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An effective Cyber Early Warning System (CEWS) should pick up threat
activity at an early stage, with an emphasis on establishing hypotheses
and predictions as well as generating alerts on (unclassified) situations
based on preliminary indications. The design and implementation of
CEWSs involve numerous challenges, such as a generic set of indicators,
intelligence gathering, uncertainty reasoning, and information fusion.
This chapter begins with an understanding of the behaviours of intrud-
ers, and then related literature is followed by a Bayesian-based method-
ology. It also includes a carefully deployed empirical analysis. Finally,
the chapter concludes with a discussion on results, research challenges,
and necessary suggestions to move forward in this research line.

1. Introduction

Traditional security solutions such as firewalls cannot assure the data, ob-

jects and resources restricted to unauthorised subjects. Such defensive ap-

proaches are increasingly insufficient for modern-day attacks as threat ac-

tors circumvent perimeter-based defences with a creative, stealthy, targeted

and persistent manner that often goes undetected for significant periods.

These attacks are multistage. If we can detect them early and respond

quickly, then high impact cyber incidents can be avoided. An active ap-

proach for cyber defence is needed, which in turn needs to detect early

stages of threat activities to deploy effective responses. A CEWS should

1
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serve such a goal.

One definition for a CEWS is that it “aims at alerting unclassified but

potentially harmful system behaviour based on preliminary indications be-

fore possible damage occurs, and contribute to an integrated and aggregated

situation report” [1]. Although there can be many overlaps between a typ-

ical intrusion detection system (IDS) and a CEWS, a particular emphasis

for a CEWS is to establish hypotheses and predictions as well as to generate

advice on unclassified activity based on preliminary indications [1].

This chapter sets off by attempting to present a generic attack model

in Section 2. Section 3 presents an analytical approach building over prior

work to threat monitoring [2–5]. Section 4 delves into the dataset and

experimental setup used for this effort, and Section 5 describes the results

of the proposed method for a lightweight CEWS. Section 6 provides an

overview for related work. Section 7 concludes this chapter with some

thoughts on open challenges in this area.

2. Cyber attack lifecycle

Modern attacks are multistage and producing evidence at each stage of the

attack lifecycle. In principle, this evidence can be collected and analyse to

alarm the attack, but difficult in practice as discussed in 7. The typical

stages of a cyberattack lifecycle can be summarised as below.

Stage 1 Reconnaissance: The attacker conducts initial surveys on poten-

tial targets which can be either systems or people. Once the target

identified, she starts to search for more specific information such

as internet-facing services and individuals deciding which weapon

to use. It could be a zero-day exploit, social engineering, spear-

phishing, or even bribing an insider.

Stage 2 Initial compromise:: The attacker successfully executes mali-

cious code on one or more systems on the target. She bypasses the

perimeter defences and gains access to the internal network. It can

be through a compromised system or user account, and attackers

often use phishing for this purpose. Because exploiting user vulner-

ability is easier than exploiting software/hardware vulnerabilities.

Stage 3 Command & control: The attacker maintains continued control

over the compromised system by installing a persistent backdoor. It

could be via downloading additional utilities such as remote access

Trojan (RAT) on to the victim system.
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Stage 4 Escalate privileges: The attacker attempts to escalate privileges

to gain enhanced access to the target systems and data. It could be

via a technique like a pass the hash, keylogging, obtaining public

key infrastructure (PKI) certificates, leveraging privileges held by

an application, exploiting a vulnerable piece of software on the

victim node or using any other method.

Stage 5 Internal reconnaissance: The attacker gains a better under-

standing of the environment, security at place, asserts and the roles

and responsibilities of key subjects.

Stage 6 Lateral movement: The attacker compromises more systems

and user accounts by moving between systems by using the access

gained from previous stages. It could be accessing network shares,

using task schedulers, remote desktop clients or virtual network

computing. Since the attacker is often impersonating a legitimate

user, evidence of their existence can be hard to find at this stage.

Stage 7 Maintain presence: The attacker installs multiple remote access

entry points (e.g. malware back doors) and may have compromised

several internal systems and user accounts to ensure that continued

access to the environment. At this stage, she deeply understands

the target environment, and within a proximity to reach her target

at any time.

Stage 8 Complete mission: The attacker executes the final aspects of her

mission. It could be stealing intellectual property, financial data or

any other sensitive information, corrupting mission-critical systems

in the business or disrupting the entire operations of the target

business. Once the mission has completed, she might either leave

the environment (without leaving evidence) or maintain access for

returning in the future.

