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Abstract: Herein, we present a series of supramolecular self-associating amphiphilic (SSA) salts
and establish the potential for these molecular constructs to act as next-generation solution-state
molecular delivery vehicles. We characterise the self-association of these SSAs, both alone and
when co-formulated with a variety of drug(like) competitive guest species. Single crystal X-ray
diffraction studies enable the observation of hydrogen-bonded self-association events in the solid
state, whilst high resolution mass spectrometry confirms the presence of anionic SSA dimers in
the gas-phase. These same anionic SSA dimeric species are also identified within a competitive
organic solvent environment (DMSO-d6/0.5% H2O). However, extended self-associated aggregates
are observed to form under aqueous conditions (H2O/5.0% EtOH) in both the absence and presence
of these competitive guest species. Finally, through the completion of these studies, we present
a framework to support others in the characterisation of such systems.

Keywords: hydrogen bond; supramolecular chemistry; amphiphile; drug delivery

1. Introduction

Hydrogen bond formation, electrostatic and charge transfer interactions can all be utilised
to drive molecular self-association [1,2]. These events inform the resultant aggregated structure,
which leads to the formation of novel functional supramolecular systems, including programmable
nanostructures [2–4], organic frameworks [5], and supramolecular gels [6,7]. Having originally taken
inspiration from natural biological systems, supramolecular chemistry has now come full circle,
using biological monomeric units to construct self-associative drug delivery vehicles [8]. Specific
examples include work by Nilsson and co-workers [9], who have produced an injectable supramolecular
hydrogel capable of effective encapsulation and in vivo delivery of the anti-inflammatory drug
diclofenac. Additionally, Yang and co-workers have used peptide amphiphiles to increase the
efficacy of chemotherapeutic drugs, cisplatin and 10-hydroxycamptothecine (HCPT) against the
cancer cell line A549/DDP [10]. These works highlight the potential of self-associative systems for
drug delivery/increasing therapeutic efficacy, achieved through a fundamental understanding of the
additive guest species influence on a self-associated system.

The thio/urea motif has been used extensively in the construction of low molecular weight,
neutral, hydrogen bond donating organic receptors for the selective coordination of anionic guest
species [11]. However, the development of molecular units that contain both a hydrogen bond
donating receptor cavity covalently linked to an anion, is a relatively new development in this area of
chemistry. One of the first examples of this molecular unit was developed by Gale and co-workers
in 2016 [12]. Here, this group produced a series of low molecular weight, urea-based receptors that
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contain a boronate functionality adjacent to a hydrogen bond donating cavity. This construct was
used to enable the selective coordination of neutral phosphate molecules, over competitive anionic
guest species in polar organic solvent systems. However, Faustino and co-workers were one of
the first groups of researchers to explore the incorporation of the urea-spacer-anion group into the
structure of amphiphilic monomers [13]. Here it is hypothesised that the presence of intermolecular
hydrogen-bonded urea-anion self-association events are responsible for the comparative decrease
in critical micelle concentration (CMC) [14]. Additionally, this type of construct has also been used
to design a novel class of protonophoric mitochondrial uncouplers, indicating that this type of
urea-spacer-anion motif shows some potential for development towards next-generation therapeutic
agents [15].

Our own work in this area has led to the development of a novel class of supramolecular
self-associating amphiphilic salts (SSAs). To date, a library of >50 SSAs and structurally related
compounds have been synthesized. The self-associative properties of this compound library and
any resultant aggregate structure have also been characterised, using a variety of complementary
experimental techniques (Figure 1) [16–23]. A series of solid state, single crystal X-ray diffraction
studies have shown the intermolecular binding mode adopted by the anionic component of an SSA to
be cation dependent [17]. Here the presence of the weakly coordinating tetrabutylammonium (TBA)
counter cation was found to result in the formation of thio/urea-anion dimers however, the formation of
thio/urea-thio/urea stacks were induced by the presence of a strongly coordinating counter cation such
as sodium or potassium. Whereby, a moderately competitive counter cation such as the pyridinium
ion, resulted in the formation of thio/urea-anionic tapes. Additionally, solution state studies have
shown the anionic component of an SSA to also produce hydrogen-bonded dimers in a competitive
organic solvent system (DMSO-d6). However, in an aqueous environment, the SSA monomeric units
have been shown to form spherical aggregates, with hydrodynamic diameters of c.a. 100–550 nm in
size [18,20] and/or hydrogels [23].
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Figure 1. The general chemical structure of a self-associating amphiphilic (SSA) and self-associated SSA
species adopted in different solution state environments. R = any group; X = S or O; A− = sulfonate or
carboxylate; Z+ = counter cation.

