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II List of Figures 

Figure 1-1. The cell cycle and division. Diagram to show cell cycle and cell division, 

including all stages from DNA replication in interphase through to the production of two 

genetically identical daughter cells and cytokinesis. DNA replication (interphase) is 

followed by condensation of chromosomes and formation of mitotic spindles in 

prophase. Capture and organisation of the chromosomes is initiated in prometaphase. 

Chromosomes align at the metaphase plate (center) during metaphase. Sister 

chromatids are separated during anaphase and pulled to opposite ends of the cell in 

preparation for telophase whereby structures are reformed in the separating cells. 

Cytokinesis is the division of cytoplasm between the two cells. (Image source: 

biocyclopedia.com) 

Figure 1-2. The human karyotype. Giemsa stained metaphase chromosomes of human 

(Homo sapiens) (2n=46 XX) (Image source: Thirumulu, 2011) 

Figure 1-3. FISH technology. Schematic to show FISH approach. DNA probe generated 

from isolation of required DNA region within BAC and fluorescently labelled using nick 

translation. Labelled probe and target DNA are denatured to allow hybridisation of 

labelled DNA to target DNA. The probe is then visualised through fluorescent microscope 

on metaphase chromosomes. (Adapted from Medcaretips.com) 

Figure 1-4. Cross Species Chromosome Painting. Sequential multicolour hybridization 

using 13 river buffalo DNA probes on human metaphase chromosomes. a) river buffalo 

(Bubalus bubalis, 2n = 50) mitosis used as control; b) cattle (Bos taurus, 2n = 60); c) goat 

(Capra hircus, 2n = 60) and d) sheep (Ovis aries, 2n = 54) mitosis in Zoo-FISH experiments. 

Source (Paucilullo et al., 2014) 

 

Figure 1-5. Workflow diagram for aCGH. Schematic diagram to show aCGH technique. 

Step 1- Fluorescently label the patient DNA. Step 2- Fluorescently label reference 

(control) DNA. Step 3- Mix samples and apply to the microarray. Step 4- DNA samples 

hybridise to the immobilised single stranded DNA probes. Step 5- Computational analysis 

to measure the signal intensity. Step 6- Data analysis. Image: Nature (2015) 

 

Figure 1-6. Schematic to illustrate Sanger sequencing. DNA is first denatured into single 

strands. Reaction requires a radiolabelled (or fluorescently labelled) DNA primer, DNA 

polymerase, dNTPs and ddNTPs. Four reactions are set up, one for each nucleotide, G, 

A, T and C. In each reaction all four dNTPs are included, but only one ddNTP (ddATP, 

ddCTP, ddGTP or ddTTP) is added. Fragments are then separated by size through gel 

electrophoresis and visualised. 



Figure 1-7. Schematic workflow of two shotgun sequencing approaches. Schematic 

represents two approaches used in whole human genome sequencing. Comparison of 

BAC-by-BAC (hierarchical shotgun approach) and whole genome shotgun assembly 

approach. Source: thermofisher.com 

 

Figure 1-8. Workflow diagram of RACA. A) RACA requires a reference genome, target 

de novo genome in scaffold form and outgroup genomes. B) Syntenic fragments (SF) are 

produced when the target genome is aligned against the reference genome, orientation 

of the target fragment is shown via + and -.C) A score is given to the syntenic fragment 

which represents the adjacency. D) A SF graph is built. E) Constructed chains of SFs that 

are extracted by the RACA algorithm. Source: (Kim et al., 2013) 

 

Figure 1-9. Schematic to show chromosomal abnormalities, Schematic illustrates 

abnormalities including duplication and insertion and deletion. A) No abnormality 

present. B) Segmental duplication in chromosome A. C and D represent normal 

chromosomes. Segmental exchange from chromosome C to sub-centromeric region of 

chromosome D, creating products E and F.  

 

Figure 1-10. Schematic to show a chromosomal inversion. Whereby the chromosome 

affected breaks at two points, this region, which is bounded by the breakpoints and is 

then reinserted in the reversed orientation. 

 

Figure 1-11. Chromosome comparison of human, chimpanzee, gorilla and orang-utan. 

(Left to right) Schematic representation of late-prophase chromosomes (1000-band 

stage) of man, chimpanzee, gorilla, and orang-utan, arranged from left to right, 

respectively, to visualize homology between the chromosomes of the great apes and the 

human complement. Source (Yunis and Prakash, 1982).   

 

Figure 1-12. Schematic to show Robertsonian and reciprocal translocations. A) 

Robertsonian translocation – the centromeric fusion of two acrocentric chromosomes 

to create a fused product as observed in cattle (rob (1;29)). B) Reciprocal translocation, 

genetic exchange between two chromosomes to create a translocated pair. Exchange 

between chromosomes 13 and 14 is the most common in humans. 

 

 

  

 



Figure 1-13. Representation of chromosomal segregation possibilities. Diagram 

illustrates the segregation possibilities in an individual carrying a heterozygous reciprocal 

translocation. Quadrivalent configuration results from non-homologous pairings which 

can lead to alternate segregation (viable gametes) or adjacent I, adjacent II, 3:1 and 4:0 

(3:1 and 4:0 not shown) with the last four combinations producing non-viable 

unbalanced gametes. Source: semanticscholar.org 

 

Figure 1-14. A Proposed relationship tree for placental mammals. Karyotype evolution 

showing the landmark rearrangements in placental mammals.  Source: karger.com 

 

Figure 1-15. Representation of chromosomal segregation possibilities in an individual 

carrying a heterozygous reciprocal translocation. Quadrivalent configuration results 

from non-homologous pairings which can lead to alternate segregation (viable gametes) 

or adjacent I, adjacent II, 3:1 and 4:0 (3:1 and 4:0 not shown) with the last four 

combinations producing non-viable unbalanced gametes. (Image Source: 

semanticscholar.org) 

 

Figure 1-16. The differences in inheritance and sex specification between XY, ZW and 

UV sex-chromosome systems. Females are red and males blue. In mammals (XY 

systems), the Y chromosome is present in males only, inheriting the X from the mother. 

In birds (ZW systems), the W chromosome is female-specific whereby the female will 

always inherit the Z from the farther. In UV systems, sex is expressed in the haploid 

phase, with U chromosomes confined to females and V chromosomes limited to males. 

(Image source: Bachtrog et al., 2011 

 

Figure 1-17. Schematic representation showing vascular anastomose between 

heterozygotic twins. The consequence of this placental vascular exchange between 

heterozygotic twins is blood chimerism (2n=60 XX/XY) and the passage of male gonad 

determinants (such as androgens) to the developing female foetus (Image source: 

Esteves, Båge and Carreira, 2012 

 

Figure 2-1. Schematic to show Octochrome device slide. Device allows for unique 

bespoke probe design and the ability to run eight BAC probe investigations on one slide.  

 

Figure 2-2 Schematic to show cattle multiprobe device. Schematic to show the probe 

design of the bovine multiprobe device with each square containing a TexasRed and FITC 

labelled probe for the proximal (p) and distal (d) of each chromosome respectively.  

 



Figure 3-1. Comparison of chromosomes in primates using chromosome paints. Colour-

banded chromosomes of human, chimpanzee, gorilla and orang-utan, arranged 

according to the numbering system of the human ideogram. Note the 5;17 translocation 

in the gorilla and the numerous inversions involving chromosomes 5, 9 and 17 in 

chimpanzee, and 8, 9, 10, 12, 14 and 18 in gorilla, and 3, 7, 9, 11, 12 and 20 in orang-

utan. Chromosomes in each cases colour-banded using multicolour gibbon probe set 

(Harlequin FISH, Cambio). (Image source: Ferguson-Smith et al. (2000). 

 

Figure 3-2. FISH image to show cattle chromosomes 2 and 25 on Defassa waterbuck. 

Labelled BAC for cattle chr 25 CH240-325L8 FITC (d) and cattle chr 2 CH240-227E16 

TxRed (q) on metaphase chromosomes of the defassa waterbuck, illustrating fusing on 

cattle chromosomes 2 and 25. Arrows illustrating indicated signals observed. 

 

Figure 3-3. FISH image result of cattle chromosome 5 BACs on Red lechwe. Labelled 

BACs for cattle chromosome 5. CH240-326L8 (d) in FITC and CH240-248M21 (q) in TxRed 

hybridised to metaphase chromosomes of Red lechwe. Arrows illustrating indicated 

signals observed. 

 

Figure 3-4. FISH image of BACs selected based on conservation hybridised to Defassa 

waterbuck. Labelled selected cattle BACs from cattle chromosome 19 on metaphase 

chromosomes of Defassa waterbuck. BACs – CH240-43K17 (FITC) and CH240-233H17 

(TxRed). BACs appear to localise to waterbuck chromosome 1. Arrows illustrating 

indicated signals observed. 

Figure 3-5. Correlation graph showing divergence vs hybridisation success rate of 

conservation-score selected cattle BACs on extended study. Data extracted from table 

3-7. Graph shows a negative correlation between success rate and hybridisation. 

Pearson correlation coefficient R= – .692 (significant at p<0.5). Demonstrating a 

decrease in success rate with an increase in divergence time. 

Figure 3-6. Screenshot from NCBI clone finder. Screenshot from NCBI clone finder 

demonstrating the misplacement of autosomal CH29-542H8 on the X chromosome. 

Figure 3-7. Schematic to show BAC placement of X chromosome of mouse and rat using 

FLpter results. Schematic of FLpter measurement results of selected BACs on metaphase 

chromosomes of mouse and rat, demonstrating numerous rearrangements between 

both species. BAC clone number IDs shown in table 3-9. 



Figure 3-8. Correlation graph showing divergence vs hybridisation success rate of 

human BACs on distantly related species. Data extracted from table 3-14. Graph shows 

a negative correlation between success rate and hybridisation. Pearson correlation 

coefficient R= – 0.910. Demonstrating a decrease in success rate with an increase in 

divergence time. 

 

Figure 4-1. Traditional karyotype of Red river hog. DAPI stained metaphase 

chromosomes of intersex red river hog. Karyotype comprises of 2n=34 (XX). 

 

Figure 4-2. FISH image of X chromosome and SRY gene BACs on Red river hog. Labelled 

BAC probes for X chromosome CH242-19N1 (FITC) and SRY gene WTSI-1061-9B10 

(TxRed), illustrating 2n=34 (XX) karyotype as SRY labelled probe was not detected 

through dual-colour FISH. Arrows illustrating indicated signals observed. 

 

Figure 4-3. Traditional karyotype of horse referred for cytogenetic analysis. DAPI 

stained metaphase chromosomes of intersex horse. (2n=64 (XY)).  

 

Figure 4-4. Traditional karyotype of Sumatran tiger referred for cytogenetic analysis. 

DAPI stained metaphase chromosomes of a Sumatran Tiger (2n=38 XX). 

 

Figure 4-5. Primate phylogenetic tree. Phylogenetic tree to show primate evolution, 

highlighted are the chimpanzee-human speciation event and the monkey-great ape 

speciation event. (Image source: Genetics | The Smithsonian Institution’s Human Origins 

Program. 

 

Figure 4-6. Traditional karyotype of foetus gorilla. DAPI stained metaphase 

chromosomes of foetus gorilla (2n=48 (XX)) illustrating extended region on gorilla 

chromosome 15. Chromosome 22 also has a large satellite. 

 

Figure 4-7. FISH image to show human chromosome 14 chromosome paint on gorilla. 

Metaphase chromosomes of gorilla, counter stained with DAPI and labelled for 

chromosome paint form human chromosome 14 on metaphase chromosomes of. A) the 

male gorilla (TxRed) and B) the foetus (TxRed pseudo-coloured to blue). Images captures 

by fluorescence microscope at x1000 magnification. Arrows illustrating indicated signals 

observed.  

 

 



Figure 4-8. aCGH results. aCGH analysis of the fetus compared to the female gorilla. 

Screenshot showing duplication in region encoding LINC00906 on chromosome 19 

(p12.3) (left) and a deletion in the region encoding the CNTN3 gene on chromosome 3 

(q11q12). 

Figure 5-1. Schematic to show domestication of cattle. Diagram illustrating the 

domestication of cattle. (Image adapted from (The Domestication of Species and the 

Effect on Human Life | Real Archaeology) 

 

Figure 5-2. Traditional karyotype of cattle. DAPI stained metaphase chromosomes of 

Bos taurus (2n=60 XX) indicating a virtually intractable karyotype  

 

Figure 5-3. Schematic illustrating cattle multiprobe device. Schematic to show 

comparative system using BACs selected from the most proximal (p) and most distal 

region (d) of each bovine chromosome. The X is labelled p and q for the most distal 

(subtelomeric) regions of the p and q arm. 

 

Figure 5-4. Traditional karyotype of bull carrying a heterozygous 1;29 Robertsonian 

translocation. Traditional DAPI stained karyotype of a 2n=59 bull with a rob (1;29). 

Robertsonian translocation and missing chromosome 29 are circled in red. 

 

Figure 5-5. Traditional karyotype of bull carrying a homozygous 1;29 Robertsonian 

translocation. DAPI stained metaphase chromosomes of a homozygous 1;29 

Robertsonian translocation in a British white (2n=58 (XX)). Homozygous rb (1;29) circled 

in red 

 

Figure 5-6. FISH image of BACS from chromosomes 1 and 29 on referred animals. 

Metaphase chromosomes of assumed 1;29 translocation carrier. From left image A) 

Labelled BAC probes for BTA chromosome 1. CH240-321O2 (FITC) CH240-96M6 (Txred) 

white arrow illustrates translocation. Image B) Labelled BAC probes for chromosome 29. 

CH240-367D17 (FITC) and CH240-257F23 (Txred) white arrow indicating translocation. 

 

Figure 5-7. Traditional karyotype of animal referred for cytogenetic analysis. DAPI 

stained metaphase chromosomes of the phenotypical cow referred for karyotype 

analysis. Chromosomes derived from lymphocyte culture. Karyotype analysis detected 

the presence of Y chromosome (2n=60 (XY)). 

 

 



Figure 5-8. FISH image demonstrating results obtained from hybridisation of X 

chromosome probes on intersex animal. Labelled bovine X chromosome BAC probes 

hybridised to reproductive tract metaphase chromosomes of query sample. FISH result 

illustrates the presence of a Y chromosome with BAC labelled with FITC hybridising to 

the psudeoautosomal region of the Y chromosome. 

 

Figure 5-9. SRY isolation through PCR. DNA products from PCR visualised on a 1.4% 

agarose gel. PCR set up using PrimerBlast primers under conditions described in section. 

Lanes 1) empty. 2) negative control. 3) male control. 4) female control. 5) DNA from 

mammary gland of referred animal. 6) DNA from reproductive tract of referred animal. 

Ladder 1) 1Kb. Ladder 2) 100 bp. Amplicon is 874bp in length confirming the presence of 

SRY in the query sample, negative control is free from contamination. 

 

Figure 5-10. Traditional karyotype of a bull carrying 12;23 reciprocal translocation. BTA 

8348. Traditional DAPI stained karyotype of bull identified as 2n=60 rcp (12;23) 

 

Figure 6-1. Traditional karyotype of a boar carrying 3;9 reciprocal translocation. 

Traditional DAPI stained metaphase chromosomes of a boar identified to carry (2=38 

(rcp t(3;9)). 

 

Figure 6-2. Traditional karyotype of a boar carrying 2;14 reciprocal translocation. DAPI 

stained metaphase chromosomes of a boar identified to carry (2=38 (rcp t(2;14)). 

 

Figure 6-3. Traditional karyotype of a boar carrying a 9;12 reciprocal translocation. 

DAPI stained metaphase chromosomes of a boar identified to carry a cryptic (2n=38) rcp 

t(9;12)).  

 

Figure 6-4. Traditional karyotype of a boar carrying a 4;5 reciprocal translocation. DAPI 

stained metaphase chromosomes of a boar identified to carry a cryptic (2n=38) (rcp 

t(4;5)). 

 

Figure 6-5. FISH image of labelled probes on mosaic boar. Labelled BAC probes for X 

chromosome (CH242-19N1 (FITC)) and SRY (WTI-1061-9B10 (TxRed)) Left image - 

lymphocyte metaphase chromosomes showing the presence of X (FITC signal) and Y 

chromosome (TxRed signal). Right image – dual colour FISH using X chromosome FITC 

labelled probe and SRY labelled TxRed probe on fixed sperm from mosaic boar 

 

 



 

 
 

 

 

 

 

 

 

 

 

 



Rebecca Jennings 

21 

 

III List of Tables 

Table 2-1. Table to show individual company blood sample contributions between 2017 

and August 2019. Companies anonymised as per request.   

Table 2-2. Table to show PCR primer sequence, amplicon size (Bp) and annealing 

temperature 

Table 2-3. Table PWO master mix PCR conditions resulting in the bovine SRY product 

874bp product 

Table 2-4. KOD Hot Start PCR conditions resulting in the bovine SRY 874bp PCR product. 

 

Table 3-1. Karyotypic analysis of species used in specific aim 1a. Divergent times 

obtained using timetree.org.  

 

Table 3-2. Table to show cattle chromosome 19 BACs selected based on conservation 

and previous in silico analysis that mapped them to human chromosome 17 and mouse 

chromosome 11. Cytogenetic analysis mapped the BACs to mink chromosome 8. BACs 

taken from (Larkin et al,.2006). Table contains location on chromosome, mean all 

conservation score, repeat % and GC content. 

 

Table 3-3. Overall success rate of subtelomeric cattle BACs on metaphase chromosomes 

of American bison, Defassa waterbuck, Red lechwe, pig, Javan chevrotain, and sheep. 

Divergence time and chromosome number included. 

 

Table 3-4. Table to show successful hybridisations using bovine subtelomeric cattle BACS 

on species within the artiodactyl order. Table include species, chromosome location of 

BAC, repeat % content of BAC, conservation mean all score and GC content of BAC. 

Species include BBA-American Bison, OAR-domestic sheep, KEL-waterbuck, KLE-red 

lechwe, SSC-domestic pig and TNI-Javan chevrotain. 

Table 3-5. Results from BACs selected based on sequence analysis on metaphase 

chromosomes of Artiodactyl species used throughout this chapter. 

Table 3-6. Species included in the extended cross-species study. Divergent times – 

Kumar et al (2017). Diploid numbers for numerous papers used throughout this study. 



Rebecca Jennings 

22 

 

Table 3-7. Results from extended mammalian study using cattle BACs selected by RVC, 

using the sequenced-based approach described in section 3.3.1. 

Table 3-8. Preliminary cattle BACs selected from CHORI 240 library through sequence-

based HI-C interactional analysis with mean all score and BAC clone ID 

Table 3-9. X chromosome mouse BACs selected using sequence-based approach. Start 

and end position included. 

Table 3-10. The mean FLpter results of BAC clone location on X chromosome of mouse 

and rat. Two-tailed t test illustrating the results are statistically different. All BACs were 

assigned a number for image ease in figure 3-6. 

Table 3-11. Human BACs selected for cross-species analysis. Human genome used as a 

reference to create a universal mammalian BAC set. 

Table 3-12. Karyotypic analysis of species used in this work. Divergent times obtained 

using timetree.org (Kumar et al., 2017). 

Table 3-13. Results obtained from cross-species hybridisations using BACs selected 

based on conservation scores obtained by RVC. 

  

Table 3-14. Hybridisation success rates using 15 sequence-based selected BACs on 10 

mammalian species. 

Table 3-15. Human BACs select using sequenced-based approached including BAC clone 

ID, chromosomal location in human, mean all score, GC content and %Inrepeats.  

Table 3-16. Karyotypic analysis including diploid chromosome number of species used in 

this work. Divergent times obtained using timetree.org (Kumar et al., 2017). 

Table 3-17. Full BAC list test on metaphase chromosomes of gorilla, De Brazza’s monkey, 

howler monkey and Sulawesi macaque  

Table 3-18. Hybridization success rates when full human BAC panel applied to gorilla, 

howler monkey, De Brazza’s monkey and Sulawesi macaque.   

Table 3-19. Order specific hybridisation success rates using Order-specific selected BACs 

and Order-specific non-selected BACs 



Rebecca Jennings 

23 

 

Table 5-1. Table to show summary of 40 cattle chromosome analyses performed in this 

study. 

Table 6-1. Summary of total porcine samples screened and the method of analysis 

between 2016-2019. 

Table 6-2. Summary of porcine screening results from 2016 – 2019 using multiprobe FISH 

device and karyotyping 

Table 6-3. Reanalysis of results obtained from screening of boars using the multiprobe 

FISH device. Prediction of the likelihood that a diagnosis would be achieved through 

karyotype, result obtained from reanalysis of FISH images. 

Table 6-4. Reciprocal translocations identified through FISH. Prediction of the likelihood 

that a diagnosis would be achieved through karyotype, result obtained from reanalysis 

of FISH images.  

Table 6-5. Table to show chi squared calculation results and p value for results obtained 

from FISH analysis using labelled probes from the X chromosome and SRY gene located 

on the Y chromosome on fixed sperm of XX/XY chimeric boar. Analysis performed using 

Excel 10. 

Table 6-6. Results from lymphocyte metaphase chromosomes using labelled BAC probes 

for X chromosome (CH242-19N1 (FITC)) and SRY (WTI-1061-9B10 (TxRed)) located on 

the Y chromosome. 

  



Rebecca Jennings 

24 

 

IV Abbreviations 

aCGH   Array Comparative genomic hybridisation 

BAC   Bacterial Artificial Chromosomes 

BBA   Bison bison 

Bp   Base pair 

BTA   Bos Taurus 

Chr   Chromosome 

CGH   Comparative genomic hybridisation 

CNV   Copy number variation 

DAPI   4’, 6 - diamidino-2-phenylindole  

MGH2O  Molecular Grade Water 

DTT   Dithiothreitol  

FISH   Fluorescence in situ hybridisation 

FITC   Fluorescein 

KCL   Potassium Chloride 

KEL   Kobus ellipsiprymnus 

KLE   Kobus lechwe 

LB   Lysogeny broth 

LRS    Long read sequencing 

mya   Million years ago 

NGS   Next generation sequencing 

OAR   Ovis aries  

PBS   Phosphate Buffered Saline 

PCF   Predicted Chromosome Fragment 

PCR   Polymerase Chain Reaction 



Rebecca Jennings 

25 

 

RACA   Reference assisted  

RCP   Reciprocal translocation 

RVC   Royal Veterinary College 

SSC   Sus scorfa 

TJA   Tragulus javanicus 

TxRed   Texas Red 

  



Rebecca Jennings 

26 

 

V Abstract 

Chromosomal analysis enables a genome-wide overview of an organism, it can provide 

information when used to study cellular function, the taxonomic relationship between 

divergent species and disease phenotypes. Consequently, chromosomal analysis is used 

to identify chromosomal rearrangements in an individual, which can be associated with 

disease and/or reproductive complications, or within a population, which is associated 

with speciation and reproductive isolation. The techniques used to examine the 

chromosomes of an organism have improved considerably over the past four decades. 

Observations were traditionally achieved through the production of Giemsa stained 

chromosomes which permitted banding analysis, therefore enabling the detection of 

differences in chromosome morphology and number, to more specific, molecular 

cytogenetic approaches (fluorescence in situ hybridisation - FISH) which can be used to 

identify sub-microscopic differences. Today, genome sequencing facilitates genome-

wide analysis at a higher resolution than previously possible; sequence information can 

be used in a multitude of ways, including identification of specific mutations which result 

in disease, investigating homologous segments between divergent species and for 

ascertaining potential drug targets. However, without a physical genetic map it is now 

apparent that by themselves genome sequence assemblies fail to provide sufficient 

information regarding certain biological questions, in particular genome organisation 

throughout times of mammalian evolution. However, it is now apparent that map-based 

chromosome-level assemblies are required for deeper analysis of the genome.  

With this in mind, the purpose of this work was to extend upon, and develop efficient 

cytogenetic tools to screen for chromosomal rearrangements in mammalian species, in 

the context evolutionarily events and to examine chromosomal rearrangements that 

manifest as fertility problems in a range of agricultural and zoological animals.  

Using traditional karyotyping techniques, Ducos et al (2007) demonstrated that the 

translocation incidence rate was 0.47% in unproven boars. In this work, a large number 

of boars (>1000) were analysed using a FISH-based screening device, whereby 13 unique 
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chromosomal translocations were detected, resulting in an incidence rate of 1%. 

Therefore, the results in this work demonstrate that the incidence rate is under reported 

in the current literature.  

Before this work, karyotype analysis was the only technique used to identify 

chromosomal rearrangements in cattle. As a consequence of the success observed in 

pigs, a FISH-based device was developed to screen for chromosomal translocations in 

cattle. Using this technology, heterozygous and homozygous 1;29 translocations were 

identified, and an unreported 12;23 reciprocal translocation.  
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1 Introduction 

In eukaryotes, nuclear DNA is divided and packaged into thread-like structures known as 

chromosomes. The morphology and number of chromosomes present within the 

nucleus differs between different species. For example, the human genome contains 

approximately 6.4 x 109 nucleotides, which are distributed over 23 pairs of chromosomes 

(22 autosomal pairs and one pair of sex chromosomes. In preparation for mitosis nuclear 

DNA begins to condense forming rod-like structures that are functionally inactive 

(Nagano et al., 2017). Upon mitotic exit, chromosomal structures rapidly decondense so 

that they are accessible to transcriptional elements, thus become functionally active 

once more. The ability to condense the entire genome into these organised structures is 

an essential requisite for ensuring successful transmission of the replicated genome to 

daughter cells, as shown in figure 1-1 (Vagnarelli, 2013).   

 

Figure 1-1 Cell cycle and division. Diagram to show cell cycle and division, including all stages from DNA 

replication in interphase through to the production of two genetically identical daughter cells and 

cytokinesis. DNA replication (interphase) is followed by condensation of chromosomes and formation of 

mitotic spindles in prophase. Capture and organisation of the chromosomes is initiated in prometaphase. 

Chromosomes align at the metaphase plate (center) during metaphase. Sister chromatids are separated 

during anaphase and pulled to opposite ends of the cell in preparation for telophase whereby structures 

are reformed in the separating cells. Cytokinesis is the division of cytoplasm between the two cells. (Image 

source: biocyclopedia.com) 
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To visualise the complete chromosome complement of an individual species a karyotype 

is produced. A karyotype is the [characterisation of] number, size and morphology of the 

set of chromosomes of a species, as observed under the microscope and it is considered 

a low resolution view of the genome. Karyotyping is the process of pairing and ordering 

all the chromosomes of an organism. To achieve this, mitotic cells are arrested at either 

prometaphase or metaphase stage of the cycle cell, when chromosomes are in their 

most condensed conformation. Following this, the cells are treated with a hypotonic 

solution which causes the cells to swell and burst and a chemical fixative is then used to 

secure the metaphase structure (Gartler, 2006). A number of techniques and alternative 

staining methods permit visualisation of the characteristic banding patterns that can be 

used to visualise, and pair the metaphase chromosomes. Including Giemsa (G-banding) 

and DAPI [methods explained in] (see section 2.6). The human karyotype is shown in 

figure 1-2. 

 

 

Figure 1-2. The Human Karyotype Giemsa stained metaphase chromosomes of human (Homo sapiens) 

(2n=46 XX) (Image source: Thirumulu et al., 2011)  
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As a result of cytogenetic improvements, extensive investigations into the human 

karyotype, more specifically, when in a disease state, have been explored. Karyotypes 

can be used to analyse gross genetic change; this includes a change in chromosome 

number, known as aneuploidy, and any abnormality that involves over 2 Mb of DNA, 

including duplications, deletions and inversions all of which can be symptomatic of 

disease (Lu et al., 2007). In humans, most aneuploidies are lethal, with the exception of 

trisomy 21, or Down Syndrome, trisomy 13 (Patu syndrome) and trisomy 18 (Edwards 

syndrome), however the latter two chromosomal abnormalities will result in death 

shortly after birth. This chromosomal abnormality is prevalent in geriatric mothers; a 20-

year-old mother will have a 1 in 1500 risk of delivering a trisomy 21 baby, whereas this 

risk increases to >1 in 50 in a 45-year-old mother (NHS, 2017). Additionally, the 

karyotype can be used to study evolution in a group of organisms where observations 

include differences in chromosome number, position of centromeres and banding 

patterns. Chromosomes within a taxon (i.e. family, genus or even the same species) may 

vary and this variation can be seen as differences in chromosome number (aneuploidy 

and ploidy level), a difference in chromosome size (µm) and differences in chromosome 

morphology (centromere position) (Baltisberger and Hörandl, 2016). Additionally, 

chromosomal rearrangements can also play critical role in evolution, diversification and 

speciation, meaning that comparative karyotypic analysis can permit inferences to 

species divergence and evolution (Jang et al., 2013).  

 

1.1 Cytogenetic Technologies 

1.1.1 Classical Cytogenetic analysis 

Throughout the 1880s investigations into human chromosome number and structure 

began and prior to this studies had focused on chromosomes of plants and animals 

(Ferguson-Smith, 2008). Numerous studies throughout the late 19th and early 20th 

century sought to identify the correct chromosome complement of humans, in 1956 Tjio 

and Levan achieved this with the publication of ‘The Chromosome Number of Man’, thus 

signalling a new era in cytogenetics (Tjio and Levan, 1956). This breakthrough discovery 
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was in part due to advances in technologies used to perform cytogenetic analysis, 

namely: cell culture conditions and culture components and availability of the spindle 

disrupting agent colchicine which induces mitotic arrest and fixation. To visualise the 

characteristic chromosomal bands, the swollen metaphase cells are subjected to 

different staining techniques that bind and stain different elements of the chromosome, 

thus permitting visualisation of the characteristic chromosomal bands seen in a 

karyotype. Staining methods include, the most commonly used G-banding (trypsin 

treatment followed by Giemsa staining), Q-banding (fluorescence-based stain including 

Quinacrine and DAPI 4’,6-diamidino-2phenylindole (as seen in figure 1-2)), C-banding  in 

which chromosome preparations are exposed to alkaline and acidic conditions to reveal 

bands of constitutive heterochromatin, and R-banding in which chromosomes are 

incubated in a hot phosphate buffer then treated with Giemsa revealing the reverse of 

G-banding (Bates, 2011). Moreover, the improvements in culture conditions and 

chromosome harvest alongside staining advancements meant that it was possible to 

accurately describe the correct chromosome number of many mammalian species. In 

humans, this enabled the discovery of chromosomal aberrations that cause disease, 

including trisomy 21, (Down syndrome) which was the first numerical abnormality 

identified in three patients by Lejeune in 1959 (Ferguson-Smith, 2008). At the same time, 

in Britain, abnormalities involving the sex chromosomes were emerging, including 45 XO 

(Turner syndrome), 47 XXY (Klienfelter syndrome). These findings provided the first 

evidence that sex was determined by the testes-determining factor on the Y 

chromosome (Sinclair et al., 1990). Since then additional numerical abnormalities have 

been identified, including trisomy 18 (Edward syndrome) and trisomy 13 (Patau 

syndrome) (Kannan and Zilfalil, 2009).  

The human karyotype is the most extensively described of all mammalian species, 

however efforts to establish chromosome number and elucidate abnormalities in other 

species of interest occurred in parallel. Over the past 50 years’ chromosomal analysis of 

domestic animals has become an important factor in commercial breeding. For example, 

using the methods described in this section, Ingemar Gustavsson reported the presence 
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of a 1;29 centromeric fusion in a population of Swedish Red and White cattle in 1964 

(Gustavsson and Rockborn., 1964). Gustavsson identified the significance of this 

chromosomal abnormality five years later, reporting that carriers of this translocation 

displayed impaired fertility, namely, daughters of translocation positive sires returned 

to service more often than expected (Gustavsson, 1969). The 1;29 translocation is 

considered the most widespread translocation in cattle, it has been observed in all 

breeds, with an exception of Holstein-Friesian cattle (Switonski, 2014). The consequence 

of this chromosomal abnormality in addition with other aberrant karyotypes observed 

in cattle will be discussed further in section 1.5.   

1.2 Molecular cytogenetic analysis 

1.2.1  Fluorescent in situ hybridisation 

As previously mentioned, classical cytogenetic analysis became a powerful tool for the 

detection of chromosomal abnormalities, however, the resolution of the techniques 

remained limited to a count of 400-500 bands per haploid genome (Riegel, 2014). During 

the 1960s several applications were introduced in an effort to increase cytogenetic 

resolution. The first molecular approach to locate and isolate specific nucleic acids was 

called in situ hybridisation (ISH), which was based on the discovery that radioactively 

labelled ribosomal RNA hybridised to acrocentric chromosomes and subsequently 

visualised using autoradiography. In 1981 Langer et al improved ISH technique through 

the indirect labelling of a nonradioactive probe (such as biotin), facilitated through nick 

translation, which permitted visualisation of DNA or complementary RNA sequences 

when hybridised with fluorescently labelled avidin (Riegel, 2014). The production of 

fluorescent molecules ultimately resulted in direct binding to DNA bases, and the 

resulting fluorescent in situ hybridisation (FISH) increased the resolution of cytogenetic 

analysis and enabled the detection of chromosomal rearrangements at a sub-

microscopic level (Riegel, 2014). Therefore, considering its capabilities, FISH became an 

important component of molecular diagnostics at the start of the 21st century. For 

example, with the increase in discovery of disease-related genes, FISH could be used to 
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diagnose the presence of an affected individual, the tests included: BCR/ABL1, HER2 

amplification and ALK rearrangement (Hu et al., 2014). The technique involves 

hybridisation of a region-specific, fluorescently labelled DNA probe, derived from a 

bacterial artificial chromosome (BAC), to a cytological target: metaphase chromosomes 

(refer to figure 1-3), interphase nuclei, extended chromatin fibres or DNA microarrays.  

 

Figure 1-3. FISH Technology. DNA probe generated from isolation of required DNA region within BAC and 

fluorescently labelled using nick translation. Labelled probe and target DNA are denatured to allow 

hybridisation of labelled DNA to target DNA. The probe is then visualised through fluorescent microscope 

on metaphase chromosomes. (Adapted from Medcaretips.com) 

 

1.2.2 Chromosome painting 

Chromosome painting was a term first described by Pinkel et al (1988), and later 

developed independently by two groups at Yale University and Livermore National 

Libraries (Carter, 1994). Chromosome painting is an approach facilitated by the use of 

cloned DNA libraries derived from flow-sorted chromosomes. To overcome 

hybridisation issues concerning chromosome specificity, incurred by the presence of 

genome wide repetitive sequence motifs, suppression hybridisation is used. The method 

ultimately blocks labelled, repetitive DNA with an excess of unlabelled, whole genomic  
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Figure 1-4. Cross Species Chromosome Painting Sequential multicolour hybridization using 13 river 

buffalo DNA probes on human metaphase chromosomes. a) river buffalo (Bubalus bubalis, 2n = 50) mitosis 

used as control; b) cattle (Bos taurus, 2n = 60); c) goat (Capra hircus, 2n = 60) and d) sheep (Ovis aries, 

2n = 54) mitosis in Zoo-FISH experiments. (Pauciullo et al., 2014) 

 

DNA, such as COT-1 or species specific Hybloc (Ried et al., 1998). Chromosome painting 

probes are now available for a number of species, including human, mouse, gibbon and 

river buffalo (figure 1-4) (Pauciullo et al., 2014). Multicolour FISH, facilitated through 

chromosome paints, can be used to distinguish multiple chromosomes, or chromosomal 

targets in a single experiment, therefore this technique has been widely used in 

comparative cytogenetics (Ried et al., 1998). Moreover, comparative chromosome 

painting can be used to identify homologous segments in divergent species, and map 

chromosomal rearrangements that have occurred during evolution of the species. This 

technique has shown the most success in species within, but not between placental 

mammals, birds, marsupials and monotremes (Ferguson-Smith, 2015). However, 
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successful hybridisations were observed when chromosome paints derived from avian 

species were applied to reptiles, despite over 300 million years’ divergence (Ferguson-

Smith, 2015).  