The notion of early for a CEWS can be explained using the above attack

lifecycle. Notice the final stage (stage 8), it is the stage where exfiltration,

corruption, and disruption happening. As a result, the cost to the business

rises exponentially at this stage if the attack is not defeated. Any system

that can alert the ongoing malicious attempt using preliminary indications

before it reaches the final stage (i.e. mission completion) can be considered

as a CEWS.
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2.1. Automated threat detection

Modern cyber attacks don’t just happen but evolve in a phased approach

that includes early stages of reconnaissance and planning. It can take too

long by humans to notice these activities, tipping the scales in favour of

the criminals who want to break into our systems. Automated CEWSs are

necessary as more devices rapidly get connected to the “Internet of Things”

(IoT), including cars and homes. Automation increases the scalability and

effectiveness of security monitoring. Due to the targeted nature, attack

vector varies from one entity to another. Hence signature-based pattern

matching techniques would not be useful in the detection of these attacks,

and more sophisticated techniques are required. As shown in Figure 1,

our ultimate goal is to employ cognitive technologies to “early detect”.

However, at this stage of the work, we propose a simple, but systematic

behaviour analytic model suitable for early detection.

Fig. 1.: Automated threat detection: attack sophistication vs detection

technique to employ
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3. Methodology (Resource efficient monitoring)

An incident occurs when an attack is carried out. Each incident area

(e.g. scanning, compromising, malicious code) produces different indica-

tors which spread out over time and space. Given the mean time to detect

(MTTD) of a modern attack is about 200 days, it is necessary to main-

tain a long history of what is happening in the environment. Most systems

cannot keep enough event data to track across extended time intervals due

to the storage overheads. As a result, the scarcity of attack data within

a short period allows the attacker to go undetected. On the other hand,

as contemporary enterprise networks scale up in size and speed, a huge

volume of traffic has a cost ramification for collection and processing. Re-

sources of network devices are comparatively expensive and scarce. Such

resources need to be utilised on their regular activities than utilising on

monitoring activities. Therefore, to be a practical automated solution,

the proposed system should be computationally inexpensive. We propose

continuous monitoring via node profiling and analysis as described in our

previous works [2–5]. It uses information fusion and evidence accumulation

in computing node profiles.

3.1. Computing node profiles

Node profiling is the method of evidence fusion across space and time by

updating node score dynamically based on changes in evidence. Profiling

computes a suspicion score sw for each node in the system during a smaller

time window w. That score is updated as time progresses to compute a

node score NW such that,

NW =
∑

sw (1)

, for a larger observation window W =
∑
w.

3.1.1. Computing sw

Evidence to compute sw can be collected from any relevant source of in-

formationa and convert them to descriptors (a.k.a features), say D =

{d1, d2, d3, ..., dn}, subject to the condition that chosen descriptors have

some sort of predictive power of the monitoring behaviour defined in the

hypothesis H.
ae.g. packet/flow information from L3 switches or outputs of signature based IDSs,

anomaly detection components, antivirals, file integrity checkers, SNMP-based network
monitoring systems or any other source
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H - the hypothesis that given nodeb is under attack, i.e. an attacker

has initiated at least the first step of the attack lifecycle (see Sec-

tion 2).

Then sw is defined as:

sw =

{
1 if Λ = ln L(H|D)

L(¬H|D) > 0

0 otherwise
(2)

where L(.) denotes the likelihood. Λ expresses how many times more

likely the observed evidence in D are under one model (say H) than the

other (¬H). Various machine learning algorithms, either supervised or

unsupervised, can be employed to estimate Λ depending on the context

and data availability.

3.1.2. Computing Λ using Naive Bayes model

A key application of predictive analytics is to classify entities and events

based on a knowledge of their attributes. In this chapter, for the purpose

demonstration, we employ a Naive Bayes classifier with communication flow

attributes to compute Λ as follows.

Let D = [d1, . . . , dn] be a n-dimensional space, where n is the total

number of attributes (descriptors) chosen to describe a communication flow

in a computer network. Note that we assume remote attacks here and hence

victims node receiving malicious communication flows during the attack

lifecycle. Using the notation of conditional probability and well known

Bayes theorem,

P (H/D) =

∏n
k=1 P (dk/H) · P (H)

P (D)
(3)

P (¬H/D) =

∏n
k=1 P (dk/¬H) · P (¬H)

P (D)
(4)

Dividing equation (3) by (4) and taking logarithm,

ln
P (H/D)

P (¬H/D)
= ln

P (H)

P (¬H)
+

n∑
k=1

ln
P (dk/H)

P (dk/¬H)
(5)

bdenoted by an IP address in this work
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Equation 5 is the well known “Log likelihood ratio”. P (H), P (dk/H)

are prior and likelihoods terms while P (H/D) is the posterior probability.