Interestingly, examples from this SSA library have been shown to act as antimicrobial agents
against both clinically relevant model Gram-positive (methicillin resistant Staphylococcus aureus—MRSA)
and Gram-negative (Escherichia coli) bacteria [21–23]. Within the scope of our studies we have also
hypothesised that SSA antimicrobial activity is related to both molecular self-association [23] and
selective SSA:phospholipid complexation [24]. However, as SSAs have been shown to arrive at the
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microbial membrane as self-associated spherical aggregates, we believe this class of compound also
has the potential to be developed as next-generation drug delivery vehicles. To investigate this,
SSAs (1–4) were synthesised and co-formulated with various competitive molecular species (5–9) to
produce co-formulations a–j as shown in Figure 2 and Table 1. Two control SSAs (10 and 11) were
also synthesised to understand the effects of competitive molecular species addition to the anionic
component of 1. Herein, we will explore the self-associative properties of these novel co-formulations
in the solid state, gas phase, and solution state to gain an understanding of the resultant self-association
events at the molecular level.
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Table 1. Molecular components contained within co-formulations a–j.

Co-Formulation Molecular Components Co-Formulation Molecular Components

a 1 + 5 f 3 + 7
b 4 + 5 g 2 + 8
c 1 + 6 h 3 + 8
d 4 + 6 i 2 + 9
e 2 + 7 j 3 + 9

Unlike the anionic component of SSAs 1 and 4, the molecular design of 2 and 3 may allow for the
incorporation of anionic drug/drug-like molecules into these systems via protonation of the terminal
amines. Coumarin (7) was selected for the ability to deprotonate and form zwitterionic versions
of co-formulations e and f, exploring the presence of a competitive anionic species on molecular
self-association. The non-steroidal anti-inflammatory drug (NSAID) aspirin (9) and the derivative,
salicylic acid (8) were also chosen as co-formulants. Compounds 8 and 9 were selected because despite
effective and widespread use, the associated gastrointestinal and cardiovascular side effects of these
drugs have led to the development of topical formulations and drug incorporation into carriers to
reduce toxicity [25,26]. To investigate the potential for SSAs to act in this capacity, these drugs have
been incorporated with SSAs 2 and 3 (co-formulations g–j).

Finally, SSA 4 was used to incorporate two dyes, malachite green (5) and methylene blue (6),
co-formulations a–d. The dyes selected contain both competitive cationic and anionic guest species
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(chloride and oxalate respectively), whilst the presence of aromaticity mimics that of many drug
molecules. To enable us to understand the potential of SSAs to act as molecular delivery vehicles,
it is fundamental we first elucidate the effects of additional competitive guest species on SSA
self-association events.

2. Results and Discussion

Due to the complex nature of SSA self-association events, and now with the inherent additional
complexities of adding competitive species to an SSA system, we have developed an effective
multi-component experimental approach to enable characterisation of these complex mixtures.
The SSA characterisation process we have developed is shown in Figure 3. Within this flow chart we
have included mention of scanning/transmission electron microscopy (SEM/TEM) studies however,
these characterisation methods are not discussed further within the scope of this work as SSA
self-associated spherical aggregates have previously been shown not to survive SEM/TEM sample
preparation methods [16].
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In the gas phase, high resolution mass spectrometry experiments allow the observation of any
self-associated SSA anion. Single crystal X-ray diffraction allows us to observe molecular self-association
events in the solid state. However, although self-associated molecular species are easily identified
within the gas phase or solid state using a single technique, the complexities of the solution state
self-association events require a combination of complementary techniques. Quantitative 1H NMR
defines the presence of any larger self-associated species that cannot be observed by solution state NMR.
However, self-associated species that are visible using this instrumentation may be further characterised
through 1H NMR dilution studies (to enable the calculation of association constants) and diffusion
ordered spectroscopy (DOSY). For those self-associated structures which are too large to be observed
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using solution state NMR, we apply a combination of dynamic light scattering (DLS), zeta potential, and
critical micelle concentration (CMC) determination to characterise those self-associated species present.

2.1. Solid-State Single Crystal X-ray Diffraction Studies

To investigate the effects of competitive agent addition upon SSA self-association, a series of
single crystal X-ray diffraction studies were undertaken. Figure 4 shows the crystal structure of SSA
3. As observed previously [17], the presence of the non-competitive TBA counter cation results in
urea-anion dimer formation. This dimer is stabilised through the formation of four hydrogen bonds,
one from each of the urea NH hydrogen bond donating groups to a different oxygen atom contained
within the sulfonate functionality. The interior angle of dimerization was calculated to be 180.00◦.
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(CCDC–1997432).

A single crystal obtained from a methanol solution of co-formulation h was found to contain the
zwitterion of SSA 3, as shown in Figure 5a. In this instance, the presence of salicylic acid (11) within
the crystallisation liquor has resulted in the protonation of the tertiary amine group contained within 3
to produce a zwitterion. This zwitterion was also found to dimerize (Figure 5a), through the formation
of four urea-anion hydrogen bonds in an identical hydrogen bonding mode to that of the anionic
unit (Figure 4). However, we do observe a change in interior angle of dimerization from 180.00◦ to
13.18◦. Figure 5b illustrates additional hydrogen bonding interactions between SSA zwitterions and a
disordered water molecule. Here, the water molecule acts as a hydrogen bond donor/acceptor bridging
unit between the anionic component of the zwitterion, the oxygen atom of the urea functionality and
the protonated hydrogen bond donating tertiary amine group. This provides evidence that when
protonated the previously amphiphilic molecule has increased in polarity, causing the coordination of
water molecules both at the head and tail end of the SSA.

