΣ′post, are either 0 or 1.

ΣΣΣpost =

1.0 1.0 0.0
1.0 1.0 0.0
0.0 0.0 2.0

 ΣΣΣprior =

2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =

1.0 1.0 0.0
1.0 1.0 0.0
0.0 0.0 2.0



ΣΣΣ′post =

0.5 0.5 0.0
0.5 0.5 0.0
0.0 0.0 1.0

 ΣΣΣ′prior =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post =

0.5 0.5 0.0
0.5 0.5 0.0
0.0 0.0 1.0


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Eigenvalues and eigenvectors of ΣΣΣpost = ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost,

λ = 2.0,v =
[
0.7071 0.7071 0.

]
λ = 0.0,v =

[
−0.7071 0.7071 0.

]
λ = 2.0,v =

[
0. 0. 1.

]

Eigenvalues and eigenvectors of ΣΣΣ′post = ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post,

λ = 1.0,v =
[
0.707 0.707 0.

]
λ = 0.0,v =

[
−0.707 0.707 0.

]
λ = 1.0,v =

[
0. 0. 1.

]
Following is the same set up as the previous case, but now all parameters are perfectly correlated. Eigenvalues of
the scaled posterior, ΣΣΣ′post, are again either 0 or 1.

ΣΣΣpost =

0.667 0.667 0.667
0.667 0.667 0.667
0.667 0.667 0.667

 ΣΣΣprior =

2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =

0.667 0.667 0.667
0.667 0.667 0.667
0.667 0.667 0.667



ΣΣΣ′post =

0.333 0.333 0.333
0.333 0.333 0.333
0.333 0.333 0.333

 ΣΣΣ′prior =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post =

0.333 0.333 0.333
0.333 0.333 0.333
0.333 0.333 0.333



Eigenvalues and eigenvectors of ΣΣΣpost = ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost,

λ = 2.0,v =
[
−0.5774 −0.5774 −0.5774

]
λ = 0.0,v =

[
−0. −0.7071 0.7071

]
λ = 0.0,v =

[
−0.6667 −0.0749 0.7416

]

Eigenvalues and eigenvectors of ΣΣΣ′post = ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post,

λ = 1.0,v =
[
0.577 0.577 0.577

]
λ = 0.0,v =

[
0. −0.707 0.707

]
λ = 0.0,v =

[
−0.521 −0.284 0.805

]

Now we detail an example of a non-isometric prior.

ΣΣΣpost =

1.818 0.0 1.818
0.0 2.0 0.0

1.818 0.0 1.818

 ΣΣΣprior =

20.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 2.0

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =

1.818 0.0 1.818
0.0 2.0 0.0

1.818 0.0 1.818



ΣΣΣ′post =

0.091 0.0 0.287
0.0 1.0 0.0

0.287 0.0 0.909

 ΣΣΣ′prior =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post =

0.091 0.0 0.287
0.0 1.0 0.0

0.287 0.0 0.909


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Eigenvalues and eigenvectors of ΣΣΣpost = ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost,

λ = 3.636,v =
[
0.707 0. 0.707

]
λ = 0.0,v =

[
−0.707 0. 0.707

]
λ = 2.0,v =

[
0. 1. 0.

]

Eigenvalues and eigenvectors of ΣΣΣ′post = ΣΣΣ′postΣΣΣ
′−1
priorΣΣΣ

′
post,

λ = 0.0,v =
[
−0.953 0. 0.302

]
λ = 1.0,v =

[
−0.302 0. −0.953

]
λ = 1.0,v =

[
0. 1. 0.

]

B.2 Mixtures of Parameter Types

Here, we provide examples of a five parameter model containing a mixture of perfectly correlated, partially
correlated, and extrapolation parameters.

First we consider distinct blocks of perfectly and partially correlated parameters, as well as one extrapolation
parameter. In this situation both the perfectly correlated block and the extrapolation parameter posterior are
recovered exactly. The RMS approximate posterior of the partially correlated block is biased as per the general
case.

ΣΣΣpost =


1.0 1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 0.0
0.0 0.0 0.5 0.2 0.0
0.0 0.0 0.2 0.8 0.0
0.0 0.0 0.0 0.0 2.0

 ΣΣΣprior =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =


1.0 1.0 0.0 0.0 0.0
1.0 1.0 0.0 0.0 0.0
0.0 0.0 0.145 0.13 0.0
0.0 0.0 0.13 0.34 0.0
0.0 0.0 0.0 0.0 2.0


Secondly the perfectly correlated block overlaps with the partially correlated block. In this scenario, a small amount
of bias is introduced on the perfectly correlated block, but not in terms of the correlation. The extrapolation
parameter is unaffected.

