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ABSTRACT 

Personality assessments are frequently used in real-life applications to predict important 

outcomes. For such assessments, the forced choice (FC) response format has been 

shown to reduce response biases and distortions, and computerised adaptive testing 

(CAT) has been shown to improve measurement efficiency. This research developed FC 

CAT methodologies under the framework of the Thurstonian item response theory 

(TIRT) model. It is structured into a logical sequence of three areas of investigation, 

where the findings from each area inform key decisions in the next one. First, the 

feasibility of FC CAT is tested empirically. Analysis of large historical samples 

provides support for item parameter invariance when an item appears in different FC 

blocks, with person score estimation remaining very stable despite minor violations. 

Remedies for minimising the risk of assumption violations are also developed. Second, 

the design of the FC CAT algorithm is optimised. Current CAT methodologies are 

reviewed and adapted for TIRT-based FC assessments, and intensive simulation studies 

condense the design options to a small number of practical recommendations. Third, the 

practicality and usefulness of FC CAT is examined. An adaptive FC assessment 

measuring the HEXACO model of personality is developed and trialled empirically. In 

conclusion, this research mapped out a blueprint for developing FC CAT that use the 

TIRT model, highlighting the benefits, limitations, and key directions for further 

research. 

Keywords: Forced choice, computerised adaptive testing, multidimensional item 

response theory, Thurstonian IRT model. 
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CHAPTER 1: PERSONALITY AND PERSONALITY ASSESSMENT 

As an integral part of an individual’s psychology, personality permeates many 

aspects of one’s life. Ozer & Benet-Martinez (2006) summarised research that related 

personality to many important outcomes at individual, interpersonal and institutional 

levels – from happiness and physical wellbeing to relationship quality and political 

attitudes. Moreover, for many outcomes, the influence of personality was on par with or 

even greater than the influence of social economic status or cognitive ability (Almlund, 

Duckworth, Heckman, & Kautz, 2011; Roberts, Kuncel, Shiner, Caspi, & Goldberg, 

2007). The breadth and depth of the impact of personality thus makes it a crucial tool in 

understanding and predicting individual life choices and outcomes across many fields of 

psychological research and practice. In educational psychology, personality has been 

shown to shape subject choices and academic performance (e.g., Mendolia & Walker, 

2014; Trapmann, Hell, Hirn, & Schuler, 2007; O’Connor & Paunonen, 2007; Poropat, 

2009). In health psychology, personality has been shown to correlate with physical and 

mental wellbeing (e.g., Caspi, Roberts, & Shiner, 2005; Miller, Smith, Turner, Guijarro, 

& Hallet, 1996; Trull & Sher, 1994). In work psychology, personality has been shown 

to predict job performance and occupational outcomes across many roles and industries, 

making it a useful tool for employee recruitment, development and appraisal (e.g., 

Barrick & Mount, 1991; Hurtz & Donovan, 2000; Ones, Dilchert, Viswesvaran, & 

Judge, 2007; Salgado, 1997, 2002, 2003; Tett, Jackson, & Rothstein, 1991). Regardless 

of the field of application, personality research and practice involve the quantification of 

individuals’ latent personality traits, which are typically measured through the 

administration of personality assessments. 

This chapter summarises the current status of personality assessment practices. 

The limitations of traditional personality assessments using fixed questionnaires and 
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rating scales are described, followed by the review of two increasingly-popular 

measurement techniques – forced choice (FC) and computerised adaptive testing (CAT). 

The chapter concludes with the potential benefits arising from combining these two 

measurement techniques using the Thurstonian Item Response Theory (TIRT) model 

(Brown & Maydeu-Olivares, 2011), finishing with an outline of the research questions 

that this thesis addresses. 

Traditional Personality Assessments 

As a result of their utility, personality assessments (also referred to as 

“inventories”, “instruments” or “tests”) are popular in many real-life applications. For 

example, in a survey of 3,135 human resources professionals from around the world, 60% 

of the respondents’ organisations were using personality assessments pre-hire, with a 

further 15% planning to do so in the near future (Kantrowitz, Tuzinski, & Raines, 2018). 