A crystal structure obtained for compound 11 highlights the effects of an additive cationic, aromatic
drug-like species on SSA self-association events. We have previously shown that the presence of
a TBA counter-cation results in the formation of thio/urea-anion dimers with an internal angle of
dimerization = 22.60◦ [17]. Where the TBA cation is replaced with the methylene blue cation, the anionic
component no longer dimerizes, but instead forms a hydrogen-bonded tape (Figure 6a). The molecular
self-association is stabilised through the formation of two intermolecular hydrogen bonds between the
urea and sulfonate functionalities. Additionally, the methylene blue cation stacks in sheets above and
below those of the SSA anionic components, shown in Figure 6b.
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bonds formed between the anionic components of this SSA, while (b) highlights alternating anionic and
cationic sheets also present within this crystal structure. Atomic disorder has been omitted for clarity
and the methylene blue counter cation has been omitted in Figure 6a. Grey = carbon, blue = nitrogen,
red = oxygen, yellow = sulfur, green = fluorine, white = hydrogen, red dashed lines = hydrogen bonds.
(CCDC–1997431).

2.2. Gas-Phase Self-Association

Previously published high resolution electrospray ionisation (ESI) mass spectrometry studies
have shown the anionic portion of most SSAs to exist as dimeric species [16–22]. Data previously
obtained for SSAs 1 [16], 2 [21] and 4 [18] confirmed the presence of SSA anionic dimers under these
experimental conditions. Supporting these previous observations, the presence of anionic SSA dimers
were also observed for SSAs 3, 10 and 11, see Table 2.
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Table 2. High resolution electrospray ionisation (ESI) −ve mass spectrometry theoretical and
experimentally derived values.

m/z [M]- m/z [M +M + H+]-

Compound Theoretical Actual Theoretical Actual

3 300.1024 300.1012 601.2048 601.2091
10 297.0162 297.0276 595.0324 595.0596
11 297.0162 297.0157 595.0324 595.0384

2.3. Solution State Self-Association

SSA self-association events are known to be dependent on solvent environment [18]. Quantitative
1H NMR techniques are used to provide initial evidence for the presence of smaller (dimers) and/or
larger SSA aggregates in solution. While also quantifying the proportion of those molecular substituents
involved in the construction of higher order species. These larger aggregates adopt solid-like properties
and are therefore no longer observable using solution state NMR techniques, so appear to ‘disappear’
or are ‘lost’ from the NMR spectra. Comparative integration against an internal standard allows for
the percentage of a molecular component apparently ‘lost’ from a solution to be quantified. It is worth
noting that this experimental technique does not confirm the absence of any self-associated species at a
concentration below the limit of detection of the NMR spectrometer used. Table 3 shows the results of
data analysis performed for solutions 1–11 and co-formulations a–j in: (i) DMSO-d6, standardised with
1.0% DCM and (ii) D2O standardised with 5.0% ethanol. The majority of SSA studies conducted to date
show that in DMSO-d6 based solutions many of those self-associated structures formed are anionic
dimers, at concentrations up to 112 mM [18,20,22]. This trend was also observed for the majority of
SSAs and co-formulations discussed herein under the same experimental conditions.

Interestingly, co-formulation d showed an apparent ‘loss’ of SSA 4 in the presence of co-formulant
9 in a DMSO-d6 solution. However, the formation of larger SSA aggregates was not observed in
the absence of 9 (SSA 4 only). Furthermore, when comparing the percentage of anionic and cationic
components of SSA 4 that form the larger self-associated structures in co-formulation d, there is an
imbalance; an observed 74% ‘loss’ of anion and 12% ‘loss’ of TBA cation. We therefore hypothesise these
larger self-associated constructs incorporate the methylene blue cation in preference to the TBA (6).
Experiments conducted with 6 only, show that at this same concentration methylene blue is able to form
higher ordered species independently. Interestingly, co-formulation c, which incorporates methylene
blue but with SSA 1, does not show any evidence for the formation of higher ordered structures under
the same experimental conditions. It is therefore plausible to hypothesise that interactions between
the extended planar ring systems found in the benzothiazole moiety (SSA 4) and compound 6 are
responsible for the formation of those larger structures in DMSO-d6 at 112 mM.