1.2.2.1 Sub-telomeric FISH 

Over the past 20 years, cytogenetic investigations have reported a number of sub-

microscopic chromosomal rearrangements involving segments within the telomeric 

regions of chromosomes. Abnormalities include, but not limited to: α thalassaemia, cri 

du chat syndrome and Miller-Dieker syndrome (Hélias-Rodzewicz et al., 2002). Due to 

the high gene content observed within the telomeric region of chromosomes, 

rearrangements involving these regions may have serve phenotypic consequences. 

Additionally, it was also apparent from that work that cryptic translocations could be a 

common occurrence (Hélias-Rodzewicz et al., 2002). Given the nature of these cryptic 

abnormalities they are incredibly difficult to diagnose through standard karyotyping 

methods. Therefore, in the late 1990s a novel approach was developed to isolate BAC 

probes from the sub-telomeric region each human autosome, and sex chromosome. 

Moreover, the intention was to identify cryptic translocations, either balanced or 

unbalanced in humans, all of which could be missed using standard karyotyping and CGH 

techniques (Knight et al., 1997). This technique proved highly successful, so much so that 

recent work extended to domestic animals through the establishment of a sub-telomeric 

panel of BACs that identified novel cryptic translocations in breeding boars (O’Connor et 

al., 2017).  

 

1.2.2.2 BAC clones and comparative mapping 

Since their development BACs have become a powerful tool in functional and 

comparative genomics. BACs are large genomic constructs that are artificially and stably 

transformed into Escherichia coli and BACs span an average of 100 – 300 kb of genomic 

DNA, meaning that most mammalian genes can be encompassed by a single BAC. As 

mentioned above, BACs can be used to detect chromosomal rearrangements that would 
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otherwise be missed. More recently, it has come to light that they can significantly aid 

with efforts to produce chromosome-level genome assemblies. In 2017, Damas et al 

published work that highlighted the significance of BAC use in genome assembly efforts. 

In their study BACs were isolated from the chicken (Gallus gallus) CHORI 261 BAC library 

(the chicken genome was selected as this is the most annotated of the avian species), 

and then used in combination with in silico technologies. This combined technique 

resulted in the chromosome-level genome assembly of two avian species - peregrine 

falcon (Falco peregrinus) and pigeon (Columba livia) (Damas et al., 2017). Moreover, this 

method of combined assembly was so successful that the following year the complete 

chromosome-level assembly of an additional three avian species was published 

(O’Connor et al., 2018). For this reason, cross-species BAC mapping mediated, facilitated 

cytogenetic confirmation of predicted in silico placement in the de novo species.  

 

1.2.2.3 Comparative genome hybridisation 

Chromosomal aneuploidies and structural abnormalities are an underlying cause of 

miscarriage, congenital anomalies and dysmorphism. For this reason, diagnostic tools to 

detect chromosomal abnormalities are a necessity. Comparative genomic hybridisation 

(CGH) is a technique that facilitates the detection of chromosomal copy number 

variations (CNV) on a genome-wide level. Thus, CGH provides an overview of the 

genome, whereby it can identify chromosomal gains and losses (Weiss et al., 1999). The 

first reported used of this technique was in 1992 by Kallioniemi et al at the University of 

California. Initially, the method was used to detect balanced chromosomal change in 

tumour patients. The tumour DNA was first labelled with a fluorochrome (green) and 

mixed (1:1) with labelled (red) control DNA, then applied to human metaphase 

chromosome preparations with both DNA and metaphase chromosomes being obtained 

from a healthy individual (Weiss et al., 1999). The fluorescently-labelled DNA competes 

for hybridisation to their locus of origin. The green to red ratio is then measured and the 

signal intensity is relative to loss or gain of genetic material. However, CGH cannot 

elucidate structural chromosomal rearrangements within the query sample; for 
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example, balanced translocations and inversions. Furthermore, it was predicted that for 

a region to be identified using this method, the variation would need to be 2 Mb or 

larger. Additionally, contamination from control cellular material, or DNA can lead to a 

decrease in sensitivity of CGH (Weiss et al., 1999). For the reasons mentioned above, 

vital information can often go undiagnosed.  

 

1.2.2.4 Array comparative genomic hybridisation 

In an attempt to overcome the aforementioned limitations observed in CGH, a team at 

Stanford University developed a system that utilises technology used in CGH combined 

with microarray analysis (Schena et al., 1995). As with CGH, DNA is first extracted from 

the query sample and labelled with a fluorochrome that differs from the control DNA 

(the genomic reference) and both are then mixed a hybridised to the microarray. 

Microarrays are slides that contain immobilised segments of DNA that can be genomic 

clones such as BACs (80,000 - 200,000 base pairs) or specific, synthesised regions of 

interest (25 – 85 base pairs). The query DNA and the reference DNA are both denatured 

to create single-stranded DNA and when applied to the microarray will hybridise to the 

complementary immobilised single-stranded DNA probes. The signal intensity of each 

sample is then measured through a digital imagery system which provides information 

on CNVs in the query compared to the control genome, thereby permitting identification 

of any chromosomal gains or losses in the query sample (figure 1-5). This technique has 

been utilised in cross-species comparative analysis; for example, human arrays have 

been used to study gene expression profiles in primates, canine and swine (Vallée et al., 

2006). To date, aCGH has been utilised in numerous genomic studies investigating 

congenital abnormalities, tumour heterogeneity and developmental delays (Shinawi and 

Cheung, 2008). In one study, 30% of karyotypically normal patients with congenital heart 

malformations and delayed development, were provided with an etiological diagnosis 

because of aCGH technology (Thienpont et al., 2007). Therefore, in comparison, aCGH 

identifies CNVs at a higher resolution than CGH. However, as with CGH, aCGH is unable 

to identify balanced rearrangements, such as translocations and inversions.  
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Figure 1-5. Work Flow for aCGH. Schematic diagram to show aCGH technique. Step 1- Fluorescently 

label the patient DNA. Step 2- Fluorescently label reference (control) DNA. Step 3- Mix samples and 

apply to the microarray. Step 4- DNA samples hybridise to the immobilised single stranded DNA probes. 

Step 5- Computational analysis to measure the signal intensity. Step 6- Data analysis. Source (Nature 

2011) 

 

1.3 Genome sequencing technologies 

1.3.1 Overview 

The order of nucleic acids in a polynucleotide chain ultimately dictate the hereditary and 

biochemical properties of all terrestrial life (Heather and Chain, 2016). Moreover, the 

ability to read and infer such sequences provides vital information to a multitude of 

different fields of research, including population genetics and conservational genetic 

studies, cancer and disease biology and progression, and finally provide answers 

inferring to evolutionary history (Heather and Chain, 2016). 
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1.3.2 First generation sequencing (Sanger sequencing) 

Early efforts to sequence DNA were unwieldly, it was not until around 1976 that the 

technology required to decode hundreds of bases in a short period of time was available. 

The technology developed by Sanger and Coulson, known as the chain terminator 

procedure was release in parallel with Maxam and Gilbert’s method known as the 

chemical cleavage procedure (Sanger et al., 1977). However, Sanger’s method prevailed 

and was deemed first generation sequencing, or more commonly known as Sanger 

sequencing. The technique involved four extensions of a radiolabelled primer by DNA 

polymerase, each with trace amounts of one chain-terminating nucleotide, to produce 

fragments of different lengths, resulting in a read length of 500-1000 bp.  

 

 

Figure 1-6. Schematic to illustrate Sanger sequencing. DNA is first denatured into single strands. Reaction 

requires a radiolabelled (or fluorescently labelled) DNA primer, DNA polymerase, dNTPs and ddNTPs. Four 

reactions are set up, one for each nucleotide, G, A, T and C. In each reaction all four dNTPs are included, 

but only one ddNTP (ddATP, ddCTP, ddGTP or ddTTP) is added. Fragments are then separated by size 

through gel electrophoresis and visualised. (Adapted from atdbio.com) 
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To visualise and quantify the fragments present in each base-specific reaction, 

polyacrylamide gel electrophoresis was used, thereby separating the DNA fragments by 

size with base pair resolution, as illustrated in figure 1-6. By 1987, automated, 

fluorescence-based Sanger-sequencing machines were in use and generating around 

1000 bp per day (Shendure et al., 2017). 

1.3.3 Massively parallel sequencing (Next generation sequencing) 

During the 1980s and 1990s numerous groups around the world explored alternatives 

to Sanger’s electrophoretic sequencing, in an effort to reduce cost and increase 

sequence output so that an efficient method could be established to obtain data from 

whole genome analysis. It was not until after the Human Genome Project was completed 

in 2003 that massively parallel, or ‘next generation sequencing’ (NGS) as it was more 

commonly known, surpassed Sanger’s sequencing performance (Margulies et al., 2005). 

Next generation sequencing differed in a number of ways, however, the major difference 

came in the form of multiplexing; unlike Sanger’s one tube per reaction, multiplexing 

enabled a complex library of DNA templates to be densely immobilised on to a two-

dimensional surface, meaning that all templates were accessible to a single reaction 

volume. Additional differences included in vitro amplification, and sequencing-by-

synthesis, whereby incorporation of a fluorescently labelled nucleotide is captured via 

imaging technology (Shendure et al., 2017). From 2005 onwards, genomics entered a 

new era, individual laboratories were able to gain access to equipment that resulted in 

a wealth of sequenced-based research being published. The most commonly used NGS 

platforms include, 454 Pyrosequencing (2005), Illumnia/Solexa Genome Analyser (2007), 

(Siqueira et al., 2012).  However, NGS technologies experiences certain limitations; the 

sequence read length achievable is considered short (50 – 400 bp), meaning that specific 

biological problems may not be addressed, including genome assembly and 

determination of complex gene regions, gene isoform detection and methylation 

detection (Rhoads and Au, 2015). It was noted that genomes assembled de novo (Damas 

et al., 2017) using NGS technologies were often of a lower quality compared to de novo 

assemblies generated through older, more expensive technologies (Sanger). This was 



Rebecca Jennings 

41 

 

due to the aforementioned short reads resulting in fragmented assemblies which could 

mean critical gene sequence information is missing. Therefore, improved systems that 

enabled longer read length was required. 

 

1.3.4 Third generation sequencing  

Third generation sequencing, or long read sequencing became available in around 2010 

when PacBio Single-Molecule Real Time (SMRT) was released (Eid et al., 2009). Third 

generation sequencing technologies were developed to increase throughput and read 

lengths and decrease costs, run times and error rates that were observed in next 

generation sequencing. Unlike NGS, third generation single-molecule sequencing 

platforms generate read lengths of over 10,000 bp, in some instances read lengths of 

over 100,000 bp (Lee et al., 2016). Therefore, single-molecule sequencing technologies 

have greatly improved analysis of genome structure. Indeed, longer read lengths can 

span repetitive elements, resulting in a more contiguous reconstruction of genome 

sequence, provide information pertaining to structural variation; split read analysis 

permits identification of translocations, insertions and deletions (Lee et al., 2016). 

Today, handheld sequencing devices are avaliable, and can be used in remote locations; 

a recent example includes surveillance of Ebola outbreaks in Africa (Quick et al., 2016). 

The handheld device, developed by Oxford Nanopre Technologies in 2014, measures the 

minute disruptions to the electrical current as DNA is passed through a nanopore, 

generating read lengths of ~100,000 bp (Lee et al., 2016). However, users of these third 

generation platforms report a high error rate, therefore sequencing requires shorter 

templates and multiple rounds to achieve an accurate result. Although, sequencing 

technologies have improved considerably, the ultimate goal in any assembly effort is 

produce a contiguous sequence read which spans the entire length of a chromosome 

from the p-terminus to the q-terminus. However, this has not yet been achieved in 

mammals, often meaning that additional tools are required to generate chromosome-

level assemblies, as described in section 3. 

 



Rebecca Jennings 

42 

 

1.4 Genome assembly methodologies 

There are essentially two techniques used to sequence a genome. Initial genome 

sequencing efforts employed the BAC-by-BAC approach (i.e. a map-based method), 

whereby a crude map of the entire genome is constructed prior to sequencing. Map 

construction requires randomly dissecting chromosomes into fragments that span 

approximately 150,000 bp, and these chromosomal fragments are then inserted into a 

BAC which is given a unique fingerprint identification tag which permits order and 

orientation analysis of the fragments. Fingerprinting involves cutting the BAC with a 

single restriction enzyme to elucidate common sequence markers in overlapping 

fragments, representing the minimal tiling path, and thereby establishing the location of 

each BAC along the target chromosome (Saski et al., 2014). The BAC clone is then 

fragmented once more and sequenced using Sanger technology (see section 1.3.2), 

generating millions of short read sequence reads. These reads are then aligned so that 

identical sequences overlap and contiguous sequences (contigs) are assembled into a 

finished sequence (Saski et al., 2014). In 2001, The Human Genome Project employed a 

two-phase approach which included the BAC-by-BAC method, whereby a physical map 

(constructed previously) served as a platform for generating and analysing sequence 

data produced in the shotgun phase (Lander et al., 2001). Indeed, by the end of the 

shotgun phase 90% of the human genome was sequenced in draft form, proving it to be 

a reliable method. However, BAC-by-BAC sequencing is expensive, laborious and time-

consuming, and it is for this reason that faster and cheaper sequencing methods were 

developed in the years after The Human Genome Project (2001). 

 

In parallel to the Human Genome Project (2001), another privately-funded team led by 

Craig Venter attempted to sequence the human genome. In this work they utilised a 

technique known as the whole genome shotgun sequencing directly on the human 

genome DNA (instead of cloned fragments that had already been mapped, therefore 

bypassing the use a reference genome map (Green, 2001). Whole genome shotgun 

sequencing methods entails sequencing multiple overlapping DNA fragments in parallel. 
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Computational genome assembly algorithms will then attempt to assemble the small 

DNA fragments into larger contigs and eventually chromosome size reads, shown in 

figure 1-8 (Green, 2001). This technique possessed certain advantages over the BAC-by-

BAC method, namely its’ simplicity and speed; in theory, this technique was designed to 

require no prior information regarding the genome or genetic maps, therefore it would 

save time and resources. Additionally, whole shotgun sequencing excelled in the 

assembly of low repeat content genomes (see figure 1-7). However, due to the absence 

of a reference genetic map the amount of in silico analysis required to assemble de novo 

genomes using this method was substantial. Furthermore, mammalian genomes contain 

a high proportion of repetitive elements and this results in further computational 

difficulties with chromosome assembly due to misplacement of unique sequence reads, 

which could have been circumvented with prior genome information (Green, 2001).  

 

Briefly, RACA uses a closely related reference genome, a sequenced target de novo (as 

scaffolds) and one or more outgroup genomes as data input, whereby it then creates 

predicted chromosome fragments (PCFs) which can then be validated using PCR, 

therefore bypassing the need for a physical genetic map (Kim et al., 2013). RACA was 

successfully used in combination with cytogenetic techniques developed by O’Connor 

(2016) to upgrade avian genome assemblies to a chromosome level. 
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Figure 1-7. Schematic workflow of two shotgun sequencing approaches. Schematic represents two 

approaches used in whole human genome sequencing. Comparison of BAC-by-BAC (hierarchical shotgun 

approach) and whole genome shotgun assembly approach.  

Source: Adapted from science.co.uk  

 

The intention of this work was to utilise a similar combined approach to upgrade 

mammalian de novo genome assemblies to a chromosome level. Thus, identifying 

conserved chromosomal segments and evolutionary breakpoints, which will provide 

information regarding evolutionary forces that drove mammalian evolution (Lewin et al., 

2009).  
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Figure 1-8. Workflow diagram of RACA. A) RACA requires a reference genome, target de novo genome in 

scaffold form and outgroup genomes. B) Syntenic fragments (SF) are produced when the target genome 

is aligned against the reference genome, orientation of the target fragment is shown via + and -.C) A score 

is given to the syntenic fragment which represents the adjacency. D) A SF graph is built. E) Constructed 

chains of SFs that are extracted by the RACA algorithm. (Kim et al., 2013) 

 

1.4.1 Physical mapping of sequence reads  

As mentioned throughout this thesis, improvements and advancements in sequencing 

techniques have increased the read length now available. For example, PacBio P6-C4 

technology is reported to produce read length N50 of 14kb, with a maximum read length 

of 40 kb, however, assembly fails if the region is problematic 

e.g. centromere, and heterochromatin (Lee et al., 2016). Moreover, the majority of 
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draft de novo genomes consist of thousands of individual fragments with little or no 

information on how these fragments are assembled into chromosomes. This inability to 

generate contiguous sequence reads (chromosome-level assembly) has proven 

problematic in developmental and molecular studies due to the possibility of gene 

spanning several different contigs and incorrectly annotated (Fierst, 2015). 

Furthermore, in the context of evolutionary studies, an incorrect assembly will lack the 

genomic content required to perform comparative analysis (Fierst, 2015). Over the years 

numerous mapping tools have been developed to address this problem. Such mapping 

tools include linkage, radiation hybrid, BACs and cross-species FISH. For this reason, 

cytogenetic tools have played a crucial role in assisting the production of chromosome-

level genome assemblies (Lewin et al., 2009). To circumvent the limitations observed in 

NGS de novo genome assembly, computational de novo assembling algorithms were 

developed, including ABySS, ALLPATH-LG, and Velvet (Kim et al., 2013). However, NGS 

short read length makes it incredibly difficult to assemble into chromosomes for large 

genomes. In 2013, Kim et al developed an assembling algorithm known as Reference 

Assisted Chromosome Assembly (RACA) which was designed to order and orientate 

sequence scaffolds generated by NGS (Kim et al., 2013). Briefly, RACA uses a closely 

related reference genome, a sequenced target de novo (as scaffolds) and one or more 

outgroup genomes as data input, whereby it then creates predicted chromosome 

fragments (PCFs) which can then be validated using PCR, therefore bypassing the need 

for a physical genetic map (Kim et al., 2013) (process shown in figure 1-8). RACA was 

successfully used in combination with cytogenetic techniques by O’Connor et al in 2016 

to upgrade avian genome assemblies to a chromosome level (O’connor, 2016). The 

intention of this work was to utilise a similar combined approach to upgrade 

mammalian de novo genome assemblies to a chromosome level. Thus, identifying 

conserved chromosomal segments and evolutionary breakpoints, which will provide 

information regarding evolutionary forces that drove mammalian evolution (Lewin et 

al., 2009).   
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1.5 Chromosomal rearrangements in disease and evolution  

Chromosomal rearrangements, in particular translocations and inversions, are an 

important mechanism of karyotype evolution and diversity. The importance of 

chromosomal rearrangements in evolutionary terms, was first described by Dobzhansky 

and Sturtevant (1938), whereby the team presented a rearrangement scenario of 17 

inversions for the species Drosophila pseudoobscura and Drosophila miranda 

(Dobzhansky and Sturtevant, 1938). It is commonly accepted that carriers of 

heterozygous chromosomal rearrangements produced unbalanced gametes and as a 

result are sterile, thus contributing to reproductive isolation.  

 

Chromosomal disorders are caused by alterations in either chromosome number or 

chromosome structure. Chromosomal abnormalities are considered the leading cause 

of miscarriage, with 10-15% of all clinically recognised pregnancies resulting in a 

spontaneous abortion during the first trimester (Hyde and Schust, 2015). Trisomies are 

the most frequently detected abnormality (61.2%), followed by tripliodies (12.4%), 

monosomy X (10.5%), tetraploidies (9.2%) and structural anomalies (4.7%) (Hyde and 

Schust, 2015). As mentioned previously, certain trisomies are observed in mammals, 

which include trisomy 13, 18 and more commonly 21. However, most autosomal 

trisomies are not compatible with life and will result in spontaneous abortion. Carriers 

of balanced chromosomal abnormalities will appear phenotypically ‘normal’ however 

will as a consequence, suffer suboptimal fertility. The study described in this thesis, 

explores chromosomal rearrangements in mammalian species, with the intention of 

identifying abnormalities that result in decreased fertility and to recognise 

rearrangements that result in reproductive isolation. 

 

1.5.1 Numerical chromosomal abnormalities  

Numerical abnormalities are defined as any aberrant change in chromosome number 

and traditionally they are usually diagnosed through molecular cytogenetic techniques 
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whereby the loss or gain of either an individual chromosome (aneuploidy), or full set of 

chromosomes (polyploidy) is observed. 

 

1.5.1.1 Aneuploidy 

Aneuploidy refers to a state in which the number of chromosomes present within a cell 

is not the exact multiple of the haploid genome, resulting in an unbalanced genome, 

observed as either a gain (trisomy) or loss (monosomy) of chromosomes (Oromendia 

and Amon, 2014).  In humans, aneuploidy is reported to be the leading cause of 

developmental delays and spontaneous abortion. It is reported that 15-20% of all clinical 

pregnancies will result in a first trimester miscarriage (Jia et al., 2015). Chromosomal 

abnormalities in the developing foetus, including aneuploidy, account for 96% of these 

first trimester losses and are considered the primary etiology of spontaneous abortion 

(Jia et al., 2015). In humans, the following chromosomes are commonly involved in 

aneuploidy states: X, Y, 13, 16, 18, 21 and 20 (Jia et al., 2015). Previous work found that 

errors in meiotic chromosome segregation frequently occur in oogenesis (~20%), 

especially during the first meiotic division and this error rate is reported to increase with 

elevated maternal age (Schaeffer et al., 2018). Furthermore, aneuploidy is well 

documented in other mammalian species including mouse (3-5%), cattle (7.1-30% at 

meiosis II) and in swine (4.9-11.9%) (Hornak et al., 2011). Additionally, aneuploidy is 

commonly observed in cancer cells, whereby it was found that 70-90% of all human solid 

tumours contain an unbalanced genome (Oromendia and Amon, 2014).  

 

1.5.1.2 Polyploidy 

In mammals, polyploidy is typically fatal with most embryos dying early in development, 

although there are reports of tetraploids in the red viscacha rat (Tympanoctomys 

barrerae) lineage are available (Yamazaki et al., 2016). In ‘normal’, somatic cells, the 

chromosome complement comprises of a maternal haploid set and a paternal haploid 

set (haploid chromosome number is species dependent). However, a typical tetraploid 
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cell will consist of two haploid maternal and paternal sets, meaning the resulting foetus 

is technically ‘balanced’. For example, the haploid chromosome number in humans is 23, 

meaning that human tetraploids will comprise of 92 chromosomes (Yamazaki et al., 

2016). Polyploidy is not tolerated well in mammals with most resulting in spontaneous 

abortion before the end of the first trimester with triploidy (an extra haploid 

chromosome set (chromosome number of 69 in humans)) accounting for approximately 

17-20% of chromosomally abnormal first trimester miscarriages. As such, triploidy is 

estimated to occur in 1 in 3,500 pregnancies at 12 weeks, 1 in 30,000 at 16 weeks and 1 

in 250,000 at 20 weeks (Kolarski et al., 2017). The extra haploid set is responsible for 

numerous birth defects, including facial abnormalities, micrognatia, cleft lip, heart 

defects, neural tube defects (spina-bifida), and severe growth problems in the foetus if 

born (Kolarski et al., 2017).  

 

Considering the above, polyploidy is however relatively common in nature, particularly 

in plants and fungi, with an estimated prevalence of 30%-70% in angiosperms (flowering 

plants). In humans, polyploidy occurs in specific tissues as part of the terminal 

differentiation. Changes in chromosome number (ploidy) can also be as a result of 

pathophysiological events, such as virally-induced cell fusion or erroneous cell division 

(Storchova and Kuffer, 2008).  

 

1.5.2 Structural chromosomal rearrangements 

The term structural chromosomal rearrangement describes several different events 

which include: duplications, insertions, deletions, inversions and translocations, all of 

which are due to errors in recombination (double-strand DNA breaks followed by 

incorrect repair mechanisms), ultimately altering gene dosage and order (Griffiths et al., 

1999). Furthermore, these structural chromosomal rearrangements can result in 

unbalanced gametes through unequal segregation in meiosis, leading to aneuploidy 

(refer to section 1.5.1.1) which can increase the risk of miscarriage. 
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1.5.2.1 Chromosomal duplications 

The architecture of the genome means that certain areas are considered fragile and 

more prone to DNA breakage, leading the alterations (insertion, deletion and 

translocation), usually due to pairing errors in meiosis (Sun et al., 2008). DNA is subjected 

to many endogenous and exogenous factors that affect replication and chromosome 

segregation. For example, DNA damage can occur through endogenous replication stress 

or through exogenous sources, causing base changes, double or single strand breaks and 

DNA – protein cross links (Shaffer and Lupski, 2000). Duplications can be segmental 

(from a few nucleotides to serval thousand kilobases), as shown in figure 1-10, or may 

cover the entire genome, where it is known as polyploidisation (see section 1.5.1.2). 

Interstitial duplications result from an exchange of genetic material within a 

chromosome, retaining the telomere and thus altering the gene dosage at that loci 

(Shaffer and Lupski, 2000). Over recent years, numerous studies have sought to 

understand the molecular complexities of autism. Autism spectrum disorders are a 

heterogeneous group of neural-behavioural syndromes that are characterised by mild 

facial dysmorphism (in some, but not all cases), deficits in social interactions, impaired 

or delayed development and repetitive behaviours (Urraca et al., 2013). Copy number 

variations are the most common genetic lesion identified in autism, the most common 

being duplications within chromosome 15q (Urraca et al., 2013).  In evolutionary terms, 

gene duplication is considered an important mechanism of acquiring new genes that are 

under reduced selection pressure and ultimately creating genetically novel organisms 

(Magadum et al., 2013).   

 

1.5.2.2 Chromosomal insertions and deletions 

Chromosomal insertions and deletions usually arise due to pairing errors in meiosis. 

Large-scale deletions and duplications may be generated by the pairing of non-allelic 

interspersed or tandem repeats, followed by breakage and re-joining of chromatid 

fragments. (Sun et al., 2008). Chromosome deletions occur as a result of excised DNA, 

(figure 1-10), and the phenotypic effects of a chromosomal deletion are dependent on 
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the size and location of the deleted material. Previous investigation established that a 

22q11 deletion is the most common human chromosomal deletion syndrome, affecting 

approximately 1:4000-6000 live births (Chromosomal Deletion Syndrome, 2013). The 

phenotypic abnormalities associated with this deletion include, palate anomalies and a 

characteristic facial appearance. Clinically carriers of this deletion will suffer learning 

impairments, neonatal hypocalcaemia, thymic hypoplasia, and immune deficiencies. 

Approximately 15% of cases are familial segregating as an autosomal dominant trait with 

marked variability (Chromosomal Deletion Syndrome, 2013).  

 

Chromosomal insertions occur when a segment of one chromosome is translocated and 

inserted into another and this can be in the form of an interchromosomal insertion (non-

homologous chromosome) or an intrachromosomal insertion (insertion of a segment 

into the same chromosome) (Gu et al., 2016). Repeat DNA sequences can increase the 

likelihood of abnormal chromosome pairing and unequal crossing-over, with insertions 

and deletions being the outcome of such events (Gu et al., 2016).  
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Figure 1-9. Schematic to show chromosomal abnormalities, Schematic illustrates abnormalities including 

a duplication (B) and an insertion deletion. A) No abnormality present. B) Segmental duplication of 

telomeric region of chromosome A. C and D represent normal chromosomes. Segmental exchange from 

chromosome C to sub-centromeric region of chromosome D, creating products E (deletion) and F 

(insertion).  

 

1.5.2.3 Chromosomal Inversion 

An inversion occurs when a chromosome breaks at two points, and the region, which is 

bounded by the breakpoints and is then reinserted in the reversed orientation (figure 1-

11). Inversions are classified as either pericentric which includes the centromere 

(considered most common) or paracentric (does not include the centromere) 

(Kirkpatrick, 2010). Recombination is said to be suppressed due to heterozygous 

inversions, and this is considered a key evolutionary mechanism. (Kirkpatrick, 2010). As 

with other chromosomal mutations, inversions evolve under selection and random drift 

and are thought of as a mechanism to create variation, adaption and influence gene 

expression (Salm et al., 2012).  
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Figure 1-10. Schematic to show a chromosomal inversion. The chromosome affected breaks at two 

points, this region, which is bounded by the breakpoints and is then reinserted in the reversed orientation 

as illustrated in the above.  

 

Kirkpatrick (2010) claimed that chromosomal inversions were the driving force behind 

human speciation. For example, the genomes of human and chimpanzee are said to 

differ by large pericentric inversions and several smaller paracentric inversions. Early 

comparative work, using late stage prophase banded chromosomes of human, 

chimpanzee, gorilla and orang-utan (figure 1-11) was published by Junis and Prakash 

(1982). Due to the resolution of comparative analysis at the time of publication, they 

were able to identified nine inversions, (Yunis and Prakash, 1982). However, Fauk et al 

(2005) discovered approximately 1,500 inversions between the two species using 

comparative analysis of genome sequences (Feuk et al., 2005). Moreover, this work 

illustrates that sequenced-based analysis facilitates the detection of micro-inversions 

that are beyond the scope of the microscope.  
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Figure 1-11. Chromosome comparison of human, chimpanzee, gorilla and orang-utan. (Left to right) 

Schematic representation of late-prophase chromosomes (1000-band stage) of man, chimpanzee, gorilla, 

and orang-utan, arranged from left to right, respectively, to visualize homology between the 

chromosomes of the great apes and the human complement. Source (Yunis and Prakash, 1982).   

 

1.5.2.4 Robertsonian Chromosomal translocation  

Robertsonian translocations, also known as centromeric fusion of two acrocentric 

chromosomes (refer to figure 1-12) occur at a rate of approximately 1: 1000 in the 

general population (Scriven, 2001).  In humans, the most prevalent Robertsonian 

translocation is between chromosomes 13 and 14 with these D group chromosomes 

accounting for 75% of all Robertsonian translocations (Scriven, 2001). Moreover, carriers 
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of a Robertsonian translocation will produce six different gametes.  At the end of meiosis 

I, segregation of the translocated and non-translocated chromosomes from the two 

different chromosome pairs involved leads to the formation of either balanced gametes, 

via alternate segregation, or unbalanced gametes through adjacent segregation during 

anaphase. Consequently, the zygote will be monosomy or trisomy for that chromosome 

(Song et al., 2016). Monosomy zygotes are not compatible with life and for this reason 

they will usually end in a first trimester spontaneous abortion. However, the live born 

outcome of the aforementioned rob (13;14) trisomy can result in trisomy 13 or 14. 

Trisomy 14 is not compatible with life, whereas trisomy 13 (Patu syndrome) is reportedly 

observed at the second trimester in <0.4% cases (Scriven, 2001). The overall miscarriage 

risk for individuals carrying this translocation remains at approximately 15%, however 

some will suffer recurrent miscarriages as a consequence of this rearrangement. 

Robertsonian translocations are common chromosomal rearrangements that can lead 

to rapid and efficient reproductive isolation between karyotypically similar populations. 

Additionally, homozygous translocation carriers are reported to be as a consequence of 

heterozygous translocation mating (Song et al., 2016). 

 

In agriculture, this form of translocation is widely reported in cattle with the rob (1;29) 

translocation being the most widespread, affecting all breeds except Holstein-Friesian 

cattle (Switonski, 2014). Heterozygous carriers of the 1;29 translocation are 

phenotypically normal, however carriers are reported to suffer a reduction in fertility of 

3-5% (Bonnet-Garnier et al., 2008). This reduction in fertility is explained through the 

formation of unbalanced gametes: 2.76% in sperm and 4.06% in oocytes, which result in 

increased embryonic mortality (De Lorenzi et al., 2012).  
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Figure 1-12. Schematic to show Robertsonian and reciprocal translocations. A) Robertsonian 

translocation – the centromeric fusion of two acrocentric chromosomes to create a fused product as 

observed in cattle (rob (1;29)). B) Reciprocal translocation, genetic exchange between two chromosomes 

to create a translocated pair. Exchange between chromosomes 13 and 14 is the most common in humans   

 

1.5.2.5 Reciprocal translocations 

Reciprocal translocation is defined as an exchange of genetic material between two 

chromosomes, with no apparent loss (figure 1-13). Moreover, if the resulting 

arrangement does not produce a truncated gene, the carrier will appear phenotypically 

normal (Farimani et al., 2012). However, as with the previously discussed chromosomal 

abnormalities (see section 1.5), individuals carrying a balanced reciprocal translocation 

are at an increased risk of suffering nondisjunction at meiosis, resulting in different 

forms of segregation and ultimately fertility problems (Farimani et al., 2012).  In humans, 

previous work found that certain highly homologous regions are at a higher risk of 

recombination. These hotspot regions include 11q23, 17q11 and 22q11, leading to the 

frequent translocations t(11;22), t(17;22) (Morin et al., 2017).   

 

The overall aim of this study was to develop and implement a device in cattle that could 

screen for chromosomal abnormalities that reduce fertility in agricultural animals. 
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Before this study, a number of different studies had examined the effect that reciprocal 

translocations have on fertility in pig and cattle. Due to the use of artificial insemination 

(AI) in commercial breeding today, it is imperative that reciprocal translocation carriers 

are isolated and removed from the herd prior to entry into the AI breeding programme, 

thereby preventing dissemination of the rearrangement to future progeny and retaining 

the profitability of the herd. Previously, Henricson and Bäckström (1964) identified the 

first reciprocal translocation in swine, that involved genetic exchange between 

chromosomes 4 and 14 t(4;14). This was discovered using traditional chromosome 

banding techniques (Henricson and Bäckström, 1964). Since then the cytogenetic 

screening of commercial animals has developed into a practice that is performed in only 

a handful of laboratories globally. Furthermore, most commercial screening today still 

uses traditional banding techniques, which can only detect chromosomal 

rearrangements that involve >3 Mb of DNA, meaning that smaller cryptic translocations 

will be missed. Routine cytogenetic screening of hypoprolific commercial swine 

originated in Toulouse France in the 1990s and since then the group are reported to have 

examined over 13,000 boars (Ducos et al., 2007).  Moreover, it was estimated that 

reciprocal translocations are present in 1:2000 (0.47%) unproven boars awaiting entry 

into the AI breeding program (Ducos et al., 2007).  

 

In cattle, only 19 reciprocal translocations involving different chromosomes have been 

reported (De Lorenzi et al., 2011). However, due to the acrocentric nature of the cattle 

karyotype De Lorenzi purposed that only 16% of reciprocal translocations are 

recognisable using traditional karyotyping alone, meaning that 84% of reciprocal 

translocations go undiagnosed. Therefore, this form of rearrangement is grossly 

underestimated in cattle. Moreover, a method to screen for, and for diagnosis purposes 

is required. For this reason, part of the work in this study was to implement a 

chromosome screening service in cattle. 
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1.5.2.5.1 Translocation pairings at meiosis 

Chromosomal translocations involve the exchange of genetic material between two non-

homologous chromosomes, whereby genetic position is altered but not overall content, 

thus forming a balanced translocation. In a study investigating spermatozoa of 

individuals carrying a t(4;5(p15.1; p12)) translocation it was observed that during meiosis 

I, the translocated chromosomes pair to their homologous segments, forming  

quadrivalents which can then segregate into five different configurations (figure 1-14). 

Segregation includes, alternate (producing viable gametes), adjacent I, adjacent II, 3:1 

and 4:0 with the last four combinations producing non-viable unbalanced gametes 

(Wiland et., al 2007).  In this study, 6:10 pregnancies resulted in spontaneous abortion, 

hypothetically due to the formation of unbalanced gametes (Wiland et al., 2007). Visual 

representation of segregation combinations (figure 1-15). 