ΣΣΣpost =


1.0 1.0 0.1 0.2 0.0
1.0 1.0 0.1 0.2 0.0
0.1 0.1 0.5 0.2 0.0
0.2 0.2 0.2 0.8 0.0
0.0 0.0 0.0 0.0 2.0

 ΣΣΣprior =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 ΣΣΣpostΣΣΣ
−1
priorΣΣΣpost =


1.03 1.03 0.15 0.29 0.0
1.03 1.03 0.15 0.29 0.0
0.15 0.15 0.16 0.15 0.0
0.29 0.29 0.15 0.38 0.0
0.0 0.0 0.0 0.0 2.0


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B.3 Example of Perfectly Correlated Parameters in a Neural Network

Section 4.2.2 stated that perfectly correlated parameters can exist in a NN. Here, we provide a concrete example
of such a case, and show that anchored ensembling does recover the true posterior for these parameters when
ΣΣΣanc = ΣΣΣprior.

We consider finding the posterior of final layer weights in a small single layer ReLU NN of two hidden nodes for
a regression problem with two data points. (Choosing the final layer weights for our analysis allows analytical
equations associated with linear regression to be used, simplifying our analysis, though these results would also
apply to the first layer weights and biases.)

We design the problem such that the point where both hidden nodes becomes greater than zero (the elbow points
of ReLU units) falls in between the two data points, and the active half of the output is also shared, so that the
final layer weights are perfectly correlated.

Figure 9 illustrates our set up. Data points and NN parameters are as follows,

D = {x1 = −5, y1 = 0;x2 = 5, y2 = 0}, σ2
ε = 0.01,

W1 = [−0.8,−0.4],b1 = [−1, 0.1], ŷ = WT
2 max(xW1 + b1, 0)

We set prior means to zero, with isotropic covariance according to 1/H,

ΣΣΣprior =

[
0.5 0.0
0.0 0.5

]

We print out matrices of interest,

ΣΣΣlike =

[
−6.89e+ 13 9.85e+ 13
9.85e+ 13 −1.40e+ 14

]

ΣΣΣ−1
like =

[
90.0 63.0
63.0 44.1

]
ΣΣΣpost =

[
0.169 −0.231
−0.231 0.338

]
ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost =

[
0.166 −0.235
−0.235 0.338

]
The anchored ensembling posterior, ΣΣΣpostΣΣΣ

−1
priorΣΣΣpost, provides a close approximation of the true posterior

covariance (and would be exact discounting numerical rounding issues). Note the similarity of the posterior in
figure 9 (middle) with the perfect correlations example shown in figure 3 (B).

−2 −1 0 1 2
Param 1

−2

−1

0

1

2

P
ar
am

2

Figure 9: Left: Single layer NN of two hidden nodes. Middle: Draws in parameter space for prior (red), analytical
posterior (blue) and anchored posterior (green). Right: Posterior predictive distribution - dashed red lines are
elbows of ReLU units.
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C Further Results

C.1 Uncertainty-Aware Model-Free Reinforcement Learning

A. Clear optimal action 10 20 30 40

Pred. Q-value

Right

Left

Bwd

Fwd

B. Goal achieved 10 20 30 40

Pred. Q-value

C. Never seen before 10 20 30 40

Pred. Q-value

Figure 10: Anchored ensembling creates uncertainty-
aware agents.

An anchored ensemble of 5xNNs, each with two hidden
layers, was trained to complete a discretised version of
FetchPush - an agent controls a robotic arm, with re-
wards received when a randomly placed cube is pushed
to a goal.

We used Bayesian Q-learning (Dearden et al., 1998),
similar to regular Q-learning, but with Q-values mod-
elled as distributions rather than point estimates - the
wider the distribution, the less certain the agent. This
is beneficial both to drive the exploration/exploitation
process via Thompson sampling, and for identifying
OOD examples.