Moving into aqueous conditions (5.56 mM), SSAs 1, 3, 4, 10 and 11 all show evidence for the
formation of higher-order self-associated aggregates in solution. This same observation was made
for all co-formulations (Table 3). Interestingly, the presence of larger self-associated aggregates of
SSA 2 were not confirmed by this method. We hypothesise this is due to the presence of hydrophilic
moieties at both ends of the SSA anion. Where SSAs 1 and 4 are co-formulated with a secondary
species, the proportion of the anionic SSA component incorporated into these larger, higher ordered
structures increases. Co-formulations a–d show 100% of the SSA anion and co-formulant cation to be
involved in self-associated aggregation events under aqueous conditions. This leads us to hypothesise
that the interactions of the SSA anion and the co-formulant cation are highly favorable, an observation
also made within DMSO-d6. To test this hypothesis, control SSAs 10 and 11 were synthesised and
the results of comparative study showed that under the same experimental conditions, 100% of both
the anionic and cationic component were found to be involved in extended aggregate formation.
Despite the complete ‘loss’ of SSA anion and co-formulant cation from co-formulations a–d, the ‘loss’ of
a proportion of TBA from solution shows the presence of a second salt within these aggregated species.
Co-formulation a shows a ‘loss’ of 15%, compared to c which incorporates nearly double the amount
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of TBA, at 28%. This observation is attributed to the co-formulant present. However, when comparing
the effect of SSA exchange, the presence of SSA 1 (co-formulation a) results in the incorporation of 15%
of TBA into the extended aggregate structure, compared to SSA 4 (co-formulation b), the presence
of which results in 37% of the SSA cation to become incorporated within the larger self-associated
aggregates produced.

Table 3. Overview of the results from quantitative 1H NMR studies obtained from (i) DMSO-d6,
standardised with 1.0% DCM at 112 mM and; (ii) D2O standardised with 5.0% ethanol at 5.56
mM. Values given in % represent the observed proportion of compound to become NMR silent.
All quantitative 1H NMR experiments were conducted with a delay time (d1) of 60 s at 298 K.

Co-Formulation Compound Solvent System Anion Cation Co-Formulant Anion Cation

n/a 1 [16] DMSO-d6 0 0 n/a n/a n/a
D2O 51 50

n/a 2 DMSO-d6 0 0 n/a n/a n/a
D2O 0 0

n/a 3 [21] DMSO-d6 0 0 n/a n/a n/a
D2O 65 21

n/a 4 [18] DMSO-d6 0 0 n/a n/a n/a
D2O 10 8

n/a 10 DMSO-d6 0 0 n/a n/a n/a
D2O 100 100

n/a 11 DMSO-d6 0 0 n/a n/a n/a
D2O 100 100

a 1 DMSO-d6 0 0 5 0
D2O 100 15 100

b 4 DMSO-d6 0 0 5 0
D2O 100 37 100

c 1 DMSO-d6 0 0 6 0
D2O 100 28 100

d 4 DMSO-d6 74 12 6 a
D2O 100 0 100

e 2 DMSO-d6 0 0 7 n/a 0
D2O 52 55 86

f 3 DMSO-d6 0 0 7 n/a 0
D2O 41 43 81

g 2 DMSO-d6 0 0 8 n/a 0
D2O 63 44 58

h 3 DMSO-d6 0 0 8 n/a 0
D2O 42 44 34

i 2 DMSO-d6 12 2 9 n/a 4
D2O a a a

j 3 DMSO-d6 0 0 9 n/a 0
D2O 22 40 19

Cells have been merged where compound/co-formulant is neither anionic nor cationic. a = Could not be calculated
due to compound solubility. n/a = not applicable.

Unlike SSAs 1 and 4, SSAs 2 and 3 both have an amino protonatable site appended from the phenyl
ring system of the SSA anion. In aqueous conditions, the co-formulation of SSA 3 results in a decrease
in the proportion of anionic SSA component incorporated into the extended self-associated structures,
whereas the inverse is true for the aqueous co-formulations incorporating SSA 2. Co-formulations f
and h both contain SSA 3 but different co-formulants, coumarin (7) and salicylic acid (8). These systems
exhibit a very similar ‘loss’ of SSA anionic and cationic components from solution, with a 42% and 44%
‘loss’ for f and 41% and 43% ‘loss’ for h, when considering the SSA’s anionic and cationic components
respectively. However, under analogous experimental conditions, a significantly larger amount of
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co-formulant 7, coumarin (81%) has been ‘lost’ from solution compared to co-formulant 8, salicylic
acid (34%). It is hypothesised that in aqueous conditions, SSA 3 forms a spherical aggregate species,
similar to that of SSA 4 which has been visualized within the scope of previous studies via fluorescence
microscopy [18]. The ‘loss’ of coumarin (7) and salicylic acid (8) could therefore be a result of encapsulation
within the SSA self-associated structure, which now acts as a carrier for these co-formulants.

Co-formulations g and h both contain co-formulant 8, salicylic acid but different SSA anionic
components (2 and 3). In both cases, results from our quantitative 1H NMR analysis show 44% of the
TBA has become incorporated into these larger self-associated structures. The proportion of salicylic
acid to be ‘lost’ from solution however differs. An additional 24% of the salicylic acid is incorporated
into larger aggregate species with co-formulation g when compared to co-formulation h. This increase
in salicylic acid incorporation coincides with a further 20% incorporation of the anionic component of
SSA 2 into the extended aggregate structures. We therefore hypothesise that the anionic component of SSA
2 has become protonated by a proportion of the salicylic acid (which remains in the bulk solution, now as
the TBA salt) creating an SSA zwitterion. This process is analogous to that shown in Figure 5, which creates
an aggregate structure capable of absorbing the additional 24% of the salicylic acid as a neutral species.