 



Rebecca Jennings 

59 

 

 

Figure 1-13. Representation of chromosomal segregation possibilities. Diagram illustrates the 

segregation possibilities in an individual carrying a heterozygous reciprocal translocation. Quadrivalents 

configuration results from non-homologous pairings which can lead to alternate segregation (viable 

gametes) or adjacent I, adjacent II, 3:1 and 4:0 (3:1 and 4:0 not shown) with the last four combinations 

producing non-viable unbalanced gametes. Source: www.semanticscholar.org 
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1.6 Mammalian karyotype evolution 

The initial concept that all life on earth originated from a common ancestor was first 

proposed by Darwin in 1859, through his seminal work ‘The Origin of the Species’, 

thereby introducing biologists to the idea that all phenotypically related species were 

descent from early progenitors (Ferguson-Smith and Trifonov, 2007). However, even 

before the publication of this work previous investigations by Linnaeus, in 1758 

recognised that certain species shared morphological features, whereby classifying 

organisms in terms of genealogies with species, families and orders depended on their 

similarities (Ferguson-Smith, 2008). Today, biologists can investigate the relationship 

between any given species using an array of cytogenetic and molecular techniques, as 

discussed previously, thus providing information which can elucidate karyotype 

evolution between distantly related species. 

 

In comparison to other vertebrates, mammals show a high degree of karyotype 

variability. The chromosome complement in mammals can range from 2n=6/7 in the 

Indian muntjac (Muntiacus muntjak), to 2n=102 in the red viscacha rat (Tympanoctomys 

barrerae) (Contreras, Torres-Mura and Spotorno, 1990) (Graphodatsky, Trifonov and 

Stanyon, 2011). As with any comparative analysis described in this thesis, initial 

investigations into mammalian karyotype evolution were studied using traditional 

cytogenetic techniques, for example chromosome banding and chromosome painting 

which enabled identification of conserved regions between species (Kemkemer et al., 

2009). More recently, whole genome sequence comparisons have identified regions 

known as conserved linkage groups, that are syntenic segments with highly conserved 

gene order. Furthermore, the information these conserved segments provide can then 

be used to reconstruct the ancestral karyotype. It is believed that the organisation of the 

human genome is highly conserved, demonstrating remarkable similarities to the 

putative eutherian karyotype which would be found around 105 mya (Kemkemer et al., 

2009). In 2005, a comparative study using genetic markers, morphological and fossil 
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analysis produced an evolutionary tree showing the landmark rearrangements in 

placental mammals, (figure 1-15) (Froenicke, 2005). 



Rebecca Jennings 

62 

 

 

Figure 1-14. A Proposed relationship tree for placental mammals. Karyotype evolution showing the landmark rearrangements in placental 

mammals.  Source: www.karger.com
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1.6.1 Mechanisms of karyotype evolution 

Non-homologous recombination at meiosis is the process by which conserved regions of 

the genome are separated and fused at a different location (Wiland et al., 2007). In 

section 1.5, chromosomal rearrangements were discussed in the context of fertility 

issues, however it well known that chromosomal rearrangements are the prerequisite 

to reproductive isolation and speciation. Moreover, an aberrant event in meiosis can 

result in the formation of morphologically abnormal chromosomes (for that species). 

Furthermore, metacentric chromosomes are often the product of a chromosomal fusion 

between two acrocentric chromosomes, whereas the opposite can be considered for 

acrocentric chromosomes (fission of a metacentric chromosome). In this context, the 

karyotype of cattle consists of 30 pairs of acrocentric chromosomes (excluding the sex 

chromosomes), whereas in a closely-related artiodactyl species like the defassa 

waterbuck, the karyotype comprises of 27 pairs of which three are submetacentric. 

Indeed, Kingwood et al (2000) established that the submetacentric chromosomes 

observed in the karyotype of the defassa waterbuck were due to a fusion of cattle 

chromosomes 1;19, 2;25 and 6;18. Mechanisms that promote fixation of chromosomal 

changes, despite the associated reduction in fertility, include a) meiotic drive, b) the 

beneficial effects that a particular rearrangement has on gene expression and c) 

establishment of recombination suppression which facilitates adaptive evolution (Potter 

et al., 2017). Wyttenbach reported that meiotic drive favours Robertsonian 

translocations in the common shrew; meiotic drive is powerful evolutionary mechanism 

that can drive mutations into fixation that would usually reduce fitness (Potter et al., 

2017).  

 

1.6.2 Sex chromosome evolution 

Sex chromosomes are studied for a number of different reasons, which include 

investigating their role in sex determination and as a general mechanism of evolution, 

whereby they can provide information regarding fundamental evolutionary forces. The 
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sex chromosomes observed in mammals (XY system) are thought to have evolved from 

autosomes, with the first differentiation event occurring approximately 240 million years 

ago, shortly after the divergence of the mammalian and avian lineage (Lahn and Page, 

1999). Lahn and Page (1999) reported that human sex chromosome evolution was 

punctuated by at least four events, adding that each event suppressed recombination 

between the X and Y chromosomes, while retaining gene order on the X chromosome 

(Lahn and Page, 1999). It was previously documented that the first step in the evolution 

of the Y chromosome was probably through the acquisition of a sex-determining locus 

on one of proto-sex chromosomes. With an inversion of this sex-determining region (SRY 

which is located on the male-specific Y chromosome) suppressing recombination further 

(Mackiewicz et al., 2018). Moreover, this lack of recombination ultimately led to the 

degradation and silencing of most of the Y-linked genes (Mackiewicz et al., 2018). 

 

1.7 Sex determination 

In mammals, sex determination is a complex developmental processes. Moreover, it is 

an intricate system of genetic, epigenetic and hormonal determinants that govern the 

development of either the male or female phenotype (De Lorenzi et al., 2018). However, 

on a chromosomal level sex determination occurs through the inheritance of the X and 

Y sex chromosomes. In nature, three principle chromosomal systems govern sex 

determination; male XY heterogamety (as seen in mammals), female ZW heterogamety 

(as seen in birds) and haploid UV phase determination (as seen in some algae) (Bachtrog 

et al., 2011). In organisms that mate as diploids, for example flowering plants and 

animals, the sex chromosomes take on one, of two forms. In XY systems the male is 

found to be heterogametic XY, the female is characterised by the homogametic XX. 

However, in ZW systems females are heterogametic (ZW) while males are homogametic 

(ZZ), (figure 1-16) (Bachtrog et al., 2011). For this purpose of this study, only XY systems 

will be covered. 
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Figure 1-16. The differences in inheritance and sex specification between XY, ZW and UV sex-

chromosome systems. Females are red and males blue. In mammals (XY systems), the Y chromosome is 

present in males only, inheriting the X from the mother. In birds (ZW systems), the W chromosome is 

female-specific whereby the female will always inherit the Z from the farther. In UV systems, sex is 

expressed in the haploid phase, with U chromosomes confined to females and V chromosomes limited to 

males. (Image Source: Bachtrog et al., 2011) 
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Therefore, in mammal’s sex determination occurs through inheritance of the X and Y sex 

chromosomes. The presence or absence of the Y-encoded male-determining Sry gene 

directs the developing gonad to differentiate into the testes, which in turn directs the 

sexual development of the rest of the embryo (Kocer et al., 2009). A number of genes 

are implicated in sex determination and of these the SRY, and SRY-box 9 (SOX9) genes 

are required to differentiate the supporting cell lineage into male Sertoli cells rather than 

female granulosa cells (Kocer et al., 2009). In females, the absence of Y-encoded male 

determining genes results in the differentiation of the supporting cell lineage into 

granulosa cells when SRY expression does not occur. Once gonadal differentiation is 

established, they secrete hormones that cause sex-specific patterns of development in 

many other tissues, including the external genitalia, internal genitalia (Wolffian and 

Müllerian duct structures) and the brain (Arnold, 2012). Due to the complexities of 

mammalian sex determination, variations in typical sexual development are found in 

nature, this will be discussed in the following section. 

 

1.7.1 Disorders of sexual development 

Classifications of variations of sex characteristics, or intersex traits, have changed 

significantly throughout history. In general, disorders of sex development, or 

intersex, refers to the state of being born with biological sex characteristics that vary 

from what is typically thought of as exclusively male or female (Griffiths, 2018). Today, 

intersex variation is classified by a physiological and morphological anomaly, defined as 

a congenital condition by which the development of chromosomal, gonadal, or 

anatomical sex is atypical (Griffiths, 2018). Furthermore, the reproductive organs and/or 

external genital differ from those typically associated with the male or female phenotype 

(Rich et al., 2016). 

 

Investigations into sex development deviations started in the 1960s, and were facilitated 

by the use of traditional cytogenetic techniques in combination with examination of 

physiological and phenotypic examinations. McFeely et al (1967) presented the results 



Rebecca Jennings 

67 

 

obtained from 14 intersex variation cases in domestic mammals, including: dog, cow, pig 

and cat. This work established that genotype does not always reflect phenotype, with 

the majority of animals examined diagnosed as male pseudohermaphrodites. At this 

time the molecular mechanism behind the cause was unknown (McFeely et al., 1967). 

However, today cytogenetic analysis can provide important information; the karyotype 

becomes a low resolution map of the genome and it can reveal differences in 

chromosome number (aneuploidy) and structural differences i.e. translocations, 

deletions, insertions and inversions, depending on the size of the abnormality (too small 

and the aberration will not be detected) (Polipalli et al., 2016). For this reason, karyotype 

analysis commonly used as a diagnostic tool in the initial stages of an investigation to 

elucidate the specific abnormality causing the irregular phenotype or disorder, as shown 

throughout this thesis.  

 

Today, advancements in molecular techniques have meant that numerous genes 

associated with sex development in mammals have been identified, along with the 

consequence of mutations within.  In most cases, mutations in the following genes: SRY, 

WT-1, SOX9 and DAX-1 result in interrupted sex determination in mammals, causing an 

intermediate phenotype. (Pailhoux et al., 2001). Intersex variation is well described in 

pigs, with a published incidence rate of 0.1-0.5% in XX females, rising to 20% within an 

isolated herd (Pailhoux et al., 2001). Detection of affected animals usually occurs 

through observation of abnormal external genitalia by the breeder or at slaughter, with 

intermediate phenotypes usually observed (Pailhoux et al., 2001). Intersex variation is 

also described in domestic horses, while androgen insensitivity syndrome (AIS) is 

frequently reported to affect thoroughbred mares. AIS is defined as the failure to 

masculinise target organs by androgen secretions during embryo development. In most 

cases the animal will appear phenotypically female, however will display stallion-like 

behaviour and genotype (2n=64 XY, SRY+), transmission of this disorder is purposed to 

follow an X-linked recessive pattern of inheritance (Welsford et al., 2017).  
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1.7.2 Freemartinism in cattle  

A bovine freemartin is defined as a sterile female calf that was born co-twin with a male 

foetus. The sterile calf will present with underdeveloped or miss-developed genital tract 

as a result of vascular anastomose (exchange) between both foetuses, (figure 1-17) 

(Esteves et al., 2012). The consequence of this placental vascular exchange between 

heterozygotic twins is blood chimerism (2n=60 XX/XY) and the passage of male gonad 

determinants (such as androgens) to the developing female foetus (Esteves et al., 2012). 

Esteves et al estimates that up to 95% of female foetuses in a male / female twin 

pregnancy are affected (Esteves et al., 2012).  

 

 

Figure 1-17. Vascular anastomose between heterozygotic twins (cattle). The consequence of this 

placental vascular exchange between heterozygotic twins is blood chimerism (2n=60 XX/XY) and the 

passage of male gonad determinants (such as androgens) to the developing female foetus (Image source: 

Esteves et al., 2012) 

 

The external genitalia of the affected female appear phenotypically normal, and 

therefore the calf will be raised as female. However, upon closer inspection minor 

abnormalities are visible whereas the internal genitalia will have been masculinised to 

an extent which will impair fertility of that animal. Common abnormalities observed in 

Freemartin heifers include hypoplastic or absent uterus, absence of the continuity 

between the vagina and the uterus (if present) and streak gonads (Esteves et al., 2012). 

Exchange between 
developing foetuses  
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Prevalence of this condition is proportional to the prevalence of twinning within the 

population shown in a study investigating twinning in different breeds which found that 

rates can vary from 0.2 in the Brahman to 8.9 in the Brown Swiss (Esteves et al., 2012).  

 

1.7.3 XY complete gonadal dysgenesis (Swyer syndrome) 

Swyer syndrome is classified as a disorder of sex development (DSD), which covers any 

disorder in which chromosomal, gonadal or anatomic sex development is abnormal. 

Swyer syndrome is a rare genetic disorder that is characterised by the failure of the 

internal sex glands to develop. In humans, an individual with Swyer syndrome will appear 

phenotypically female, however karyotype analysis will reveal a 2n=46 XY chromosome 

complement (as in males) (Michala et al., 2008). In most cases the genetic cause remains 

unknown, although it is believed that mutations in the genes involved in male XY sex 

differentiation of the foetus are involved. In 15-20% of cases a mutation or deletion 

within the SRY gene is responsible for this disorder, resulting in the failure of gonadal 

tissue to differentiate into testes (Machado et al., 2014). Additionally, mutations in the 

following genes have been identified in Swyer females: MAP31K, NORB1 on the X 

chromosome and DEAH37 (Michala et al., 2008).   

 

Previously, Swyer syndrome was reported in the following species: cattle, dogs and 

horses, however most of this work was performed using traditional cytogenetic 

techniques meaning that the true genetic cause was often undiagnosed. However, with 

the advancements and improvements in sequencing techniques it is now possible to 

isolate and sequence the genes involved in sex determination meaning that a deeper 

understanding as the etiology of the disorder can be assessed.  
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1.8 Rationale for this thesis 

Although improved technologies now permit genome analysis at a higher resolution 

than previously possible, certain biological and evolutionary questions still remain 

unanswered. This is partly due to the absence of chromosome-level genome assemblies 

in most mammalian species. However, with the previously reported success in birds, it 

would be advantageous to apply the combined bioinformatic and cytogenetic approach 

to up-grading mammalian genome assemblies to a chromosome level. Thereby enabling 

investigations into mammalian evolution and genome reconstruction. For this reason, 

the development of a universal BAC panel that would facilitate chromosome-level 

genome assembly in mammals is essential.  

 

Before this study, any attempt to examine the chromosomal integrity of an agricultural 

animal was achieved through traditional karyotype analysis. Karyotyping is time 

consuming and error prone, and may also result in translocation carriers going 

undiagnosed (see section 2.6.1.1). Moreover, the use of high genetic merit animals in AI 

calls for an increased level of chromosomal analysis, therefore ensuring translocation 

carriers are isolated from the herd. For this reason, an efficient and reliable means to 

screen for fertility damaging chromosomal rearrangements in breeding animals would 

be beneficial to agricultural breeding companies worldwide.  
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Taking the above background into consideration, the specific aims of this study are as 

follows: 

 

Specific aim 1. To develop a series of universally hybridising cytogenetic tools (BAC 

clones) based on sequence selection aimed at furthering the study of comparative 

genomics in mammals (Artiodactyla, Rodentia and Primates) 

 

Specific aim 2. To develop a screening service for chromosome abnormalities in a series 

of mammals including: pig (and related species), horse, tiger and gorilla, thus 

investigating the reasons for reproductive issues in individual animals 

 

Specific aim 3. Based on specific aim 2, to implement a novel scheme for screening for 

chromosome translocations in cattle, testing the hypothesis that it can be applied for 

the detection of hitherto intractable reciprocal chromosome translocations  

 

Specific aim 4. Based on specific aim 2, to implement a high throughput FISH-based 

porcine cytogenetic screening service, screening over 1000 animals and testing the 

hypothesis that the published incidence of translocations in this species is under-

reported 
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2 Materials and methods 

2.1 Chromosome Preparation 

2.1.1 Sample collection - Tissue 

Mammalian tissue samples were obtained through The Aspinall Foundation, Port 

Lympne Wildlife Park and local suppliers. The Animal Welfare and Ethics Review Board 

(AWERB) at the University of Kent reviewed and approved sampling prior to proposed 

research.  

2.1.1.1 Complete media preparation 

All cell culture work was performed in a class II lamina flow hood. Fibroblasts were 

cultured in minimum essential media (MEM) (Fisher) supplemented with 10% foetal 

bovine serum (FBS) (Gibco) and 1% Pen-Strep-L-Glutamine (Sigma). FBS was increased 

to 20% when cells required additional supplementation (e.g Ardvark and Indian 

Muntjac). Complete media was stored at 4oC. 

2.1.1.2 Primary cell culture through enzyme digestion 

A standard protocol was developed and used throughout to establish cell cultures. 

Mammalian tissue samples were obtained through biopsy, performed by veterinarians 

at The Aspinall Foundation Port Lympne Wildlife Park or from animals that were 

euthanised on site. All procedures were performed aseptically in a class II laminar airflow 

hood. Tissue sample was transferred to a sterile petri dish containing 1ml of Hanks 

Balanced Salt Solution (HBSS) including 1% Pen-Strep Fungizone to prevent 

contamination. The tissue was then cut using a sterile disposable scalpel. Tissue was cut 

to a diameter of 0.5mm3 and transferred to a 15ml falcon containing 500µL of 

0.125mg/ml Liberase TM Roche, an enzymatic collagenase which facilitates dissociation 

of tissue, allowing for the release of individual cells due to protease activity. Incubation 

of tissue / cell solution at 37oC for a minimum of 4 hours with gentle agitation applied 

every hour throughout. Upon sufficient digestion 4.5ml of complete media was 

introduced, a pipetting motion was used to dissociate cells from tissue, contents were 
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then transferred to a vented T25 culture flask ensuring that cell solution was evenly 

distributed across the bottom of the flask to promote even cell growth. Incubation was 

performed in a humidified incubator at 37oC with 5% CO2. Culture flasks were observed 

using Nikon Eclipse TE200 microscope 24 hours post enzyme digestion for contamination 

and cell growth, 2.5ml of media was removed from culture and replenished with fresh 

complete media. 

 

2.1.1.3 Cell culture refresh 

Cell cultures were refreshed every other day in a class II laminar air hood. Spent media 

was aspirated from the flask and fresh complete media, as described in section 2.1.1.1 

was added to a final volume of 5ml in a T25, 10ml in a T75 and 25ml in a T175.  

 

2.1.1.4 Cell passage 

Observation of cell growth and contamination was performed daily using Nikon Eclipse 

TE200 microscope (magnification x400), passage of cell culture was carried out when 

cells reached ~80% confluenency. All procedures were performed in a class II laminar 

airflow hood. Culture was washed with 1ml of HBSS to remove any residual growth 

media along with both calcium and magnesium ions. 1ml 0.05% Trypsin – EDTA was 

introduced to T25 culture flask and placed on 37oC warming tray for 1 – 2 minutes to 

promote cellular detachment, 9.5ml of growth media was added to neutralise the 

enzymatic effects of trypsin – EDTA once cells were seen to be detached from base of 

flask. 10ml of cell suspension was removed from T25 and transferred to a sterile vented 

T75 taking care to distribute cell suspension evenly across the base of the flask, 4.5ml of 

growth media was introduced to primary T25 culture flask for residual cells, both flasks 

were then incubated at 37oC with 5% CO2.  
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2.1.1.5 Harvesting fibroblast cell culture 

Cultures were observed for optimal growth phase 24 hours post passage using Nikon 

Eclipse TE200 microscope, mitotic doublets appeared rounded and were abundant in 

this phase. All procedures were carried out in a class II laminar airflow hood. 50µl of 

Colcemid (10mg/ml) was added to a T25 flask to arrest the cells at metaphase, and 100µl 

of Colcemid (10mg/ml) to T75 culture flask, cell cultures were then incubated for 30 

minutes at 37oC in a humidified incubator. Cultures were washed with 1ml (T25), 2 ml 

(T75) HBSS; rinse was then collected in a 15ml falcon tube. Trypsin – EDTA (0.05%) at a 

volume of 1 or 2ml, dependent on flask volume was the introduced to cell culture and 

placed on a warming tray at 37oC to detach cells. A 2 – 4ml of HBSS wash was used to 

dislodge the remaining cells from the base of the flask, cell suspension was the 

transferred to the 15ml falcon tube which contained the initial HBSS wash. Cell 

suspension was centrifuged at 1000 rpm for 10 minutes, supernatant was removed to 

approximately 0.5ml and the cell pellet resuspend gently using a Pasteur pipette. In 

order to swell the cells 5ml of 0.075 M potassium chloride (KCL) was added in a dropwise 

motion to the cell suspension and left to incubate for 20 minutes and 37oC. Fixative was 

prepared using a 3:1 ratio of methanol and analytical grade glacial acetic acid; 3 drops 

were introduced to the hypotonic cell suspension while gently agitating the tube, 

chromosome preparation was then centrifuged at 1000 rpm for 10 minutes. Supernatant 

was discarded as before and the pellet agitated gently using a Pasteur pipette to 

resuspend, cell suspension was held in a Pasteur pipette whilst 5ml of ice-cold fix was 

then added to the falcon tube before the cell suspension was introduced in a dropwise 

motion.  This step was repeated 3 – 5 times in order to clean the sample. 
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2.1.2 Company Sample Contributions 

Company 2017 2018 (August) 2019 

Company 1 72 5 7 

Company 2 127 27 0 

Company 3 21 0 0 

Company 4 226 103 104 

Company 5 51 0 0 

Company 6 25 6 0 

Company 7 0 161 82 

Company 8 0 0 0 

    

Total 522 302 193 

Table 2-1. Table to show individual pig breeding company blood sample contributions between 2017 and 

August 2019. Companies anonymised as per request.   

2.1.2.1 Blood lymphocyte culture 

Mammalian blood acquired via standard phlebotomy into heparin tubes, 500µl of 

uncoagulated, whole blood was added to 9.5mls of PB Max karyotyping media, pre-

warmed to 37oC in a T25 culture flask, and incubated for 72 hours at 37oC, 5% Co2. 

Culture flasks agitated lightly to resuspend the cell layer formation; 100µl of colcemid 

(10mg/ml) was added to prevent spindle formation causing metaphase arrest and 

incubated at 37oC for 30 minutes. The suspension was transferred to a 15 ml falcon and 

centrifuged for 5 minutes at 1,900 rpm. The supernatant was discarded and the pellet 

suspended, 0.075M potassium chloride (KCl) was added to 6ml, drop-wise, whilst 

agitating, causing the cells to swell and lyse through osmosis, the solution was then 

incubated for 12 minutes at 37oC. Ice-cold fixative is added drop-wise to the side of the 

falcon tube to a final volume of 14ml before the tube is inverted to mix the solution and 

centrifuged for 5 minutes at 1,900 rpm. Supernatant discarded and cell pellet resuspend, 

fixative was then added drop-wise to 5ml before centrifugation at 1,900 rpm for 5 
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minutes. A further 4-5 fixative washes were applied to clean the chromosome 

preparation and then stored at -20oC.  

 

2.2 DNA extraction 

2.2.1 Genomic DNA extraction (kit) 

Genomic DNA was extracted using the Qiagen DNEasy Blood and Tissue kit.  

Manufacturer guidelines were followed throughout. Tissue samples were obtained 

through biopsy and blood samples through standard phlebotomy. Cell cultures were 

established within the University of Kent. 

2.3 BAC selection 

2.3.1 Positional BAC selection – bovine translocation screening  

BACs used in the screening of cattle for translocations were developed by Dr Rebecca 

O’Connor. BAC clones were isolated using the Btau 4.6.1 NCBI genome database using 

BACS from the CHORI-240 bovine BAC library. BACs were selected from the subtelomeric 

region of the both the p and q arm of each chromosome, or the most proximal and distal 

region of each chromosome when acrocentric.  

 

2.3.2 Conservation score BAC selection – bovine cross species analysis  

Bovine BACs used in preliminary mammalian cross species analysis were derived from 

past research carried out at the Institute of Cytology and Genetics, Russian Academy of 

Sciences (Larkin et al., 2006ab). BACs used in this study were anchored to BTA 

chromosome 19. Bovine BACs used for translocation screening (refer to 2.3.1) were also 

used for cross species analysis.  
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2.3.3 BAC selection – human (conservation score selection) 

BAC selection was performed by colleagues at RVC using the following in silico genome 

sequence analysis. Conservation score (mean all) obtained through PhastCons; 

PhastCons is a program for identifying evolutionarily conserved elements in a multiple 

alignment, given a phylogenetic tree, whereby conservation of a given sequence is 

scored from 0 to 1. All bioinformatic analysis performed at RVC by Dr Larkin and group.  

 

2.3.4 BAC selection – mouse X chromosome (conservation score selection) 

BAC selection was performed by Dr Peter Ellis (University of Kent) and Dr Benjamin 

Skinner (Cambridge University). BACs were selected by aligning the published X 

chromosome sequences from a wide of mammals (human, rat, mouse, pig, cow, rabbit 

and sheep). Alignment information identified putative large-scale rearrangements 

between mouse, rat and human X chromosomes. Mouse BACs were isolated from 

synteny blocks, where possible BACs were selected from each of the block. For each 

candidate BAC sequence, the BAC end sequences were downloaded and BLAST back 

against the mouse and rat genomes. Confirmation was then achieved through BAC 

labelling procedures and FISH analysis (refer to section 2.6). 

 

2.4 Generation of labelled FISH probe 

2.4.1 LB broth preparation 

10g of LB broth (Sigma) was added to 500ml of ddH2O and autoclaved at 120oC for 30 

minutes, solution was left to cool to ~50oC whereby 300µl of chloramphenicol (25mg/ml) 

(Sigma) an antibiotic to isolate E.coli containing the BAC, was added producing a final 

concentration of Chloramphenicol of 15µg/ml. 
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2.4.2 LB agar preparation 

10g of LB agar (Invitrogen) was added to 500ml of ddH2O and autoclaved for 30 minutes 

at 120oC. Solution was left to cool to ~50oC whereby 300µl of chloramphenicol was 

added resulting in a final concentration of 15µg/ml. Agar solution was then poured into 

sterile plastic Petri dishes to an approximate volume of 10ml and left to set overnight at 

4oC.  

 

2.4.3 BAC Glycerol stock  

A sterile p10 pipette tip was inserted into the agar stab of each selected BAC clone and 

placed into a sterile 50ml falcon tube containing 30ml of LB broth, as mentioned in 

section 2.4.1. The culture was moved to a 37oC, 140rpm shaker and left over night. In 

the morning of the following day 10µl of the liquid culture was then streaked over the 

LB agar plate using a sterile pipette, and left overnight in a 37oC incubator.  Post 

incubation two colonies were selected from the plate using a sterile pipette, both were 

then transferred to a 15ml falcon tube containing 5ml of LB broth/7% glycerol, and left 

overnight in a 140rpm shaker at 37oC. On the following day 2ml of the BAC containing E. 

coli solution was removed and stored at -80oC. 

 

2.4.4 Plating BACs and Isolation  

A sterile p10 pipette was inserted into the frozen glycerol stock of the selected BAC, the 

culture was streaked over a LB agar plate and left to culture overnight in a 37oC 

incubator. The plate was washed with 2ml of sterile phosphate buffered saline (PBS), the 

colonies were removed into the PBS using a disposable Pasteur pipette and transferred 

to a 2ml micro centrifuge tube.  The solution was centrifuged at 8,000rpm for 3 minutes, 

whereby the QIASpin Mini Prep kit (Qiagen) was used to isolate DNA using the 

manufacturers protocol.  

 



Rebecca Jennings 

79 

 

2.4.5 DNA amplification 

Prior to amplification the samples were pulsed centrifuged and the DNA concentration 

of each selected BAC was measured on a spectrophotometer (NanoDrop – 

ThermoScientific). DNA extracted from E. coli was then amplified using illustra 

GenomiPhi V2 DNA Amplification Kit (GE Healthcare). The kit contents and DNA samples 

were thawed and stored on ice. 3µl of the DNA sample was added to 27µl of sample 

buffer, in a labelled 0.5ml tube and pulse centrifuged, the samples were incubated for 

3mins at 95oC in a thermocycler, to denature the template DNA, and then placed on ice. 

A master mix containing both enzyme and reaction buffer was created, enzyme volume 

required calculated at a ratio of 3µl x the number of sample tubes x 1.2, and the reaction 

buffer volume calculated at 9x the enzyme volume, 30µl was then added to the cooled 

DNA probes, samples were then mixed, centrifuged and dry incubated for 1.5hrs at 30oC 

which permitted amplification. Samples were placed in a water bath for 10mins at 65oC 

to inactivate the enzyme, then stored on ice. 60µl of MBG H20 was added, along with 

12µl of sodium acetate/EDTA buffer (50ml of 3M Sodium acetate (pH8) and 50ml of 0.5M 

EDTA (pH8)) followed by 300µl of 100% ethanol, samples were then mixed via inversion 

and centrifuged for 15mins at 11,000rpm. Supernatant was discarded and 500µl of 70% 

ethanol was added, samples were centrifuged for 2mins at 11,000rpm, supernatant was 

removed and the pellet was pulse centrifuged, remaining ethanol was discarded, 

samples were then left for 15mins in a dry incubator to remove any residual ethanol. 

60µl of Tris-HCl buffer was used to resuspend and stored at 4oC overnight. 

 

2.4.5.1 Incorporation of fluorophore (Nick translation) 

On the following day the samples were pulsed centrifuged and the DNA concentration 

was measured using a spectrophotometer (NanoDrop, ThermoScientific). Required DNA 

concentration was 166.5ng/µl, samples were removed if below required concentration 

and diluted with 10mM Tris-HCl buffer if above. The volume of Tris-HCl required to dilute 

sample was calculated as follows – DNA concentration multiplied by sample volume 
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(12µl), divided by the concentration required (166.5ng/µl) and subtract the total volume 

(12µl). 

Probes were prepared using diluted DNA sample. 12µl was transferred to a 0.2ml PCR 

tube in addition to 10µl of Nick Translation buffer (NT buffer (Cytocell)); 10µl 

Dithiothreitol (DTT); 8µl NucMixA (Cytocell) 4µl DNA Polymerase I (Promega); 1.5µl FITC-

Fluorescein-12-UTP (Roche); 1.5µl Texas-Red dUTP (Invitrogen), colour of fluorophore 

used was determined through position relative to one another, 5µl of a 1:1000 dilution 

of DNase (Roche) and 49.5µl of MGH2O, samples were then pulse centrifuged and 

transferred to thermocycler. Program set to run at 15oC constantly for 1 hour and 40 

minutes, followed by a heat inactivation step set for 10 minutes at 65oC.  

 

2.4.5.2 Agarose gel preparation 

To visualise DNA products a 1.4% agarose gel was prepared using 0.42g of agarose 

(Invitrogen) dissolved into 30ml of 1xTris/Borate/EDTA (TBE (Invitrogen)). The solution 

was heated to dissolve agarose, 1µl of SyberSafe (Invitrogen) was added when cool, the 

solution was poured into a comb containing gel cassette and left to set. 2µl of a loading 

dye was added to 2µl of DNA sample in a new 0.5ml tube and mixed, the 4µl mixed 

solution was then placed into the wells alongside a 100bp DNA ladder (Bio). The gel 

electrophoresis was then set for 25 minutes at 90 volts, the products were then 

visualised using a trans-illuminator. Probes that were cut to the desired length produced 

smears under ~500bp. 

 

2.4.5.3 Probe purification 

Probes were purified using the QIQuick Nucleotide Removal kit (Qiagen). Manufacturers 

protocol followed throughout.  

 



Rebecca Jennings 

81 

 

2.5 Fluorescent in situ hybridisation – standard  

Fixed chromosome preparations were centrifuged at either 1,000rpm for 10 minutes if 

derived from cell culture, or 1,900rpm for 5 minutes if derived from blood culture. 

Supernatant was removed to ~0.5ml and agitated to resuspend. 10µl of chromosome 

solution was dropped from a height of ~3 inches on to a labelled glass slide and left to 

dry. Slides were immersed in 2xSSC (saline-sodium citrate) for 2 minutes, followed by a 

series of dehydrating ethanol washes, 70% ethanol for 2 minutes, 85% ethanol for 2 

minutes and 100% ethanol for 2 minutes, slides were left dry. Probe mix was made with 

Hybridisation solution I (Cytocell), a formamide containing solution that destabilises the 

helical state of DNA, 2µl of a species dependent HyBloc competitor DNA (Applied 

Genetics Laboratories); 1.5µl of labelled FITC probe and 1µl of labelled Texas-Red probe 

resulting in final total volume of 10µl. Whilst the slides are drying the probe mix was 

loaded on to a 22x22mm coverslip, and placed on 37oC hotplate to warm. The 

coverslip/probe mix was inverted and placed onto the slide and left for 2 minutes, slides 

were then removed and the coverslips sealed with rubber cement. The slides were 

placed on a 76oC hotplate for 2 minutes, to denature both the target DNA and the probe 

simultaneously, the slides were transferred to hybridisation chambers and left to 

incubate in a 37oC incubator. The length of time was dependent on the investigation, 

same species FISH required an overnight hybridisation, cross species FISH required 72 

hours’ hybridisation this permitted the labelled probe DNA to anneal to the target DNA. 

 

2.5.1 Second day FISH 

Post overnight incubation (same species) the rubber cement and coverslips were 

removed from the slide and immersed in 0.4% SSC at 72oC and left for 2 minutes, to 

remove any unbound probe, followed by a 30 second wash in 2xSSC - 0.05% tween at 

room temperature. Cross species FISH omits the initial 72oC wash, this prevents the 

disruption, and removal of any loosely bound probe. 10µl of DAPI (Vectorsheild) was 
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placed onto the area which contained the metaphase preparation and a 22x22mm 

coverslip placed on top and left to develop for 10 minutes. 

 

2.5.1.1 Octochrome device set up 

Chromosome preparations were centrifuged and resuspend as mentioned in section 2.5. 

4µl of the metaphase solution was dropped on to alternative boxes of the 8 box template 

slide, as shown in figure 2-1, followed by 4µl of fixative (3:1 methanol: acetic acid) and 

left to dry, remaining boxes were then dropped as previously described. Fluorescently 

labelled probes, FITC (1µl) and TexasRed (0.5µl) were used alongside species dependent 

HyBloc (1µl) and MGH2O (2.5µl) to a final volume of 4µl, the probe mix was the pulse 

centrifuged and stored at 4oC until required. Octochrome device was placed on a 37oC 

hotplate and 2µl of the probe mix solution was transferred to, and left to dry on to each 

box of the device, once dried 2µl of Hybridisation solution I (Cytocell) was used to 

rehydrate the probes before using the square boxes to align the slide and device 

together and left for 8 minutes at 37oC. Target DNA and probes were denatured 

simultaneously for 5 minutes at 76oC and left to hybridise in a 37oC water bath overnight 

if same species or for 72 hours if cross species. Post hybridisation washes were 

performed as described in section 2.5. 

 

 

Figure 2-1. Octochrome schematic. Octochrome device slide. Device allows for unique bespoke probe 

design and the ability to run eight BAC probe investigations on one slide. 
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2.5.1.2 Multiprobe device set up 

Multiprobe device (Cytocell) was used to screen agricultural animals for chromosomal 

translocations. Species specific probes were isolated by Dr Rebecca O’Connor and 

incorporated into the multiprobe device by Cytocell. Boxes contained a unique probe 

combination for each chromosome, distal p-arm (labelled in FITC) and distal q-arm 

(labelled in TexasRed), the proximal sequence was isolated if the chromosome was 

acrocentric.  

 

Figure 2-2 Bovine multiprobe FISH device. Probe set up design of the bovine multiprobe device with each 

square containing a TexasRed and FITC labelled probe for the proximal (p) and distal (d) of each 

chromosome respectively.  

 

A master mix was made for each chromosome combination (eg 1pq), containing 12µl 

MGH2O; 3µl FITC labelled probe and 3µl TexasRed labelled probe. 1.2µl of the probe 

master mix was air dried onto the device square that corresponded to the chromosome 

number, as shown in figure 2-2. A complementary slide containing 24 boxes was used, 

2µl of the chromosome preparation was dropped onto each box of the slide, followed 

by 2µl of fixative and allowed to dry, the slides were then subjected to a series of washes, 

as described in section 2.5. In order to rehydrate the probe combinations that had been 



Rebecca Jennings 

84 

 

left to dry on the device, 1µl of the formamide buffer Hybridisation solution I (Cytocell) 

was applied to the individual boxes of the device, and the chromosome preparation slide 

inverted and placed over the corresponding boxes. Device and slide were left to 

hybridise for 10 minutes. Target DNA and labelled probes subsequently denatured for 5 

minutes at 76oC. Devices were transferred to a hybridisation chamber left to float in a 

37oC water bath overnight. Post hybridisation washes, as mentioned in section 2.5.1 

were performed on the slides the following morning.  