Figure 10 shows the agent’s awareness of its uncertainty.
After training for 40, 000 episodes, its confidence over
actions was plotted for three scenarios: A) Cube and
goal are in positions often encountered during training,
the agent has learnt that it must move the arm left - the
narrow distributions with significantly different means
reflect its confidence in this. B) The goal has already
been achieved - narrow overlapping distributions with
higher means. C) A peculiar goal position that has
never been encountered - the broad distributions over
all actions reflect its high uncertainty.

C.2 Model-Based Reinforcement: Learning
in Noisy Environments

We tested the benefit of using an anchored ensemble in noisy RL environments. We modified the classic cartpole
swingup environment such that different levels of stochastic noise could be added to the future state; consider a
state action pair given by, s, a, and a noisy state, s̄ such that P (s̄t+1|at, st) = N (st+1, σ

2
ε ).

The value of σ2
ε was given three settings: low, medium and high, σ2

ε ∈ {0.001, 0.002, 0.005}. The task was
learnt using a model-based RL approach similar to the heteroskedastic ensembles used by Chua et al. (2018).
Fully-connected three-layer NNs learnt to predict the dynamics of the environment given some state and action.
Planning was performed using the cross-entropy method, rolling out for a horizon of 25 steps, with 10 particles.

Figure 11 (A, B, C) shows learning curves for the three noise levels. All ensemble techniques perform similarly in
the low noise setting. As noise is increased the overall performance of all methods drops. Anchored ensembles
are most resiliant, followed by the unconstrained ensemble. In panel D, we compared against an unconstrained
ensemble employing early stopping - this corresponds to the proposal that applying early stopping to an ensemble
can produce approximate inference (Duvenaud et al., 2016). Whilst careful tuning did offer some improvement
over the default setting, a performance gap to anchored ensembling remained.
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Figure 11: Anchored ensembling creates robust MBRL agents in noisy environments. Mean and standard error
over five runs.
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C.3 Regression Benchmarking

Tables 3 & 4 show all experiments run on the regression benchmarking datasets. The below discussion focuses on
NLL results in table 4.

ERF GP refers to the equivalent GP for an infinite width, single-layer BNN with ERF activations. It was tuned
and implemented as for the ReLU GP. We were interested to discover how different activation functions would
affect uncertainty estimates. In general the ReLU GP performed better than the ERF GP, with some exceptions,
such as for Wine. The target variable for Wine is ordinal, containing five factors, it is therefore understandable
that the ReLU GP, which extrapolates linearly, is at a slight disadvantage.

10x 50 NNs refers to an anchored ensemble of ten NNs with 50 hidden nodes. We find that these results fall in
between the 5x 50 NNs and the ReLU GP. This agrees with the convergence analysis done in section 5.2.

We also implemented an anchored ensemble of five two-layer NNs, 5x 50-50 NNs. Even with minimal hyperpa-
rameter tuning (section E) we found an extra layer gave a performance boost over the 5x 50 NNs. We expect
with more careful tuning this margin would increase.

Single 50 NN refers to a single regularised NN, of one hidden layer with 50 hidden nodes, for which we used a
constant value of predictive variance. Although this performs poorly in several cases, e.g. Boston and Yacht, the
results are surprisingly close to those achieved by both our method and Deep Ensembles, even surpassing them
on the Energy dataset. A method outputting constant predictive variance should not perform well in experiments
designed to test uncertainty quantification, and this raises questions over the validity of the benchmarks.

Table 5 compares anchored ensembles against results reported for other methods.

Table 3: Variants of our method on benchmark regression datasets, RMSE.

RMSE
N D ReLU GP ERF GP 5x 50 NNs 10x 50 NNs 5x 50-50 NNs Single 50 NN

Boston 506 13 2.86 ± 0.16 2.94 ± 0.18 3.09 ± 0.17 3.09 ± 0.17 3.00 ± 0.18 3.40 ± 0.20
Concrete 1,030 8 4.88 ± 0.13 5.21 ± 0.12 4.87 ± 0.11 4.73 ± 0.11 4.75 ± 0.12 5.17 ± 0.13
Energy 768 8 0.60 ± 0.02 0.78 ± 0.03 0.35 ± 0.01 0.34 ± 0.01 0.40 ± 0.01 0.40 ± 0.01
Kin8nm 8,192 8 0.07 ± 0.00 0.08 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.06 ± 0.00 0.07 ± 0.00
Naval 11,934 16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Power 9,568 4 3.97 ± 0.04 3.94 ± 0.04 4.07 ± 0.04 4.07 ± 0.04 4.03 ± 0.04 4.23 ± 0.04
Protein 45,730 9 4.34 ± 0.02 4.23 ± 0.02 4.36 ± 0.02 4.34 ± 0.02 4.23 ± 0.02 4.56 ± 0.02
Wine 1,599 11 0.61 ± 0.01 0.60 ± 0.01 0.63 ± 0.01 0.62 ± 0.01 0.62 ± 0.01 0.64 ± 0.01
Yacht 308 6 0.60 ± 0.08 1.48 ± 0.15 0.57 ± 0.05 0.54 ± 0.05 0.85 ± 0.08 0.81 ± 0.07
Song Year 515,345 90 9.01 ± NA 8.90 ± NA 8.82 ± NA 8.82 ± NA 8.66 ± NA 8.77 ± NA