Co-formulations e and g both incorporate SSA 2 but substitute coumarin (7) for salicylic acid (8).
The presence of the coumarin results in an increase in the proportion of TBA to become trapped
within the larger self-associated structures, which increases from 44% (co-formulation g) to 55%
(co-formulation e). This coincides with a ≈ 30% increased incorporation of co-formulant 7 (coumarin).
The self-associated structures produced from co-formulation e exhibit very similar levels of both SSA
anionic and cationic component incorporation. Unlike co-formulation g, there is a lack of evidence to
support the formation and incorporation of the SSA anion as a zwitterion. Considering the pKa of
both co-formulants [27,28], we would expect zwitterions of SSA 2 to be produced in the presence of
the coumarin as we had previously observed with salicylic acid. However, we believe the increased
hydrophobicity of the co-formulant present, coumarin (7) compared to salicylic acid (8), drives a greater
proportion (11%) of SSA 2 into forming self-associated aggregate structures.

As illustrated in Figure 3, those solutions which exhibited no apparent ‘loss’ of molecular
components in DMSO-d6 are taken forward for 1H NMR self-association constant determination
studies. To quantify the strength of the hydrogen-bonded self-association events undertaken by the
anionic SSA components, a series of 1H NMR dilution studies were conducted in a DMSO-d6/0.5%
H2O solution, results of which are shown in Table 4. Self-association constants were derived using
BindFit v0.5 [29]. However, these models are limited to fitting one component, one dimensional,
homogeneous aggregation events [30]. Here, the 1H NMR dilution study data were fitted to both the
cooperative equal K (CoEK) model, which assumes the first self-association event is different from
all subsequent identical self-association events and the dimerization/equal K (EK) model, where the
association constants for all self-associative events are equal [31–33]. When comparing the fit of
1H NMR dilution data for SSAs 1–4 to both the EK and CoEK binding isotherms, lower fitting errors
were observed consistently for the (dimerization)EK over the CoEK model. This is consistent with
previous observations made for >30 SSAs studied to date [18,20,22].

To confirm the size of the self-associated SSA structures within the 1H NMR dilution study
environment, and thus support the reporting of the EK dimerization constant, a series of 1H NMR
DOSY experiments were performed. These studies conducted with SSAs 1–4 show the anionic
component of these salts to have a hydrodynamic diameter of ≤1.61 nm, therefore this would support
(alongside our previous observations with similar systems [18,20,22], gas phase (Table 2) and solid
state (Figure 4 andFigure 5) data) the formation of lower-order hydrogen-bonded dimeric species.
These studies also show that the SSA anionic component is not strongly coordinated to the TBA counter
cation. As seen in Table 5, when SSAs 1–4 are co-formulated, small increases in hydrodynamic diameter
of the anionic components are observed. The size of these species however is still indicative of lower
order self-associated/complex structures. Therefore, these data gathered also support our findings
from the fitting of our 1H NMR dilution study data.
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Table 4. Self-association constants (M−1) calculated for compounds 1–11 and co-formulations a–j in a
DMSO-d6/0.5% H2O solution at 298 K. These constants were obtained from the fitting of 1H NMR dilution
data and refined to equal K (EK) and cooperative equal K (CoEK) models using BindFit v0.5 [29].

Compound/ EK Model (M−1) CoEK (M−1)
Co-Formulation Ke Kdim Ke Kdim %

1 [16] 5.3 (±0.6%) 2.7 (±0.3%) 13.0 (±0.7%) 6.5 (±0.4%) 0.5 (±2.1%)
2 [21] 3.6 (±1.5%) 1.8 (±0.7%) 4.6 (±8.3%) 2.3 (±4.1%) 0.9 (±13.4%)

3 1.2 (±1.0%) 0.6 (±0.5%) 8.9 (±2.1%) 4.5 (±1.1%) 0.3 (±5.7%)
4 [18] 5.3 (±0.6%) 2.7 (±0.3%) 13.0 (±0.7%) 6.5 (±0.3%) 0.5 (±2.0%)