Due to the lack of better alternatives in many practical settings, the measurement 

of personality is almost always conducted using a self-report questionnaire. Traditional 

personality questionnaires typically share two features: first, single-stimulus (SS) 

response formats are adopted, asking respondents to describe themselves in relation to a 

series of items, one at a time, using rating scales (usually ordered categories); second, 

multiple traits representing different factors and facets of personality are assessed, each 

measured by a small, static set of items. For example, the main NEO1 Personality 

Inventories, including NEO-PI-R and NEO-PI-3, assess the Five-Factor Model of 

personality (FFM; Digman, 1990) using 240 items administered in a SS response format 

with a five-point rating scale from “strongly disagree” to “strongly agree” (Costa & 

 

1 “NEO” was originally an acronym for the “Neuroticism-Extraversion-Openness” inventory. However, 

with the subsequent additions of the Agreeableness (A) and Conscientiousness (C) factors, “NEO” is now 

merely the instrument brand name and no longer an acronym. 
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McCrae, 1992; McCrae, Costa, & Martin, 2005). As another example, the main 

inventory for the six-factor HEXACO2 model of personality (Ashton et al., 2004), the 

HEXACO-PI-R, has 60-, 100- and 200-item versions all administered in a SS response 

format with a reversed five-point rating scale from “strongly agree” to “strongly 

disagree” (Ashton & Lee, 2009; Lee & Ashton, 2004, 2006, 2018). However, despite 

the prevalence of this traditional format in numerous historical and current personality 

assessments, the practical challenges they face have been widely acknowledged and 

well documented. 

With regards to the response format, the SS response format is susceptible to 

various response biases and distortions. Response biases and distortions arise due to: 1) 

differences in interpretation of the rating scale (Friedman & Amoo, 1999); 2) individual 

response styles such as central/extreme tendency, acquiescence and socially desirable 

responding (Paulhus, 1991; Paulhus & Vazire, 2007); and 3) intentional manipulations 

of responses to manage impression, also known as faking (e.g., Donovan, Dwight, & 

Hurtz, 2003; Griffith, Chmielowski, & Yoshita, 2007; Viswesvaran & Ones, 1999). 

Unintentional response styles are inherent in the measurement methodology and affect 

all individuals, albeit to varying degrees (e.g., van Herk, Poortinga, & Verhallen, 2004). 

Intentional response distortions are some individuals’ attempt at influencing assessment 

scores through response manipulation, which is easily achievable with a SS response 

format (e.g., Martin, Bowen, & Hunt, 2002). Although not all individuals would engage 

in faking, it is especially prevalent in high-stakes settings, such as pre-employment 

assessments (Birkeland, Manson, Kisamore, Brannick, & Smith, 2006; Donovan et al., 

2003; Donovan, Dwight, & Schneider, 2014; Griffith et al., 2007; Landers, Sackett, & 

 

2 The “HEXACO” model of personality comprises of six dimensions, namely Honesty-Humility (H), 

Emotionality (E), eXtraversion (X), Agreeableness (A), Conscientiousness (C), and Openness to 

Experience (O). This model is described further in Chapter 4. 
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Tuzinski, 2011; O'Connell, Kung, & Tristan, 2011; Rosse, Stecher, Miller, & Levin, 

1998) and college entrance exams (e.g., Griffin & Wilson, 2012; Lönnqvist, 2014; 

Yusoff, 2013). Whether unintentional or intentional, response biases introduce 

systematic nuisance variances that not only impair measurement equivalence between 

individuals and groups, but also weaken construct and criterion-related validity of 

personality instruments (e.g., Christiansen, Goffin, Johnston, & Rothstein, 1994; 

Donovan et al., 2014; Ellingson, Sackett, & Hough, 1999; Hirsh & Peterson, 2008; 

Mueller-Hanson, Heggestad, & Thornton, 2003; Paulhus, Bruce, & Trapnell, 1995; 

Peterson, Griffith, O’Connell, & Isaacson, 2008; Rosse et al., 1998; Schmit & Ryan, 

1993; Topping & O’Gorman, 1997; van Herk et al., 2004). 