 

2.6 Image analysis 

2.6.1 Microscopy 

Imaging performed on an Olympus BX-61 epifluorescence microscope with cooled CCD 

camera, filters used to visualise chromosomes included DAPI, FITC and Texas Red, 

SmartCapture 3 software (Digital Scientific) was then used to capture the images. Images 

throughout this work are shown at x1000 magnification. 

 

2.6.2 Success rate definition 

Success rate is defined as the number of BACs (in a specific group eg positional BACs or 

conservational) that produced a punctate, clear signal divided by the total number of 

BACs in that group multiplied by 100 to create a percentage score.  

 

2.6.3 Karyotype Production  

SmartType (Digital Scientific) was used to analyse the karyotypes of the species used 

throughout this thesis. SamrtType (Digital Scientific) was modified to accommodate the 

range of species investigated.  

2.6.4 FLpter Analysis 

To analyse chromosomal rearrangements, labelled probes were used as markers to 

identify their position along a chromosome, this was achieved through the use of the 
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ImageJ plugin (FLpter), whereby both chromosome length and marker position were 

measured. The mean value of chromosome length and position was recorded ±SD. Probe 

order was determined from the mean values recorded from FLpter analysis. 

 

2.7 Identification of genes located within BACs 

The genome browsers UCSC and Ensembl were used to confirm the predicted 

chromosomal location of genes located within labelled BAC probes, all of which had been 

determined through karyotype and FISH analysis. NCBI Clone finder was used to identify 

genes located within high success rate BAC clones of the reference species. Ensembl’s 

comparative genomics tool was used to locate the gene in the reference species, and 

isolate the chromosomal location of that gene in multiple mammalian species through 

regional comparison.  

 

2.8 Sex determination 

2.8.1 SRY primers and primer design 

Initially, primer pair sequence for bovine SRY was taken from published work (De Lorenzi 

et al., 2018). PrimerBlast was used to design primers for the regulatory element of SRY 

and bovine SRY due to amplification failure using primers from published work. To 

achieve successful amplification and isolation the following parameters were 

considered: GC content, self 3’ complementary (score <2) and primer length.  
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Primer Sequence 
Amplicon 

length 
Annealing 
Temp (oC) 

BTA SRY -forward  
(De Lorenzi et al., 
2018) 

AAACAGTGCAGTCGTATGCTTCTGC 

301bp 

58.1 

BTA SRY -reverse 
(De Lorenzi et al., 
2018)  

CTTCCTTACTCTCGCTAACAAAGGC 58.1 

BTA SRY – forward 
(PrimerBlast) 

GGTATTGGGGGCGGAGAAAT 
874bp 

59.8 

BTA SRY – reverse 
(PrimerBlast) 

GAGCGCCTTTGTTAGCGAGA 60.7 

BTA – BSPF 
(Control) 

TTTACCTTAGAACAAACCGAGGCAC 

538BP 

58.3 

BTA – BSPR 
(Control) 

TACGGAAAGGAAAGATGACCTGACC 59.7 

Table 2-2. Table to show PCR primer sequence, amplicon size (Bp) and annealing temperature.  

2.8.2 Amplicon sequencing 

DNA sequencing was performed off site by Dundee University DNA services. DNA was 

sequenced directly from PCR product.  

 

2.8.3 Primer design 

Species specific oligonucleotide primers were designed to amplify sex determining 

regions in both the porcine and bovine genomes. NCBI was used to identify and isolate 

the regulatory elements and coding sequence for the SRY gene in the bovine genome. 

Primers were designed to consider the GC content and size of the amplicon using 

PrimerBlast.  

 

2.8.4 Primer rehydration 

Oligonucleotide primers were received lyophilised, to rehydrate and create a 100µM 

primer stock the number of nmol of primer was multiplied by 10 to give volume in µl 

required to create the primer stock (eg. 45.6nmol of primer requires 456µl of MGH2O). 
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Primers (Eurofins) were rehydrated with MGH2O using a sterile pipette, they were then 

pulse centrifuged and stored at –20oC.  

2.8.5 Multiplex polymerase chain reaction (PCR) 

Genomic DNA concentration was measured using a spectrophotometer (NanoDrop, 

ThermoScientific), DNA was diluted with MGH2O in a new microcentrifuge tube to a 

standardised concentration of 25ng, whereby it was pulse centrifuged and stored on ice.  

1µl of the primer stock was transferred to a new microcentrifuge tube along with 9µl of 

sterile MGH2O using a sterile pipette, creating a working stock concentration of 10µM 

and stored on ice. Master mix was produced containing 25µl PWO master mix (Roche), 

18µl MGH2O and 2µl primer pair mix (Eurofins) per reaction. DNA was then transferred 

to a sterile 0.2ml PCR tube along with 45µl of the master mix, whereby it was then pulse 

centrifuged and stored on ice.   

 

Step Target size 500-1000 bp 

1. Polymerase activation 95o C 2 minutes 

2. Denature 95o C 15 seconds 

3. Annealing 62o C for 30 seconds 

4. Extension 72o C for 30 seconds 

5. Repeat steps 2-4 30 cycles 

6. Final extension 72o C for 7 minutes 

Table 2-3. Table PWO master mix PCR conditions resulting in the bovine SRY product 874bp product 

2.8.6 KOD Hot Start (PCR) 

Bovine genomic DNA was standardised to 25ng throughout. PCR setup was performed 

in a sterile environment. A master mix containing KOD hot start buffer (1x), MgSO4 

(1.5mM), dNTPS (2mM), forward and reverse primers (0.5µM) and KOD hot start 

polymerase (0.02U/µl) was produced. All components were transferred into a sterile 

eppendorf. MGH2O was calculated to produce a total volume of 25µl. Reactions were 

then subjected to the conditions in table 2.2. 
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Step Target size 500-1000 bp 

1. Polymerase activation 95o C 2 minutes 

2. Denature 95o C 15 seconds 

3. Annealing 61.3o C for 30 seconds 

4. Extension 70o C for 20 seconds 

5. Repeat steps 2-4 40 cycles 

6. Final extension 75o C for 10 minutes 

Table 2-4. KOD Hot Start PCR conditions resulting in the bovine SRY 874bp PCR product. 

2.8.7 PCR gel preparation 

A 1.4% gel as described in section 2.4.5.2 was made to visualise the amplicons.  

 

2.8.7.1 DNA extraction from sperm 

Genomic DNA was extracted from buffered porcine sperm suspension. 50µl of sperm 

suspension was transferred to a clean microcentrifuge tube along with 1ml of wash 

buffer (150mM NaCl, 10mM EDTA pH 8.0) and mixed through inversion. The sample was 

then centrifuged for 10 minutes at 6,000g to pellet the sperm cells and the supernatant 

was discarded. 500µl of the wash buffer was used to resuspend the pellet before the 

sample was centrifuged for 2 minutes at 15,000g, the supernatant was removed and the 

pellet subjected to 300µl of a lysis buffer (500 mM NaCl, 100 mM TRIS, 10 mM EDTA, 1% 

sodium dodecyl sulphate (SDS), 100 mM DTT, pH 8.0) whereby the sample was incubated 

for 90 minutes in a 65oC water bath. Post incubation 150µl of 7.5M ammonium acetate 

was added to the sample to precipitate the dissolved proteins, the sample was then 

centrifuged for 10 minutes at 15,000g after this the supernatant was transferred to a 

fresh microcentrifuge tube and the tube containing the pellet discarded. In order to 

isolate the genomic DNA 900µl of isopropanol was supplemented to the tube and spun 

at 20,000g for 10 minutes, after this the supernatant was discarded and the pellet was 

washed in 500µl of 98-100% ethanol and centrifuged as before. To finish, the 

supernatant was removed and the pellet left to air dry at room temperature, after this 



Rebecca Jennings 

89 

 

the DNA was rehydrated in 20µl of TE buffer (1mM of EDTA, 10mM tris pH8.0) and stored 

at –20oC. The following morning the DNA samples were thawed and pulse centrifuged 

before the concentration was measured using a spectrophotometer (NanoDrop, 

ThermoScientific) and then returned to previous storage. 

 

2.9 Sperm FISH 

2.9.1 Sample preparation 

Porcine semen was retrieved through JSR Genetics, boar semen was sent in an extender 

buffer which is used to extend the life of the product, in order to remove this 2ml of the 

boar semen was transferred to a clean 15ml falcon tube and supplemented with 6ml of 

wash buffer (10mM NaCl, 10mM Tris pH7) and centrifuged for 5 minutes at 1,900rpm. 

After this, the supernatant was discarded and the sperm pellet was resuspend in a 

further 6mls wash buffer and centrifuged for 5 minutes at 1,900rpm, this was then 

repeated a further time. Finally, the supernatant was removed and the pellet was 

resuspend in ice old fixative (3:1 Methanol/Acetic acid) dropwise, the preparations were 

then store at –20oC. 

 

2.9.2 Sperm FISH  

Sperm preparation was centrifuged for 5 minutes at 1,900rpm and the supernatant 

discarded, the pellet is then supplemented with fresh ice-cold fixative and resuspend, 

concentration of sample was determined at this stage through dropping 10µl of the 

preparation on a clean glass slide and visualised under a bright field microscope. After 

this a further 10µl of the fixed sperm preparation is dropped onto a clean glass slide and 

transferred to a dry incubator for 20 minutes to age the preparation. In order to 

decondense the preparation the slide is immersed in 10mM DTT, 0.1M Tris pH8 for 20 

minutes, the slide was then washed twice in 2 x SSC for 3 minutes to rehydrate, a series 

of ethanol washes were used to dehydrate the sample preparation, the slide was then 
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left to air dry. Labelled probes were used to identify sex determining regions in a number 

of species, the probe mix components were as described in section 2.5 (5.5µl formamide 

based Hybridisation solution I (Cytocell), 2µl competitor DNA HyBloc (Applied Genetics 

Applications), 1.5µl FITC labelled probe and 1µl Texas Red labelled probe), for a final 

volume of 10µl. Standard FISH protocol as described in section 2.5 was continued. 

 

2.10 Statistics  

2.10.1 Chi-Square test 

Chi-square goodness of fit test was used to statistically compare the observed 

distribution of sex chromosome carrying spermatocytes against the expected ratio (50% 

X chromosome bearing and 50% Y chromosome carrying. Null hypothesis in this test 

assumes that there is no significant difference between the observed and expected, 

whereas the alternative hypothesis assumes that there is a significant difference 

between the observed and the expected. Excel 10 was used to calculate the chi-square 

and p-value for this work.  

 

2.10.2 Pearson correlation coefficient 

The Pearson correlation coefficient was used to assess the relationship/association 

between divergence time (Mya) and success rate (the number of clear FISH signals 

present in that species). The Pearson correlation coefficient was used as it provides 

information about the magnitude of the association, or correlation, as well as the 

direction of the relationship.  
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3 Comparative molecular cytogenetic study in mammals  

3.1 Specific aim 1. To develop a series of universally hybridising 

cytogenetic tools (BAC clones) based on sequence selection aimed at 

furthering the study of comparative genomics in mammals 

(Artiodactyla, Rodentia and Primates) 

3.2 Background 

It is well established that genome organisation influences genetic variation between 

closely rated, and divergent species. Moreover, differences in chromosome number, 

chromosome morphology and gene order direct evolution and variation, resulting in 

phenotypic differences between species (O’Connor et al., 2019). Initially, comparisons 

were achieved through karyotype analysis, whereby large-scale genomic differences 

were observed that included paracentric inversions, Robertsonian translocations and 

larger reciprocal translocations (Potter et al., 2017). Conventional banding techniques 

were initially used to recognize specific chromosomal patterns and resolve complex 

karyotypes, however this method requires extensive karyotype training and can prove 

error prone. (Pauciullo et al., 2014). Additionally, investigating the karyotypic 

rearrangements that differ between species using traditional methods has limitations. 

For example, banding analysis can only detect rearrangements that involve >3 Mb of 

DNA, while smaller intrachromosomal rearrangements are unrecognisable (Bishop, 

2010).  

 

Over the past 30 years, refinements in cytogenetic techniques have permitted karyotype 

analysis at a higher resolution than previously possible and this has been largely 

achieved through the advent of fluorescence in situ hybridisation (Bishop, 2010). Early 

investigations into chromosomal evolution in divergent species used flow-sorted, whole 

chromosome paint probes (Ferguson-Smith, Yang and O’Brien, 1998). One of the earliest 

reports of chromosome paint usage as a tool for genomic comparison was by Weinberg 
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in 1990 (Wienberg et al., 1990). At the time this technique contributed significantly to 

the identification of conserved homologous regions between divergent species (Levsky 

and Singer, 2003). Since then, numerous studies have utilized this method. For example, 

Schmitz et al (1998) applied flow-sorted porcine chromosome-specific paints to 

metaphase chromosomes of cattle, permitting direct comparison of these distantly 

related artiodactyl species using FISH, whereby the group identified a total of 44 

homologous segments, including the X chromosome. However, they described 

limitations to the use of such techniques, namely, smaller intrachromosomal 

rearrangements and gene order cannot be detected through the use of chromosome 

painting (Schmitz et al., 1998). More recently, in an attempt to increase the resolution 

achievable in comparative cytogenetics, Frohlich et al (2017) examined the karyotypic 

relationship between cattle and Cervidae species, using both chromosome paints and 

region-specific BAC clones derived from cattle, and discovered that cattle chromosomes 

26 and 28 are tandemly fused in one acrocentric chromosome in E. davidianus. 

3.2.1 Sequenced-based comparative analysis 

Over the past 40 years, genome sequencing and comparative analysis has improved 

immensely and the ability to sequence species inexpensively has resulted in the 

availability of sequence data from species that extends beyond animals of agricultural or 

medical interest (Damas et al., 2017). Today, high quality genome sequence information 

is available for many mammalian, and other vertebrate species, enabling genome 

assembly and comparison of evolutionarily divergent species. The ultimate goal of any 

genome assembly effort is to produce a sequence contig that spans the entire length of 

one chromosome, from the p terminus to the q terminus (chromosome-level) (Damas et 

al., 2017). However, it become apparent that draft, or even some so-called 

‘chromosome-level’ genome assemblies fail to span the entire length of a given 

chromosome, resulting in sub-chromosomal sized scaffolds (Damas et al., 2017). 

Moreover, they fail to provide sufficient comparative information regarding structure 

and organisation on a chromosome level (Lewin et al., 2009), contiguity of de novo 

genome assemblies ensures completeness and is essential for structural variation and 
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linkage analysis (Jiao et al., 2017). Today, newer sequencing techniques such as PacBio 

and Dovetail produce long-reads (LRS >10kb) that were expected to overcome the 

limitations faced when using NGS short-reads (150-300bp) to assemble to a 

‘chromosome level’ (Mantere, Kersten and Hoischen, 2019). However, unforeseen 

restrictions are emerging, including library preparation while LRS technologies require 

fresh material or intact cells and protocols for the isolation and handling of ultra-long, 

high molecular weight DNA all require improvement. Additionally, contigs do not span 

across chromosomal centromeres and heterochromatin blocks (Damas et al., 2017).    

Therefore, de novo sequenced genome assemblies are often highly fragmented, 

meaning that additional assembly algorithms are required to place together the NGS or 

LRS scaffolds into longer contigs. RACA is an example of this. RACA requires a fully 

assembled reference genome from the same order of the target species, where it then 

orientates and orders NGS sequence scaffolds, producing sub-chromosome-sized 

predicted chromosome fragments (PCF) (Kim et al., 2013). Additionally, computational 

tools like Evolution Highway Chromosome Browser can be used visualize the assembled 

data and compare the genomes of multiple species (Larkin and Farre-Belmonte, 2014). 

Larkin et al (2014) compared the genomes of 11 mammalian species including pig, using 

Satsuma synteny program, the block results were then visualized using evolution 

highway chromosome browser and comparative chromosome location established 

(Larkin., and Farre-Belmonte, 2014).  

 

In 2017, a novel approach was developed to upgrade fragmented, de novo sequenced 

NGS genomes to the chromosome level. The technique utilised a combination of 

computational algorithms, including RACA to order scaffolds into PCFs. PCR and 

computational verification was then applied to validate correct placement. Finally, PCFs 

were then applied to metaphase chromosomes of the target species using a universal 

set of avian BAC probes (Damas et al., 2017). This approach successfully upgraded 

fragmented NGS genome assemblies of five avian species (pigeon, peregrine falcon, 

budgerigar, saker falcon and ostrich). The resulting chromosme level assemblies 
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contained >80% of the genome and were comparable to similar sequencing and mapping 

techniques (O’Connor et al., 2018). To date, this combined approach is limited to avian 

species, with the exception of Larkin et al (2006) who reported a similar in silico and 

cytogenetic technique in mammals, whereby BACs assigned to cattle chromosome 19 

(BTA19) were mapped to mink chromosome 8 using FISH mapping (Larkin et al., 2006). 

In a study prior to this, Larkin et al (2006a) used BLASTn similarity search to anchor 

selected cattle BACs to human chromosome 17 (HSA17) and mouse chromosome 11 

(MMU11) sequences, with five blocks of synteny observed in the comparative map of 

BTA19 and HSA17 (Larkin et al., 2006a).  With this in mind, Larkin et al (2006b) expanded 

upon this work through the application of seven BACs, selected in aforementioned study 

(Larkin et al., 2006a), to metaphase chromosomes of the mink. Successful hybridisations 

were observed throughout, therefore establishing that BACs selected using genome 

conservation in silico analysis hybridised well to distantly related species. 

 

With the success of this combined approach in mind, the purpose of this study was to 

generate preliminary data using non-selected (positional) cattle BACs and sequence-

based selected cattle BACs, extracted from previous studies (Larkin et al., 2006ab), to 

examine if sequence-based selection increases hybridisation success rates in mammals. 

Finally, use this data to refine selection criteria in preparation to create a universal set 

of human BAC probes that hybridise across distantly related species, with the intention 

of mapping de novo sequenced genome to a chromosome level. To achieve this, human 

BACs were selected by colleagues at RVC with that selection based on genomic 

properties defined through previous avian work, and preliminary data reported in this 

study. The selection criteria included low repeat percentage, high mean all score and GC 

content (gene rich).  

 

The ultimate goal of any genome assembly effort is to create a contiguous sequenced 

read from the p terminus to the q terminus of each individual chromosome (Damas et 

al., 2017). Emerging techniques i.e. PacBio, BioNano and Dovetail still fail to achieve this 
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read length, this is demonstrated in the most recent assembly of the western lowland 

gorilla (Kamilah August 2019). In this work PacBio RSII was used to produce an assembly 

that consisted of 5,705 scaffolds, with 220 gaps between the scaffolds, meaning that 

multiple scaffolds span the length of each chromosome. To overcome this problem in 

birds a novel approach was developed to assembly de novo avian genome assemblies to 

a chromosome level, using a combination of computational algorithms and physical 

mapping of scaffolds to chromosomes, thus creating a universal panel of avian BACs that 

could be used to generate chromosome-level assemblies (Damas et al., 2017). The 

purpose of this study was to establish whether a similar feat can be achieved in mammals 

through the use of BAC probes previously isolated in Artiodactyls (cattle), rodents (mice) 

and primates (humans). 

 

3.2.2 Artiodactyla 

The mammalian order Artiodactyl comprises of around 200 extant species which are 

grouped taxonomically into ten families, including Bovidae, Cervidae and Suidae (Rubes 

et al., 2012; Kulemzina et al., 2009). Species within this order vary dramatically, both 

phenotypically and karyotypically. For example, the Indian muntjac (Muntiacus muntjak) 

possesses the lowest diploid number observed in mammals (2n=6/7), whilst the 

presence of B chromosomes has been identified in the Siberian roe deer (Capreolus 

pygargus, 2n = 70 + 1-14 B's) (Graphodatsky., et al, 2011). For this reason, and due to 

the agricultural domestication of certain species found in this order (pig, sheep cattle) 

they are of interest to scientists globally, partly due to their economic value. Multiple 

research programs have sought to identify the karyotypic relationships between closely 

related species in this Order. Originally, this was performed through conventional 

cytogenetic approaches which included the comparison of chromosome banding, (see 

section 2.6.1.1) (Kulemzina et al., 2009). Using a traditional method, it was proposed by 

Wurster and Benirschke (1968), that the ancestral Bovidae karyotype was similar to that 

of present-day cattle (2=60), adding that the karyotypic evolution observed in Bovids 

derived primarily from Robertsonian translocations). Subsequently, comparative 
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analysis of livestock species was limited to a small set of gene markers, at that time only 

70 genes had been mapped between sheep and pig and around 140 between cattle and 

pig (Frönicke and Wienberg, 2001). In the decade that followed, comparative analysis 

highlighted the importance of chromosome painting mediated through FISH, which 

served to provide an overview of the major conserved homology between two divergent 

species, defining the boundaries of homology. As discussed throughout this thesis 

comparative genomics has moved into a new era, analysis now occurs at the sequence 

level. However, sequence data alone fails to answer certain basic biological questions 

pertaining to karyotype (chromosome) evolution and speciation events (Damas et al., 

2017). Moreover, the need to develop a method to physically anchor sequence reads to 

their specific chromosome was addressed in avian species, and this work demonstrated 

that Order-specific BACs may facilitate the same in mammals. Therefore, it is of scientific 

interest to develop a panel of BACs that would assist in the de novo assembly of genomes 

of species from within the Artiodactyl Order. A preliminary panel is described in this 

study. 

 

3.2.3 Rodentia  

Rodentia is the largest mammalian Order, constituting almost half of all mammals with 

over 2000 extant species including mice, rats, hamsters and voles. Rodents are 

characterised by rootless, continuously growing incisors that are perpetually sharp due 

to gnawing and chewing. The basic high-level taxonomy of Rodentia is divided into the 

infraorders Hystricognathi and Sciurognathi which are characterised by the angle of the 

lower jaw in relation to the incisors, first recognised by Tullberg in 1899. It is estimated 

that the lineage which led to the last common ancestor of mouse (Mus) diverged from 

humans approximately 90 million years ago (Kumar et al., 2017). Due to phylogenetic 

and physiological similarities the mouse has served as a model for human biology and 

disease for many years. Paired now with the ability to create transgenic, knockout and 

knockin mice means that they are a powerful research tool resulting in an increase in 

their use (Perlman, 2016). Therefore, considerable scientific interest has been directed 
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towards the mouse. Numerous genomic studies have highlighted the genetic 

homologies between humans and mice. For example, early studies found that the mouse 

genome is 14% smaller than that of humans and at the nucleotide level approximately 

40% of the human genome will align to the mouse genome (Waterson., et al 2002). 

Previously, it was found that the ancestral mammalian X chromosome gene order is 

retained in a number of species including, cat, pig, horse and humans (Sandstedt and 

Tucker, 2004). However, the order of genes located on the mouse X chromosome is 

rearranged when compared to other mammalian species, indicating chromosomal 

rearrangement during evolution of this species (Sandstedt and Tucker, 2004). In addition 

to this, early gene linkage efforts identified that the gene order on human Xq is almost 

the same as on rat X chromosome, suggesting that only small number of 

intrachromosomal rearrangements have occurred between human Xq and rat X. This is 

in stark contrast to the reported rearrangements observed between rat X and mouse X 

(Kuroiwa et al., 2001). Recent phylogenetic analysis predicts that the mouse diverged 

from the rat approximately 20 million years ago (Kumar et al., 2017). With this in mind, 

a small panel of 8 BACs were selected using comparative alignment tools which enabled 

detection of syntenic regions on the X in both rat and mouse. Once verified on the mouse 

the BACs were then used to investigation X chromosome evolution in rodents. 

 

3.2.4 Primates 

It is well established that humans are great apes, sharing many physiological and 

anatomical elements with both gorillas and chimpanzees, these similarities were initially 

described by Darwin and Huxley in the first evolutionary studies investigating human 

origin (Darwin and Huxley, 1863). Archaeological and phylogenetic analysis predicts that 

the human – chimpanzee speciation event occurred approximately six million years ago, 

while the human – gorilla speciation event happened roughly ten million years ago 

(Scally et al., 2012). Any comparative effort initially begins by comparing humans and 

primates. Chu and Bender (1962) were the first to compare karyotypes of human and 

lemurs, commenting only on chromosome number and morphology (Chu and Bender, 
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1962). Throughout the 1970s, as cytogenetic techniques improved and chromosomal 

bands could be visualized, again the human karyotype was compared to the primate 

counterparts (Ferguson-Smith et al., 2005). Similarly, human and primate karyotypes 

were the first to be examined when chromosome painting was introduced in the late 

1980s. Moreover, cytogenetic techniques have improved, and the resolution obtained 

using chromosomes paints has increased in parallel, thus permitting the identification of 

numerous inversions, insertions and translocation throughout the different primate 

species (figure 3-1).  

 

Figure 3-1. Comparison of chromosomes in primates using chromosome paints. Colour-banded 

chromosomes of human, chimpanzee, gorilla and orang-utan, arranged according to the numbering 

system of the human ideogram. Note the 5;17 translocation in the gorilla and the numerous inversions 

involving chromosomes 5, 9 and 17 in chimpanzee, and 8, 9, 10, 12, 14 and 18 in gorilla, and 3, 7, 9, 11, 12 

and 20 in orang-utan. Chromosomes in each cases colour-banded using multicolour gibbon probe set 

(Harlequin FISH, Cambio). Source: From Ferguson-Smith et al. (2000). 
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3.3 Specific aims 

The specific aims of the experiments described in this study were as follows: 

 

 Specific aim 1a. Cross-species analysis of a set of pre-existing cattle BACs on 

Artiodactyla species  

 Specific aim 1b. To use a panel of 7 cattle BACs originally applied by Larkin et al 

(2006), (and selected on the basis of sequence homology) to assess the extent to 

which they hybridize universally across a series of phylogenetically diverse 

mammals.  

 Specific aim 1c. To proactively to generate a preliminary panel of sequence-based 

BACs originally derived from cattle, mouse X chromosome and human and ask the 

extent to which they hybridize across a range of mammalian species, and resolve a 

series of previous intractable evolutionary changes. 

 Specific aim 1d. To test the hypothesis that sequence selection significantly improves 

BAC hybridization efficiency cross-species and speculate as to the prospects of a 

universal mammalian BAC set as was developed for birds (Damas et al., 2017). 

 

3.4 Species Selection Criteria  

Artiodactyl species used in this work are described in section 3.1.2, species were selected 

due to karyotypic differences which include diploid number, chromosome morphology 

and evolutionary distance from reference. Karyotypes were produced for four of the five 

species analysed in this chapter, species selected are shown in table 3-1, alongside 

taxonomic groupings and the evolutionary distance from the reference Bos taurus 

(Kumar et al., 2017).  
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3.5 BAC selection criteria and conservation score definition  

Individual order specific BAC selection is detailed in section 2.3. It is important to note 

that BACs selected from Larkin et al (2006ab) were used to test the hypothesis that 

evolutionally conserved BACs would hybridise across distantly related species. Larkin et 

al (2006a) used BLASTn similarity search to anchor selected cattle BACs to human 

chromosome 17 (HSA17) and mouse chromosome 11 (MMU11) sequences, with five 

blocks of synteny observed in the comparative map of BTA19 and HSA17 (Larkin et al., 

2006a) (see section 3.1.1). Therefore, in silico studies by Larkin et al (2006ab) identified 

seven high scoring, evolutionally conserved chromosome 19 cattle BACs, all of which 

mapped to mink chromosome 8p, human chromosome 17 and mouse chromosome 11 

(Larkin et al., 2006).  

 

All conservational BACs were selected by RVC. Throughout the duration of this study, 

selection algorithms and computational platforms improved. Conservation score (shown 

as mean all throughout this work) was obtained via PhastCONs (Phylogenetic, Analysis, 

with Space/Time models) platform, whereby conservation level is scored from 0 to 1. All 

bioinformatic analysis was performed by Dr Denis Larkin and his team at RVC.  

 

Species Divergent time (MYA) relative to 

cattle (Kumar., et al 2017) 

Diploid number 

Waterbuck 24 mya 52 / 54 

Red lechwe 24 mya 46 

Sheep 24 mya 54 

Mouse deer 44 mya 32 

Pig 64 mya 38 

Table 3-1. Karyotypic analysis of species used in specific aim 1a. Divergent times obtained from Kumar et 

al (2017).  
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BAC Clone ID Chromosome arm Mean all % repeats 

GC 

Content 

CH240-207O5 19 q 0.1186 28.7051 56.1653 

CH240-233H17 19 q 0.2805 26.4699 40.792 

CH240-253B15 19 q 0.289 25.0213 47.9061 

CH240-403K17 19 q 0.2269 25.5416 53.3137 

CH240-459E1 19 q 0.0789 41.4381 45.4545 

CH240-45D9 19 q 0.1671 25.2656 42.6868 

CH240-67N13 19 q 0.1359 29.0167 51.3158 

Table 3-2. Table to show cattle chromosome 19 BACs selected based on conservation and previous in silico 

analysis that mapped them to human chromosome 17 and mouse chromosome 11. Cytogenetic analysis 

mapped the BACs to mink chromosome 8. BACs taken from (Larkin et al,.2006). Table contains location on 

chromosome, mean all conservation score, repeat % and GC content. 

 

3.6 Results 

3.6.1 Specific aim 1a. Cross-species analysis of a set of pre-existing cattle BACs on 

Artiodactyla species  

 

Overall 

Cross-species hybridisation was observed in all five (Waterbuck, Red lechwe, Sheep, 

Chevrotain, Pig) species examined. However, success rates (refer to section 2.6.2) 

ranged from 80% to 5%, declining with evolutionary distance (table 3-4). The full set of 

BAC-specific results can be found in table 6. The results generated from this work 

indicate that BACs selected for position alone hybridised to well to other Bovids, as 

demonstrated by the results obtained using red lechwe (80%). However, when BACs 

were applied to metaphase chromosomes of the sheep this result dropped to 5%, which 

was more likely due to suboptimal chromosome preparation that prevented complete 

analysis. Additionally, the results suggest that when positional BACs are applied to 

species that fall beyond the family Bovidae hybridisation success falls to around 16%. For 
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this reason, it was decided that in order to create a universal set of BACs, that hybridise 

across distantly related species, BAC selection would require in silico analysis. Therefore, 

BAC selection for subsequent work was performed by colleagues at RVC using 

PhastCons. 

Defassa waterbuck exist in two distinct karyotypic forms, with a polymorphic fusion of 

chromosomes 6 and 18 present in some populations. The results here show that the 

waterbuck used in this study all possess a 2n=54 karyotype, illustrating the absence of 

this fusion in this population. Results obtained through the use of the novel FISH-based 

method, described in section 2.5.1.2, were consistent with previous publications, with 

defassa waterbuck and red lechwe exhibiting the centromeric fusion of BTA 1;19 and 

BTA 2;25, (Kingswood et al., 2000); see also 3-2. Bespoke BAC combinations were 

incorporated into blank boxes in the comparative system, as shown in figure 2-2, 

permitting all hybridisations on the same slide. 

 

Species Divergent time 

(MYA) relative to 

cattle  

Diploid number BAC Success Rate 

American bison 5 mya 60 93% 

Waterbuck 24 mya 52/54 47% 

Red lechwe 24 mya 46 80% 

Sheep 24 mya 54 5% 

Mouse deer  44 mya 32 15% 

Pig 64 mya 38 17% 

Table 3-3. Overall success rate of subtelomeric cattle BACs on metaphase chromosomes of American 

bison, Defassa waterbuck, Red lechwe, pig, Javan chevrotain, and sheep. Divergence time and 

chromosome number included. Divergent times - Kumar et al (2017). 
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Figure 3-2. Labelled BAC for cattle chr 25 CH240-325L8 FITC (d) and cattle chr 2 CH240-227E16 TxRed (q) 

on metaphase chromosomes of the defassa waterbuck, illustrating fusing on cattle chromosomes 2 and 

25. Arrows applied to indicate signals observed. (Magnification x1000) 

 

Figure 3-3. Labelled BACs for cattle chromosome 5. CH240-326L8 (d) in FITC and CH240-248M21 (q) in 

TxRed hybridised to metaphase chromosomes of Red lechwe. Arrows applied to indicate signals observed.  

(Magnification x1000)
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BAC Clone ID Chr Arm Mean 
All 

%In 
Repeats 

GC Success BBA 
5 mya 

OAR  
24mya 

KEL 
25 mya 

KLE 
24mya 

TNI 
44 mya 

 SSC 
64 
mya 

CH240-321O2 1 p 0.0508 45.292 46.047 4 Yes No Yes Yes Yes No 

CH240-96M6 1 q 0.1125 46.369 41.666 4 Yes No Yes Yes Yes No 

CH240-457J20 2 p 0.0191 73.388 43.318 2 Yes No Yes No No No 

CH240-227E16 2 q 0.0499 41.285 51.256 3 Yes No Yes Yes No No 

CH240-154A5 3 p - - - 1 No No Yes No No No 

CH240-302G6 3 q 0.0363 43.558 45.999 4 Yes No Yes Yes Yes No 

CH240-416O20 4 p 0.0247 64.725 38.394 3 Yes No Yes Yes No No 

CH240-193F3 4 q 0.0573 27.963 48.701 3 Yes No Yes Yes No No 

CH240-326L8 5 p 0.0712 52 39.225 2 No Yes No Yes No No 

CH240-248M21 5 q 0.0637 32.604 48.234 4 Yes Yes Yes Yes No No 

CH240-5F18 6 q 0.0312 35.668 52.206 2 Yes No No Yes No No 

CH240-415D2 7 p 0.0495 60.12 43.06 1 No No No Yes No No 

CH240-276L16 7 q 0.0273 72.32 41.032 2 Yes No No No Yes No 

CH240-443K7 8 p 0.0443 52.21 43.139 2 Yes No No Yes No No 

CH240-241A18 8 q 0.0734 57.717 39.194 3 Yes No No Yes No Yes 

CH240-25A3 9 p 0.058 67.214 37.704 1 Yes No No No No No 

CH240-298I24 9 q 0.0157 29.993 50.296 1 Yes No No No No No 

CH240-421B11 10 p 0.0737 37.03 44.325 5 Yes No Yes Yes Yes Yes 

CH240-325F16 10 q 0.0589 39.551 52.221 5 Yes No Yes Yes Yes Yes 

CH240-314K5 11 p 0.0472 46.273 46.46 4 Yes No Yes Yes No Yes 
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BAC Clone ID Chr Arm Mean All %In Repeats GC 
Content 

Success BBA 
5 mya 

OAR  
24 mya 

KEL 
24 mya 

KLE 
24mya 

TNI 
44 mya 

SSC  
64 mya 

CH240-344O3 11 q 0.0817 18.745 63.498 3 Yes No No Yes No Yes 

CH240-261C16 12 p 0.0441 61.672 37.117 3 Yes No Yes Yes No No 

CH240-262C4 12 q 0.0484 33.655 46.353 3 Yes No Yes Yes No No 

CH240-461F6 13 p 0.0636 58.324 40.573 2 Yes No No Yes No No 

CH240-471M8 13 q 0.0704 50.222 45.247 2 Yes No No Yes No No 

CH240-319C15 14 p ND 26.488 58.913 3 Yes No Yes Yes No No 

CH240-240M1 14 q 0.0585 45.691 46.304 3 Yes No Yes Yes No No 

CH240-225A24 15 p 0.0614 63.256 38.441 2 Yes No No Yes No No 

CH240-386C2 15 q 0.0531 36.031 52.317 1 Yes No No No No No 

CH240-139M7 16 p 0.062 39.524 47.393 5 Yes Yes Yes Yes Yes No 

CH240-315I10 16 q 0.0915 29.448 47.481 4 Yes No Yes Yes Yes No 

CH240-267P22 17 p 0.0652 59.349 39.979 2 Yes No No Yes No No 

CH240-313I20 17 q 0.0674 24.005 57.661 2 Yes No No Yes No No 

CH240-14C14 18 p 0.0523 55.699 43.587 2 Yes No Yes No No No 

CH240-436N22 18 q 0.0442 44.638 51.744 4 Yes No Yes Yes No Yes 

CH240-349G17 19 p 0.0395 65.426 38.048 3 Yes No Yes No No Yes 

CH240-207O5 19 q 0.1186 28.705 56.165 5 Yes Yes Yes Yes No Yes 

CH240-394L14 20 p 0.0909 49.977 42.328 2 Yes No No Yes No No 

CH240-339K22 20 q 0.0333 29.39 55.425 2 Yes No No Yes No No 

CH240-301D14 21 p 0.0424 69.408 40.701 3 Yes No No Yes yes No 
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BAC Clone ID Chr Arm Mean 
All 

%In 
Repeats 

GC Success BBA 
 5 mya 

Sheep 
24my  

KEL 
25 mya 

KLE 
24mya 

TNI 
44 mya 

 SSC 
64 mya 

CH240-62O23 21 q 0.043 46.251 50.112 2 Yes No No Yes No No 

CH240-426O23 22 p 0.0382 55.084 42.072 3 Yes No No Yes Yes No 

CH240-302J21 23 p 0.0344 77.712 38.398 1 Yes No No No No No 

CH240-374G6 23 q 0.0004 27.028 51.161 3 Yes No Yes Yes No No 

CH240-382F1 24 p 0.0731 47.069 45.121 4 Yes No No Yes yes Yes 

CH240-19L13 24 q 0.0778 48.168 39.996 2 Yes No No Yes No No 

CH240-198J4 25 p 0.0827 18.664 58.804 4 Yes No Yes Yes No Yes 

CH240-379D22 25 q 0.0371 25.588 56.274 4 Yes No Yes Yes No Yes 

CH240-428I10 26 p 0.0948 50.354 38.767 4 Yes No Yes Yes Yes No 

CH240-389H1 26 q 0.0229 28.424 59.082 2 Yes No No Yes No No 

CH240-7G11 27 p 0.0384 46.599 41.282 4 Yes No Yes Yes Yes No 

CH240-352M8 27 q 0.0482 36.302 44.895 2 Yes No No Yes No No 

CH240-313L4 28 p 0.034 44.964 45.489 3 Yes No Yes Yes No No 

CH240-63D12 28 q 0.0664 44.298 44.22 1 No No No Yes No No 

CH240-367D17 29 p 0.0532 64.057 42.116 3 Yes No Yes Yes No No 

CH240-257F23 29 q 0.0543 42.388 53.878 3 Yes No Yes Yes No No 

CH240-121E1 X p 0.1772 46.838 41.484 2 Yes No No Yes No No 

CH240-472J20 X q 0.0517 47.906 43.694 3 Yes No No Yes Yes No 

Table 3- 4. Table to show successful hybridisations using bovine subtelomeric cattle BACS on species within the artiodactyl order. Table include species, 

chromosome location of BAC, repeat % content of BAC, conservation mean all score and GC content of BAC. Species include BBA-American Bison, OAR-

domestic sheep, KEL-waterbuck, KLE-red lechwe, SSC-domestic pig and TNI-Javan chevrotain. 