5 a a a a a
6 a a a a a
7 a a a a a
8 a a a a a
9 a a a a a

10 5.2 (±1.2%) 2.6 (±0.6%) 13.9 (±2.3%) 6.9 (±1.1%) 0.5 (±6.8%)
11 3.5 (±0.7%) 1.8 (±0.4%) 8.6 (±2.3%) 4.3 (±1.1%) 0.6 (±5.1%)
ad 2.0 (±0.8%) 1.0 (±0.4%) 0.9 (±20.2%) 0.5 (±10.1%) 1.6 (±22.8%)
bd b b b b b
cd 3.0 (±1.3%) 1.5 (±0.6%) 8.3 (±4.0%) 4.1 (±2.0%) 0.5 (±9.2%)
dd c c c c c
ed 0.4 (±0.9%) 0.2 (±0.5%) 0.2 (± 826.6%) 0.1 (±413.3%) 1.5 (±829.5%)
fd 0.4 (±0.6%) 0.2 (±0.3%) 1.9 (±7.5%) 0.9 (±3.8%) 0.6 (±9.7%)
gd 2.2 (±0.7%) 1.1 (±0.3%) 4.0 (±4.3%) 2.0 (±2.1%) 0.7 (±6.7%)
hd 2.4 (±0.6%) 1.2 (±0.3%) 1.1 (±12.5%) 0.6 (±6.2%) 1.6 (±14.4%)
id c c c c c
jd 0.6 (±1.3%) 0.3 (±0.6%) 0.3 (±92.5%) 0.1 (±46.5%) 1.5 (± 96.5%)

a = Not applicable due to compounds being purchased/ previously known compounds. b = Multiple association
events prevent data fitting. c = Loss of compound observed in 1H quantitative NMR studies. d = Values to be
treated with caution due to multiple component solution.

Table 5. Overview of hydrodynamic diameters (nm) for compounds 1–11 and co-formulations a–j in
DMSO-d6 at 298 K.

Co-Formulation Compound Anion Cation Co-Formulant Anion Cation

n/a 1 [16] 1.15 1.08 n/a n/a n/a
n/a 2 [21] 1.43 1.32 n/a n/a n/a
n/a 3 1.46 2.38 n/a n/a n/a
n/a 4 [18] 1.61 1.51 n/a n/a n/a
n/a 5 a a n/a n/a n/a
n/a 6 a a n/a n/a n/a
n/a 7 a a n/a n/a n/a
n/a 8 a a n/a n/a n/a
n/a 9 a a n/a n/a n/a
n/a 10 1.02 1.04 n/a n/a n/a
n/a 11 b b n/a n/a n/a
a 1 1.42 1.27 5 1.54
b 4 b b 5 b b
c 1 1.52 1.36 6 1.52
d 4 c c 6 c c
e 2 1.59 1.43 7 1.15 n/a
f 3 1.62 1.39 7 1.12 n/a
g 2 1.78 1.49 8 1.03 n/a
h 3 1.84 1.46 8 1.05 n/a
i 2 c c 9 c c
j 3 1.58 1.38 9 1.03 n/a

Cells have been merged where compound/co-formulant is neither anionic nor cationic. a = n/a (not applicable) due
to compounds being purchased/known compounds. b = Could not be determined due to peak overlap. c = Loss of
compound observed in 1H quantitative NMR studies.
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Proton NMR dilution study data obtained for co-formulations e–j, show no observable change in
chemical shift for any resonances attributed to the co-formulants (7–9). Therefore, there is no evidence
that these co-formulants are involved in the self-association events of any SSA present under these
experimental conditions. This conclusion is corroborated by the results of 1H NMR DOSY studies,
which also show no evidence of co-formulant: SSA complexation. In addition, as with the SSA alone,
these 1H NMR dilution study data obtained for the SSA anionic component of co-formulations e–j
were found to fit the (dimerization)EK binding isotherm in preference to the CoEK binding isotherm,
further supporting the presence of SSA anionic dimers. The derived association constants (Kdim) for
co-formulations e–g and j are lower than those obtained for the corresponding SSA, providing evidence
that the addition of a secondary species into the matrix has weakened the strength of the self-associated
complex. However, with co-formulation h, the presence of salicylic acid (8) causes an increase in
the strength of the self-associated complex formed from Kdim = 0.6 M−1 (SSA 3) to Kdim = 1.2 M−1

(co-formulation h).
Unlike co-formulations e-j, co-formulations a and c show the anionic component of SSA and

the co- formulant to exhibit identical diffusion constant coefficients (Table 5 and ESI Table S4 in
supplementary materials). These data further support those observations made from the analysis of
quantitative 1H NMR studies, which showed evidence of SSA counter cation exchange. In comparison
to TBA, both malachite green (5) and methylene blue (6) are strongly coordinating counter cations.
These 1H NMR DOSY studies show 5 and 6 to diffuse through the solution at the same rate as the SSA
anion, therefore providing evidence of anion:cation coordination. It is because of this observation that
those association constants produced through the fitting for 1H NMR to the (dimerization)EK and
CoEK models should be treated with caution. The derived dimerization constants for the SSA anionic
component of co-formulation a (Kdim = 1.0 M−1) and c (Kdim = 1.5 M−1) are lower than that of the SSA
alone (Kdim = 2.7 M−1), suggesting that the presence of the co-formulant has weakened the strength of
the SSA anion self-associated complex.