Taking ln L(H|D)
L(¬H|D)

∼= ln P (H/D)
P (¬H/D) ,

Λ = ln
P (H/D)

P (¬H/D)
(6)

A key assumption in equations 3 and 4 is that the conditional probability

of each feature given the class is independent of all other features. This is

not the case in many practical problems, including ours. For example, the

conditional probability of network services (e.g. HTTP, FTP, SMTP, SSH,

DNS) and the port number in a communication flow are not independent

of each other. But in practice, even when the independence assumption

is violated and there are clear known relationships between attributes, it

works anyway. A good example of this is spam filtering in which features are

individual words in an email. In this case, certain word combinations tend

to show up consistently in spam - for example, “online”, “meds”, “viagra”

and “pharmacy”. So, their occurrences are not independent of each other.

But Naive Bayes based spam filters which assume mutual independence

of features works very well in filtering spams. This can be due to two

reasons. First, prediction in equation 5 depends only on the maximum, not

the value of the maximum. Hence Naive Bayes classifier gets it right even

if there are dependencies between features given that such dependencies

do not change which class has the maximum probability value. Though

there is no guarantee it can always happen, the second reason might be

such dependencies often cancel out across a large set of features. However,

the performance of Naive Bayes can degrade if the data contains highly

correlated features as they over-inflating their importance (i.e. voting for

twice in the model). Therefore it is better to evaluate the correlation of

attributes using a correlation matrix and remove those features that are

the most highly correlated, and test the performance before and after such

a change and stick with better results.

3.1.3. Pros and cons using Naive Bayes

There are pros and cons of using Naive Bayes in this problem. As men-

tioned above, due to the nature of the problem, the proposed system should

be computationally inexpensive and lightweight. Using Naive Bayes, cal-

culating the probabilities for each attribute is very fast, hence the system

can retrain quickly as the data changes because temporal drift is a major
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issue in Cybersecurity problems. Another advantage of Naive Bayes is its

Naive (independent) assumption can be exploited to speed up the execu-

tion of the algorithm. Attribute probabilities can be calculated in parallel

using different CPUs, machines or clusters in real-world applications. This

is useful as global networks scale-up in traffic, volume and speed. Naive

Bayes does not need a lot of training data to perform well. Because inter-

actions between attributes are not considered in model training, hence less

training data needed than some other popular algorithms (e.g. logistic re-

gression). However, Naive Bayes will not be reliable if there are significant

differences in the attribute distributions between training and test cases.

Zero observations problem is a special case of this. After such cases have

been identified the model should be updated.

3.1.4. Compute sw using unsupervised learning

This section discusses how to employ unsupervised learning, in particular

an autoencoder neural network model, in estimating sw. An autoencoder

neural network is an unsupervised learning algorithm. It applies back prop-

agation, setting the output values to be equal to inputs (i.e. D̂ ≈ D), by

learning an approximation to the identity function in the model. Figure 2

depicts an autoencoder model.

Fig. 2.: An autoencoder model.

To compute suspicion score, sw is defined as:
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sw =

√√√√ 1

n

n∑
i=1

(di − d̂i)2 (7)

In other words, sw is the reconstructed mean squared error (MSE) of

the autoencoder model during a smaller time window w. As far as anyone

knows, the total number of malicious data is far less than the total number

of benign data in many real-world security problems. Hence, we can expect

that the model learns patterns in benign data than malicious data that

it can’t easily see. As a result, high reconstructed MSE (sw) values can

be expected for malicious observations, which can be used to distinguish

victim nodes from normal nodes.

Nevertheless, from the machine learning perspective, it is still important

to evaluate different algorithms to see which algorithm performs best in

terms of false alarms and computational cost in estimating Λ. However, it

is out of the scope of this work.

3.2. Analysis

We compute a node score for each node in the system as described above.

Aggregating suspicious scores over time helps to accumulate relatively weak

evidence for long periods. These accumulated terms can be used as a mea-

surement of the level of suspicion of a given node at any given time. If an

attacker activity pattern is sufficiently reflected by profiles then detecting

anomalous profiles would be sufficient to identify attackers. Hence, our

task is detecting anomalous profiles in a given set of node profiles. We use

a statistical method to detect anomalies subject to the assumption that

normal node profiles in a given set follow an unknown Gaussian distri-

bution. Testing of our hypothesis for any given time is a Bernoulli trial.