Table 4: Variants of our method on benchmark regression datasets, NLL.

NLL
σ̂2
ε ReLU GP ERF GP 5x 50 NNs 10x 50 NNs 5x 50-50 NNs Single 50 NN

Boston 0.08 2.45 ± 0.05 2.46 ± 0.05 2.52 ± 0.05 2.50 ± 0.05 2.50 ± 0.07 2.70 ± 0.05
Concrete 0.05 2.96 ± 0.02 3.06 ± 0.02 2.97 ± 0.02 2.94 ± 0.02 2.94 ± 0.02 3.08 ± 0.03
Energy 1e-7 0.86 ± 0.02 1.06 ± 0.03 0.96 ± 0.13 0.52 ± 0.06 0.61 ± 0.07 0.57 ± 0.03
Kin8nm 0.02 -1.22 ± 0.01 -1.17 ± 0.00 -1.09 ± 0.01 -1.16 ± 0.01 -1.25 ± 0.01 -1.17 ± 0.01
Naval 1e-7 -10.05 ± 0.02 -9.66 ± 0.04 -7.17 ± 0.03 -7.29 ± 0.02 -7.08 ± 0.13 -6.58 ± 0.04
Power 0.05 2.80 ± 0.01 2.79 ± 0.01 2.83 ± 0.01 2.83 ± 0.01 2.82 ± 0.01 2.86 ± 0.01
Protein 0.5 2.88 ± 0.00 2.86 ± 0.00 2.89 ± 0.01 2.88 ± 0.01 2.86 ± 0.01 2.94 ± 0.00
Wine 0.5 0.92 ± 0.01 0.91 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.97 ± 0.01
Yacht 1e-7 0.49 ± 0.07 1.50 ± 0.13 0.37 ± 0.08 0.18 ± 0.03 0.04 ± 0.08 1.50 ± 0.02
Song Year 0.7 3.62 ± NA 3.61 ± NA 3.60 ± NA 3.60 ± NA 3.57 ± NA 3.59 ± NA
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Table 5: Comparison against inference methods on UCI benchmark regression datasets, log likelihood. Adapted
from Mukhoti et al. (2018).

Log Likelihood (not negative)
Anch. Ens. Drop conv. Drop tune VMG HS-BNN PBP-MV SGHMC tune SGHMC adap.

Boston −2.52± 0.05 −2.40± 0.04 −2.40± 0.04 −2.46± 0.09 −2.54± 0.15 −2.54± 0.08 −2.49± 0.15 −2.54± 0.04
Concrete −2.97± 0.02 −2.97± 0.02 −2.93± 0.02 −3.01± 0.03 −3.09± 0.06 −3.04± 0.03 −4.17± 0.72 −3.38± 0.24
Energy −0.96± 0.13 −1.72± 0.01 −1.21± 0.01 −1.06± 0.03 −2.66± 0.13 −1.01± 0.01 −− −−
Kin8nm 1.09± 0.01 0.97± 0.00 1.14± 0.01 1.10± 0.01 1.12± 0.03 1.28± 0.01 −− −−
Naval 7.17± 0.03 3.91± 0.01 4.45± 0.00 2.46± 0.00 5.52± 0.10 4.85± 0.06 −− −−
Power −2.83± 0.01 −2.79± 0.01 −2.80± 0.01 −2.82± 0.01 −2.81± 0.03 −2.78± 0.01 −− −−
Protein −2.89± 0.01 −2.87± 0.00 −2.87± 0.00 −2.84± 0.00 −2.89± 0.00 −2.77± 0.01 −− −−
Wine −0.95± 0.01 −0.92± 0.01 −0.93± 0.01 −0.95± 0.01 −0.95± 0.05 −0.97± 0.01 −1.29± 0.28 −1.04± 0.17
Yacht −0.37± 0.08 −1.38± 0.01 −1.25± 0.01 −1.30± 0.02 −2.33± 0.01 −1.64± 0.02 −1.75± 0.19 −1.10± 0.08

C.4 Fashion MNIST

Table 6 provides a breakdown of results from the OOD classification test in section 5.4 for fashion MNIST. Also
included are results for entropy, where high entropy represents high uncertainty. These correlated strongly with
the proportion metrics, which was true across all three OOD experiments.