Those solutions which exhibit an apparent ‘loss’ of solute from the solution during quantitative
1H NMR studies are not further characterised by solution-state NMR, as those molecules used to
construct the larger self-associated aggregate species adopt solid-like properties (Figure 3). Instead,
a variety of complementary experimental methods including tensiometry, zeta potential and DLS
measurements are utilised to characterise the SSA aggregates. An overview of these results are
summarised in Table 6.

Surface tension data derived from tensiometry measurements were used to calculate critical
micelle concentration (CMC) at 298 K. The CMC value for each SSA or co-formulation was determined
as the point at which the surface tension of the solution was no longer found to decrease with increasing
compound concentration [34]. However, at compound concentrations below CMC stable aggregates
can still exist in solution [35], which allows observation of these larger self-associated aggregates
at concentrations lower than CMC. The CMC values calculated for a H2O 5.0% EtOH solution are
listed in Table 6. Comparing these values, we observe a >70-fold increase in CMC between SSAs 4
(CMC = 0.5 mM) and 3 (CMC = 35.3 mM). We hypothesise that this variation in CMC value is due
to a combination of preferential π-π stacking interactions, lipophobicity of the phenyl ring systems
and intermolecular hydrogen bond strength, as supported by our previous observations [20]. Due to
compound co-formulation solubility, CMC values could only be calculated for those co-formulations
containing SSA 3, where a decrease in the CMC value was observed for all co-formulations when
compared to the SSA alone. Co-formulations f and h containing coumarin (7) and salicylic acid (8)
respectively, were found to be the most effective agents, lowering the CMC from 35.3 mM (3 alone)
to ≈20.0 mM. However, the addition of aspirin (9) in co-formulation j was only found to lower the
CMC to 24.2 mM. We believe that this may be due to the type of self-associated species produced
in this instance as the presence of aspirin (9) within co-formulation j is found to substitute ≈50%
less of the SSA anionic component within the larger self-associated structures formed compared to
co-formulations f and h (Table 3).
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Table 6. Overview of average intensity particle size distribution peak maxima (nm), zeta potential
(mV), CMC (mM) and surface tension at CMC (mN/m), measurements obtained for a H2O/ 5.0% EtOH
solution of an SSA or co-formulation (5.56 mM) at 298 K.

Compound/
Co-Formulation Peak Maxima Zeta Potential CMC Surface Tension at CMC

1 [16] 164 −76 10.4 37.5
2 [21] 342 −30 e e

3 159 −65 35.3 32.2
4 [18] 396 −101 0.5 46.5

5 a a a a
6 a a a a
7 a a a a
8 a a a a
9 a a a a
10 b −14 e e
11 c −7 e e
a c c e e
b c c e e
c c c e e
d c c e e
e 1317 −52 e e
f 768 −43 19.9 38
g 2391 −52 e e
h 427 −36 19.8 38.1
i c c e e
j 466d −21 24.2 67.3

a = n/a (not applicable) purchased/known compounds. b = Poor correlation function prevented fitting. c = Could
not be calculated due to compound solubility. d = Sample suspected to be unstable during measurement, treat with
caution. e = CMC value was determined to be greater than saturation point of the solution.

Zeta potential measurements (Table 6) obtained for SSAs 1–4 (5.56 mM) in a H2O/ 5.0% EtOH
solution confirmed the presence of stable aggregates (−30 mV ≥ zeta potential ≥ +30 mV). Interestingly,
the aggregates produced by SSAs 10 (−14 mV) and 11 (−7 mV) are shown to be less stable than those
of SSA 1 (−76 mV). Here the substitution of the TBA cation for the cationic dye molecules has caused
a reduction in the stability of those self-associated structures produced by SSA 1. A comparative
decrease in aggregate stability was also observed when SSA 3 was co-formulated with coumarin
(co-formulation f), salicylic acid (co-formulation h) and aspirin (co-formulation j) with zeta potential
values of −65 mV, −43 mV, −36 mV and −21 mV respectively. When comparing the CMC and zeta
potential values for co-formulations f, h and j, a decrease in CMC was found to correlate with a
decrease in zeta potential value. Interestingly, when SSA 2 is co-formulated with a secondary species,
the stability of the aggregates produced is greater than that of SSA 2 alone. The decrease in zeta
potential value is irrespective of co-formulant, as a decrease from −30 mV to ≈−52 mV is observed
upon the addition of both coumarin (co-formulation e) and salicylic acid (co-formulation g). We believe
that this reversal of comparative SSA/co-formulation stability observed with SSAs 2 and 3 is due to
the propensity of 2 to protonate, forming zwitterionic species under these environmental conditions.
Therefore, the formation of SSA zwitterions appear to stabilise the larger self-associated species formed.