Accumulated Bernoulli trials make a Binomial distribution which can be

approximated by a Normal distribution. In practice, the setup where we

have the distribution would be very well a mixture of Gaussian.

For each profile score NW , its Z score is computed as:

z =
NW − µW

σW
(8)

Where µW and σW are mean and standard deviation of the dataset at time

window W . A test instance is declared to be anomalous if z ≥ T = k.

Note that the threshold T adjusts itself according to current state of a

network as µW and σW change. k can be setup to 1,2 or 3 using the
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68%-95%-99.7% rule of detecting outliers with Z-scores. For example, by

setting k equals to 2, Z-scores in 2-3 range can be considered as borderline

outliers. If the data (NW values) is skewed, it is recommended to apply a

transformation technique (e.g. power transformation or logarithms) first to

move the dataset back to the normal bell shape and then apply the outlier

detection technique.

Above simple outlier detection method subject to the masking and

swamping effects. Multiple outliers may influence the value of the test

statistic enough so that no points declared as outliers. On the other hand,

swamping can occur when there is no outlier (or an outlier with very slight

deviation). Therefore we complement the outcome of the above outlier de-

tection method with graphical methods. Graphics can often help identify

cases where masking or swamping may be an issue. Our analysis compares

each node’s activity changes to activity changes in its peer group. Look-

ing at one’s aberrant behaviour within similar peer groups (e.g. same user

types, subnet, departments, job roles) would give better results in terms of

false alarms than setting a universal baseline. Hence first classifying simi-

lar nodes into peer groups (e.g. web servers, file servers, clients), based on

behaviour related attributes/features, and then applying the monitoring

algorithm is recommended. Finding suitable classification algorithms for

this task is left as future work.

4. Experimental setup

4.1. Dataset description

A third party dataset consists of malicious and normal traffic is used in

this work. According to the authors [6], IXIA PerfectStormOne Toolc has

been used to generate synthetic contemporary attacks (see section 4.1.2)

within realistic modern normal activities. A 100GB of raw network traffic

has captured.

4.1.1. Initial features

Forty nine features are extracted and categorised into five groups [6]:

• Flow related features: these features include the flow-related at-

tributes between two nodes in a computer network such as source

chttps://www.ixiacom.com/products/ixnetwork
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and destination IP addresses, port numbers and the protocol type

(e.g. TCP, UDP)

• Basic features: attributes that represent protocols connections (e.g.

duration, source to destination bytes, time to live, packets loss,

service, bits per second, packet count)

• Content related features: encapsulates the TCP/IP layer related

attributes (e.g. TCP window advertisement value, TCP base se-

quence number, packet size)

• Time related features: contains the time related attributes (e.g.

jitter, start time, inter packet arrival time, round-trip time, time

between SYN and SYN ACK, time between SYN ACK and the

ACK)

• Additional generated features divided into two groups: general pur-

pose features (each feature has its own purpose) and connection

features (built from the flow of 100 record connections based on

the sequential order of the last time feature)

None of the above features is attack dependent and can be extracted from

any given traffic flow, and hence can be considered as a general-purpose

feature set for monitoring. Readers are invited to refer to [6] for more

details about data generation, features and attack types.

4.1.2. Attack types

In addition to the day to day normal activities, following attack types

have been produced in the dataset. Note that one or more activity types

described below can be presented at different stages of the attack lifecycle.

For example, Fuzzers and Exploit can be presented at either stage 1, 2, or 5

of the attack lifecycle. Ability to detect them will stop the attacker reaching

the final stage of the attack where exfiltration, corruption and disruption

happening, and hence can be considered as an early detection. However,

we will mostly focus on reconnaissance activities in this work as obviously,

it would be the first step of many network-based computer attacks.

• Fuzzers: an attack in which the attacker attempts to discover se-

curity loopholes in a program, operating system, or network by

feeding it with the massive inputting of random data to make it

crash.

• Analysis: a type of variety intrusions that penetrate the web ap-

plications via ports (e.g., port scans), emails (e.g., spam), and web
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scripts (e.g., HTML files).

• Backdoor: a technique of bypassing a normal authentication, se-

curing unauthorised remote access to a device, and locating the

entrance to plain text as it is struggling to continue unobserved.

• DoS: an intrusion which disrupts the computer resources via mem-

ory, to be extremely busy to prevent the authorised requests from

accessing a device.

• Exploit: a sequence of instructions that takes advantage of a glitch,

bug, or vulnerability to be caused by an unintentional or unsus-

pected behaviour on a host or network.