Rebecca Jennings 

107 

 

3.6.2 Specific aim 1b. To use a panel of 7 cattle BACs originally applied by Larkin et al 

(2006ab), (and selected on the basis of sequence homology) to assess the 

extent to which they hybridise universally across a series of phylogenetically 

diverse mammals.   

 

To ascertain if BACs selected by RVC, based on evolutionary properties, would improve 

hybridisation success rates, the complete set of seven BACs were hybridised to 

metaphase chromosomes of the above species. Hybridisation success rates varied in the 

different species. The complete set of seven BACs produced bright punctate signals in 

the following four species (100%): American bison, waterbuck, red lechwe and sheep. In 

the previous aim, it was found that BACs isolated from cattle chromosome 19 hybridise 

to Defassa waterbuck chromosome 1. This reflects the published literature (Kingswood 

et al., 2000), shown in figures 3-2 and 3-4. Limited success was observed when the BAC 

set was hybridised to metaphase chromosomes of the Javan chevrotain, with only two 

BACs (29%) producing signals. In the pig, five of the seven (71%) BACs produced clear 

signals. With the exception of the Javan Chevrotain, the probes used here hybridised 

well in other artiodactyls, therefore to assess their use in distantly related species all 

seven BACS were applied to metaphase chromosomes of animals from additional 

Orders. 

Species Hybridisation Success Rate 

American Bison 100% 

Red Lechwe 100% 

Defassa waterbuck 100% 

Sheep 100% 

Pig 71% 

Javan chevrotain 29% 

Table 3-5. Hybridisation success rates of BACs selected based on sequence analysis on metaphase 

chromosomes of Artiodactyl species used throughout this study. 
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Figure 3-4. FISH Image of cattle chromosome 19 on Waterbuck. Labelled selected cattle BACs from cattle 

chromosome 19 on metaphase chromosomes of Defassa waterbuck. BACs – CH240-43K17 (FITC) and 

CH240-233H17 (TxRed). BACs appear to localise to waterbuck chromosome 1. Arrows applied to indicate 

signals observed. (Magnification x1000) 

 

To extend this study and gather preliminary data for non-Artiodactyls, the complete set 

of seven BACs were hybridised to an additional nine mammalian species, from five 

taxonomically distinct orders (Artiodactyl (controls), Primates, Rodentia, Carnivora and 

Chiroptera). The complete set was analyzed on the species shown in table 3-6. Species 

with an estimated divergence time of around 25 million years achieved a 100% 

hybridisation success rate. Species with an increased evolutionary distance from Bos 

taurus failed to achieve such a high success rate. However, it was apparent that two of 

the seven BACs used in this work (CH240-233H17 and CH240-43K17), produced bright 

signals in all species examined (100%) and 11 of the 14 species tested (79%) respectively 

(see table 3-7).  
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Species 
Divergent time relative to 
cattle (Kumar., et al 2017) 

Diploid number 

Blackbuck 24 mya 31-33 (XY) 30-32 (XX) 

Barasingha 27 mya 56  

Pig 64 mya 38 

Camel 65 mya 74 

Horse 78 mya 64 

Dog 78 mya 78 

White-throated round-
eared bat 

79 mya 34 

Black lemur 96 mya 44 

Mouse 96 mya 40 

Human 96 mya  46 

Table 3-6. Species included in the extended cross-species study. Divergent times – Kumar et al (2017). 

Diploid numbers for numerous papers used throughout this study. 

Species Hybridisation Success Rates 

Blackbuck 100% 

Barasingha 100% 

Pig 71% 

Camel 14% 

Horse 29% 

Dog 29% 

White-throated round-eared bat 29% 

Black lemur 29% 

Mouse 79% 

Human 14% 

Table 3-7. Hybridisation success rates with different mammals using cattle BACs selected using the 

sequenced-based approach described in section 3.3.1. 
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Figure 3-5. Correlation graph showing divergence vs hybridisation success rate of conservation-score 

selected cattle BACs on extended study. Data extracted from table 3-7. Graph shows a negative 

correlation between success rate and hybridisation. Pearson correlation coefficient R= – .692 (significant 

at p<0.5). Demonstrating a decrease in success rate with an increase in divergence time. 

 

To determine the correlation between divergence time and hybridisation success the 

results from this study were plotted to determine the Pearson correlation coefficient 

(divergence vs hybridisation) (figure 3-5). The correlation coefficient for these data was 

R2 = -0.4789 whilst the Pearson correlation coefficient was R= -.692 (r (8) = -.692, 

p=0.266). Illustrating a negative correlation between divergence time and hybridisation 

success. Meaning, hybridisation success rate decreases as divergence time increases.  

 

3.6.3 Specific aim 1c. To generate a preliminary panel of sequence-based BACs 

originally derived from three different Orders 

 

3.6.3.1 Cattle 

To enable wider genome coverage, and ultimately create a BAC panel that would 

facilitate Artiodactyl chromosome-level, de novo genome assembly, multiple BACs from 

each cattle chromosome was isolated where possible. Due to the results of this study it 
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0

20

40

60

80

100

120

0 20 40 60 80 100 120

H
yb

ri
d

is
at

io
n

 S
u

cc
es

s 
R

at
e 

(%
)

Divergence time (Mya)

Divergence Time (x) vs Hybridisation Success 
Rate (y) 



Rebecca Jennings 

111 

 

was decided that developing a universal set of human BACs for mammalian genome 

assembly would not be possible. However, considering the results it may be possible to 

develop an order-specific panel (table 3-8). At the time of submission this BAC panel had 

not yet been validated.  

 

Origin Chromosome BAC Clone ID 

Cattle 1 CH240-475L23 

Cattle 1 CH240-377G11 

Cattle 2 CH240-420D19 

Cattle 2 CH240-244I9 

Cattle 2 CH240-386C22 

Cattle 2 CH240-196L19 

Cattle 2 CH240-514B6 

Cattle 3 CH240-465O11 

Cattle 3 CH240-474H7 

Cattle 3 CH240-288K11 

Cattle 3 CH240-297K13 

Cattle 3 CH240-379P12 

Cattle 4 CH240-60H16 

Cattle 5 CH240-339P15 

Cattle 6 CH240-124I9 

Cattle 8 CH240-88P10 

Cattle 8 CH240-18F3 

Cattle 8 CH240-182G15 

Cattle 9 CH240-412N22 

Cattle 9 CH240-341J24 

Cattle 11 CH240-256G3 
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Origin  Chromosome  BAC Clone ID 

Cattle 11 CH240-258M12 

Cattle 11 CH240-288F24 

Cattle 12 CH240-329H2 

Cattle 14 CH240-402O18 

Cattle 14 CH240-396P6 

Cattle 16 CH240-208E13 

Cattle 17 CH240-26E21 

Cattle 18 CH240-339M3 

Cattle 19 CH240-333I1 

Cattle 19 CH240-171A7 

Cattle 19 CH240-97L3 

Cattle 21 CH240-380F23 

Cattle 21 CH240-344K23 

Cattle 22 CH240-124B16 

Cattle 23 CH240-310I12 

Cattle 24 CH240-33I13 

Cattle 24 CH240-305N4 

Cattle 25 CH240-451P4 

Cattle 26 CH240-368N15 

Cattle 26 CH240-244D2 

Cattle 26 CH240-224G7 

Cattle 27 CH240-457O14 

Cattle 28 CH240-394O23 

Cattle 28 CH240-236P3 

Cattle 29 CH240-226K16 

Cattle X CH240-128C9 

Cattle X CH240-29N7 
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Origin  Chromosome  BAC Clone ID 

Cattle X CH240-359O3 

Cattle X CH240-48F6 

Table 3-8. Preliminary cattle BACs selected from CHORI 240 library through sequence-based HI-C 

interactional analysis with mean all score and BAC clone ID 

 

3.6.3.2 Mouse X chromosome sequence-selected BACs to illustrate mouse-rat 

differences 

 

Initially, the BACs selected were applied to metaphase chromosomes of the mouse to 

assess correct placement within the karyotype (all hybridised to the X chromosome). 

Overall, eight of the nine BACs successfully hybridised to the mouse X chromosome. 

However, BAC clone CH29-542H8 was identified on an autosomal chromosome, 

suggesting an error in the genome assembly as National Center for Biotechnology 

Information (NCBI) places the BAC at the q terminus of the X chromosome, as shown in 

figure 3-6. Once a working BAC panel was established all BACs produced clear, bright 

punctate signals in rat also. The full list of BACs used in this work and the misplaced clone 

(table 3-9). 

 

 

Figure 3-6. Image to show BAC placement. Screenshot from NCBI clone finder demonstrating the 

misplacement of autosomal CH29-542H8 on the X chromosome. 
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A minimum of 15 images per BAC were captured on metaphase chromosomes of the 

mouse, and measured using FLpter on ImageJ; FLpter plugin measures the fractional 

location of the probe along any chromosome relative to the p terminus (Sakamoto, et 

al., 1995). The FLpter results obtained from this work validated genome sequence data. 

To identify chromosomal rearrangements on the X chromosome in Rodentia species, the 

full panel was applied to metaphase chromosomes of the rat (Rattus). Overall, the 

selected BAC panel produced bright, punctate signals on metaphase chromosomes of 

the rat. As before, a total of 15 images minimum per BAC were obtained and FLpter 

measurements calculated. Results from both species are shown in table 3-10.  

 

Origin BAC Start position End position 

Mouse CH29-616G12 20,866,497 21,030,659 

Mouse CH29-109N14 11,184,900 11,379,881 

Mouse CH29-559H10 155,242,985 155,427,877 

Mouse CH29-612I13 81,417,924 81,586,610 

Mouse CH29-525I9 106,071,045 106,247,595 

Mouse CH29-560M19 136,590,744 136,742,184 

Mouse CH29-618G7 38,355,729 38,555,106 

Mouse CH29-44F20 55,930,647 56,130,390 

Mouse CH29-542H8 164775019  164972138  

Table 3-9. X chromosome mouse BACs selected using sequence-based approach. Start and end position 

included. 

To investigate degrees of conservation and evolutionary rearrangements in this lineage 

an additional three Rodentia species were to be used, including Peromyscus 

maniculatus, Peromyscus californicus and Peromyscus leucopus. Cell lines were 

established in all three species; however, culture conditions were unfavourable for 

cellular proliferation which resulted in cellular senescence. For this reason, 

investigations into X chromosome rearrangements within the rodent linage could not 

extend beyond results detailed in this section (mouse and rat).  
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BAC Clone ID 
Clone 

Number 
Species (FLpter values) Two-tailed P 

Value Mouse Rat 
CH290-616G12 2 0.251 0.118 >0.00001 

CH290-44F20 4 0.452 0.834 >0.00001  

CH290-618G7 3 0.392 0.820 >0.00001 

CH290-559H10 8 0.886 0.366 >0.00001 

CH290-109N14 1 0.235 0.186 >0.000095 

CH290-560M19 7 0.753 0.698 >0.00001 

CH290-6121I3 5 0.576 0.400 >0.00001 

CH290-525I9 6 0.715 0.528 >0.00001 

Table 3-10. The mean FLpter results of BAC clone location on X chromosome of mouse and rat. Two-tailed 

t test illustrating the results are statistically different. All BACs were assigned a number for image ease in 

figure 3-7. 

Reconstruction of chromosomal location of BACs on both mouse and rat X chromosome 

can be seen in figure 3-8.  
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Figure 3-7. Schematic of BAC placement using FLpter results. Schematic of FLpter measurement results 

of selected BACs on metaphase chromosomes of mouse and rat, demonstrating numerous 

rearrangements between both species. BAC clone number IDs shown in table 3-9. 

3.6.3.3 Human selected BACs (conservation selected) 

The human genome was selected as the reference in this work for two reasons: firstly, it 

is considered the most completely curated mammalian genome, and secondly for the 

considerably large BAC library available. BACs were selected through a sequence-based 

approach (refer to 3.3.1). 
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Origin BAC ID Chr Mean all 
% In 

Repeats GC Content 
HSA Selected N24 G08 3 0.1414 18.0736 39.2312 

HSA Selected B3 F12 8 0.0267 28.1056 39.9163 

HSA Selected B146 A02 10 0.0957 21.3116 38.4005 

HSA Selected H61 F07 12 0.0776 30.4063 57.1387 

HSA Selected B65 G10 13 0.0515 20.3671 45.3453 

HSA Selected N13 E05 21 0.0442 25.0243 56.8468 

HSA Selected H95 G12 22 0.0733 15.2 60.1538 

HSA Selected N34 H04 2 0.4282 18.0736 39.2312 

HSA Selected N19 E11 7 0.4045 4.7843 51.8388 

HSA Selected N38 G11 14 0.1809 32.2498 51.1661 

HSA Selected B80 B03 6 0.1208 28.7093 34.1712 

HSA Selected B101 G07 7 0.1175 28.3513 40.0418 

HSA Selected H61 F02 9 0.1539 21.3116 38.4005 

HSA Selected B18 F08 11 0.0756 30.6396 42.3645 

HSA Selected B137 F06 15 0.2878 17.9446 45.3156 

Table 3-11. Human BACs selected for cross-species analysis. Human genome used as a reference to create 

a universal mammalian BAC set. 

In total, 15 human-specific BACs were selected for cross-species analysis using selection 

methods previously described (see 2.3.3), and applied to eight mammalian species. BAC 

specific results are shown in table 3-13. Hybridisation success rates are shown in table 

3-14. 

BACs were applied to 10 mammalian species from different taxonomical groups (table 

3-12). 
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Species Divergent time (MYA) relative 
to Human 

Diploid chromosome number 

Gorilla 9 mya 48 

Sulawesi macaque 29 mya 42 

Howler monkey 43 mya 52 

Red lechwe 96 mya 48 

Sheep 96 mya 54 

Pig 96 mya 38 

Dog 96 mya 78 

Rusty spotted cat 96 mya 38 

Mouse 96 mya 40 

Table 3-12. Karyotypic analysis of species used in this work. Divergent times obtained using timetree.org 

(Kumar et al., 2017). 
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Origin BAC ID Chr Gorilla 

(GGO) 

9 mya 

Sulawesi 

macaque 

(MNI) 

29mya 

Howler 

monkey 

(ALO) 

43 mya 

Sheep 

(OAR) 

96 mya 

Red 

Lechwe 

(KLE) 

96mya 

Pig (SSC) 

96 mya 

Dog 

(CFA) 

96mya 

Horse 

(ECA) 

96 mya 

Rusty 

Spotted 

Cat (PRU) 

96 mya 

Mouse 

(MUS) 

96 mya 

Human N24 G08 3 Yes Yes Yes Yes No Yes No Yes No No 

Human B3 F12 8 Yes Yes Yes No No No No No No No 

Human B146 A02 10 Yes Yes Yes No No No No No No No 

Human H61 F07 12 Yes Yes Yes No No No No Yes No No 

Human B65 G10 13 Yes Yes Yes No No No No No No No 

Human N13 E05 21 Yes Yes Yes No No No No No No No 

Human H95 G12 22 Yes Yes Yes No No No No No No No 

Human N34 H04 2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Human N19 E11 7 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Human N38 G11 14 Yes Yes Yes No Yes Yes No No Yes No 

Human B80 B03 6 Yes Yes Yes Yes No Yes Yes No Yes No 

Human B101 G07 7 Yes Yes Yes Yes No No No Yes Yes No 

Human H61 F02 9 Yes Yes Yes Yes Yes Yes Yes No Yes No 

Human B18 F08 11 Yes Yes Yes Yes No Yes No Yes Yes No 

Human B137 F06 15 Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Table 3-13. Results obtained from cross-species hybridisations using BACs selected based on conservation scores obtained Dr Denis Larkin and team 

at RVC.  
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Species BAC success rate using sequence selection  

Gorilla (GGO) 9 mya 100% 

Sulawesi macaque (MNI) 29mya 100% 

Howler monkey (ALO) 43 mya 100% 

Pig (SSC) 96 mya 53% 

Rusty Spotted Cat (PRU) 96 mya 53% 

Sheep (OAR) 96 mya 47% 

Horse (ECA) 96 mya 47%  

Dog (CFA) 96mya 33%  

Red Lechwe (KLE) 96mya 27% 

Mouse (MUS) 96 mya 20% 

Table 3-14. Hybridisation success rates using 15 sequence-based selected BACs on 10 mammalian species. 

 

Overall success rates in this work varied considerably, from 100% observed in all 

primates, to 20% observed in mouse (table 3-14). These results suggest that selection 

based on sequence analysis increases hybridisation success rates in species from within 

the same order as the reference genome, in this case primates. Considering this result, 

in addition to results generated in the previous sections, BACs destined for de novo 

genome assembly should be selected using computational programs. Additionally, BACs 

should be isolated from a species within the same order as the de novo assembly, to 

ensure increased success rates. 

 

The results from this study were plotted to determine the Pearson correlation coefficient 

(divergence vs hybridisation) (figure 3-7). The correlation coefficient for these data was 

R2 = -0.8292 whilst the Pearson correlation coefficient was R= -0.910 (r (8) = -.910, 

p=0.00257). Illustrating a negative correlation between divergence time and 

hybridisation success. Meaning, hybridisation success rate is seen to decrease as 

divergence time increases.  
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Figure 3-8. Correlation graph showing divergence vs hybridisation success rate of human BACs on 

distantly related species. Data extracted from table 3-14. Graph shows a negative correlation between 

success rate and hybridisation. Pearson correlation coefficient R= – 0.910 (significant at p <0.5). 

Demonstrating a decrease in success rate with an increase in divergence time. 

3.6.3.4 Extended human 

It was evident from the results obtained in the work that a sequence-based human BAC 

panel could be used effectively in Primates, as all primates tested achieved 100% 

hybridisation success rates. Overall, the human BAC panel was increased to 30, using the 

sequenced-based selection methods. Additionally, where possible, two BACs per 

chromosome were isolated to facilitate analysis at a higher resolution and potentially 

identify chromosomal rearrangements in Primate karyotypes. The full BAC panel used in 

this part of the study is shown in table 3-15. 
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Origin Name Chr Position Mean All %InRepeats GC content 

Hum H107 B07 1 mid 0.1141 47.259 47.5404 

Hum H81 B04 1 p 0.1184 19.7188 62.8403 

Hum B128 B12 2 mid 0.2351 22.9507 39.5496 

Hum B28 G10 2 p 0.0677 34.0974 44.138 

Hum N24 G08 3 q 0.1414 18.0736 39.2312 

Hum N41 A09 3 p 0.2486 24.1762 36.3339 

Hum B120 C09 5 q 0.1087 39.3012 36.0226 

Hum H22 G06 5 mid 0.1023 36.9315 37.4251 

Hum N19 E11 7 p 0.4045 4.7843 51.8388 

Hum B101 G07 7 q 0.1175 28.3513 40.0418 

Hum B146 A02 10 p 0.0957 21.3116 38.4005 

Hum B116 C02 10 q 0.0415 34.1224 55.8 

Hum B103 G04 11 p 0.0684 20.7018 60.4945 

Hum B18 F08 11 q 0.0756 30.6396 42.3645 

Hum H87 H12 12 p 0.3304 11.8707 50.9732 

Hum H61 F07 12 q 0.0776 30.4063 57.1387 

Hum B65 H06 13 mid 0.0981 52.2748 34.3136 

Hum B65 G10 13 q 0.0515 20.3671 45.3453 

Hum N38 G11 14 p 0.1809 32.2498 51.1661 

Hum B15 E12 14 q 0.0869 42.3149 45.6795 

Hum H23 E01 16 p No info No info No info 

Hum B79 C07 16 q 0.063 39.2409 51.3428 

Hum N31 B10 17 mid 0.1789 43.4967 52.2768 

Hum H23 F08 17 q 0.1292 37.3257 54.4581 

Hum B32 D06 20 p 0.0583 45.1594 45.0498 

Hum H57 E05 20 q 0.1157 45.1601 39.8058 

Hum B45 H08 21 p 0.1034 54.0677 40.091 
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Origin Name Chr Position Mean all  %InRepeats GC Content 

Hum N13 E05 21 q 0.0442 25.0243 56.8468 

Hum H87 A10 X p 0.1267 54.027 37.9322 

Hum B11 H06 X mid 0.2445 88.8604 37.442 

Table 3-15. Human BACs select using sequenced-based approached including BAC clone ID, chromosomal 

location in human, mean all score, GC content and %In repeats.  

 

To ascertain whether this BAC panel could be used to facilitate chromosome-level 

genome assembly, BACs selected were applied to metaphase chromosomes of four 

primate species that differ in divergence time (relative to human) and chromosome 

number as shown in table 3-16.  

 

Species Divergent time relative 
to Human 

Diploid chromosome number 

Gorilla 9 mya 48 

De Brazza’s monkey 24 mya 62 

Sulawesi macaque 29 mya 42 

Howler monkey 43 mya 52 

Table 3-16. Karyotypic analysis including diploid chromosome number of species used in this work. 

Divergent times obtained using timetree.org (Kumar et al., 2017). 

Overall, variable results were obtained from the use of the BACs selected in section 

3.4.3.4. In both the gorilla and Sulawesi macaque, 100% hybridisation was achieved with 

all BACs producing bright, punctate signals. However, in both the Howler monkey and 

De Brazza’s monkey a reduced success rate was observed at 67% and 57% respectively. 

Interestingly, the results here indicate that the closest (gorilla (9 mya)) and most distant 

(Sulawesi macaque (43 mya)) relative to human achieved the highest success rate 

overall. Shown in tables 3-16 and 3-18. 
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Name Chr Gorilla (9 
mya) 

De Brazza’s 
(24 mya) 

Howler monkey 
(29 mya) 

Sulawesi macaque 
(43 mya) 

H107 B07 1 Yes Yes  Yes Yes 

H81 B04 1 Yes Yes  Yes Yes 

B128 B12 2 Yes Yes  Yes Yes 

B28 G10 2 Yes Yes  Yes Yes 

N24 G08 3 Yes Yes  Yes Yes 

N41 A09 3 Yes Yes  Yes Yes 

B120 C09 5 Yes Yes  No Yes 

H22 G06 5 Yes Yes  No Yes 

N19 E11 7 Yes Yes  Yes Yes 

B101 G07 7 Yes Yes  Yes Yes 

B146 A02 10 Yes Yes No Yes 

B116 C02 10 Yes Yes No Yes 

B103 G04 11 Yes No Yes Yes 

B18 F08 11 Yes Yes  Yes Yes 

H87 H12 12 Yes No Yes Yes 

H61 F07 12 Yes No Yes Yes 

B65 H06 13 Yes Yes  Yes Yes 

B65 G10 13 Yes Yes Yes Yes 

N38 G11 14 Yes No Yes Yes 

B15 E12 14 Yes No Yes Yes 

H23 E01 16 Yes No Yes Yes 

B79 C07 16 Yes No Yes Yes 

N31 B10 17 Yes No No Yes 

H23 F08 17 Yes No No Yes 

B32 D06 20 Yes No No Yes 

H57 E05 20 Yes No No Yes 

B45 H08 21 Yes No No Yes 
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Name Chr Gorilla (9 
mya) 

De Brazza’s 
(24 mya) 

Howler monkey 
(29 mya) 

Sulawesi macaque 
(43 mya) 

N13 E05 21 Yes No No Yes 

H87 A10 X Yes Yes  No Yes 

B11 H06 X Yes Yes  No Yes 

Table 3-17. Full BAC list test on metaphase chromosomes of gorilla, De Brazza’s monkey, howler monkey 

and Sulawesi macaque  

 

Species Hybridisation Success Rates 

Gorilla 100% 

Sulawesi Macaque 100% 

Howler monkey 67% 

De Brazza’s monkey 57% 

Table 3-18. Hybridization success rates with full human BAC panel applied to gorilla, howler monkey, De 

Brazza’s monkey and Sulawesi macaque.   

 

3.6.4 Specific aim 1d. To test the hypothesis that sequence selection significantly 

improves BAC hybridization efficiency cross-species and speculate as to the 

prospects of a universal mammalian BAC set as was developed for birds (Damas 

et al., 2017).  

 

To ascertain if selection based on in silico analysis improves hybridisation across distantly 

related species, the results from the above aims were compared. To obtain an average 

success rate for each order, the species-specific hybridisation results were collected 

from each specific aim, and divided by the total number of species tested within that 

Order (table 3-19). It is evident from the results achieved here, that cross-species BAC 

hybridisation efficiency is improved when sequence selected BACs are applied to species 

from within the same Order. This is demonstrated in all categories; sequence selected 

human BACs achieved 81% success when applied to other Primates, however Artiodactyl 
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species only reached 43% and rodents 20%. Likewise, sequence selected cattle BACs 

achieved 75% success when applied to other Artiodactyl species, whereas when applied 

to Primates only 21% success was achieved. However, an irregularity to this was 

observed when sequence-selected cattle BACs were applied to metaphase 

chromosomes of the mouse, whereby success was recorded at 79%. In contrast to these 

data, non-selected cattle BACs (selection based on position) failed to achieve similar 

success when applied to species from within the same Order, resulting in a success rate 

of 42%. Unfortunately, the non-selected cattle BACs were not applied to species outside 

Artiodactyl, so full comparison is impossible. However, one can hypothesise that 

considering the relative low score achieved in Artiodactyla, hybridisations in more 

distantly related species would have been few.  

Order of species 

Tested 

BAC Origin 

Human Selected Cattle Selected 

N=7 

Cattle non-selected 

N=60 

Artiodactyl 43 % 75 % 42 % 

Primate 81 % 21 % - 

Rodent 20 % 79 % - 

Table 3-19. Order specific hybridisation success rates using Order-specific selected BACs and Order-

specific non-selected BACs. 

 

3.7 Discussion 

This study was largely successful in the pursuit of its specific aims, namely: 

 Established that BACs selected based on location alone were only successful 

when applied to species within the same family  

 Discovered that BACs selected using phastCONs (sequenced-based analysis) 

increased hybridisation success rates, although this was still limited to species 

within the same Order 
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 Identified that BACs selected for genome assembly should be isolated from a 

reference genome within the same order to increase hybridisation success and 

therefore, an Order specific BAC set should be created to complete genome 

assembly 

3.7.1 Cattle BACs non-selected (selection based on position) 

The results described in this chapter have illustrated that BACs selected based on 

chromosomal location alone achieve low success rates. Notably a high degree of success 

was limited to species within the Bovidae family. An exception to this were results 

obtained from the sheep which were likely compromised by suboptimal chromosome 

preparations. The success observed in Red lechwe (80%), and to an extent Defassa 

waterbuck (47%) is likely due to a relatively short estimated divergence time (<25 mya 

Kumar et al., 2017). This suggestion is upheld when comparing the results obtained from 

the pig (17%) with a divergence time of 44 million years and chevrotain (15%) at 64 

million years (Kumar et al., 2017). As described in section 3.1.2, Kingswood et al (2000) 

sought to establish the karyotypic relationship between divergent species and it is 

evident from the results obtained here that traditional karyotyping techniques can be 

used to elucidate differences in chromosome number and gross structural 

rearrangements. This includes centromeric fusions, however identifying the 

chromosomes involved in the rearrangement requires tools that permit analysis at a 

higher resolution. The subtelomeric BACs used in this work confirmed the previous 

findings made by Kingswood et al (2000); i.e. the centromeric fusion of cattle 

chromosomes 1 and 19 and cattle chromosomes 2 and 25 that was observed in both the 

waterbuck and red lechwe.  

 

Before this study, numerous studies had used chromosome paints in comparative 

cytogenetics. However, few used labelled BAC probes for comparative analysis in 

distantly related species. The use of these probes in comparative work removes the 

ambiguity in chromosome identification and improves the accuracy of predicting 
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chromosomes involved in evolutionary rearrangements and in identifying segments of 

conserved homology between distantly related species.  

3.7.2 Cattle BACs selected proactively 

Prior to the work presented in this chapter, seven cattle BACs had been selected based 

on in silico sequence analysis, conservation scores were applied to each BAC, alongside 

information regarding repeat elements, putative gene content and GC content (Larkin et 

al., 2006). The results obtained here indicate that sequence-based selection increases 

the efficiency of cross-species FISH, however this is limited to species from within the 

same Order as the reference (Artiodactyl). Indeed, the hybridisation success observed 

when using sequence-selected BACs was almost double that of non-selected BACs (30% 

increase in efficiency). Additionally, the results suggest that successful hybridisations 

could be achieved in more distantly related species. Notably, 79% of the sequence-

selected BACs hybridized to metaphase chromosomes of the mouse where the 

estimated evolutionary distant between the mouse and the reference (Bos Taurus) is 96 

million years (Kumar et al., 2017). However, this not true of all the species examined, 

only one of the seven BACs tested was observed to hybridize to metaphase 

chromosomes of human (14%). Considering this result, in silico selection based on 

evolutionary score appears to increase the rate at which hybridisation is achieved in 

certain, but not all distantly related species. Furthermore, one of the seven BACs 

examined here resulted in a success rate of 100% across 14 species (CH240-233H17), 

this BAC was found to have a high mean all conservation score (0.2085), low repeat 

content percentage (26.47%) and an average GC content score (40.8). With the results 

reported here in mind, it would appear mammalian BACs hybridise to species within the 

same order, but increased success is observed in members of the same family. Ideally, 

BACs require a low repeat percentage and high mean all score to achieve high 

hybridisation success rates.  
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3.7.3 Selected mouse X chromosome BACs 

It is evident that the X chromosome is highly rearranged between the two Rodent 

species examined in this work and it is also clear that numerous intrachromosomal 

inversions have led to this difference, namely, BACs 1 and 2 (CH29-109N14 and CH29-

616G12) which are noticeably inverted in the rat compared to the mouse. Strikingly, the 

BAC order in the mouse (Mus) differs entirely from the BAC order detected in the rat 

(Rattus). Considering the divergence time between the species examined (estimated at 

21 million years (Kumar et al., 2017)), it would have been beneficial to apply the BAC 

panel to chromosome preparation of Apodemus sylvaticus, being that it has a divergence 

time of 15 million years from mouse (Kumar et al., 2017). However, suboptimal 

chromosome preparations resulted in the inability to accurately complete FLpter 

measurements. 

3.7.4 Human BACs selected through sequence-based analysis 

In this study human BACs isolated using selection criteria described throughout this 

chapter were applied to ten mammalian species. It is evident from the results achieved 

that 100% success rates can be achieved when human BACs, selected through sequence 

analysis, are applied to other primate species. For instance, in the case of the howler 

monkey, estimated to have diverged from human approximately 43 million years ago 

(Kumar et al., 2017) 100% hybridization success was observed, whereas BACs selected 

based on position failed to achieve >80% in species from within the same order. 

However, the results here do indicate that hybridization efficiency drops considerably 

when sequenced-selected BACs are applied to mammals outside of the Primate order, 

with only 20% success being achieved when applied to metaphase chromosomes of the 

mouse. The order specific nature of these results could be attributed to two factors. 

Firstly, vast divergence at a molecular level is explained in part by the molecular clock 

hypothesis. Zucker et al (1962) hypothesized that DNA and protein sequences evolve at 

a rate that is relatively constant over time, this is demonstrated by the genetic 

differences observed between two species (Kumar et al., 2005). Sequence divergence 
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and gene expression patterns are two fundamental mechanisms that drive diversity 

between different species. For this reason, phenotypic evolution relies on mutations 

that change genomic sequences, thus altering protein sequences and affect gene 

regulation (Warnefors and Kaessmann, 2013). Therefore, the evolutionary distance 

between the reference genome and the examined species is proportional to the 

divergence experienced at a sequence level. An increase in evolutionary time could 

result in an increase in sequence change which ultimately reduces hybridisation rates. A 

recent study found that humans share only 40% of their DNA sequence with the mouse, 

given that genome size has remained constant since their divergence, almost 100 million 

years ago. This low proportion of ancestral DNA suggests that there has been a large 

amount of DNA loss and gain in each lineage (Buckley, Kortschak and Adelson, 2018). 

Second to size (~3.1Gb), an additional factor that can create ambiguity in genome 

assembly and alignment analysis include heterozygosity, diverse repeat families, regions 

of GC% bias and segmental duplications, it is estimated that the above constitutes 

around 50% of the human genome (Jain et al., 2018). As shown in this study, BACs with 

a low repeat content (alongside high mean all score) had a tendency to produce high 

hybridisation success rates.  