Table 6: Fashion MNIST results: proportion of predictions made with ≥ 90% probability, and entropy of
predicted categorical distribution. Also shown is relative advantage (percentage change) for each method compared
to anchored ensembles. Averaged over five runs/random seeds, mean ± 1 standard error. Best result in blue.

——-Edge Cases——- —Out-of-distribution— ————Natural Adversarial———— —Pure Adversarial—
Train Sneaker Trouser CIFAR MNIST Rotate Flip Invert Noise Sparse

Proportion ≥ 90% (smaller better)
reg 1xNN 0.660 ± 0.006 0.739 ± 0.056 0.429 ± 0.047 0.143 ± 0.008 0.160 ± 0.007 0.609 ± 0.007 0.330 ± 0.009 0.349 ± 0.015 0.271 ± 0.007 0.456 ± 0.006
free 5xNN 0.733 ± 0.001 0.781 ± 0.015 0.380 ± 0.030 0.301 ± 0.013 0.104 ± 0.010 0.571 ± 0.011 0.300 ± 0.011 0.222 ± 0.052 0.042 ± 0.005 0.048 ± 0.003
reg 5xNN 0.634 ± 0.002 0.589 ± 0.054 0.269 ± 0.020 0.115 ± 0.004 0.072 ± 0.007 0.556 ± 0.007 0.256 ± 0.012 0.213 ± 0.002 0.112 ± 0.005 0.174 ± 0.005
anc 5xNN 0.631 ± 0.002 0.578 ± 0.049 0.325 ± 0.037 0.065 ± 0.002 0.041 ± 0.002 0.497 ± 0.003 0.215 ± 0.005 0.025 ± 0.010 0.006 ± 0.001 0.006 ± 0.001

Proportion Relative Advantage
1xNN Reg. to 5xNN Anch. -4.4% -21.8% -24.2% -54.5% -74.4% -18.4% -34.8% -92.8% -97.8% -98.7%
5xNN Uncons. to 5xNN Anch. -13.9% -26.0% -14.5% -78.4% -60.6% -13.0% -28.3% -88.7% -85.7% -87.5%
5xNN Reg. to 5xNN Anch. -0.5% -1.9% 20.8% -43.5% -43.1% -10.6% -16.0% -88.3% -94.6% -96.6%

Entropy (larger better)
1xNN Reg. 0.328 ± 0.005 0.253 ± 0.043 0.575 ± 0.050 1.176 ± 0.010 0.984 ± 0.015 0.484 ± 0.008 0.713 ± 0.009 0.836 ± 0.035 0.808 ± 0.010 0.580 ± 0.008
5xNN Uncons. 0.230 ± 0.001 0.161 ± 0.010 0.535 ± 0.021 0.688 ± 0.009 1.016 ± 0.021 0.453 ± 0.011 0.685 ± 0.011 0.573 ± 0.037 1.036 ± 0.014 0.992 ± 0.012
5xNN Reg. 0.352 ± 0.001 0.365 ± 0.039 0.707 ± 0.019 1.239 ± 0.009 1.161 ± 0.012 0.564 ± 0.008 0.807 ± 0.017 1.014 ± 0.014 1.048 ± 0.008 0.919 ± 0.009
5xNN Anch. 0.349 ± 0.001 0.327 ± 0.034 0.623 ± 0.042 1.251 ± 0.011 1.295 ± 0.013 0.624 ± 0.006 0.868 ± 0.002 1.098 ± 0.035 1.238 ± 0.013 1.191 ± 0.014