With regards to the complex multi-faceted nature of personality, personality 

inventories often require many items for comprehensive measurement, leading to long 

assessment times (Kantrowitz, Grelle, & Lin, 2019). More specifically, psychological 

models of personality often have a small number of broad factors that further subdivide 

into narrower facets. For example, the FFM is further divided into 30 facets (Costa & 

McCrae, 1992; McCrae et al., 2005), while the HEXACO model is further divided into 

24 facets plus an interstitial scale (Ashton & Lee, 2007; Lee & Ashton, 2008). As a 

result of this multidimensional structure, reliable measurement of all facets naturally 

leads to long assessments with many items and increased risk of test fatigue (Kantrowitz 

et al., 2019). Ackerman and Kanfer (2009) classified the cognitive fatigue arising from 

prolonged testing into two types: 1) objective cognitive fatigue, i.e., a decrease in actual 

cognitive functioning, and; 2) subjective cognitive fatigue, i.e., a shift in motivational 

and attitudinal standings. With cognitive fatigue being a relatively under-researched 

topic in psychology (Matthews, 2011), there has been very limited empirical research 

on cognitive fatigue in personality assessments specifically. Even in the related field of 

cognitive ability testing, findings remain inconsistent with regards to whether prolonged 



5 

 

assessment time lead to reduced assessment scores (Ackerman and Kanfer, 2006). 

However, Ackerman and Kanfer (2009) highlighted some individual differences in 

subjective cognitive fatigue during cognitive ability tests that also have relevance to 

personality assessments. In an empirical study, they found that subjective cognitive 

fatigue arising from prolonged testing was more severe for individuals with higher 

levels of neuroticism and anxiety. Moreover, subjective cognitive fatigue was related to 

reduced effort, which then lead to a significant reduction in test performance. Although 

Ackerman and Kanfer’s (2009) study focused on ability tests only, and there appears to 

be no literature investigating whether long personality assessments induce subjective 

cognitive fatigue akin to those induced by long cognitive ability tests, there is no 

shortage of test takers expressing aversion to long tests. It follows that individuals who 

are high in neuroticism may be more adversely affected by a long personality 

assessment: they would feel fatigue earlier than others, which leads to less concentrated 

efforts in responding, which leads to greater measurement error. In addition to the 

considerations around measurement accuracy and candidate experience, longer 

assessments also bear economic consequences – even a small increase in time 

requirement per candidate multiply into many hours of human costs for test takers and 

administrators in large-scale assessment programs. 

For decades, researchers and practitioners have striven to make comprehensive 

and reliable personality assessments that are bias-free, fake-resistant, and time-efficient. 

Various measurement techniques have been applied to combat the shortcomings of the 

traditional assessment format, two of which are the focus of this thesis. On one hand, in 

order to address response biases associated with the SS response format, researchers 

have turned their attention towards an alternative, forced-choice (FC) response format, 

where respondents indicate their preference among several items at a time by ranking 

them instead of rating each individually. On the other hand, in order to minimise 
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assessment time, there is increasing interest in computerised adaptive testing (CAT), 

where the questions are tailored to each individual to maximise measurement efficiency. 

The Forced-Choice (FC) Response Format 

Forcing choice between personality items has emerged as an approach to prevent 

biases and distortions (Nederhof, 1985; Zavala, 1965). Questionnaires using the FC 

format place items into blocks and ask respondents to rank the items within the block 

according to the extent they describe their personality. An example of a FC block is 

given in Table 1. Each FC block contains two or more items. Blocks with two, three, 

and four items are referred to as pairs/dyads, triplets/triads, and quads/tetrads 

respectively. Each item in the block is an indicator for an underlying trait of interest. 

When items within the same block are indicators for different traits, the format is said to 

be multidimensional forced choice (MFC). 

Table 1. Example of a FC block with three items 

Please select one statement that is most true or typical 

of you, and another statement that is least true of you: 

Most Least 

I am lively in conversation   

I persevere with tasks   

I avoid taking criticism personally   

 

 For decades, assessments using the FC format faced issues with ipsative scores 

(Cornwell & Dunlap, 1994; Hicks, 1970; Johnson, Wood, & Blinkhorn, 1988). An 

assessment’s scores are “ipsative” or “purely ipsative” if their total is a constant for all 

response sets, or “quasi-ipsative” or “partially ipsative” if the total score is not a 

constant but there are still trade-offs between scores across different traits (Hicks, 1970; 

Meade, 2004). FC assessments often give rise to ipsative scores if classical test theory 

(CTT) scoring is applied, i.e., each FC question is given a fixed number of total points, 
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which are distributed to different scales based on the comparative responses. Ipsativity 

leads to unnatural constraints in scale variance-covariance matrices (Clemans, 1966), 

thus distorting the scales’ factor structures and reliabilities (Meade, 2004), as well as 

compromising the scores’ interpersonal comparability (Johnson et al., 1988). Ipsativity 

is therefore a significant measurement issue. However, with the development of Item 

Response Theory (IRT) modelling of FC responses, scores from FC assessments are no 

longer ipsative (Brown, 2016; Brown & Maydeu-Olivares, 2011, 2013; Chernyshenko 

et al., 2009; Stark, Chernyshenko, & Drasgow, 2005). 