 

With this in mind, it is important to reflect upon the previous success experienced using 

this approach in birds, and to some extent reptiles. The combined approach was highly 

effective, generating five avian chromosome-level genome assemblies (O’Connor et al., 

2018). Avian genomes differ from mammals in numerous ways. Firstly, birds generally 

have a smaller genome, which is partly due to a low repeat content and a lower fraction 

of transposable elements, as well as shorter introns (Botero-Castro et al., 2017). Previous 

work suggest that birds have experienced the loss of many genes, most likely via 

evolutionary chromosomal rearrangements, with one genome-wide study estimating 

the total number of genes in avian genomes being approximately 70% of that present in 

humans (Botero-Castro et al., 2017). The striking differences reported in avian and 

mammalian genome architecture and content could be one explanation as to why 
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limited success was noted in this work. From the results, it is evident that to achieve 

success that parallels work reported by O’Connor et al (2018), a BAC set from each 

mammalian order is required. Moreover, to effectively create a panel of BACs that will 

assist with chromosome-level genome assembly in mammals it is now clear that a BAC 

set, selected using selection criteria described throughout, will be required from every 

mammalian order. Therefore, this study has significantly advanced developing resources 

to enable this, namely a preliminary BAC set for the following three Orders: primates, 

artiodactyla and rodents. 

 

3.8 Conclusions 

Despite the aforementioned success that this combined approached reported in birds, 

and to an extend reptiles, the results here suggest that a similar approach could not be 

implemented in mammals. It would appear that BACs selected via in silico (phastCONs) 

increases hybridization efficiency, but this is limited to the reference order. Therefore, it 

is unlikely that a universal set of human BACs would be created to assist with mammalian 

chromosome-level genome assembly. With this in mind however, it is possible that a 

number of Order-specific BAC panels could be created for cross-species hybridisations. 

For example, a primate set, an artiodactyl set and a rodent set. However, the resources 

used in this chapter can nonetheless find huge utility in the screening for chromosome 

abnormalities in individual animals. For this reason, the experiments described in this 

chapter will be utilised and this forms the basis of the subsequent three chapters. 
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4 Investigations into sex determination abnormalities and 

reproductive issues in mammals 

4.1 Specific aim 2. To use molecular cytogenetic tools for the screening 

of chromosomal abnormalities in a series of mammals including: pigs, 

cattle, horses, tigers and gorilla, investigating the reasons for 

reproductive issues in individual animals 

4.2 Background 

 

With the ever-increasing popularity of genome sequencing, traditional chromosome 

analysis is becoming a dying art.  Recent technologies, particularly NGS and third 

generation sequencing, have dramatically accelerated the pace of biological research, 

whilst at the same time increasing expectations. (Durmaz et al., 2015). The previous 

chapter highlighted the importance of chromosome level assembly and thus the role 

that traditional and molecular cytogenetics has to play (increasingly so) in de-novo 

genome assembly efforts. Armed with this information, reproductive isolation caused by 

chromosome rearrangement can be assessed between species.  As pointed out in the 

general introduction (section 1.5), there are parallels to be drawn between the types of 

chromosome abnormality that cause reproductive isolation between species and those 

that cause individual reproductive problems in individuals. While modern genomic 

approaches such as array CGH and NGS are excellent at detecting unbalanced 

rearrangements, such as trisomy or microdeletions, those leading to reproductive 

problems (i.e. balanced rearrangements such as inversions and translocations) are still 

best detected by traditional cytogenetics, augmented by molecular methods (Shinawi 

and Cheung, 2008). Moreover, a cell-by-cell analysis (e.g. for the detection of sex 

chromosome mosaicism) is, again, best achieved by (molecular) cytogenetics. Despite 

the continuing (and, some would say, increasing) need for non-human cytogenetic 

diagnostic tools, laboratories specialising in this are few and far between. Today, clinical 
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laboratories that focus on human diagnostics rely far more on genomic approaches and 

less on chromosome analysis. With this deficit in mind, the purpose of this study was to 

utilise pre-existing molecular cytogenetic tools to ascertain the developmental or cause 

of infertility in a number of agricultural and zoological animals.  

4.3 Case report I – Red River Hog (Potamochoerus porcus) 

Blood was drawn following standard phlebotomy from a Red River Hog for cytogenetic 

analysis. The animal in this study presented as phenotypically female, however 

examination revealed two partially descended testes, a vulva, a small penis and a 

vestigial prepuce by the umbilicus. Following examination, the animal was bilaterally 

castrated. The hypothesis tested therefore was that this animal was either a 

chromosomal male or had male-specific sequences (SRY).  

Traditional DAPI-stained metaphase chromosomes found the animal had a normal 

female karyotype consisting of 2n=34 (XX), as shown in figure 4-1. FISH was subsequently 

used to validate this result using labelled probes for the X chromosome and SRY gene 

(WTSI-1061-9B10) were used to detect the presence of a Y chromosome (or at least Y 

chromosome sequence) (figure 4-1).     

 

Figure 4-1. Traditional karyotype of Red river hog. DAPI stained metaphase chromosomes of intersex red 

river hog. Karyotype comprises of 2n=34 (XX). 
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Figure 4-2. FISH image showing results for X chromosome BACs on Red river hog.  Labelled BAC probes 

for X chromosome CH242-19N1 (FITC) and SRY gene WTSI-1061-9B10 (TxRed), illustrating 2n=34 (XX) 

karyotype as SRY labelled probe was not detected through dual-colour FISH. Arrows applied to indicate 

signals observed. (Magnification x1000) 

4.3.1 Discussion 

This case study demonstrates that cytogenetic analysis by karyotyping can be used to 

establish the following three parameters: chromosome number, large structural 

chromosomal rearrangements and the sex of the individual. In the case of the red river 

hog traditional methods enabled the diagnosis of a 2n=34 (XX) karyotype, which was 

subsequently confirmed using the more targeted FISH approach using a subtelomeric 

porcine X chromosome BAC probe and Y specific SRY gene. The absence of the SRY gene 

(TxRed signal) indicates that this animal could be an XX male SRY – negative, or that 

significant sequence divergence between the different species meant that the SRY was 

not detected. The estimated evolutionary distance between the domestic pig (Sus 

scorfa) and the red river hog (Potamochoerus porcus) is 16.8 million years (Kumar et al., 

2017). In humans, cases of XX SRY-negative males are incredibly rare. The etiology of one 
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incident was due to a duplication of 17q, the region containing the SOX9 gene that is 

involved in sex determination downstream to the SRY gene (Rajender et al., 2006).  

 

4.4 Case study II Horses (Equus caballus) with ambiguous genitalia 

4.4.1 Background 

The domestic horse (Equus caballus (2n=64)) belongs to the order Perissodactyla, which 

is also known as odd-toed ungulates and contains 17 extant species which are divided 

into three distinct families, Equidae (horses, zebras), Rhinocerotidae (rhinoceros) and 

Tapirdae (tapirs) (Norman and Ashley, 2000). Today, the domestic horse consists of 

approximately 400 breeds used primarily for riding, showing, racing, driving and farming. 

Domestication of the horse is believed to have occurred in India around 5,500 years ago, 

and in the process dramatically transformed civilisation allowing trade over greater 

distances and farming potential to increase (Schubert et al., 2014). Phylogenetic analysis 

and archaeological studies predict that the last common ancestor of humans and horses 

lived around 96 million years ago (Kumar et al., 2017).  

 

The domestic horse suffers from chromosomal aberrations that cause embryonic loss, 

congenital abnormalities and infertility. Chromosomal abnormalities in the horse are 

reported to affect all breeds and cause significant loss to breeders as a result of high 

veterinary cost and the care of both the mare and foal (Lear and Bailey, 2008). 

Cytogenetic analysis as early as the 1970s reported abnormalities that included sex 

chromosome monosomy, XY sex reversal or sex chromosome mosaicism. A clinical 

review published in 1990 found that of 392 cases of chromosomal abnormalities 36% 

were monosomy X (2n=63 X0), 29.8% were sex chromosome mosaic (2n=64 XX/XY) and 

27.8% were XY sex-reversal (Lear and Bailey, 2008). Intersex variation is also described 

in domestic horses, with androgen insensitivity syndrome (AIS) being frequently 

reported to affect thoroughbred mares. AIS is defined as the failure to masculinise target 

organs by androgen secretions during embryo development. In most cases the animal 
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will appear phenotypically female but presents a stallion-like behaviour and genotype 

(2n=64 XY, SRY+) (Welsford et al., 2017). A laboratory that predominately uses molecular 

cytogenetic tools to ascertain the cause of certain developmental or fertility issues in 

one species (in this case pigs) is often asked to apply similar technology to other species. 

The intention of the work described in this section was to establish the chromosome 

complement of two horses displaying intersex variation due phenotypic dysmorphia 

including ambiguous genitalia.  

 

4.4.2 Results 

A total of three horses from different pedigrees were analysed cytogenetically due to 

ambiguous genitalia. Limited information was provided for all horses examined in this 

study. However, information was as follows for one; six-year-old maiden thoroughbred 

mare presented as phenotypically female with normal female external genitalia. Upon 

examination this mare was found to have testicular tissue at the ovarian site, a 

rudimentary uterus and no visible cervix. Blood was drawn and incubated as described 

in section 2.2. Karyotype analysis from the thoroughbred mare indicated the presence 

of a Y chromosome, resulting in a karyotype complement of 2n=64 (XY), shown in figure 

4-3. Karyotype results from the two additional mares used in this study were found to 

be karyotypically normal 2n=64 (XX). 
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Figure 4-3. Traditional karyotype of horse referred for cytogenetic analysis. DAPI-stained metaphase 

chromosomes of intersex horse. (2n=64 (XY)).  

 

4.4.3 Discussion  

The success of the chromosomes screening technology developed here meant that a 

number of horses were referred for cytogenetic analysis due to ambiguous genitalia. 

Indeed, in the case of the thoroughbred mare referred for cytogenetic analysis, 

traditional banding techniques identified the presence of the Y chromosome. However, 

this method could not elucidate the specific genetic abnormality that resulted in this 

intermediate phenotype. To achieve this, additional investigations would have been 

required, including targeted FISH experiments or PCR to isolate a specific gene (SRY, 

SOX9, WT1). In humans most cases of gonadal dysgenesis initially focused on the SRY 

gene. However, it was found that mutations or deletions in the SRY gene only accounted 

for 15% of females with 2n=46(XY) sex reversal (McDonald et al., 1997). For this reason, 
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if time had permitted, focus would not have been entirely on the SRY, additional genes 

would have been examined via methods previously mentioned, to potentially establish 

the abnormality. Additionally, AIS cannot be ruled out at this stage.  As described in 

section 1.7.1, AIS has previously been reported in thoroughbred mares, whereby normal 

female external genitalia are observed in a horse that is karyotypically male (2n=64 (XY)) 

and displaying stallion behaviour. The serum testosterone level would be required to 

diagnose this disorder, the normal reference range of serum testosterone in a non-

pregnant female is 20-45pg/mL, previous work found this to be significantly higher at 

1154pg/ml in cases of AIS (Howden, 2004). Moreover, using the work detailed in this 

case it is not possible to conclude the mechanism behind this intersex thoroughbred 

mare.  

 

4.5 Case study III Sumatran tiger (Panthera tigris sumatrae) referred 

due to ambiguous genitalia 

4.5.1 Background 

The Sumatran tiger is the smallest extent tiger subspecies, from the Order Carnivora, 

found only on the Indonesian Island Sumatra (O’Brien, Kinnaird and Wibisono, 2003). 

The Sumatran Tiger is listed as critically endangered, (the highest category of threat), on 

the IUCN Red List of Threatened Animals (Linkie et al., 2008).  

 

To date, only a limited number of investigations into chromosomal abnormalities in 

tigers exists. Previously, G-banded analysis of metaphase chromosomes of a Siberian 

tiger at Kanas City Zoo was identified as possessing a Klinefelter Syndrome karyotype 

(2n=39 XXY) (Suedmeyer, Houck and Kreeger, 2003). In this work, a single tiger with 

ambiguous genitalia was referred for chromosomal analysis using cytogenetic 

technology detailed throughout, with specific reference to the sex chromosomes.  
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Figure 4-4. Traditional karyotype of Sumatran tiger. DAPI stained metaphase chromosomes of a 

Sumatran Tiger (2n=38 XX). 

 

Karyotype analysis revealed the tiger possessed a chromosome complement of 2n=38 

(XX). A total of 10 metaphase spreads were completed to accurately examine this animal.  

 

4.5.2 Discussion 

Traditional cytogenetic techniques used in this case study successfully identified the 

chromosome complement of this animal (2n=38 XX). The results in this section suggest 

the Sumatran tiger was karyotypically female. However, the ambiguous genitalia 

reported imply that sex determination was comprised at some stage in development. As 

discussed in the general discussion, sex determination is a complex system of genetic, 

epigenetic and hormonal determinants that govern the development of either the male 

or female phenotype (De Lorenzi et al., 2018). To establish the cause of this phenotype, 

additional investigations were required, due to the unavailability of molecular 

cytogenetic tools, a true diagnosis was not achieved.  
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4.6 Case study IV investigating the cause of spontaneous abortion in a 

trio group of captive western lowland gorilla 

4.6.1 Background 

 

It is well established that humans share many physiological and anatomical elements 

with both gorillas and chimpanzees. The similarities were initially described by Darwin 

and Huxley in the first evolutionary studies investigating human origin (Darwin and 

Huxley, 1863). The chimpanzee, bonobo and gorilla are reported to be the closest 

relatives to humans (figure 4-5) (Scally et al., 2012). It is believed that great apes and 

humans share up to 98.5% of their non-repetitive DNA (Lear et al., 2001). Given the close 

relationship, a number of shared chromosomal abnormalities have been documented 

between humans and non-human primates. These include trisomy 17 (homolog to 

human chromosome 18) in bonobo (Lear et al., 2001) and trisomy 22 (homolog to human 

chromosome 21) in gorilla, chimpanzee and orang-utan (Hirata et al., 2017). In humans, 

trisomy 21 (Down Syndrome) is highly prevalent, with an incidence of between 1:750 

and 1:100 live births. Individuals affected present with a characteristic phenotype which 

includes facial dysmorphia, low muscle tone and short stature (Karmiloff-Smith et al., 

2016). All of which were also observed in a chimpanzee identified to carry a trisomy 22, 

the homolog of HSA 21 (Hirata et al., 2017). Aneuploidy and genomic imbalances are 

reported to be the leading cause of miscarriage in humans (Lu et al., 2007). It is estimated 

that 15% of all conceptions fail to progress to a live birth (Cohain, Buxbaum and 

Mankuta, 2017). In humans, foetal loss is reported to be as a result of autosomal trisomy, 

monosomy X and polyploidy in 60%, 20% and 20% respectively (Hyde and Schust, 2015). 

Due to the close relationship between humans and non-human primates, it is reasonable 

to assume that similar chromosomal abnormalities may lead to spontaneous abortion in 

non-human primates.  
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Figure 4-5. Primate phylogenetic tree. Phylogenetic tree to show primate evolution, highlighted are the 

chimpanzee-human speciation event and the monkey-great ape speciation event. (Image source: Genetics 

| The Smithsonian Institution’s Human Origins Program) 

 

Over the years, traditional cytogenetic analysis has been used in combination with more 

targeted approaches to increase the resolution at which genomic abnormalities are 

detected. The first karyotype of the gorilla was published in 1961 (Hamerton et al., 

1961). In 1973, GIEMSA staining permitted fine structure analysis and initiated human 

to non-human primate comparative studies, which become more complex with the 

advent of FISH (Mrasek et al., 2001). Today, technologies such as FISH and aCGH can be 

used to detect abnormalities that are beyond the capability of chromosome banding 

techniques (Lu et al., 2007). Furthermore, aCGH, (see section 1.2.2.4), provides analysis 

at a genome-wide level, making it an ideal technique to investigate unbalanced 

chromosome rearrangements; for instance, aneuploidies, insertions and deletions.  

 

In this study, a trio group (breeding pair and stillborn infant) of captive western lowland 

gorillas from Port Lympne Wildlife Reserve were referred for molecular cytogenetic 

analysis after a series of spontaneous miscarriages. The male (Sammi), presented with a 
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history or recurrent miscarriage when bred with three proven females. For this reason, 

molecular cytogenetic tools were used in this section to elucidate the cause of 

spontaneous abortion in a group of western lowland gorilla, thus attempting to identify 

the individual with the abnormality in order to prevent further loss and perpetuation of 

any genetic abnormality throughout the captive population. Specifically: 

 

 To apply traditional cytogenetic karyotyping techniques to a trio group of captive 

western lowland gorilla, to test the hypothesis that foetal loss was due to a 

chromosome aneuploidy or larger structural rearrangement 

 To apply human-specific chromosome paints and subtelomeric BACs to 

metaphase chromosomes of the triad group to examine for chromosomal 

translocations that may have resulted in late-term miscarriage 

 To apply aCGH to DNA extracted from the triad group with the intention of 

identifying an unbalanced chromosomal abnormality in the male and / or infant 

gorilla 

4.6.2 Materials and methods 

Three concurrent miscarriages were experienced in a group of five western lowland 

gorillas. The first spontaneous abortion occurred at roughly three months, with 

histopathology results from the placenta exhibiting no abnormalities (performed at the 

wildlife reserve). The second spontaneous abortion occurred at roughly four months. 

Histopathology revealed the foetus was absent of abnormalities. The third loss occurred 

at roughly seven months (almost term). Tissue samples from the foetus and placenta 

were extracted and prepare for culture as described in section 2.1.1.2. Tissue samples 

were obtained through The Aspinall Foundation, Port Lympne Wildlife Park. The Animal 

Welfare and Ethics Review Board (AWERB) at the University of Kent reviewed and 

approved sampling prior to proposed research. Blood samples were obtained from the 

mother (Massindi), father (Sammi) and foetus; samples were incubated as described in 

sections 2.1.1.6. All cultures were examined karyotypically for aneuploidies and 
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chromosomal abnormalities, with the emphasis to screen the father as he was the 

common factor. Veterinary staff at The Aspinall Foundation collected blood from the 

animals after sedation, and collected it into sterile 1 ml heparin tubes. Mammalian Cell 

culture and chromosome harvesting was performed as described in section 2.1. A total 

of six traditional DAPI-stained karyotypes were obtained per animal. Cytocell© human 

specific paint for chromosome 14 (homologous to gorilla 15) was applied. Following 

extraction, DNA was analysed using aCGH at Oxford Gene Technology (OGT, Begbroke)).  

 

4.6.3 Results 

4.6.3.1 Generate karyotypes of three captive western lowland gorilla, to test the 

hypothesis that foetal loss was due to a chromosome aneuploidy or larger 

structural rearrangement 

 

Karyotype results from the father and foetus did not identify any specific abnormality 

that might be associated with an abnormality. Nonetheless, the presence of an extended 

heterochromatic region in two of the chromosomes within the karyotype were 

identified. In the foetus, gorilla chromosome 15 (homolog to human 14). The female 

appeared karyotypically normal in all analyses (n=8). The karyotype of the foetus is 

shown in figure 4-6, and all karyotypes were generated through the use of a humanised 

setting in SmartType (karyotyping program). 
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Figure 4-6. Traditional karyotype of gorilla foetus. DAPI stained metaphase chromosomes of foetus gorilla 

(2n=48 (XX)) illustrating extended region on gorilla chromosome 15. Chromosome 22 also has a large 

satellite. 

 

4.6.3.2 Chromosome painting 

FISH (chromosome painting using a human chromosome 14 probe) was applied to 

metaphase chromosomes of the male a foetus. Results obtained from chromosome 

paint analysis indicated that both the foetus and the male gorilla were karyotypically 

normal (figure 4-7). The extended heterochromatin region observed on chromosome 15 

of the foetus is likely due to a normal (non-phenotypic) polymorphism. Owing to the 

absence of any similar sized loss on another chromosome. 
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Figure 4-7. FISH image showing results from human chromosome 14 paint on male gorilla and foetus. 

Metaphase chromosomes of gorilla, counter stained with DAPI and labelled for chromosome paint form 

human chromosome 14 on metaphase chromosomes of. A) the male gorilla (TxRed) and B) the foetus 

(TxRed pseudo-coloured to blue). Images captures by fluorescence microscope at x1000 magnification. 

Arrows applied to indicate signals observed. (Magnification x1000) 

 

4.6.3.3 aCGH to DNA extracted from the trio group with the intention of identifying 

an unbalanced chromosomal abnormality in the male and / or infant gorilla 

 

The female gorilla (Massinidi) was used as the reference genome due to the male’s 

involvement in previous losses. The aCGH results identified two abnormalities in the 

foetus when compared to the female, whereas the male showed no abnormality. The 

abnormalities included a duplication in the region encoding LINC00906 on chromosome 

19 (p12.3 (in human)) and a deletion in the region encoding the CNTN3 gene on 

chromosome 3 (q11q12 (in human)). Screenshots from the aCGH analysis are shown in 

figure 4-8.  

A B 
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Figure 4-8. aCGH Results. aCGH analysis of the fetus compared to the female gorilla. Screenshot showing 

duplication in region encoding LINC00906 on chromosome 19 (p12.3) (left) and a deletion in the region 

encoding the CNTN3 gene on chromosome 3 (q11q12). 

 

4.6.4 Discussion 

This work was successful in the following areas: 

 

 Karyotypes provided an initial overview of the genome, namely apparently 

normal karyotypes but nonetheless the presence of an extended 

heterochromatin regions in the male and foetus. 

 FISH, using a human-specific chromosome paint suggested that all were 

karyotypically normal, however at a low resolution. 

 aCGH identified a duplication and deletion in the genome of the foetus when 

compared to the female.  

This study sought to identify the genetic abnormality behind a series of miscarriages in 

a group of captive western lowland gorillas. This work demonstrates the flow from low 

resolution analysis (karyotype) to higher resolution analysis (aCGH), which enabled the 

detection of two abnormalities in the foetus which may have resulted in foetal loss. 
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4.6.4.1 Karyotype analysis 

Initial cytogenetic analysis identified a region of heterochromatin in chromosomes of the 

male and infant. Heterochromatin is a densely packed region of DNA that inaccessible to 

transcription factors. This observation is common in the karyotypes of gorilla. For 

example, the first cytogenetic study proposed polymorphic heterochromatin in this 

species (Miller et al., 1974). This initial investigation established the chromosome 

complement (all 2n=48). Additionally, the trio did not carry any larger, structural 

chromosomal rearrangements. 

 

4.6.4.2 FISH analysis 

Human specific chromosome paints were used to establish if the animals investigated 

here were carriers of cryptic translocations. It is estimated that the DNA similarity is 

approximately 98% between the human and gorilla (Scally et al., 2012). Due to this 

conserved homology between humans and great apes it was possible to use human-

specific chromosome paints to elucidate the presence of cryptic translocations. Future 

studies of this sort may elucidate the presence of translocations e.g. by a systematic 

analysis of whole chromosome paints or sub-telomeric probes. 

 

4.6.4.3 aCGH analysis 

aCGH detected two abnormalities in the foetus when compared to the female. As 

mentioned in section 3.1, any chromosomal aberration smaller than 3-5Mb is 

undetectable through traditional banding techniques (Lu et al., 2007). The first, a 

deletion in the region contained the CNTN3 protein coding gene. CNTN3 (contactin 3) 

encodes a contactin that mediates cell surface interactions in nervous system 

development and has some neurite outgrowth promoting activity (Kamei et al., 2000). 

Limited information regarding the consequence of this deletion is available with previous 

reports having identified it in individuals diagnosed with Autism, plasmacytoma and 

Taylor’s Syndrome (Kamei et al., 2000). The second was a duplication in the region which 
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contained the RNA non-coding (ncRNA) LINC00906 gene. A ncRNA is a functional RNA 

molecule that is transcribed from DNA but not translated, ncRNA regulate gene 

expression. To the best of my knowledge, neither genetic abnormality has previously 

been associated with spontaneous abortion. However, it is important to note here that 

aCGH cannot identify balanced chromosomal rearrangements. For this reason, the 

animals investigated in this study may possess a chromosomal rearrangement that is 

undetectable via both cytogenetic analysis (due to the size of the rearrangement), or 

through aCGH if the chromosomal exchange is balanced.  
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5 Genetic abnormalities in cattle and the development of a 

FISH-based chromosome screening device 

5.1 Specific aim 3. Based on specific aim 2, to implement a novel scheme 

for screening for chromosome translocations in cattle, testing the 

hypothesis that it can be applied for the detection of hitherto 

intractable reciprocal chromosome translocations 

 

5.2 Background 

Domestic cattle comprise of more than 800 breeds, and are classified taxonomically into 

two groups Bos taurus (hump-less) and Bos indicus (humped cattle) (Zhou et al., 2015). 

They are from the order Artiodactyla, defined as even-toed ungulates. Large-scale 

genomic analysis predicts that the lineage, which led to the last common ancestor of 

cattle, was estimated to have diverged from humans approximately 92 mya (Liu et al., 

2006). Archaeological and genetic data indicate that domestication occurred around 

10,000 years ago (Bollongino et al., 2012) and since then these agricultural animals have 

assisted in human civilization through the production of meat and milk products (Zhou 

et al., 2015). A representation of cattle domestication can be seen in figure 5.1.  

 

Figure 5-1. Cattle domestication. The domestication of cattle. (Image adapted from: The Domestication 

of Species and the Effect on Human Life | Real Archaeology)  

 

To accommodate the growing population, it is estimated that in 2014 meat production 

(beef and buffalo) reached 68 billion tonnes globally, whilst milk was predicted to reach 

829 million tonnes in 2018 (Clark & Tilman, 2017). For this reason, the desire to select 
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animals with optimal fertility that carry advantageous, heritable traits is the ultimate 

goal. Traditionally, animal selection was based on phenotype and pedigree analysis to 

predict estimated breeding values (EBV). EBV traits include, calving ease, fertility, milking 

ability, fat depth and carcass merit (Goddard and Hayes, 2007). This method of selection 

was deemed highly successful at the time (2009), permitting the identification of animals 

that retained increased meat production, milk yield, and resistance to disease and 

possessed the ability to conceive (Bovine HapMap Consortium et al., 2009). In well-

structured breeding programs, genetic improvement occurs at the nucleus, that being a 

small fraction of the breeding herd, this improvement is then disseminated through the 

population. However, selection based on high-value genetic merit alone may prove 

problematic if fertility issues are identified in the animal after it has entered the artificial 

insemination (AI) breeding program. The AI program is commonly used in dairy cattle, 

with up to 90% of farms across Europe adopting this technique (Rodríguez-Gil and 

Estrada, 2013). 

5.2.1 Breeding selection 

Semen analysis is commonly used to predict male fertility in agricultural breeding 

programs. Parameters analysed include volume, sperm morphology, motility and 

concentration per ejaculate (Broekhuijse et al., 2012). However, there is growing 

evidence to suggest that semen analysis is an unreliable tool for diagnosing suboptimal 

fertility (Kastelic and Thundathil, 2008). In addition to semen analysis, non-return rates 

(the number of females returning to the oestrus cycle i.e. failure to conceive) are used 

as an assessment tool (Taylor et al., 2018). In cattle, the gestation period lasts 289 days 

(Piedrafita et al., 2000) commonly resulting in a singleton birth. Twin pregnancies are 

undesirable in dairy cattle due to an increased risk of spontaneous abortion, which may 

have negative effects on the profitability of the herd (Ló Pez-Gatius, 2005). 

5.2.2 The rob (1;29) and other translocations  

Over the past 50 years, chromosomal analysis of agricultural animals has become an 

important factor in commercial breeding. In 1964 Ingemar Gustavsson reported the 
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presence of a 1;29 centromeric fusion, more commonly known as a Robertsonian 

translocation, (see section 1.5.24), in a population of Swedish Red and White cattle 

(Gustavsson and Rockborn., 1964). The significance of this chromosomal abnormality 

was discovered five years later, whereby carriers of this translocation were shown to 

have impaired fertility, namely, daughters of translocation positive sires returned to 

service more often than expected (Gustavsson et al., 1969). Gustavsson reported that 

semen analysis of the bulls confirmed to carry the translocation were said to fit normal 

parameters, indicating this method of examination was not reliable in predicting the 

fertility of future progeny. This association between chromosomal abnormalities and 

impaired fertility, led to the creation of veterinary cytogenetic laboratories that would 

adapt chromosome-screening techniques designed for humans to suit domestic animals 

(Udriou, 2017). Moreover, the need to identify animals and prevent perpetuation of 

reduced fertility into the breeding population is paramount. Impaired fertility reduces 

genetic gain, increases veterinary cost and reduces milk production all of which result in 

a loss for the breeding company and may affect the global demand for cattle products.  

 

The 1;29 translocation is considered the most widespread translocation in cattle and has 

been observed in all breeds, with an exception of Holestein-Fresian cattle (Switonski, 

2014). Heterozygous carriers of the 1;29 translocation are phenotypically normal, 

however carriers are reported to suffer a reduction in fertility of 3-5% (Bonnet-Garnier 

et al., 2008). This reduction can be explained through the formation of unbalanced 

gametes: 2.76% in sperm and 4.06% in oocytes, which result in reduction in ability to 

complete the meiotic process and increased embryonic mortality (De Lorenzi et al., 

2012). Homozygous carriers of this translocation are rare, although they have been 

documented by Iannuzzi et al (2008). The incidence rate of this translocation varies 

between breeds; previous work discovered this translocation in 8.5% of the Blonde 

D’Aquitaine bulls examined (Bonnet-Garnier et al., 2008). Iannuzzi et al (2008) examined 

the frequency and distribution of this translocation in eight Portuguese cattle breeds, 

discovering the presence of the homozygous version in five of the breeds studied. 
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Moreover, 44 Robertsonian translocations affecting almost all chromosomes have been 

reported in cattle (Larkin and Farre-Belmonte, 2014). In addition to this, reciprocal 

translocations, (see section 1.5.2.5) are cause for concern due to economic loss through 

impaired fertility. An Italian study investigated 20,030 animals, from 10 different breeds, 

over a 15-year period. The results indicated that certain breeds were more prone to 

reciprocal translocations than others, with an average incidence rate of 0.04% (De 

Lorenzi et al., 2012) Due to difficulties in detecting reciprocal translocations in cattle only 

19 have been reported (De Lorenzi et al., 2011). However, De Lorenzi et al (2011) 

proposed that only 16% of reciprocal translocations are recognizable using traditional 

GIEMSA staining analysis alone, meaning that around 84% of reciprocal translocations 

could remain undiagnosed. Therefore, this form of chromosomal rearrangement is 

underestimated in the cattle population. Additionally, De Lorenzi et al (2011) suggests 

that the frequency could be five times higher than de novo Robertsonian translocations, 

meaning that a more effective and accurate screening method is required. Moreover, 

considering the karyotype of domestic cattle (high diploid number and acrocentric 

morphology) traditional methods often results in translocations going undiagnosed.  

 

5.2.3 Sex determination and abnormalities 

In mammals, sex determination is one of the most complicated developmental 

processes. It is a complex system of genetic, epigenetic and hormonal determinants that 

govern the development of either the male or female phenotype (De Lorenzi et al., 

2018). Freemartin syndrome is the most frequent form of intersexuality observed in 

cattle. It is defined as a sterile female cow, born co-twin with a male. Freemartin 

syndrome arises when vascular anastomoses develop between the placentae of 

developing dizygotic twin foetuses of a different gender. As a result, blood chimerism 

(2n=60 XX/XY) and passage of gonad determinants such as Anti-Müllerian hormone and 

androgens result in the disruption of female embryonic gonadal differentiation (Esteves 

et al., 2012). The incidence rate of freemartins is reported to be between 0.2% in 

Brahman cattle and 8.9% in Brown Swiss. However, when twinning does occur 
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development of the reproductive tract is compromised in 95% of female calves born co-

twin to a male (Rebhun’s Diseases of Dairy Cattle, 2018). In addition to this, Swyer 

syndrome or XY gonadal dysgenesis, is a genetic abnormality that affects gonadal 

development in mammals. The presence of the Y chromosome-linked sex-determining 

region of Y (SRY) gene regulates and directs the development of functional testes 

through a series of genetic pathways. Embryos lacking this gene (SRY) will activate a 

different pathway leading to the development of ovaries (De Lorenzi et al., 2018). 

However, other factors may interfere with the development of testes even in the 

presence of a functioning SRY gene. Including mutations in the MAP3K1 gene, DHH gene 

and NR5A1 gene resulting in the absence or incomplete differentiation of the testes 

(Arboleda et al., 2014). Swyer syndrome is an incredibly rare condition (1 in 80,000) that 

affects mammals with previous cases being reported in, but not limited to humans, 

cattle, horses and dogs. Humans and animals identified as XY gonadal dysgenesis are 

usually sterile meaning that early detection is imperative. Several cases of Swyer 

syndrome have been reported in cattle, although a number of these were examined 

before sequencing technology was available. Therefore, cytogenetic examination of the 

SRY was achieved through PCR to establish any differences in fragment length 

(deletion/duplication). However, a more recent investigation into this disorder allowed 

the team to isolate and sequence the SRY gene (De Lorenzi et al., 2018).  

5.2.4 Cattle karyotyping – a state of the art 

To date, chromosomal screening in cattle is achieved through traditional karyotype 

analysis. Due to the high diploid number (2n=60), (Bhambhani and Kuspira, 1969) 

acrocentric morphology and chromosomes that are of a similar size (see figure 5-2), this 

technique is laborious and error prone for detection of anything other than 

Robertsonian translocations. To overcome this, BAC clones were isolated from the 

proximal and distal region of each chromosome by Dr Rebecca O’Connor (O’Connor, 

2016) to identify cryptic translocations, as described in section 2.3.1. This highly 

successful technology is currently being used for the detection of cryptic translocations 

in boars (O’Connor et al., 2017). However, these sub-telomeric probes had not yet been 
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transferred to a multi-hybridisation device, nor had a similar screening technology to 

that of pigs been implemented in cattle. Therefore, the purpose of this study was to use 

the technology developed in specific aim 4, with BACs isolated previously (O’Connor, 

2016) and implement a multiprobe FISH screening device for the detection of all, but 

particularly reciprocal translocations in cattle. Furthermore, to test the hypothesis that 

reciprocal translocations are virtually undetectable through karyotyping alone, but easily 

detected by this method. 

 

Figure 5-2. Traditional karyotype of cattle. DAPI-stained metaphase chromosomes of Bos taurus (2n=60 

XX) indicating a virtually intractable karyotype  
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5.3 Specific aims  

Taking the background into consideration, the specific aims of this chapter were as 

follows: 

 Specific aim 3a. To generate and validate a device and scheme capable of 

detecting reciprocal and Robertsonian translocations in cattle  

 Specific aim 3b. To provide proof of principle that this novel scheme can be 

applied, though the screening of 40 bulls, to establish a series of novel case 

reports for chromosome rearrangements in cattle by: 

o Identification of common 1;29 translocations 

o Investigation of sex chromosomes in cattle with ambiguous genitalia 

o Identification of a reciprocal translocation, thereby testing the hypothesis 

that hitherto undetectable reciprocal translocations can be detected 

using this technology  

5.4 Results 

5.4.1 Specific aim 3a. To generate and validate a device and scheme capable of 

detecting reciprocal and Robertsonian translocations in cattle  

The karyotype of Bos taurus is characterised by a diploid chromosome number of 60, of 

which all autosomes are morphologically acrocentric and of a comparable size, meaning 

that attaining an accurate diagnosis through this means alone is often challenging. To 

gain an understanding into the difficulties encountered using traditional methods, the 

karyotype of a chromosomally normal bovine sample was produced. 

 

BAC clones were selected from the subtelomeric region of the proximal and most distal 

region from each chromosome. BAC clone IDs shown in supplementary table 1. BACs 

were selected by R. O’Connor due to position on the chromosome, using NCBI clone 

finder. BACs are located between the telomeric region and the unique chromosome 

specific DNA sequence. 
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To create a device that enabled multiple hybridisations in one experiment, a design 

similar to that which was used in the screening of boars was used (detailed in the 

subsequent chapter). The final device configuration is shown in figure 5-3.  

 

 

Figure 5-3 Schematic illustrating the cattle multiprobe device. Schematic to show comparative system 

using BACs selected from the most proximal (p) and most distal region (d) of each bovine chromosome. 