Entropy Relative Advantage
1xNN Reg. to 5xNN Anch. 6.4% 29.2% 8.3% 6.4% 31.6% 28.9% 21.7% 31.3% 53.2% 105.3%
5xNN Uncons. to 5xNN Anch. 51.7% 103.1% 16.4% 81.8% 27.5% 37.7% 26.7% 91.6% 19.5% 20.1%
5xNN Reg. to 5xNN Anch. -0.9% -10.4% -11.9% 1.0% 11.5% 10.6% 7.6% 8.3% 18.1% 29.6%
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D Additional Material

D.1 Algorithms

Algorithm 1 Implementing anchored ensembles of NNs

Input: Training data, X & Y, test data point, x∗, prior mean and covariance, µµµprior, ΣΣΣprior, ensemble size,
M , data noise variance estimate, σ̂2

ε (regression only).
Output: Estimate of mean and variance, ŷ, σ̂2

y for regression, or class probabilities, ŷ for classification.

# Set regularisation matrix
ΓΓΓ⇐ σ̂2

εΣΣΣ
−1
prior (regression) OR ΓΓΓ⇐ 1

2ΣΣΣ−1
prior (classification)

# Create ensemble
µµµanc ⇐ µµµprior,ΣΣΣanc ⇐ ΣΣΣprior
for j = 1 to M
θθθanc,j ∼ N (µµµanc,ΣΣΣanc) # Sample anchor points
NNj .create(ΓΓΓ, θθθanc,j) # Create custom regulariser
NNj .initialise() # Initialisations independent of θθθanc,j

# Train ensemble
for j = 1 to M
NNj .train(X,Y), loss in eq. 8 (regression) or eq. 9 (classification) or eq. 7 (custom)

# Predict with ensemble
for j = 1 to M

ŷj ⇐ NNj .predict(x∗)

# Regression - combine ensemble estimates
ŷ = 1

M

∑M
j=1 ŷj , # Mean prediction

σ̂2
model = 1

M−1

∑M
j=1(ŷj − ŷ)2 # Epistemic var.

σ̂2
y = σ̂2

model + σ̂2
ε # Total var. = epistemic + data noise

# Classification - combine ensemble estimates
ŷ = 1

M

∑M
j=1 ŷj , # Average softmax output

σ̂2
y = None # N/A for classification

return ŷ, σ̂2
y
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E Experimental Details

E.1 Introduction to Anchored Ensembles

Experimental details for figure 1 are as follows.

Six randomly generated data points were used.

Hyperparameters: activation = ERF, σ2
ε = 0.003, b1 variance = 1, W1 variance = 1, H = 100, M = 3 (number

of ensembles), optimiser = adam, epochs = 400, learning rate = 0.005.

E.2 Panel of Inference Methods

Experimental details for figure 4 are as follows.

Same six data points were used for all methods and activation functions, generated by y = x sin(5x), evaluated
at, [-0.8, -0.1, 0.02, 0.2, 0.6, 0.8].

Hyperparameters: b1 variance = 10, W1 variance = 10, H = 100, M = 10, epochs= 4,000, σ2
ε = 0.001, leaky

ReLU α = 0.2, optimiser = adam, MC Dropout probability = 0.4, MC Dropout samples = 200, HMC step size =
0.001, HMC no. steps = 150, HMC burn in = 500, HMC total samples = 1000, HMC predict samples = 50, VI
predict samples = 50, VI iterations = 2000, VI gradient samples = 200.

E.3 Ensembling Loss Functions

Experimental details for figure 6 are as follows.

E.3.1 Regression

Generated X by sampling 20 points linearly spaced from the interval [-1.5, 1.5], y = sin(2x)+ε with ε ∼ N (0, 0.22).
The y value corresponding to the largest x value was shifted -0.4 to produce a slight outlier.

Sub-plot A was trained via mean square error, B was regularised, C was anchored. D shows a ReLU GP.

Hyperparameters: activation = ReLU, σ2
ε = 0.08, b1 variance = 10, W1 variance = 10, H = 1000, optimiser =

adam, epochs = 2,000, learning rate = 0.003, M = 10, hidden layers = 1.

E.3.2 Classification

Generated X using sklearn’s ‘make blobs’ function, n samples = 30.

Sub-plot A was trained via cross entropy, B was regularised, C was anchored. D shows inference with HMC.

Hyperparameters: activation = ReLU, b1 variance = 15/2, W1 variance = 15/2, b2 variance = 1/50, W2 variance
= 1/50, W3 variance = 10/50, H = 50, optimiser = adam, epochs = 100, learning rate = 0.001, M = 10, hidden
layers = 2.