• Generic: a technique that establishes against every block cypher

using a hash function to collision without respect to the configura-

tion of the block-cypher.

• Reconnaissance: can be defined as a probe; an attack that gath-

ers information about a computer network to evade its security

controls.

• Shellcode: attacker penetrates slight piece of code starting from a

shell to control the compromised machine.

• Worm: an attack whereby the attacker replicates itself to spread

on other computers. Often, it uses a computer network to spread

itself, depending on the security failures on the target computer to

access it.

4.1.3. Exploring the dataset

To investigate if all the descriptors in the initial feature set have some sort

of predictive power of the monitoring behaviour, we plot boxplots for each

descriptor separately in malicious class as well as in benign class. Due to

the space constraints, Figure 3presents only twenty boxplots of them. As

shown in Figure 3, there is a certain group of features which have different

distributions in malicious class than benign class. These features have

the discriminating power and hence inform more in classification/anomaly

detection model. To reduce the computational cost features having the

same distributions in both classes can be removed from unless they have

any other form of information such as semantic information which is not

encoded in the data. Therefore feature selection and reduction is necessary

to remove unnecessary features (e.g. features not informed in the model

and highly correlated features) from the feature set.
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Fig. 3.: Distributions of each feature in two classes (A-attack, N-normal).
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4.2. Feature selection using empirical analysis

As mentioned above, due to the scarcity of resources on monitoring devices,

reduction to the computational cost is vital in our problem. Hence feature

selection and reduction play an important role. Features described in sec-

tion 4.1.1 were chosen as the initial feature set, and then a random forest

model [7] was built and tuned using R’s random forest package (version 4.6-

12) [8]. Then, for the feature trade-off analysis in section 5.2, top important

features are selected using the mean decrease Gini (see Figure 4).

Fig. 4.: Feature selection: using empirical analysis.

5. Experimental results

In this section, experimental results are presented. We use graphical forms

(e.g. Z-Score graphs) to present information. Visualisation helps to quickly

recognise patterns in data as well as spotting masking and swamping effects

mentioned above.
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5.1. Monitoring for reconnaissance

Reconnaissance is a type of intrusion activities that can occur at the

very early stages of the attack lifecycle. In an active reconnais-

sance, an intruder engages with the targeted system to gather infor-

mation about vulnerabilities. So, our proposed technique was inves-

tigated against reconnaissance activities in the dataset. As shown

in figure 5, proposed approach can detect all victims of recon-

naissance activities in the dataset. It includes ten IP addresses,

namely, 149.171.126.18, 149.171.126.17, 149.171.126.11, 149.171.126.12,

149.171.126.13, 149.171.126.15, 149.171.126.16, 149.171.126.19,

149.171.126.14 and 149.171.126.10 in the dataset. These IP addresses de-

noted by red dotted lines in figure 5. All other nodes (30 IP addresses) are

normal and denoted by black lines. As expected, they keep suspicious score

near zero as they are not targeted by any reconnaissance attempt during

the monitoring period.

Fig. 5.: Monitoring for all nodes (forty nodes in the subnet). Victims of

reconnaissance attempts are denoted by red dotted lines. All other nodes

denoted by black lines in the above graph keep suspicious score near zero.

In order to closely investigate how our algorithm increment profile scores

over the time, figure 6 visualises the profile scores of node 149.171.126.18

against time and event arrivals. In figure 6, data points with + sign denotes
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a reconnaissance attempt as it happens over the time from multiple source

IPs while all other points denote a normal activity. As obvious, reconnais-

sance always increments the suspicious score of a node in the graph.

Fig. 6.: Increasing the suspicious score: + sign denotes a reconnaissance

attempt as it happens over the time from multiple source IPs.

It should be noted that computing cumulative scores NW itself and then

presenting them as in figure 5 are not enough in detecting on going malicious

activities. Because there is no sense of a threshold in that representation.

Converting to Z-scores is required. In Z-score graphs in figure 7, nodes

corresponding to red dotted lines denote victims. We set threshold as T = 2

in this work and then victims nodes are near the T , and importantly there

is a clear visual separation between the set of normal nodes and anomalous

nodes. Hence it is possible to recognise victims using the proposed method.

5.2. Feature trade-off analysis

As contemporary enterprise networks scale up in size and speed, huge vol-

ume of traffic has a cost ramification for security monitoring. Therefore,

as mentioned in section 3, in order to be a practical automated CEWS

solution, proposed system should be computationally inexpensive. Feature

reduction play an important role in developing light weighted solutions,

which could be motivated as long as it preserves the required level of preci-
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Fig. 7.: Z-scores: compassion within the peer group. Red dotted lines

denote victim nodes.

sion. We will investigate how number of features affects on the performance

as follows.