The X is labelled p and q for the most distal (subtelomeric) regions of the p and q arm. 
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5.4.2 Specific aim 3b. To provide proof of principle that this novel scheme can be 

applied, though the screening of 40 bulls, establishing a series of novel case 

reports for chromosome rearrangements in cattle 

 Identification of common 1;29 translocations 

 Investigation of sex chromosomes in cattle with ambiguous genitalia 

 Identification of a reciprocal translocation, thereby testing the 

hypothesis that hitherto undetectable reciprocal translocations can be 

detected using this technology  

Using the technology shown in figure 5-3, a total 40 bulls were screened. 

5.4.2.1 Case report I - Detection of heterozygous and homozygous 1;29 translocations 

 

Cytogenetic analysis and diagnosis were requested for cattle displaying varying degrees 

of suboptimal fertility. A total of six individual bovine case samples were examined. All 

samples were screened via standard karyotype analysis. Three of the six animals 

screened in this work were discovered to carry the 1;29 Robertsonian translocation 

(figure 5-4). To establish if the chromosomes involved were 1 and 29, one sample was 

screened using the multiprobe FISH-based method (figure 5-6). Interestingly, this work 

reports the identification of a homozygous 1;29 Robertsonian translocation in two 

British white animals screened as can be seen in figure 5-5. 
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Figure 5-4. Karyotype of bull carrying heterozygous 1;29 Robertsonian translocation. Traditional DAPI 

stained karyotype of a 2n=59 bull with a rob (1;29). Robertsonian translocation and missing chromosome 

29 are circled in red. 

Figure 5-5. Karyotype of cow carrying homozygous 1;29 Robertsonian translocation DAPI stained 

metaphase chromosomes of a homozygous 1;29 Robertsonian translocation in a British white (2n=58 

(XX)). Homozygous rob (1;29) circled in red. 
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Figure 5-6. FISH image to show bull carrying a 1;29 Robertsonian translocation. Metaphase 

chromosomes of karyotype diagnosed 1;29 translocation carrier. From left image A) Labelled BAC probes 

for BTA chromosome 1. CH240-321O2 (FITC) CH240-96M6 (Txred) white arrow illustrates translocation. 

Image B) Labelled BAC probes for chromosome 29. CH240-367D17 (FITC) and CH240-257F23 (Txred) white 

arrows indicating translocation signals. (Magnification x1000) 

 

 

5.4.2.2 Case report II - Investigation of sex chromosomes in a cow with 

underdeveloped genitalia 

 

This work examined the cause of infertility in a phenotypically female cow that 

presented with under developed genitalia and the inability to conceive. Initially, 

karyotypes were produced from metaphase chromosomes generated from lymphocyte 

culture. A total of eleven karyotypes were produced at this stage, all of which identified 

the animal as 2n=60 (XY) (figure 5-7).  

Fluorescently labelled bovine DNA probes for the X chromosome were hybridised to 

metaphase chromosomes of the query sample as this technique permitted diagnosis at 

a higher resolution whilst reducing the analysis time. Results detected the Y 

chromosome in all hybridisations observed. 

A B 
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Figure 5-7. Traditional Karyotype of intersex cow. DAPI stained metaphase chromosomes of the 

phenotypical cow referred for karyotype analysis. Chromosomes derived from lymphocyte culture. 

Karyotype analysis detected the presence of Y chromosome (2n=60 (XY)). 

 

Due to this diagnosis, tissue samples from the reproductive tract and mammary gland 

were retrieved from the animal, and cell lines successfully established from both. In 

addition to this, formalin-fixed samples were processed and examined off site at The 

Agriculture and Food Development Authority (TEAGASC). Histopathological inspection 

found the following, the uterus appeared immature with inactive glandular tissue, 

ovarian cortices contained low numbers of recognizable oocytes and primary follicles 

and no glandular elements were isolated from the mammary gland sections. To rule out 

freemartins, or blood chimaeras (see section 2.1.1.6), karyotypes were produced from 

metaphase chromosomes of both cell lines. All karyotypes analysed were 2n=60 (XY). 

Hereafter, X chromosome probes were hybridised to the preparations. This permitted 

faster results. Results generated from all cytogenetic analysis, recognised the presence 

of the Y chromosome, as can be seen in the FISH result in figure 5-8. The X chromosome 

BAC labelled with FITC hybridised to the puesdoautosomal region of the Y chromosome 
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and therefore TxRed was used when counting interphase nuclei. To determine the 

genetic cause of this disorder at a molecular level, DNA was extracted from both cell 

lines as described in section 2.2.1.  

 

 

Figure 5-8. FISH image to show presence of Y chromosome in intersex cow. Labelled bovine X 

chromosome BAC probes hybridised to reproductive tract metaphase chromosomes of query sample. FISH 

result illustrates the presence of a Y chromosome with BAC labelled with FITC hybridising to the 

psudeoautosomal region of the Y chromosome. Co-localisation observed on X chromosome. Arrows 

included to indicate FISH signals. (Magnification x1000) 

 

The bovine SRY gene was observed in both cell lines. Following the PCR conditions 

described in section 2.8.3, the gene was successfully isolated in preparation for 

sequencing. Interestingly, after initial success using the primers taken from De Lorenzi 

et al (2018) replication of results proved difficult, optimisation of PCR conditions was 

explored, whereby the enhancers DMSO and betaine were used to reduce 

intramolecular effects. Additionally, a temperature gradient was used to identify the 

optimal annealing temperature and finally the PWO master mix was replaced with KOD 

hot start, a high fidelity DNA polymerase designed for accurate PCR reactions.  However, 

all optimisation strategies proved ineffective when visualising the products on an 
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agarose gel. For this reason, primers were designed through PrimerBlast using 

parameters detailed in section 2.8.2. Upon successful annealing temperature 

optimisation, a single ~874bp amplicon was observed (expected length size of SRY gene 

product), result shown in figure 5-9. The SRY amplicon in the query sample appeared the 

same length as the male control ruling out an insertion / deletion within the gene. 

 

 

Figure 5-9. DNA products after PCR on 1.4% agarose gel. PCR products visualised on a 1.4% agarose gel. 
PCR set up using PrimerBlast primers under conditions described in section. Lanes 1) empty. 2) negative 
control. 3) male control. 4) female control. 5) DNA from mammary gland of referred animal. 6) DNA from 
reproductive tract of referred animal. Ladder 1) 1Kb. Ladder 2) 100 bp. Amplicon is 874bp in length 
confirming the presence of SRY in the query sample, negative control is free from contamination. 

 

The 874bp SRY PCR product was sequenced and the sequence data converted to a FASTA 

sequence using BioEdit software program. The FASTA sequence was then aligned against 

SRY sequence data retrieved from NCBI GeneBank (Btau_5.0.1). The online alignment 

tool Clustal Omega online was used to analysis the data. Results from alignment suggest 

that the SRY gene within the phenotypically female cow was functioning, with the 

absence of any point mutations or frame shifts. To establish if the regulatory element of 

the SRY was mutated, primers were generated using PrimerBlast and samples run under 

PCR conditions described in section 2.8.3. As before, SRY regulatory element PCR 

 



Rebecca Jennings 

163 

 

product was sequenced and the sequences aligned using Clustal Omega. This also 

showed the absence of mutations within the regulatory element of the SRY.  

5.4.2.3 Case report III - Identification of a reciprocal translocation, thereby testing the 

hypothesis that hitherto undetectable reciprocal translocations can be 

detected using this technology 

 

Two reciprocal translocation carriers were identified involving chromosomes 12 and 23 

(figure 5-11), whilst the remaining bulls were chromosomally normal. Due to the 

identification of a 12;23 reciprocal translocation in two commercial breeding bulls. It was 

important to test the hypothesis that reciprocal translocations are notoriously difficult 

to detect using standard karyotype analysis alone. For this reason, karyotypes of 

translocation positive bulls were produced as described in section 2.6.1.1.  

 

 

Figure 5-11. FISH image to show bull carrying a 12;23 reciprocal translocation. Labelled subtelomeric BAC 

clones for BTA 23 (CH240-374G6 (Texas Red) and CH240-102P19 (FITC) misplacement of FISH signals 

illustrates a reciprocal translocation between chr 12 and chr 23 (arrows). (Magnification x1000) 
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Figure 5-12. DAPI-stained Karyotype of rcp(12;23) bull. BTA 8348. Traditional DAPI-stained karyotype of 

bull identified as 2n=60 rcp (12;23) 

 

The karyotype shown in figure 5-12, illustrates the inability to accurately pair and 

position the chromosomes using traditional methods makes this an unsuitable tool for 

diagnosis of reciprocal translocations. The karyotype emphasises the difficulty in 

assigning chromosome pairs to the correct location whilst following standard cattle 

chromosome nomenclature. The acrocentric morphology of autosomes and high diploid 

number proved problematic when producing karyotypes using standard banding 

methods.  
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5.4.2.4 Summary of cattle screening results 

 

Diagnosis Numbers Method of Detection 

Heterozygous rb (1;29)  3 Karyotype – confirmed with FISH 

Homozygous rb (1;29) 2 Karyotype – confirmed with FISH 

rcp (12;23) 2 FISH 

XY gonadal dysgenesis 1 Karyotype, FISH, PCR, sequencing 

Normal 32 Karyotype, FISH 

Table 5-2. Table to show summary of 40 cattle chromosome analyses performed in this study. 

 

5.5 Discussion 

This study was largely successful in the pursuit of its specific aims, namely: 

 Proof of principle was established, in that a novel scheme, was applicable for 

detecting all translocations through the screening of 40 animals 

 The hypothesis was proven that hitherto undetectable reciprocal translocations 

can be detected using this technology  

 This method resulted in reporting a series of novel case reports 

5.5.1 Implementation of multiprobe FISH device for cattle screening 

 

Before this study, standard karyotype analysis was the only method of diagnosing 

chromosomal rearrangements in cattle, proving time consuming and error prone. It was 

calculated by De Lorenzi et al (2012) that for a translocation to be observable through 

karyotype alone an abnormal chromosome derivative must be either 15% (185 Mb) 

longer than chromosome 1, or 40% (26.4 Mb) shorter than chromosome 25. With this is 

mind, any translocation involving chromosomes 2-24 would be indistinguishable from 

other autosomes. It is evident from the literature that an efficient and reliable technique 
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is required for the detection of cryptic translocations, along with routine screening of 

cattle destined for AI breeding services. The results generated in this study validate the 

use of a FISH-based screening device for the detection of reciprocal translocations in 

cattle. This method identified cryptic translocations in 8% of the samples screened in this 

study, two of which would have been undiagnosed if using standard karyotyping alone. 

Therefore, these provide an example of support when considering the hypothesis 

suggested by De Lorenzi et al (2012) that only 16% of cryptic translocations are 

detectable through staining techniques alone. It is evident from figure 5-12 that in 

addition to the difficulties experienced in producing a diagnosis-quality karyotype, 

suboptimal chromosome preparations can produce ambiguous results. Knowing the 

chromosomes that were involved in the rearrangement meant that there may have been 

bias towards the location assigned in the karyotype. However, traditional methods 

enabled the detection of a Robertsonian translocation, as shown in figures 5-4 and 5-5 

and for this reason, it is plausible to suggest that traditional karyotyping methods of 

screening are still applicable today. Robertsonian translocations are observed with ease, 

however the FISH-based technique described in this chapter easily identifies the 

chromosomes involved in the rearrangement, this being a method that requires 

significant training whilst remaining error prone.  Furthermore, cryptic translocations are 

by definition impossible to observe using standard karyotyping techniques. The FISH-

based approach described in this work can potentially identify cryptic translocations with 

ease.  

5.5.2 Chromosomal rearrangement case studies 

5.5.2.1 Case report I - Detection of heterozygous and homozygous 1;29 translocations 

Efforts to eradicate chromosomal translocations from the breeding herd are ongoing. It 

is evident from the results obtained in this small study that there are still chromosomal 

translocations in the breeding population. This is in part due to the de novo nature of 

these rearrangements, therefore screening for chromosomal translocations that result 

in economic loss is more important than ever. Previous work by Gustavsson and 
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Rockborn (1964) suggests that the most common structural chromosome translocation 

observed in cattle is the centromeric Robertsonian 1;29 translocation (Switonski, 2014). 

In this study, 9.6% of cattle investigated were heterozygous carriers of this translocation 

whilst 6.5% were carriers of the homozygous version. It is important to note here 

however that this value is not an indication of the prevalence experienced in the 

breeding population due to the small sample size. The presence of this translocation 

varies significantly between breeds as this was demonstrated by Iannuzzi et al (2008), 

whereby 1,626 animals from 8 Portuguese breeds were examined, reporting 69.9% in 

Barrosa and 2.8% in Mirandesa (Iannuzzi et al., 2008). Iannuzzi et al (2008) discovered 

that the frequency and distribution of the homozygous version of this translocation is to 

be considerably lower than the heterozygous version with published cases only in certain 

breeds. However, they discovered the homozygous 1;29 translocation in 17% of Barrosa 

cattle, suggesting animals of this breed are highly likely to carry either form of this 

rearrangement (Iannuzzi et al., 2008). Previously, British White sires had been imported 

to Australia carrying this rearrangement, resulting in a national program to eradicate this 

from the population. For this reason, all British White are now screened prior to 

exportation (Holmes, 2019).  

 

 

5.5.2.2 Case Report II - Investigation of sex chromosomes in a cow with 

underdeveloped genitalia - XY gonadal dysgenesis 

 

This study identified a case of bovine XY gonadal dysgenesis, or Swyer syndrome, an 

incredibly rare genetic disorder that affects sex determination and development in 

mammals. In humans, Swyer syndrome is reported to occur in approximately 1 in 80,000 

people, 15-20% of cases manifest due to a mutation in the SRY gene, with most being de 

novo in origin (Machado et al., 2014). Furthermore, a number of documented mutations 

are reported which include the transcription factor NR5A1, the signalling pathway 

regulator MAP3K1 and DHH which is a hedgehog protein that is important in male 
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development (Michala et al., 2008). This is one of only a few reports demonstrating this 

disorder in cattle, with most coming at a time when the technology did not permit 

analysis at the resolution achievable today. To expand on the current literature, it was 

important to use current sequencing methods of analysis, alongside traditional 

cytogenetic techniques when trying to establish the genetic mutation responsible for 

this disorder. The results obtained from this study suggest the mutation was in an 

unexamined gene, because the SRY and its promoter were deemed functional. 

Moreover, it is important to mention that in humans over one third of cases remain 

unexplained (De Lorenzi et al., 2018). The absence of testicular development in the 

presence of both a functioning SRY gene and its promotor domain proved an interesting 

case. Furthermore, had time permitted additional sequencing of genes involved in sex 

determination could have been examined including MAP3K1, DHH and NR5A1. 

Additionally, analysis of the Illumina TrueSeq data collected off site could have been 

assessed. However, sequence analysis is ongoing and results should be available from 

the Agriculture and Food Development Authority after the publication of this work.  

5.6 Conclusions 

The implementation of this technology has improved the efficiency and speed at which 

cattle can be assessed for chromosomal translocations, permitting multiple 

hybridisation experiments on two single slides. Chromosomal translocations directly 

affect fertility and, for this reason, it is vital that any abnormality that can lead to a 

reduction in the profitability of the herd is identified quickly and accurately. Moreover, 

animals that possess abnormalities can be isolated and removed before entry into AI 

breeding programs, thus reducing the possibility of economic loss. Due to the small 

sample size used in this study it is not possible to conclude if reciprocal translocations 

are five times more likely than de novo Robertsonian translocations, as suggested by De 

Lorenzi (2012). For this reason, significant effort to disseminate the results of this study 

to cattle breeding companies in the hope that an increasing number of bovine breeding 

companies will use this technology to examine chromosomal integrity of animals used 
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in AI programs. Thereby, preventing propagation of any abnormality within the breeding 

population. With the success of this screening method in mind, it is plausible to suggest 

that this technique could be applied to any animal of interest, the horse being an ideal 

candidate. The domestic horse (2n=64) is of interest worldwide, with thoroughbred 

breeding being an incredibly competitive industry. For this reason, it is plausible to 

assume that this form of chromosomal screening technology could be of benefit in this 

species. Moreover, to ensure fertility damaging abnormalities are identified prior to any 

breeding commitments. Previous cytogenetic studies in this species identified that profit 

reducing chromosomal translocations are present in thoroughbred mares. Lear et al 

(2008) discovered three separate cases: t(1;21), t(16,22) and t(4;13) and having the tools 

to examine and diagnose chromosomal abnormalities in a fast and efficient way would 

be beneficial for this industry. In the chapter 4, regular karyotyping of horses is described 

although this could be potentially expanded to employ a FISH based technology.  
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6 Incidence rate of chromosomal translocations in boars 

detected through multiprobe FISH 

6.1 Specific aim 4. Based on specific aim 2, to implement a high 

throughput FISH-based porcine cytogenetic screening technique, 

screening over 1000 animals and testing the hypothesis that overall 

published incidence of translocations in this species has been under-

reported 

 

6.2 Background 

The order, Artiodactyla is considered the one of the most diverse mammalian orders on 

the planet, with over 190 extant species, including pigs, cattle, hippopotamus, sheep, 

and antelope (Prothero and Foss 2007). The domestic pig comprises of over 500 breeds 

(Nelson, 2014), with Darwin recognizing two taxonomically distinct groups, the 

European Sus scrofa and an Asian form, Sus indicus (Darwin, 1868).  Phylogenetic data 

calculates that the lineage, which led to the last common ancestor of the pig, is thought 

to have diverged from humans ~90 mya (Murphy et al., 2001). Domestication of the pig 

is reported to have occurred in the Middle east contemporaneously to cattle around 

9,000 years ago (Giuffra et al., 2000).  

 

Today’s global human population is estimated at 7.7 billion people, this figure is 

expected to rise annually and the demand for livestock and meat production will grow 

in parallel with it. In 2018, USDA (United States Department of Agriculture) estimated 

that global pork production would rise 2% to 113.1 million tonnes, with global output 

reaching 48% (Linekar, 2018). In addition to this, the market for pig production changes 

continuously in response to consumer preferences and societal requests, however, the 

ultimate goal for breeding companies is to increase profitability and decrease economic 

loss. Recently, the selection of boars used in breeding programs has shifted from 
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phenotypic selection using estimated breeding values (EBV) to boars selected using high 

merit genetic markers alone (Nielsen, 2016), allowing for crossbreeding to be easily 

achieved to meet consumer demands (Rodríguez-Gil and Estrada, 2013). A fundamental 

problem with the use of this as a method of selection arises if the purebred boar, used 

at the top the breeding pyramid, suffers from suboptimal fertility, resulting in a 

reduction of litter size which can cause significant economic loss to the company.  

 

Over the past 50 years, chromosomal analysis of agricultural animals has become an 

important tool in commercial breeding. In 1964, Henricson and Bäckström identified the 

first reciprocal translocation in swine, involving genetic exchange between chromosome 

4 and 14 t(4;14) (Henricson and Bäckström, 1964). Routine cytogenetic analysis of swine 

originated in Toulouse, France in the early 1990s and at that time only hypoprolificic 

boars were screened for chromosomal abnormalities. However, within 10 years, the 

majority of French swine breeding companies chose to screen the purebred boars before 

AI entry. Furthermore, it is estimated that between initiating the program and 2002, over 

13,765 individuals were screened by the laboratory in Toulouse (Ducos et al., 2007). To 

date, over 168 translocations have been described in pigs, affecting all chromosomes 

and all breeds with a reported incidence rate of 1/200 (0.47%) in phenotypically normal 

pigs awaiting AI service (Fève et al., 2017; Ducos et al., 2007). In pigs, reciprocal 

translocations are the most commonly reported chromosomal rearrangement. 

Heterozygote carriers will produce a high proportion of unbalanced gametes, resulting 

in early loss of the embryo; sperm production is also likely to be affected through 

perturbation in forming a meiotic pairing cross and reduced recombination. In 

multiparous species such as pigs, this manifests as a decrease in litter size and in a 

greater proportion of sows served by that boar returning to heat (non-return rate) and 

hence not pregnant. Reduction in litter size from translocation boars is reported to be 

between 25% and 50% depending on the translocation (O’Connor et al., 2017). In 

addition to chromosomal translocations, numerous publications have reported 

incidences of leucocyte chimerism in pigs (2n=38 XX/XY). Leucocyte chimerism is 
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observed in animals from multiple or twin dizygotic pregnancies (multiparous), due to 

the formation of anastomoses (connecting blood vessels) between the developing 

foetuses (Kozubska-Sobocińska., et al, 2016). Leucocyte chimerism is commonly 

reported in cattle, so much so it was deemed Freemartin Syndrome (see section 1.7.2). 

Therefore, the need to identify animals that carry chromosomal aberrations and prevent 

perpetuation of reduced fertility into the breeding population is paramount.  

 

To overcome this, O’Connor et al (2018) established an in-house FISH based screening 

device that permitted multiple hybridizations of sub-telomeric probes on one slide. To 

date, O’Connor et al (2018) had produced 210 karyotypes and screened 26 boars using 

this technology. The purpose of this part of the chapter was to take this initial advance 

and develop it, and as a consequence establish the incidence rate of chromosomal 

abnormalities in unproven boars. Therefore, permitting analysis at a higher resolution 

than previously reported in the literature (Ducos et al., 2007). 

 

The use of artificial insemination (AI) in pig breeding is a relatively recent concept when 

compared to cattle. Commercial application of AI in pigs began in the 1980s and it has 

since grown exponentially (Rodríguez-Gil and Estrada, 2013). Fertility assessment in 

boars awaiting AI service is commonly measured through semen analysis, examining the 

following, volume of sperm-rich fraction, concentration of the sperm-rich fraction, 

progressive motility, morphological abnormalities and reacted acrosomes (Rodríguez-Gil 

and Estrada, 2013). However, growing evidence suggests that semen analysis is an 

unreliable tool for diagnosing suboptimal fertility (Kastelic and Thundathil, 2008). 

Moreover, in 2006 Ruiz-Sánchez reported an incidence of known hypoprolificacy in a 

group of boars with normal semen profiles, thus highlighting that this method of 

diagnosis is not indicative of optimal fertility (Ruiz-Sánchez et al., 2006). In addition to 

semen analysis, farrowing rates are commonly examined since a decrease in litter size is 

considered the primary indicator of boars displaying sub-optimal fertility. The gestation 

period in swine is 115 days and on average a sow will farrow 10 piglets per pregnancy, 
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however litter size does vary depending on the breed and genetic merit (Cox 1964). 

Therefore, identifying fertility issues that may result in a reduction in litter size before 

an animal is entered into the AI breeding program is imperative.  

 

The development of a mature, high-throughput pig screening technology based on 

molecular, rather than traditional, cytogenetics was not only overdue, but also would 

allow the re-appraisal of the question of the incidence of chromosome translocations, 

particularly those missed by traditional (G-banding) methods. 

 

6.3 Specific aims 

With the above background in mind, the specific aims of this study were as follows: 

 

 Specific aim 4a. To play a significant part in the development of a porcine cytogenetic 

analytical system using multiple probe FISH device (and traditional karyotyping) 

towards the screening of over 1000 boars, thereby addressing the question of what 

is the incidence of chromosomal abnormalities in this population. 

 Specific aim 4b. To test the hypothesis that a significant proportion of translocations 

that were detected by the multiprobe FISH screening approach would not have been 

identified by traditional banding techniques. 

 Specific aim 4c. To apply cytogenetic technologies to a chimeric (XX/XY) boar that 

was identified through the multiprobe FISH device and extend the analysis to test 

the hypothesis that XX bias is present in the germ line. 
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6.4 Results 

6.4.1 Specific aim 4a. To play a significant part in the development of a porcine 

cytogenetic analytical system using both the multiple probe FISH device (and 

traditional karyotyping) towards the screening of over 1000 boars, thereby 

addressing the question of what is the incidence of chromosomal abnormalities 

in this population 

 

The initial establishment of porcine cytogenetic screening device (O’Connor et al., 2017) 

allowed for the development of a high throughput system. My personal contribution was 

to optimise the FISH protocol such that clear and bright signals were consistently seen 

every time a sample was prepared and help streamline the analysis pipeline. Throughout 

the duration of this study time taken to analyse one sample typically improved to around 

35 minutes through optimisation of the protocol. Upon receipt of a blood sample, the 

result is usually back to the breeding company within 3-4 weeks. An initial focus on basic 

karyotyping has now given way to 100% of all samples being processed via FISH. 

Additionally, the number of companies using the FISH-based technology over traditional 

karyotyping has increased to 15 (from 10 countries). In total, 1,017 boars were screened 

for chromosomal translocations over a three-year period. Of these, 768 were screened 

using the FISH method (refer to section 2.5), whilst 239 porcine samples were analysed 

using traditional karyotyping alone, as shown in table 6-1.  During this time, eight 

different reciprocal translocations were identified using the multiprobe FISH device. 

Additionally, two reciprocal translocations were detected using traditional banding 

methods and confirmed by FISH and all translocation discovered in our laboratory are 

shown in table 6-2. Moreover, the incidence rate of chromosomal abnormalities 

identified in this population was 2.3% and of these, 1% were found to be unique 

reciprocal translocation carriers. In addition to this, a number of phenotypically normal 

pigs with XX/XY chimerism were identified using the multiprobe FISH device, resulting in 
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a unique XX/XY abnormality incidence rate of 1.3%. Subsequently, all boars are now 

screened for XX/XY chimerism.  

 

Porcine Screening Results  

Method 2017 2018 2019 Total 

FISH 319 272 187 778 

Karyotyping 203 36 0 239 

Table 6-1. Summary of total porcine samples screened and the method of analysis between 2016-2019. 
 
 
 

Screening Results 

Chromosome Abnormality Number Identified Screening Method 

rcp t(1;13) 1 FISH 

rcp t(1;17) 1  FISH 

rcp t(2;14) 1 FISH 

Rcp t(2;15) 1 FISH 

rcp t(4;5) 14 FISH 

rcp t(7;10) 1  FISH 

rcp t(9;3) 1  FISH 

rcp t(9;10) 1 FISH 

rcp t(9;12) 1  Karyotype & FISH 

rcp t(10;15) 1  Karyotype & FISH 

XX/XY chimeric  3 FISH 

Normal 991 Karyotype & FISH 

Table 6-2. Summary of porcine screening results from 2016 – 2019 using multiprobe FISH device and 

karyotyping 
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6.4.2 Specific aim 4b. To test the hypothesis that a significant proportion of 

translocations that were detected by this approach would not have been 

identified by traditional banding techniques 

 

To test the hypothesis that some reciprocal translocations are undetectable (or very 

difficult to detect routinely) through traditional methods – each of the translocations 

detected through FISH analysis were re-analysed using karyotyping. Prior knowledge of 

the specific translocation potentially over-estimates how many would have been 

identified when analysing. Table 6-3 shows this reanalysis. 

 

Chromosome Abnormality 
Would we have identified this by 

karyotyping alone? 

rcp t(1;13) No 

rcp t(1;17) Yes 

rcp t(2;14) Yes 

rcp t(4;5) No 

rcp t(7;10) Yes 

rcp t(9;3) Yes 

rcp t(9;12) No 

rcp t(10;15) Yes 

Table 6-3. Reanalysis of results obtained from screening of boars using the multiprobe FISH device. 

Prediction of the likelihood that a diagnosis would be achieved through karyotype, result obtained from 

reanalysis of FISH images. 

 

To supplement this analysis, a further 14 historical samples with 12 known translocations 

were analysed using standard karyotyping methods. 
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Chromosomal Abnormality Number Identified 
Would we have identified 

this by karyotyping alone? 

rcp t(1;19) 1 Yes 

rcp t(2;9) 1 No 

rcp t(3;13) 1 Yes 

rcp t(4;9) 2 No 

rcp t(4;9) 1 Yes 

rcp t(7;9) 1 Yes 

rcp t(8;12) 1 No 

rcp t(9;10) 2 Yes 

rcp t(9;15) 1 Yes 

rcp t(13;X) 1 Yes 

Table 6-4. Reciprocal translocations identified through FISH. Prediction of the likelihood that a diagnosis 

would be achieved through karyotype, result obtained from reanalysis of FISH images.  

 

The following figures show specific examples of the issues faced when relying on 

karyotyping alone. The karyotype produced in figure 6-1 illustrates the potential 

difficulty when trying to identify the reciprocal chromosome involved in the 

translocation. It is evident from this karyotype that chromosome 3 is involved in the 

translocation, however isolating the reciprocal chromosome using this method proved 

time consuming, and ultimately required the multiprobe FISH device to confirm this 

diagnosis. 
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Figure 6-1. Traditional karyotype of a boar carrying a 3;9 reciprocal translocation. DAPI-stained 

metaphase chromosomes of a boar identified to carry (2=38 (rcp t(3;9)). 

 

The karyotype produced in figure 6-2 demonstrates that traditional banding techniques 

can identify translocations, if the exchange is large enough. This is in keeping with the 

literature; a segmental rearrangement must be at least 3-5 Mb to be observed (Lu et al., 

2007). 

 

 

Figure 6-2. Traditional karyotype of a boar carrying a 2;14 reciprocal translocation. DAPI-stained 

metaphase chromosomes of a boar identified to carry (2=38 (rcp t(2;14)). 
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The cases shown in figures 6-3 and 6-4 illustrate that traditional karyotyping analysis is 

unable to detect cryptic translocations.  

 

Figure 6-3. Traditional karyotype of a boar carrying a 9;12 reciprocal translocation. DAPI-stained 

metaphase chromosomes of a boar identified to carry a cryptic (2n=38) rcp t(9;12)).  

 

 
 

Figure 6-4. Traditional karyotype of a boar carrying a 4;5 reciprocal translocation. DAPI-stained 

metaphase chromosomes of a boar identified to carry a cryptic (2n=38) (rcp t(4;5)). 
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6.4.3 Specific aim 4c. To apply cytogenetic technologies to a chimeric (XX/XY) boar 

that identified through technologies used in specific aim 1a, to test the 

hypothesis that XX bias is present in the germ line 

A porcine blood sample was drawn for routine chromosome screening, upon analysis 

the boar appeared karyotypically female (2n38 (XX)). Additional FISH experiments using 

labelled BAC probes from the X chromosomes and SRY gene (located on the Y 

chromosome), indicated that the boar was chimeric (2n=38 (XX/XY)) in lymphocyte 

culture, with 71.2% of cell identified as XX (figure 6-6). Sperm was subsequently analysed 

using BACs isolated from the X chromosome and a labelled SRY marker to establish if the 

XX/XY chimerism extended to the germ line. Sperm was fixed as per the protocol in 

section 2.9. Overall, 392 spermatocytes were counted, 236 were identified as Y bearing, 

whilst 156 contained the X chromosome, the remaining were classified as unassigned 

due to the failure to produce a signal. A chi square, goodness of fit calculation was used 

to assess the distribution compared to the expected. In general, the expected ratio 

should be 50:50 X/Y bearing spermatocytes. Therefore, the null hypothesis is that 50% 

of the counted spermatocytes will bear the X chromosome whilst the remaining 50% will 

carry the Y chromosome. The hypothesis that XX/XY chimerism may result in a sex 

chromosome ratio skew. The  results were as follows, chi square 𝑋2 = 16.33, this result 

revealed that the distribution of the results obtained  here were significantly different 

to the expected with a p value of 5.33 x 10-5 (0.05 significance level and 2 degrees of 

freedom). To validate and compare the results above, sperm FISH was analysed as per 

the protocol in section 2.9. Sperm from a non-chimeric boar was fixed and analysed 

through FISH using labelled probes from the X chromosome and SRY gene which is 

located on the Y chromosome. A total of 367 spermatocytes were analysed, 112 were 

found to carry the X chromosome whilst 201 were found to carry the Y chromosome. As 

before, a chi square calculation was used to assess the distribution of results with the 

result being chi square 𝑋2 = 25.8, with a p value of 3.786 x 10 -7 (0.05 significance level). 
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 Observed Expected  (Differences)2 / Expected 

X bearing 156.00 196.00 8.16 

Y bearing 236.00 196.00 8.16 

    

Chi-Square 16.33   

p-value 5.33 x 10-5   

Table 6-5. Table to show chi squared calculation results and p value for results obtained from FISH analysis 

using labelled probes from the X chromosome and SRY gene located on the Y chromosome on fixed sperm 

of XX/XY chimeric boar. Analysis performed using Excel 10. 

 

 Karyotype  Interphase Nuclei Metaphase  Percentage  

XX  188  7  97.9%  

XY  4  1  2.1%  

Total  192 8   100% 

Table 6-6. Results from lymphocyte metaphase chromosomes using labelled BAC probes for X 

chromosome (CH242-19N1 (FITC)) and SRY (WTI-1061-9B10 (TxRed)) located on the Y chromosome 

 

Limited farrowing rates from the boar were available from the swine breeder, with three 

sows being served by this boar with a total number of 30 offspring born alive and 7 born 

dead.  
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Figure 6-5. FISH image to show results from sex chromosome specific BACs on metaphase chromosomes 

and sperm of mosaic boar. Labelled BAC probes for X chromosome (CH242-19N1 (FITC)) and SRY (WTI-

1061-9B10 (TxRed)) Left image - lymphocyte metaphase chromosomes showing the presence of X (FITC 

signal) and Y chromosome (TxRed signal). Right image – dual colour FISH using X chromosome FITC labelled 

probe and SRY labelled TxRed probe on fixed sperm from mosaic boar. (Magnification x1000) 

 

6.5 Discussion 

This work was largely successful in pursuit of its specific aims, in particular I: 

 

 Played a significant part in optimising the technique so that a results are reliable 

and obtained within a shorter time frame 

 Generated results from the successful screening of over 1000 boars and 

identified novel reciprocal translocations (at an incidence of 1%) within the 

breeding population 

 The hypothesis was confirmed that hitherto undetectable reciprocal 

translocations can be detected using this technology with 7 out of 18 (39%) 

unlikely to have been detected by traditional karyotyping  

 Tools used in this work enabled a novel series of case reports in domestic and 

non-domestic animals  
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This study demonstrates that chromosomal translocations are present in the breeding 

population at a frequency of 1% which is double the previously published value of 0.47% 

(Ducos et al., 2007). Furthermore, considering that an estimated 39% of reciprocal 

translocations investigated in this study, would have been undiagnosed using standard 

karyotyping techniques alone, it is reasonable to suggest that chromosomal screening 

should be completed using the FISH-based method described in this work. As previously 

mentioned throughout this study, chromosome abnormality screening is essential. 

Isolating an individual carrying an abnormality that directly impairs fertility will prevent 

transmission of the aberration to future progeny, thus preventing economic loss.  

 

The use of traditional banding techniques to detect chromosomal translocations is still 

used today, although this can only be achieved when a segmental rearrangement is 

larger than 3-5 Mb at 400-600 band resolution and any smaller than this may go 

undetected (Lu et al., 2007). The FISH-based approach developed in our laboratory 

however is not constrained by this problem. This is demonstrated in figure 6-3 (rcp 

(9;12)) and figure 6-4 (rcp t(4;5)), where the multiprobe FISH device was required in 

these cases to elucidate the chromosomes involved in the reciprocal translocation, 

therefore validating the use of this technology in chromosome screening.  

 

Taken together, a total of 26 boars out of the 1,017 analysed (2.6%) had a translocation 

or XX/XY chimerism. The 3 cases of XX/XY chimerism are probably unrelated, however 

the identification of a reciprocal translocation in one boar (rcp (4;5)) initiated the 

screening of their progeny and family population. Moreover, this translocation discovery 

resulted in further screening of the carrier’s family. Identification of a further 13 cases 

of the same translocation were identified here thereby decreasing the incidence of 

chromosome abnormalities in this population to 1% for translocations or 1.3% for all 

chromosome abnormalities. XX/XY chimerism is certainly detectable by karyotyping, 

however the necessity to karyotype each boar means that analysis of an acceptable 

number of metaphases would be prohibitively impractical in many cases. Using the 
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technology described in this chapter, a sufficient number of metaphases (50-100) can be 

analysed in minutes. Even after analysing over 1000 cases, numbers are small, however 

taking the published rates of chromosome abnormality in breeding boars to be 0.47% 

(Quach et al., 2016), our re-analysis of “known” translocations using karyotyping to 

reveal cryptic translocations, and the extra value of being able to screen for XX/XY 

chimerism more effectively suggest that, as a result of our efforts, one and a half to twice 

as many boars’ can be detected with the use of our approach.  