E.4 1-D Convergence Plots

Experimental details for figure 8 are as follows.

Data as in section E.2 was used, with M = [3,5,10,20].

Hyperparameters: activation = ReLU, σ2
ε = 0.001, b1 variance = 20, W1 variance = 20, H = 100, optimiser =

adam, epochs = 4,000, learning rate = 0.005.

E.5 KL Convergence Results

Experimental details for figure 7 are as follows.

Training was done on 50% of the data, with KL computed over the other 50%. Results were averaged over ten
runs. The ‘ideal’ line shows the metric when posterior samples from the GP itself, rather than anchored NNs,
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were used.

The Boston Housing dataset was used, with 50% of data used for training, and testing on the other 50%.

Hyperparameters: activation = ReLU, σ2
ε = 0.1, b1 variance = 2, W1 variance = 2, H = [4, 16, 64, 256, 1024],

M = [3,5,10,20,40], optimiser = adam, no. runs = 10, epochs = 1,000, learning rate = 0.001 when H < 20 else
learning rate = 0.0002.

E.6 Regression Benchmarking Experiments

We complied with the established protocol (Hernández-Lobato and Adams, 2015). Single-layer NNs of 50 nodes
were used, experiments repeated 20 times with random train/test splits of 90%/10%. The larger Protein and
Song datasets allow 100 node NNs, and were repeated five and one time respectively.

The hyperparameter tuning process and final settings for experiments in table 1, 3 & 4 are as follows.

E.6.1 Hyperparameter Tuning

Hyperparameter tuning was done on a single train/validation split of 80%/20%. We found it convenient to begin
by tuning data noise variance and prior variances. We restricted the prior variance search space by enforcing,
σ2
W1

= σ2
b1
/D, and σ2

W2
= 1/H. We therefore had only two hyperparameters to optimise initially: σ2

b1
and σ2

ε .
We did this with the GP model, using grid search, maximising marginal log likelihood over the training portion,
and minimising NLL of the validation portion. For the larger datasets, when inference over the 80% training
portion was too slow, we reduced the training split to 2,000 data points.

Hyperparameters for priors and data noise estimates were shared between the GP and anchored ensembles.
Hyperparameters requiring tuning specifically for anchored ensembles were batch size, learning rate, number of
epochs and decay rate. This was done on the same 80%/20% split used to select data noise and prior variance.
We used random search, directed by our knowledge of the optimisation process (e.g. a lower learning rate requires
more epochs to converge), minimising NLL on the validation portion.

We did not retune hyperparameters from scratch for the double layer NN (5x 50-50 NNs). We used settings as for
the single-layer NNs (5x 50 NNs), but divided learning rate by 4, and multiplied epochs by 1.5.

For the single regularised NN with constant noise, we again used hyperparameters as for the single-layer ensemble
(5x 50 NNs), tuning only the constant amount of variance to be added on the same 80%/20% split.

E.6.2 Hyperparameter Settings

Table 7 provides the key hyperparameters used. The adam optimiser was used for all experiments. ReLU
activations were used for all except the ERF GP (prior variance was separately tuned for this, values aren’t given
in the table).

Table 7: Hyperparameters used for regression benchmark results.

N Batch Size Learn Rate σ̂2
ε b1 variance W1 variance No. Epochs Decay Rate Single NN var.

Boston 506 64 0.05 0.06 10 0.77 3000 0.995 0.45
Concrete 1,030 64 0.05 0.05 40 5.00 2000 0.997 0.28
Energy 768 64 0.05 1e-7 12 1.50 2000 0.997 0.03
Kin8nm 8,192 256 0.10 0.02 40 5.00 2000 0.998 0.32
Naval 11,934 256 0.10 1e-7 200 12.50 1000 0.997 0.03
Power 9,568 256 0.20 0.05 4 1.00 1000 0.995 0.24
Protein 45,730 8192 0.10 0.5 50 5.56 3000 0.995 0.71
Wine 1,599 64 0.05 0.5 20 1.82 500 0.997 0.77
Yacht 308 64 0.05 1e-7 15 2.50 3000 0.997 0.10
Song Year 515,345 32768 0.01 0.7 2 0.02 500 0.996 0.84
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E.7 Out-of-Distribution Classification

E.7.1 Fashion MNIST

We trained a three-layer NN on eight of ten classes of Fashion MNIST. We trained on 48,000 examples, tested on
8,000.