First, the most 5 importance features (top 5) were selected as input fea-

tures (see section 4.2) to the proposed algorithm, and then training time,

testing time (per test case) and false alarm rates were recorded. With

regards to the false alarms, misclassification of flows were counted. The

same experiment was repeated nine times by keeping all parameters un-

changed, except number of features which were varied as top 5, top 10, top

15 and so on until top 45 as described above. Training and testing time

were calculated on a laptop with an Intel(R) Core(TM) i7-6820HQ CPU @

2.70GHz and 8GB of RAM. Ubuntu 16.04 operating system was running

on the laptop.

Figure 8 presents the number of features vs training time. As shown

in figure 8, number of features is proportional to the model training time.

Lower the number of features selected the better for training time. Figure 9

presents the number of features vs testing time. Though there are slight

drops at points 15 and 40, the graph has a increasing trend in general for

test time. Figures 10 and 11 present false alarms rates against number of

features used in the model. As obvious from figures, increasing number of

features does not always reduce the false alarms. In fact, in this particular
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case, it will start to increase false negative rates if we increased the number

of features beyond 20. From the security point of view false negatives

are more critical than false positives though later would affect on user

convenience. As per this analysis, using top 10 importance features would

be the best combination in terms of computational cost and false alarms

rates.

Fig. 8.: Number of features vs training time.

5.3. Monitoring for other activities

As explained in section 4.1.2, ability to detect any intruded activities simu-

lated in the dataset will stop the attacker reaching final stage of the attack

where exfiltration, corruption and disruption happening, and hence can be

considered as an early detection. Therefore this section briefly investigates

ability to employ proposed method to detect other intruded activities in-

cluded in the dataset.

We use the entire dataset, without excluding any specific type of mali-

cious activities, to produce the cumulative and Z-sore graphs as mentioned

above. Figures 12 and 13 presents the cumulative and Z-score graphs re-

spectively. Red dotted lines denote the victim nodes of different attack

activities simulated in the dataset. Note that it includes the same victim

IPs mentioned in section 5.1. Readers should notice the changes to the
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Fig. 9.: Number of features vs testing time (per test case).

limits of cumulative scores in figure 12. Its value increases from 40 (in fig-

ure 5) to 1500 for one node. This has happened due to the contribution of

other activities to increment node score in addition to the reconnaissance.

While this helps to spot that node quickly, in the same time it influences

the values of test statistic of other nodes to suppress (see figure 13). How-

ever, in practice, this wont be a problem as soon as highly deviated victim

is spotted and stop, rest of nodes start to stand out as µW , σW and T

adjusts itself according to the current state of the network. Therefore the

higher the number of suspicious activities is the better for early detection

using proposed method.

6. Related literature

An extensive survey of collaborative intrusion detection proposals can be

found in [9]. Collaborative intrusion detection works aim at sharing, cor-

relating and cooperatively analysing sensor data collected from many or-

ganisations located in different geographical locations and hence producing

early warnings on ongoing malicious activities. An infrastructure and or-

ganisational framework for a situation awareness and early warning system

presented in [10]. eDare (Early Detection, Alert and Response system) [11]

and the Agent-based CEWS [12] are similar efforts. However information
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Fig. 10.: Number of features vs false positive rates.

exchange can be seen as a major barrier for CEWS’ advances. The Inter-

net motion sensor, a globally scoped Internet monitoring system, statisti-

cally analyses dark net traffic that needs to be interpreted by humans [13].

DShield internet storm centre collects firewall and IDS logs world wide and

incorporates human interpretation and action in order to generate predic-

tions and advice [9] while eCSIRT.net [14] comprises of a sensor network

which collects and correlates alerts for human inspection. DeepSight in-

telligence collects, analyses and delivers cyber-threat information through

a editable portal and datafeeds, enabling proactive defensive actions and

improved incident response [15]. Human analysis and data mining is incor-

porated in order to provide statistics. In the context of security, data and

information sharing is difficult between different organisations and nations

due to various reasons [16, 17].

Situational awareness is an essential part of an CEWS which includes

awareness of suspicious network related activities that can take place at

all levels in the TCP/IP stack [18]. Such activity can range from low-level

network sniffing to suspicious linguistic contents on social media. Various

network measurements and techniques (e.g. packet inter arrival times [19],

deep packet inspection [20], game theory [21]) have been employed. The

idea for a common operational picture (big picture) is presented [22, 23].