To determine the size of these self-associated aggregate species in solution, DLS studies were
performed. The peak maxima obtained from average intensity size distributions are presented in
Table 6. The size of aggregate obtained from these studies should be treated with caution as they
assume the presence of spherical aggregated species [36]. SSAs 1–4 show a single distribution of these
large aggregated structures, exhibiting the following trend: 4 (396 nm) > 2 (342 nm) > 1 (164 nm) > 3
(159 nm). The co-formulation of SSAs 2 and 3 with co-formulant agents 7–9 resulted in the increase of
the hydrodynamic diameter of those self-associated aggregates formed. The presence of coumarin
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(7) and salicylic acid (8) with SSA 2 resulted in a significant increase in hydrodynamic diameter from
342 nm (SSA 2) to 1317 nm and 2391 nm for co-formulations e and g respectively.

3. Materials and Methods

3.1. Synthesis

The synthesis of 1 [16], 2 [20], and 4 [18] have been previously published. SSA 3 was prepared
through the reaction of diethylphenyldiamine and triphosgene in chloroform. This was followed by
the addition of TBA aminomethanesulfonate. The pure product was obtained as a brown oil in a yield
of 55%. Compounds 10 and 11 were both synthesised through the reaction of aminomethanesulfonic
acid and trifluoromethylphenyl isocyanate in pyridine, to produce a pyridinium SSA intermediate [20].
The oxalate salt of malachite green (10) or the chloride salt of methylene blue (11) were added to
a solution of this intermediate in methanol as appropriate. Following further purification SSA 10
was obtained as a blue/brown solid with a yield of 72% and 11 as a blue solid with a yield of 65%.
Co-formulations a–j were prepared by dissolving the appropriate SSA (1–4) in methanol, followed by
the addition of the secondary competitive species (one equivalent).

3.2. Single Crystal X-ray Diffraction Studies

A suitable crystal was selected and mounted on a Rigaku Oxford Diffraction Supernova
diffractometer. Data were collected using Cu Kα radiation at 100 K. Structures were solved with the
ShelXT [37] or ShelXS structure solution programs via Direct Methods and refined with ShelXL [37]
on Least Squares minimisation. Olex2 [38] was used as an interface to all ShelX programs. CCDC
deposition numbers for those structures shown in Figure 4, Figure 5, Figure 6 = 1997431−1997433.

4. Conclusions

We have explored the effects of competitive guest molecule addition on the self-associated
structures produced by supramolecular self-associating amphiphiles (SSAs), highlighting the future
potential of these systems as drug/molecule delivery vehicles. The self-associative properties of
SSAs 1–4 are characterised in the gas phase, solution state and solid state, both alone and when
co-formulated with various competitive molecular species to produce SSA co-formulations a–j (Table 1).
Due to the complex nature of SSA self-association, and the additional complexities associated with
the characterisation of these systems in the presence of additional guest species, we show how
a combination of complementary experimental techniques may be used to form an understanding of
the molecular interactions involved within these systems. This process has been summarised within
the characterisation flow chart, shown in Figure 3.

Single crystal X-ray diffraction studies have shown the anionic component of SSA 3 to self-associate
through urea-anion hydrogen bond formation to produce dimeric species (Figure 4). However,
in the presence of salicylic acid, this same SSA anion is found to protonate, forming a zwitterion
(Figure 5). Additionally, replacing the weakly coordinating TBA counter cation with a more strongly
coordinating cation (6) results in the SSA anion forming a hydrogen-bonded tape rather than an anionic
dimer. The presence of SSA anion dimerization was also confirmed in the gas phase for all SSAs and
co-formulations studied.

Moving into the solution state, 1H NMR dilution and DOSY studies indicate the presence of
predominantly lower ordered dimeric species in a DMSO-d6/0.5% H2O solution. This data provided
little evidence that the co-formulants present were involved directly in SSA dimerization processes.
However, the presence of the co-formulant agents were found to decrease the complexation strength of
the SSA anionic dimers formed. Moving from competitive organic into aqueous (D2O/5.0% EtOH)
solutions, quantitative 1H NMR studies confirmed the presence of larger self-associated aggregate
species with all SSAs and co-formulations with the exception of SSA 2. These experimental data show
a high proportion of the co-formulant present incorporated in the larger self-associated structures
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produced by SSAs 1–4. In addition, these data suggest that where a co-formulant is present the SSA
aggregation process may be driven and the resultant aggregate further stabilised. Despite SSA 2 and
3 both containing protonatable sites appended from the phenyl ring of the SSA anion, zwitterion
formation was only observed with co-formulations containing SSA 2. We believe this is due to the
balance of hydrophobic/hydrophilic moieties within the structure of SSAs 2 and 3.

Finally, we have been able to show that when SSAs are co-formulated, we observe a general
decrease in CMC value, an increase in extended self-associated aggregate size, and a retention of
aggregate stability. Through these studies, we hope that we have been able to provide an experimental
framework to support other researchers investigating complex, multi-component self-association
events. Additionally, the fundamental results presented here are currently being used to guide the
development of SSA molecular delivery systems.

Supplementary Materials: The following are available online: details of all experimental procedures, materials
and supporting experimental data for quantitative NMR, DOSY NMR, NMR dilution studies, single crystal X-ray
studies, high resolution mass spectrometry, CMC determination, DLS and zeta potential studies.
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