Experiments were repeated 5 times with a different random seed for each run.

Data categories were created as suggested by their name in table 6. Examples are shown in figure 12.

Train Edge CIFAR MNIST Distort Noise

Figure 12: Fashion MNIST OOD data examples.

• Distort comprised of rotations, vertical flips, and pixel value inversions.

• Noise comprised of iid Gaussian noise, mean = 0.0, standard deviation = 2.0.

• Sparse comprised of iid Bernoulli noise, pixles were given a value of 50.0 with p = 0.005, else 0.0.

Hyperparameters: activation = ReLU, optimiser = adam, epochs = 30, learning rate = 0.005, batch size = 256,
hidden layers = 3, hidden units = 100

E.7.2 CIFAR-10

CIFAR-10 contains 50,000 32x32 color training images, labelled over 10 categories, and 10,000 test images.

We removed 2 categories during training (ships, dogs) so trained over 40,000 examples.

OOD data classes are as show in the images in table 2.

• Scramble permuted each row of pixels in a given image.

• Invert took the negative of the pixel values.

• Noise sampled pixels from bernoulli distribution (p=0.005) of large magnitude (pixel value=50).

NN architecture: A convolutional NN was used, with the following structure, 64-64-maxpool-128-128-maxpool-
256-256-256-maxpool-512-512-512-maxpool-flatten-2048fc-softmax.

All convolutional kernels were [3 x 3 x number of channels in previous layer]. All maxpooling kernels were [2 x 2].
The total number of parameters was 8,689,472.

Hyperparameters: activation = ReLU, optimiser = adam, learning rate = 0.001 decreasing to 0.0005 after 10
epochs and to 0.0001 after 20 epochs, batch size = 300.

In order to bring test accuracies and confidence on the training dataset roughly in line, it was necessary to
train for a different number of training epochs for each method (this effectively applies early stopping to the
unconstrained case). Anchored eps = 25, Regularise eps = 30, Unconstrained eps = 15.

Experiments were repeated 3 times with a different random seed for each run.
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E.7.3 IMDb

Dataset of 25,000 movie reviews, labelled as positive or negative.

Example: “this movie is the best horror movie bar none i love how stanley just dumps the women into the lake i
have been a fan of judd nelson’s work for many years and he blew me away its a blend of horror and ... ”

OOD data classes were generated as follows.

• Reuters - taken from the Reuters news dataset.

Example: “said it has started talks on the possible ... of the company with various parties that it did not
identify the company said the talks began after it ... ”

• Random 1 - A single integers sampled uniformly at random from {1...vocabulary size} and converted to a
repeated sequence of words.

Example: “member member member member member member member member member member member
member ... ”

• Random 2 - One integer per word sampled uniformly at random from {1...vocabulary size} and converted
to words.

Example: “twists mentally superb finest will dinosaur variety models stands knew refreshing member spock
might mode lose leonard resemble began happily names... ”

• Random 3 - As for Random 2, but now only sample from least commonly used 100 words.

Example: “computers towers bondage braveheart threatened rear triangle refuse detectives hangs bondage
firmly btw token 1990s mermaid reeves landed dylan remove hum natives insightful demonic... ”

NN architecture: used an embedding layer (outputting 20 dimensions), followed by 1D convolutional layer using
50 filters with kernel size of 3 words. Finally a hidden layer with 200 hidden nodes.

Hyperparameters: activation = ReLU, optimiser = adam, learning rate = 0.001, batch size = 64, max sentence
length = 200, vocabulary size = 6000

Experiments were repeated 5 times with a different random seed for each run.

E.8 Reinforcement Learning

E.8.1 Uncertainty-Aware Reinforcement Learning

The FetchPush environment from OpenAI Gym was used with the sparse rewards setting. We modified
the environment slightly. The goal was positioned at a fixed radius from the block (but at varying angle).
Actions were discretised and vertical movements removed so the agent had a choice of moving 0.4 units for-
ward/backwards/left/right. Gaussian noise was added to the actions to make the problem stochastic. Inputs were
preprocessed so that relative coordinates of gripper to cube and cube to goal were provided directly to the NNs.

We used fixed target NNs which were updated every 500 episodes.

The simulation was run for 40,000 episodes, with final average rewards around −0.4. Two-layer NNs of 50 nodes
were used. Learning rate = 0.001, batch size = 100, episodes in between training = 100, γ = 0.98, buffer size =
100,000.