A systematic review of cyber situational awareness can be found in [18].
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Fig. 11.: Number of features vs false negative rates.

However instead of addressing the full complexity, above solutions concen-

trated on a particular issue of the problem and some solutions (e.g. deep

packet inspection) are neither feasible in practice nor suitable for real time

analysis yet.

Sensing in-progress attacks requires strategically placed sensors

throughout the cyberspace. Current sensor networks for CEWS have a

simple monolithic structure [24], where data is acquired at the network

edges and then transmitted over a dumb infrastructure to a central loca-

tion for analysis. This can cause various issues to the analysis due to many

reasons such as nonidentical measurements, nonidentical local detectors and

noisy channels [25]. High computational cost is another significant issue.

Hence computationally fast and accurate methodology to evaluate the er-

ror, detection, and false alarm probabilities in such networks is essential.

Optimal sensor placement strategies for CEWS is discussed in [26]. Authors

study correlation between attack patterns of different locations (national

and international) and explore how sensors should be located accordingly.

The design and analysis of sensor networks for detection applications has

received considerable attention during past decades [27].

In order to early warn, fusion of different network measurements from

different sources is essential. Fusion of cyber related information from

a variety of resources including commercial news, blogs, wikis, and so-
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Fig. 12.: Profile Scores: cumulative scores of all nodes in the network while

being a target of all possible malicious activities including reconnaissance.

Victims of malicious activities are denoted by red dotted lines.

cial media sources is proposed in [28]. Bayesian fusion for slow activity

monitoring [3, 29], high speed information fusion for real time situational

awareness [30], JDL data fusion model to computer networks [31], detect-

ing network data patterns [32], combining data from sensors using ontology

methods [33] and fuse security audit data with data from a psychological

model [34] are few of them to mention. Using web-based text as a source

for identifying emerging and ongoing attacks can be found in [35].

An open, adaptable, and extensible visual analytic framework is pro-

vided in [36]. All data is treated as streaming and visualises them using

machine learning techniques [37], live network situational awareness sys-

tem that relies upon streaming algorithms included [38], fast calculations

of important statistical properties of high speed and high volume data [38],

sophisticated visualization of attack paths and automatic recommendations

for mitigation [39] are some interesting works.

Threat scenario provides an important aspect to the early warning dis-

cussion. For example, early warning on malware propagation can be easier

than warning on DOS attack. Focus to early warning on particular threat

type is common (e.g. [40–44]). A malware warning centre is proposed in [40]

while [42] aims for distributed and large-scale malware on the Internet. A
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Fig. 13.: Profile Scores: Z Scores of all nodes in the network while being a

target of all possible malicious activities including reconnaissance. Victims

of malicious activities are denoted by red dotted lines.

worm propagation stochastic model is built [43]. Authors propose a logi-

cal framework for a distributed early warning system against unknown and

fast-spreading worms. An open-source early warning system to estimate the

threat level and the malicious activities across the Internet is provided [44].

Limiting to a certain threat type is a major drawback of these proposals.

They cannot simply extend for newly emerging threats.

7. Research challenges

Traditional defences are simply not matching for today’s adversaries as

less than 1% of successful advanced threat attacks are spotted by SIEM-

systems [45]. Once pass through the perimeter defences, the attacker can

persist for long periods by moving laterally across the network and compro-

mising as many systems as possible. Using seemingly legitimate actions, the

attacker can then exfiltrate sensitive data or intellectual property. Hence

continues monitoring of the behaviour of systems/users is required. Unlike

most traditional solutions which focus on one or two steps in the attack life-

cycle, as shown in this work, our proposed method can counter adversary’s

activities at early stages of the attack lifecycle. As a result, by analysing the
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data and following the digital footprints of the attacker, a security profes-

sional can focus on disrupting the adversary’s attack before she can achieve

her goal.

Ability to early-warn depends on three factors: attack progression rate

(e.g. a malware propagation vs denial of service (DOS) attack), amount of

evidence produced at each stage, and the ability to acquire such evidence

by sensors. Rest of the section highlights a few challenges associated with

these factors.