 

The work performed to address specific aim 4c identified the existence of a 2n=38 

(XX/XY) boar within the sample population. Initially, the boar was considered to be an 

XX male; however, further FISH analysis identified the Y chromosome in 1.5% of the 

lymphocyte metaphase/nuclei examined. The results obtained through the analysis of 

sperm from this boar implies that the chimerism was not present in the germ line, as an 

XX ratio skew was not observed. For this reason, it is reasonable to suggest that the 

chimerism observed in the lymphocyte culture was a result of the formation of 

anastomoses (connecting blood vessels) between the developing foetuses (Kozubska-

Sobocińska et al., 2016).  

 

6.6 Conclusion 

The porcine multiprobe FISH screening device has proven to be a reliable and effective 

method to screen for cryptic translocations that are undetectable through traditional 

karyotyping. Due to the direct effect chromosomal translocations have on fertility, it is 

imperative that any abnormality is identified quickly and accurately. Moreover, animals 

that reduced the profitability of the herd can be isolated and removed before entry into 

AI breeding programs, thus decreasing the risk of economic loss experienced by the 

breeding company. Considering this success, it is important to ascertain if this 

technology can be implemented in other agricultural species. This work also 

demonstrates that cytogenetic tools and analysis can be used as the starting point in any 
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chromosomal abnormality study. Traditional banding methods permit a genomic 

overview, whilst targeted approaches can improve the resolution by which 

abnormalities are identified.  

 

7 General Discussion 

7.1 Achievement summary 

Overall this study was largely successful in pursuit of its specific aims, in particular: 

 The development and implementation of a multiprobe FISH device that enabled 

the identification of hitherto undetectable cryptic translocations in cattle. The 

results presented in chapter 5 indicate that traditional karyotyping alone often 

fails to identify reciprocal chromosomal translocations that involve < 3 Mb of 

DNA. Moreover, the use of this technology has increased translocation detection 

rates, reduced actual screening time (one experiment to screen all 

chromosomes) and improved the accuracy of the result. Ultimately, this 

technology identified a novel reciprocal translocation in the breeding cattle 

population that would have undiagnosed if using traditional karyotyping alone. 

 

 A high throughput, porcine multiprobe FISH-based chromosomal screening 

device was successfully implemented, whereby over 1000 samples were 

processed and analysed for the presence of fertility-compromising chromosomal 

translocations. This technology facilitates the analysis of all subtelomeric regions 

in around 30 minutes, thereby reducing the time required to screen one boar. 

Moreover, the results shown in chapter 6 suggest that the incidence rate of 

chromosomal translocations in unproven boars is 1%, double that reported by 

Ducos et al (2007). For this reason, this study demonstrates that chromosomal 

translocations are grossly underestimated in the breeding population of pigs.  
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 Due to the development and success of the above cytogenetic tools, a series of 

novel case reports were undertaken to investigate infertility and sexual 

development in a wide range of mammalian species. It is evident from the results 

obtained in this work that sexual ambiguity is present in different mammalian 

species. Limited resources meant that in most cases a karyotype was the only 

diagnostic tool avaliable and this was sufficient in most cases. However, the 

availability of human-specific FISH probes, as described in chapter 3, meant that 

a more intense investigation into a series of spontaneous abortions experienced 

by a group of western lowland gorillas could take place.  

 

 A series of Order-specific BAC panels were created to assist in the production of 

chromosome-level genome assemblies. Previous work had demonstrated the 

reliability of a combined bioinformatic and BAC-mapping approach which 

successfully up-graded avian genome assemblies to a chromosome level. In this 

work, a number of limitations meant that a universal mammalian panel would 

not be realised. However, preliminary work reported here suggested that a 

number of Order-specific panels could be used to up-grade mammalian de novo 

genome assemblies. 

 

Overall, the goal of this project was to develop and implement a range of FISH-based, 

molecular cytogenetic tools that would, a) facilitate the detection of fertility-reducing 

cryptic translocations in agricultural animals (cattle and pigs), b) report the incidence of 

chromosomal abnormalities in unproven boars and c) create a universal panel of BAC 

probes that would aid genome assembly and reconstruction efforts. It is evident from 

the work obtained throughout this study that the molecular cytogenetic tools used here, 

should still be considered an important tool in diagnostic and basic research. Moreover, 

the technology used in this thesis enabled investigations into chromosomal 

rearrangements that are associated with sub-optimal fertility and chromosomal 

rearrangements that mediate reproductive isolation. 
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7.1.1 Technological improvements in agricultural chromosome screening 

The results presented throughout this thesis highlight the importance of chromosomal 

screening in agricultural animals. This work demonstrates that reciprocal translocations 

are prevalent in unproven boars, with an incidence rate of 1%. Moreover, the large 

sample size (>1000) and use of a technology that facilitated the detection of cryptic 

translocations, resulted in a higher incidence rate (double) than that previously found by 

Ducos et al (2007). The technology used in chapter six was developed by O’Connor 

(2016) to isolate animals that carry cryptic translocations. This form of translocation is 

notoriously difficult to detect using only traditional banding technology alone and for 

this reason, it is plausible to suggest that due to the methods used in this work, a 

significant proportion of translocations were missed. Moreover, it was suggested by De 

Lorenzi et al (2012) that if the genetic exchange is less than 3 Mb traditional banding 

techniques are ill-equipped to identify cryptic chromosomal rearrangements. Therefore, 

the technology used throughout this thesis successfully negates this limitation, 

ultimately demonstrating this method should be considered the ‘gold standard’ of 

chromosomal screening in this species.  

 

Similarly, in cattle, this work has proven that traditional banding methods fail to 

recognise cryptic reciprocal translocations; until now banding analysis, was the only 

method used to screen for abnormalities in this species. Therefore, the development of 

a FISH-based screening device will potentially improve the resolution to which 

chromosomal abnormalities can be detected, as was demonstrated through the 

identification of a 12;23 reciprocal translocation in two of the bulls screened (chapter 5). 

These results showed that using banding methods alone this translocation would have 

missed. The results obtained in chapter 5 demonstrate that chromosomal translocations 

are present within the breeding populations of cattle. Previous work had already 

established that the 1;29 translocation was considered widespread whereby it was 

identified in almost all cattle breeds. Additionally, an interesting finding in this study was 

the detection of two animals that carried the homozygous form of this translocation. 
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Although this rearrangement has been reported in other animals previously, it is 

considered a somewhat rare event. Moreover, in evolutionary terms this form of 

homozygous rearrangement mediates reproductive isolation, when if paired with 

another carrier could become fixed in the population, therefore resulting in a speciation 

event. It is widely established that in individuals that are heterozygous for a 

chromosomal rearrangement, recombination between chromosomes that differ for the 

rearrangement often generates unbalanced gametes, as described throughout this 

thesis. However, in an individual that carries the homozygous form of a rearrangement, 

recombination mispairing and segregation issues are avoided therefore forming 

balanced gametes (Rieseberg, 2001). Previously, it was noted that the advantage, with 

respect to establishment is only present when the population is small and selection 

against the under-dominant mutation is weak (Rieseberg, 2001). For this reason, the 

likelihood of this rearrangement becoming fixed is relatively low. 

 

7.1.2 Cytogenetic tools for genome assembly 

The ultimate goal of any genome sequencing effort is to produce a contiguous length of 

sequence read that spans from the p terminus to the q terminus of every chromosome 

in a given organism (Damas et al., 2017). However, with the current technologies 

available this goal is not yet achievable and for this reason, computational tools along 

with anchoring techniques (e.g. BAC-FISH mapping) are required to facilitate the 

assembly of de novo sequenced genomes. The work presented in this study was as a 

result of a highly successful project developed for avian genome assembly (Damas et al., 

2017). This combined approach used both assembly algorithms and cytogenetic analysis 

which permitted the development of a universal set of BACs that facilitated assembly in 

divergent species. The work presented in chapter 1 illustrates the difficulties in achieving 

this universal BAC set in mammals. Indeed, unlike birds, the genomes of mammalian 

species are incredibly repeat rich and it is believed that 30% of the human genome is 

repetitive in nature. This means that hybridisation success of a similar standard to that 

of pervious work was only observed in species that were closely related to the reference 
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genome i.e. genome from which the BACs were selected (Treangen and Salzberg, 2011). 

However, this result indicated that instead of a universal panel (as seen in birds) a series 

of Order-specific BACs could be developed and applied to chromosome-level genome 

assembly in mammals. Fundamentally, this hypothesis is still in development, with only 

a small panel of BACs (see section 3.4.3.1) currently avaliable for species within the 

Artiodactyla and Primate Orders. However, this approach offers an answer to the 

problems experienced in chapter 1 and will ultimately help facilitate chromosome-level 

genome assembly in mammals. 

 

7.1.3 Cytogenetic tools – the wider studies 

It is evident from the work presented in this thesis that traditional karyotype analysis 

can be used to elucidate certain questions pertaining to sexual development. In 

particular, the results shown in chapter 4 illustrate the importance of this technique 

when trying to determine the genotypic sex of an animal with ambiguous genitalia, as 

seen in the case of the red river hog, thoroughbred horses and Sumatran tiger.  In the 

case of the red river hog, porcine sex chromosome-specific probes were used to confirm 

the karyotype, thus providing the opportunity to analyse lymphocytes in both 

metaphase and interphase states which ultimately increased the number of results 

obtained and reduced time spent creating karyotypes. Furthermore, should the 

development of the aforementioned Order-specific BAC panels occur, there may come 

a time when FISH analysis could be used on all animals referred for karyotypic sex 

determination. However, to gain a deeper understanding as to the mechanism behind 

the interrupted development, additional analysis will be required. 

 

In the case of the bovine Swyer, a plethora of cytogenetic and sequencing analyse were 

performed in an attempt to understand the genetic abnormality behind the disorder. In 

humans a mutation in the SRY is responsible for 15-20% of cases (Machado et al., 2001). 

However, after successfully isolating the SRY and performing DNA sequencing analysis, 

it was found to be fully functional. Previously, an SRY positive bovine Swyer was reported 
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by De Lorenzi et al (2012), as with this cases the SRY was found to be fully functional 

with no mutations or frameshifts detected. 

7.2 Further work arising from this study 

While the work presented here has addressed some of the challenges faced in 

chromosomal analysis and genome assembly efforts, the observations made during this 

study have identified areas that require further examination, namely: 

 

 The development of a FISH-based screening device for the detection 

chromosomal abnormalities in horses. Moreover, using a similar design to that 

of cattle, (see section 2.5.1.2), a device could be developed that would screen 

the entire chromosome complement of horses in one experiment over two 

slides. Therefore, the logical next stage of this work would be to isolate BACs 

from the proximal and distal region of each chromosome in horses. After 

optimisation and BAC location verification tests, these could then be 

incorporated into the multiprobe device, whereby thoroughbred breeders 

and/or vets could check the chromosomal status of each individual horse. 

 

 Continuation of the development of a series of BAC panels that would assist in 

the production of chromosome-level genome assemblies. The first step in this 

work would be to apply the BAC described in section 3.4.3.1, to a range of 

Artiodactyl species, starting with the Red lechwe (24 mya from reference) to pig 

(64 mya from reference). Depending on the results obtained from this, a panel 

could be developed that would up-grade de novo genome assemblies of species 

from within this Order. Furthermore, this work could be extended to additional 

mammalian Orders for instance Carnivora. Although BACs were successfully used 

to examine chromosome rearrangements in the Rodent lineage, a full panel of 

autosomic BACs could be established for species within Rodentia. 
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7.3 Personal Perspectives  

Now that my PhD has come to an end, it is possible to reflect upon the last three years 

and realise that it has been a truly incredible journey, one that has provided me with the 

opportunity to develop my scientific and analytical skills. I, for one am exceptionally 

proud of the work that I have achieved over the last three years. 

 

This PhD provided me with chance to travel both nationally and internationally, it 

provided the chance to disseminate my research to the wider scientific community; 

invitations from the International Chromosome Conference in Prague to give an oral 

presentation, as well my first ever conference talk at Genome Science and Genome 10 K 

conference in Norwich (an experience that was both terrifying and exhilarating), and 

finally, The European Cytogeneticist Association in Florence, a weekend that will never 

be forgotten. 

 

Throughout the duration of my PhD I encountered so many influential scientists, I was 

encouraged to engage with and discuss my work in the hope that new collaborations or 

projects could be initiated, this gave me the confidence to participate in conversation 

with my peers and superiors. I have met some amazing people over the last three years, 

some of which I consider true friends now, they helped make my PhD a fantastic 

experience.   
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9 Appendix 
 

Table S1. Cattle BACs selected based on chromosomal position. 

BAC Origin BAC Clone ID Chromosome 

Cattle Subtelo CH240-321O2 1 

Cattle Subtelo CH240-96M6 1 

Cattle Subtelo CH240-457J20 2 

Cattle Subtelo CH240-227E16 2 

Cattle Subtelo CH240-302G6 3 

Cattle Subtelo CH240-416O20 4 

Cattle Subtelo CH240-193F3 4 

Cattle Subtelo CH240-326L8 5 

Cattle Subtelo CH240-248M21 5 

Cattle Subtelo CH240-5F18 6 

Cattle Subtelo CH240-415D2 7 

Cattle Subtelo CH240-276L16 7 

Cattle Subtelo CH240-443K7 8 

Cattle Subtelo CH240-241A18 8 

Cattle Subtelo CH240-25A3 9 

Cattle Subtelo CH240-298I24 9 

Cattle Subtelo CH240-421B11 10 

Cattle Subtelo CH240-325F16 10 

Cattle Subtelo CH240-314K5 11 

Cattle Subtelo CH240-344O3 11 

Cattle Subtelo CH240-261C16 12 

Cattle Subtelo CH240-262C4 12 

Cattle Subtelo CH240-461F6 13 

Cattle Subtelo CH240-471M8 13 

Cattle Subtelo CH240-319C15 14 

Cattle Subtelo CH240-240M1 14 
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BAC Origin BAC Clone ID Chromosome 

Cattle Subtelo CH240-225A24 15 

Cattle Subtelo CH240-386C2 15 

Cattle Subtelo CH240-139M7 16 

Cattle Subtelo CH240-315I10 16 

Cattle Subtelo CH240-267P22 17 

Cattle Subtelo CH240-313I20 17 

Cattle Subtelo CH240-14C14 18 

Cattle Subtelo CH240-436N22 18 

Cattle Subtelo CH240-349G17 19 

Cattle Subtelo CH240-390C5 19 

Cattle Subtelo CH240-394L14 20 

Cattle Subtelo CH240-339K22 20 

Cattle Subtelo CH240-301D14 21 

Cattle Subtelo CH240-62O23 21 

Cattle Subtelo CH240-426O23 22 

Cattle Subtelo CH240-313B20 22 

Cattle Subtelo CH240-302J21 23 

Cattle Subtelo CH240-374G6 23 

Cattle Subtelo CH240-382F1 24 

Cattle Subtelo CH240-19L13 24 

Cattle Subtelo CH240-198J4 25 

Cattle Subtelo CH240-379D22 25 

Cattle Subtelo CH240-428I10 26 

Cattle Subtelo CH240-389H1 26 

Cattle Subtelo CH240-7G11 27 

Cattle Subtelo CH240-352M8 27 

Cattle Subtelo CH240-313L4 28 

Cattle Subtelo CH240-63D12 28 

Cattle Subtelo CH240-367D17 29 
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BAC Origin BAC Clone ID Chromosome 

Cattle Subtelo CH240-257F23 29 

Cattle Subtelo CH240-121E1 X 

Cattle Subtelo CH240-472J20 X 
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Simple Summary: Globally, cattle production has more than doubled since the 1960s, with widespread
use of artificial insemination (AI) and an emphasis on a small pool of high-genetic-merit
animals. Selecting AI bulls with optimal fertility is therefore vital, as impaired fertility reduces
genetic gains and reduces production, resulting in heavy financial and environmental losses.
Chromosome translocations, where large parts of the genome are inappropriately attached in
abnormal patterns, are a common cause of reduced fertility; however, reciprocal translocations are
significantly underreported due to the difficulties inherent in analysing cattle chromosomes. Based on
our previous work, we have developed an approach for the unambiguous detection of abnormalities
that affect fertility. We applied this method on the chromosomes of 39 bulls, detecting multiple
abnormalities that affect fertility, including those that would be undetectable using traditional
screening techniques. With UK dairy calving rates of only 50–60%, it is vital to reduce further fertility
loss in order to maximise productivity. The approach developed here identifies abnormalities that
DNA sequencing will not, and has the potential to lead to long-term gains, delivering meat and milk
products in a more cost-effective and environmentally-responsible manner to a growing population.

Abstract: Globally, cattle production has more than doubled since the 1960s, with widespread
use of artificial insemination (AI) and an emphasis on a small pool of high genetic merit animals.
Selecting AI bulls with optimal fertility is, therefore, vital, as impaired fertility reduces genetic gains
and production, resulting in heavy financial and environmental losses. Chromosome translocations,
particularly the 1;29 Robertsonian translocation, are a common cause of reduced fertility; however,
reciprocal translocations are significantly underreported due to the difficulties inherent in analysing
cattle chromosomes. Based on our porcine work, we have developed an approach for the unambiguous
detection of Robertsonian and reciprocal translocations, using a multiple-hybridization probe detection
strategy. We applied this method on the chromosomes of 39 bulls, detecting heterozygous and
homozygous 1;29 translocations and a 12;23 reciprocal translocation in a total of seven animals.
Previously, karyotype analysis was the only method of diagnosing chromosomal rearrangements
in cattle, and was time-consuming and error-prone. With calving rates of only 50–60%, it is vital
to reduce further fertility loss in order to maximise productivity. The approach developed here
identifies abnormalities that DNA sequencing will not, and has the potential to lead to long-term
gains, delivering meat and milk products in a more cost-effective and environmentally-responsible
manner to a growing population.

Keywords: cattle; translocation; FISH; artificial insemination; subfertility; chromosome; genetics
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1. Introduction

On a global scale, cattle meat and milk production has more than doubled between 1961 and 2014,
increasing from 28 million to 68 million tonnes per year for meat products, and 344 million to 792 million
tonnes for milk products [1]. To support this increasing demand, the use of artificial insemination (AI)
has become widespread in the cattle breeding industry. In many breeding programmes, the emphasis
on genomic selection is on genotype and pedigree analysis, with relatively little attention being paid to
the underlying fertility of the animal. However, the extensive use of artificial insemination using a
small pool of high genetic-merit bulls, and the rising use of in vitro-produced embryos, means that
the importance of selecting parents that also have optimal fertility is vital. Impaired fertility reduces
genetic gain, increases veterinary costs, and reduces milk and meat production, all of which result in
heavy financial and environmental losses for the breeding company; costs that is ultimately passed on
to the end consumer.

Semen analysis is commonly used as a fertility indicator in livestock breeding programmes where
volume, morphology, motility and concentration are routinely measured [2]. However, this type of
analysis is thought to be an unreliable indicator of fertility, and does not allow for the detection of
underlying subfertility on a chromosomal level [3]. Instead, the most widely used parameter for the
detection of subfertility in cattle is the ‘nonreturn rate’ (the number of females returning to the oestrus
cycle, being therefore indicative of a failure to conceive) [4].

Chromosomal rearrangements, including Robertsonian (centromeric end fusion) and reciprocal
(nonhomologous exchange) translocations, can have a significant detrimental effect on the fertility
of cattle. Where these rearrangements occur, the process of meiotic pairing and chromosome
segregation during gametogenesis is disturbed, leading to gametes that can be genetically unbalanced [5].
These unbalanced gametes inevitably result in early embryonic loss due to reduced viability. In recent
decades, efforts have been made to diagnose fertility issues in domestic breeding animals using
chromosome analysis. In 1964, Ingemar Gustavsson first reported the presence of the 1;29 centromeric
fusion (Robertsonian translocation) in a population of Swedish Red and White cattle [6]. Since then,
the 1;29 translocation has been the most commonly seen rearrangement of the 44 that have been
identified in cattle so far [7], with cases found in all breeds, except Holstein-Fresian [8]. In one 15-year
study of the Italian breeding population, 7.1% animals were identified as carrying a Roberstonian
translocation [9]. These heterozygous 1;29 carriers are phenotypically normal, but suffer a reduction
in fertility of 3–5% [10]. Homozygous carriers are rare, but have been reported by several groups,
although incidence varies between breeds. Reported examples of the homozygous 1;29 state include
the presence in 8.5% of Blonde d’Aquitaine bulls [10], along with cases found in five of the eight
Portuguese cattle breeds [11]. All cattle (Bos taurus and Bos indicus) have the same chromosome
complement with 2n = 60, and thus, any novel approach must be applicable to all commercial breeds.

Reciprocal translocations have been identified in cattle, albeit much less frequently, with the
aforementioned Italian study reporting a rate of 0.03% [9]. To date, only 19 reciprocal translocations
involving different chromosomes in cattle have been reported [12]. In fact, De Lorenzi and colleagues
suggested that the frequency of reciprocal translocations is grossly underreported, largely due to
the inherent difficulties in detecting these rearrangements using routine cytogenetics [12]. The cattle
karyotype is notoriously difficult to analyse reliably because of a diploid number of 60, largely made
up of similar-sized acrocentric chromosomes, and is therefore problematic for the detection of
anything other than Robertsonian translocations. A molecular approach that will detect reciprocal and
Robertsonian translocations is, therefore, essential.

Recently, we developed an approach for the detection of cryptic and overt translocations in
boars [13]. This method uses a panel of subtelomeric fluorescence in-situ hybridisation (FISH)
probes on a multihybridisation device as a means of highlighting the ends of each chromosome,
thereby facilitating the identification of rearrangements between chromosomes. The purpose of this
study was to use similar technology to isolate and visualise each end of every chromosome in cattle.
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Here, as proof of principle, we use a small sample size; however, all cattle have the same chromosomes,
thereby allowing for the detection of translocations, particularly the challenging reciprocal ones.

2. Materials and Methods

Heparinised whole blood samples from 39 Holstein bulls were obtained from local suppliers.
Samples were collected as part of standard procedures used for commercial evaluation by in house
trained veterinarians via standard phlebotomy in heparin tubes. Whole blood samples were cultured
for 72 h in PB MAX Karyotyping medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) at
37 ◦C, 5% CO2. Cell division was arrested by the addition of colcemid at a concentration of 10.0 µg/mL
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA) for 35 min prior to hypotonic treatment with
75 M KCl and fixation to glass slides using 3:1 methanol:acetic acid.

2.1. Selection and Preparation of Fluorescence In-Situ Hybridisation (FISH) Probes

Bacterial artificial chromosome (BAC) clones of approximately 150 kb in size were selected from
the Btau 4.6.1 NCBI database (www.ncbi.nlm.nih.gov) and ordered from the CHORI-240 Bovine BAC
library for each autosome and the X chromosome (see Table 1). A lack of available BACs for the Y
chromosome meant that this chromosome was excluded from the study. BAC DNA was isolated using
the Qiagen Miniprep Kit (Qiagen, Hilden, Germany), the products of which were then amplified and
directly labelled by nick translation with FITC-Fluroescein-12-UTP (Roche, Basel, Switzerland) for
subcentromeric probes and Texas Red-12-dUTP (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA) for distal q-arm probes prior to purification. A list of BACs is given in Table 1.

Table 1. Cattle BACs by chromosome from the CHORI-240 library.

Chrom Arm Clone Name Span Chrom Arm Clone Name Span (bp)

1
p CH240-321O2 179,965

16
p CH240-139M7 166,377

d CH240-96M6 187,920 d CH240-315I10 186,228

2
p CH240-457J20 198,157

17
p CH240-267P22 176,654

d CH240-227E16 179,789 d CH240-313I20 182,729

3
p CH240-154A5 174,225

18
p CH240-14C14 163,878

d CH240-302G6 190,291 d CH240-436N22 179,260

4
p CH240-416O20 170,609

19
p CH240-349G17 169,018

d CH240-193F3 179,112 d CH240-390C5 180,283

5
p CH240-326L8 188,525

20
p CH240-394L14 182,595

d CH240-248M21 163,993 d CH240-339K22 183,557

6
p CH240-324B6 180,970

21
p CH240-301D14 163,699

d CH240-5F18 184,848 d CH240-62O23 176,169

7
p CH240-415D2 182,547

22
p CH240-426O23 182,818

d CH240-276L16 168,781 d CH240-313B20 173,299

8
p CH240-443K7 175,465

23
p CH240-102P19 179,615

d CH240-241A18 176,318 d CH240-374G6 174,942

9
p CH240-25A3 177,086

24
p CH240-382F1 171,530

d CH240-298I24 172,331 d CH240-19L13 171,917

10
p CH240-421B11 166,378

25
p CH240-198J4 186,545

d CH240-325F16 179,292 d CH240-379D22 163,818

11
p CH240-314K5 165,445

26
p CH240-428I10 181,997

d CH240-344O3 183,795 d CH240-389H1 176,691

12
p CH240-261C16 164,440

27
p CH240-7G11 184,155

d CH240-262C4 165,223 d CH240-352M8 184,694

13
p CH240-461F6 188,788

28
p CH240-313L4 181,707

d CH240-471M8 178,736 d CH240-63D12 183,932

14
p CH240-319C15 181,738

29
p CH240-367D17 179,713

d CH240-240M1 178,587 d CH240-257F23 188,054

15
p CH240-225A24 151,902

X
p CH240-121E1 176,736

d CH240-386C2 168,728 q CH240-472J20 186,872
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2.2. Development of Multiprobe Device

Fluorescently-labelled probes were diluted to a concentration of 10 ng/µL in sterile distilled
water along with competitor DNA (Bovine Hybloc, Applied Genetics Laboratories, Melbourne, FL,
USA). Each probe combination contained a probe isolated from each end of the chromosome, and was
individually assigned with the appropriate chromosome number followed by the letter p (proximal) or
d (distal). Using a proprietary Chromoprobe Multiprobe System device manufactured by Cytocell
Ltd., Cambridge, UK, each probe combination (e.g., 1pd) for chromosomes 1 to 24 was air dried onto
a square of the device. The corresponding glass slide was subdivided into 24 squares, designed to
align to the 24 squares on the device upon which chromosome suspensions were fixed. A second
8-square device was used to facilitate the larger number of chromosomes in the cattle karyotype.
The precise orientation of the clones and development of the bespoke device is given in the results
section (Figure 1).

Figure 1. Schematic demonstrating the layout of probes designed to map to each bovine
chromosome-selected from the most proximal (p) and most distal region (d) of each
individual chromosome.

2.3. Fluorescence In-Situ Hybridisation (FISH)

Slides were dropped with fixed metaphase preparations and dehydrated through an ethanol
series (2 min each in 2× sodium saline citrate (SSC), 70%, 85% and 100% ethanol at room temperature).
Formamide-based hybridisation buffer (Cytocell Hyb I, Cambridge, UK) was pipetted onto each square
of the device in order to resuspend the probes. The glass slide and the device were sandwiched
together and warmed on a 37 ◦C hotplate for 10 min. The probe and target DNA were subsequently
denatured on a 75 ◦C hotplate for 5 min prior to overnight hybridisation in a dry hybridisation
chamber in a 37 ◦C water bath. Slides were washed post hybridisation for 2 min in 0.4× SSC
at 72 ◦C and 30 s in 2× SSC/0.05% Tween 20 at room temperature, then counterstained using
DAPI in VECTASHIELD. Metaphases for karyotyping were stained with DAPI in VECTASHIELD
antifade medium (Vector Laboratories, Peterborough, UK). Image capturing was performed using
an Olympus BX61 epifluorescence microscope (Olympus, Tokyo, Japan) with a cooled CCD camera
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and SmartCapture (Digital Scientific UK, Cambridge, UK) system. The SmartType software (Digital
Scientific UK, London, UK) was used for karyotyping purposes.

3. Results

3.1. Generation and Validation of a Device and Scheme Capable of Detecting Reciprocal and Robertsonian
Translocations in Cattle

Using technology adapted for translocation screening in pigs, the screening device was arranged
as shown in Figure 1, where, for each autosome, a proximal (near the centromere) and distal probe
were labelled in green and red respectively to highlight the ends of each chromosome. For the X
chromosome, the proximal probe was located in a subtelomeric position at the end of the p arm and
one at the distal end of the q-arm. Given the number of cattle chromosomes (2n = 60), a 24-square
(as per the porcine device) plus an extra 8-square device was used.

3.2. Validation of Device and Karyotypes

A total of 39 bulls were screened using both karyotyping and the FISH multiprobe method,
the results of which are show in Table 2. Bright signals were seen in each of the hybridization
squares, with five animals revealing a 1;29 translocation. Three of these were heterozygous, and two
were homozygous. In two samples, the FISH method revealed a reciprocal translocation (rcp 12;23),
thereby demonstrating that karyotypically-undetectable reciprocal translocations can be identified
using this technology. The results are given in Figures 2–5 and summarized in Table 2.

Table 2. Summary of results from screening 39 animals using karyotyping and FISH.

Diagnosis Numbers Method of Detection

Heterozygous Robertsonian (1;29) 3 Karyotype-confirmed with FISH
Homozygous Robertsonian (1;29) 2 Karyotype-confirmed with FISH

Reciprocal (12;23) 2 FISH-karyotype appeared normal
Normal 32 Karyotype, FISH

Figure 2. DAPI stained karyotype of a 2n = 59 bull with a rob (1;29). Robertsonian translocation and
the missing chromosome 29 are circled in red.
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Figure 3. Metaphase spread of heterozygous 1;29 translocation carrier. Left image shows labelled FISH
probes for chromosome 1, where CH240-321O2 (FITC) is the proximal probe and CH240-96M6 (TxRed)
is the distal probe. The translocation is marked by an arrow. Right image shows labelled FISH probes
for chromosome 29, where CH240-367D17 (FITC) represents the proximal probe and CH240-257F23
(TxRed) maps to the distal end- The translocation is marked by an arrow. Scale bar 10 µm.

Figure 4. DAPI stained metaphase chromosomes of a homozygous 1;29 Robertsonian translocation
in a British White bull (2n = 58, XX). Homozygous Robertsonian translocation (1;29) circled in red.
Diagnosis confirmed by FISH.

No reciprocal translocations were identified by karyotype analysis, although two carriers were
identified using FISH. The translocation identified involved chromosomes 12 and 23, with the same
translocation affecting two bulls, as shown in Figure 5.
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Figure 5. Labelled FISH probes for chromosome 23, where the proximal probe is CH240-102P19 (FITC)
and the distal probe is (CH240-374G6 (Texas Red). A misplacement of signals illustrates a reciprocal
translocation between chromosome 12 and chromosome 23.

4. Discussion

The consequences of using a subfertile bull in an AI breeding programme are many. First of all,
while using a subfertile bull may result in a small number of pregnancies, the pregnancy rates will
inevitably be significantly lower than expected. This then leads to extended calving intervals and an
increased likelihood that a higher proportion of cows will be culled for presumed sterility. Both of these
factors result not just in reduced financial returns, but also in a large degree of wastage, raising ethical
and environmental concerns. This is particularly important when the very large bull to cow ratios
employed in AI programmes are taken into account. With average calving rates of only 50–60% in UK
domestic dairy cattle, it is vital to prevent any further potential loss of fertility in order to maximise the
opportunities for each cow to conceive and to improve productivity [14].

Prior to the results reported here, standard karyotype analysis, a time-consuming and error prone
method, was the only means of diagnosing chromosomal rearrangements in cattle. De Lorenzi and
colleagues calculated that for a translocation to be observable through karyotyping alone, an abnormal
chromosome derivative must be either at least 15% (185 Mb) longer than chromosome 1, or 40%
(26.4 Mb) shorter than chromosome 25 [12]. Even with optimum G-banding preparations, it is likely
that most reciprocal translocations involving chromosomes 2–24 would be indistinguishable from
other autosomes. It is vital, therefore, that efficient and accurate methods are implemented for the
detection of chromosome translocations as part of a routine screening programme for cattle destined
for AI. The results generated in this study demonstrate the validity of a FISH-based screening device
for the detection of reciprocal translocations, two of which would remain undiagnosed if standard
karyotyping alone had been used. Efforts to eradicate chromosomal translocations from the cattle
breeding herd are ongoing; however, the results presented here demonstrate that both Robertsonian
and reciprocal translocations are present in the breeding population. Many of these may be de novo
rearrangements, but it is highly likely that the reciprocal translocation identified here is one that has
been carried through multiple generations but which had not been identified due to the inherent
difficulties in screening using traditional methods. Screening for chromosomal translocations that
result in economic loss is, therefore, more important than ever, and this study demonstrates, in only a
small group of animals, a means by which it could be achieved in the future.
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The Robertsonian translocations identified in this study, while detectable with basic karyotyping,
can also easily and accurately be identified using FISH. Interestingly, despite great efforts in many
breeding programmes to eliminate the 1;29 translocation, our results suggest that either these efforts
have not been wholly successful, or that this rearrangement continues to recur de novo. Without
historical data and ongoing routine screening of all animals entering the breeding population, it is
difficult to ascertain what proportion of these rearrangements fall into this category.

This paper provides a small proof of principle for an approach that could potentially have
wide applicability. The development and implementation of this FISH-based assay has, however,
already markedly improved the efficiency and accuracy of translocation screening, allowing multiple
hybridisation experiments in a single assay. Whilst chromosomal translocations have been demonstrated
to significantly affect fertility in all species tested, in cattle, many of these rearrangements have
remained undetected due to the inherent difficulties in finding them using previous technologies.
The method presented here resolves this issue, allowing for the rapid identification of an abnormality,
and corresponding rapid removal of affected animals from the herd. Not only will this lead to
a reduction in the economic losses associated with using a subfertile bull, it will also reduce the
need for the unnecessary culling of cows and bulls that are suspected (but unproven) to be sterile,
thereby reducing economic and environmental loss. Moreover, the karyotype of both Bos Taurus and
Bos indicus is identical (aside from the morphology of the Y chromosome), and therefore, although only
established on a small number of individuals, this approach is universally applicable to all commercial
breeding bulls.

In addition, an increasing emphasis on the use of in vitro production (IVP) methods to improve
cattle breeding means that the requirement for high genetic merit gametes is not just limited to the
analysis of bulls, but that the need to screen cows, and ultimately oocytes or embryos, for chromosome
abnormalities will also become increasingly important [15]. This screening approach allows both
donor parents to be screened for underlying chromosomal abnormalities prior to their use in IVP
programmes, thereby improving the genetic quality of the embryos generated using these methods.
Other efforts in our laboratory allow for the screening of oocytes and embryos [15].

Finally, with the success of this screening method in place and the success of our previously
developed method in screening for chromosome abnormalities in pigs, it is plausible to suggest
that this technique could be applied to any animal of interest, with the horse being an ideal
future candidate. The domestic horse (2n = 64) is of significant interest to many different groups
worldwide; the thoroughbred breeding industry, for example, could benefit from a similar screening
service. Previous cytogenetic studies have identified chromosomal translocations that affect fertility in
thoroughbred mares [16], another group for which breeders place a significant importance on high
genetic merit in the breeding population. Having the tools to examine and diagnose chromosomal
abnormalities in a similarly fast and efficient manner would, therefore, be beneficial to this industry.

5. Conclusions

The approach developed here has the potential to lead to long-term improved productivity,
delivering meat and milk products in a more cost-effective and environmentally-responsible manner
to a growing population. The widespread use of artificial insemination and IVP, and the large market
for superior bull semen being sold to both small and large-scale cattle breeding operations suggests
that improvements in productivity will have a wide impact. This will affect not only large commercial
breeders, but also smaller farmers, for whom reduced wastage per animal may be more critical.
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