7.1. Generic set of indicators

In other domains, such as natural disasters (e.g. tsunami), early warn-

ings are well established, and arguably simple when compared to the early

warnings on the cyberspace. For example, in kinetic warfare, intelligence of-

ficers study different sources of intelligence (e.g. listen to communications,

satellite imagery) to looking for known preliminary indicators of military

mobilisation. In medical diagnosis, preliminary indicators such as feeling

thirsty, tired, losing weight and blurred vision can early warn an individual

about diabetes. But on the cyberspace, it is not clear what these indica-

tors are or how they can be observed [46]. This presents a huge problem

when trying to develop CEWS. As some scholars argue [46, 47], CEWS can-

not be developed from a purely technical perspective. They must consider

more than just technical indicators and require significant input from other

disciplines such as international relations and sociology since the focus of

CEWS should be to warn of an impending attack rather than detecting

when it in progress. However the biggest challenge, a generic set of indi-

cators (signs) of preparation for an attack on the cyberspace is not well

established (understood) yet [48].

7.2. Gathering evidence

The cyberspace has a diversity. For example, it consists of different topo-

logical structures (e.g. PAN, LAN, MAN, WAN), different kind of networks

(e.g. open Internet, darknet, honeynet, demilitarized zone) and different

types of users (e.g. universities, health care system, the traffic system,

power supply, trade, military networks). These entities produce events in

different types and rates and have different analysis objectives and privacy

requirements. To provide a representative image of the cyberspace at any

given time, CEWS have to collect and process data from a range of these

different entities. Employing a large monolithic sensor network for intel-
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ligence gathering on the cyberspace would not be possible due to these

variations.

7.3. Uncertainty reasoning

The cyberspace is an uncertain place. Hence cyber defenders have to deal

with a great deal of uncertainty [3, 49] which is compounded by the na-

ture of computing. Any future CEWS that seeks to model and reasoning

on the cyberspace has to accept this ground truth and must deal with in-

completeness (compensate for lack of knowledge), inconsistencies (resolve

ambiguities and contradictions) and change (update the knowledge base

over time). For example, entering misspelled password can be a simple

mistake by an innocent user or a password guessing attempt by an at-

tacker. Cyber defenders do not know who the attackers nor their location.

Some suspicious events, e.g. a major router failure could generate many

ICMP unreachable messages while some computer worms (e.g. CodeRed

and Nimda) generate the same in active probing process, can appear as part

of an attack as well as can originate from normal network activities. Other

contextual information should be utilised to narrow down the meaning of

such data [3].

7.4. Scalability

In principle, it is possible to log every activity on every device on the

cyberspace, but in practice, security analysts cannot process these logs due

to their vagueness as attack indicators as well as the sheer volume of data.

The biggest challenge is how to start from imprecise and limited knowledge

about attack possibilities, and quickly sift through a huge volume of data to

spot a small set of data that altogether makes the picture of attacks clear.

As volume and rate of traffic are rising, an inspection of every individual

event is not feasible. A data reduction is needed [3].

7.5. Information fusion

As mentioned earlier, CEWS cannot be developed from a purely technical

perspective. Given the huge number of possible data sources and an over-

whelming amount of data they generate, a data reduction method is essen-

tial to enable continuous security monitoring [50]. Future CEWS require

fusing as many data sources as possible. Though it is not an exhaustive

list, potential data sources for this task would be: network data traffic, log
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files, social media, mobile location traces, mobile call traffic, web browsing

traces, content popularity, user preferences, spatial/geographic distribu-

tion of network elements, network topology (router and AS level), network

paths, protocol traces, social network structure and other security intelli-

gence either system or social level.

7.6. Evaluation

Getting validity for a novel method is only possible through a proper eval-

uation. But in this research area, evaluation of novel algorithms against

real-time network data is a challenge. Real network traffic datasets with

ground truth data on attack activity are difficult to obtain. Any such ef-

fort faces the uncertainty of success in investigating relevant patterns of

activities. One solution to this problem would be to develop monitoring al-

gorithms based on unary classification as it is relatively easier to find clean

datasets than malicious ones, or providing mathematical proof for novel

methods.

Machine learning algorithms need to be verified to find out their precise

performance in real data. Specially in network computer security it is

really important to have good datasets, because the data in the networks is

infinite, changing, varied and with a high concept drift. These issues force

us to obtain good datasets to train, verify and test the algorithms.

7.7. Incident data integrity and retention

No matter how persuasive evidence may be, it can be thrown out of court

if you somehow alter it during the evidence collection process. Make sure

you can prove that you maintained the integrity of all evidence. You may

not detect all incidents as they are happening. Sometimes an investigation

reveals that there were previous incidents that went undetected. It is dis-

couraging to follow a trail of evidence and find that a key log file that could

point back to an attacker has been purged. Carefully consider the fate of

log files or other possible evidence locations. A simple archiving policy can

help ensure that key evidence is available upon demand no matter how long

ago the incident occurred.
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