Research on the FC format has demonstrated that it removes all uniform 

response biases including central/extreme tendency and acquiescence (Cheung & Chan, 

2002), provides greater resistance to motivated distortions (e.g., Cao & Drasgow, 2019; 

Christiansen, Burns, & Montgomery, 2005; Hirsh & Peterson, 2008; Jackson, 

Wroblewski, & Ashton, 2000; Lee, Joo, & Lee, 2019; Martin et al., 2002; O'Neill et al., 

2016; Pavlov, Maydeu-Olivares, & Fairchild, 2019; Usami, Sakamoto, Naito, & Abe, 

2016), and increases differentiations between the constructs measured (e.g., Brown, 

Inceoglu & Lin, 2017). The practical benefits of FC thus made it an attractive option for 

improving assessment fairness and accuracy when biases and distortions are of concern, 

for example in cross-cultural studies affected by culturally-specific response styles (van 

de Vijver & Leung, 1997; van Herk et al., 2004), and in high-stakes assessments 

affected by faking (e.g., Viswesvaran & Ones, 1999). For a full discussion, see Brown 

and Maydeu-Olivares (2011, 2013) for an in-depth summary of the advantages of the 

FC response format over the SS response format. 

 Many operational personality assessments already adopt the FC response format, 

e.g., the Edwards Personal Preference Schedule (EPPS; Edwards, 1973), the Gordon 

Personal Profile Inventory (Gordon, 1993), the Myers-Briggs Type Indicator (MBTI; 
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Myers, McCaulley, Quenk, & Hammer, 1998), the Employee Screening Questionnaire 

(ESQ; Jackson, 2002), and the Occupational Personality Questionnaire (OPQ; Bartram, 

Brown, Fleck, Inceoglu, & Ward, 2006). Salgado and Táuriz (2014) conducted a very 

thorough meta-analysis of criterion-related validity of FC personality assessments in 

occupational and educational applications. Collating findings from 122 independent 

samples reported up until September 2011, they found FC measures to produce similar 

or even higher criterion-related validity coefficients than those reported in previous 

meta-analyses covering mostly SS personality inventories (e.g., Barrick & Mount, 1991; 

Salgado, 1997). Salgado and Táuriz thus concluded that “FC inventories can be a good 

alternative to SS questionnaires for making academic and personnel decisions.” 

 It is worth noting that all the FC instruments included in Salgado and Táuriz’s 

(2014) meta-analysis were classically scored, and thus open for further measurement 

optimisation using an appropriate IRT model (for options, see Brown, 2016). For 

example, Brown and Bartram (2009) refined a classically-scored FC personality 

assessment using IRT methodologies, successfully reducing assessment time by 40-50% 

while maintaining similar levels of score reliability. The application of modern IRT 

methodologies to FC thus help to minimise assessment time through more efficient 

extraction of information from comparative data. Furthermore, the availability of IRT 

models in conjunction with computer-based testing technology opens up the possibility 

of shortening assessments even further through computerised adaptive testing (CAT). 

Computerised Adaptive Testing (CAT) 

Computerised adaptive testing (CAT) tailors an assessment to each and every 

individual in real time – the most informative questions for a candidate are presented, 

based on existing intelligence about them (e.g., their response to previous questions in 

the assessment, their results from previous assessment sessions). In order to conduct 
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CAT, an IRT model is needed to conceptualise, model and quantify information 

collection (see Chapter 2 for details), and a computer algorithm is needed to drive the 

assessment assembly (see Chapter 3 for details). 

CAT has demonstrated great utility in the field of cognitive ability testing, with 

studies showing 50% reduction in test lengths compared to static paper-and-pencil 

versions (Embretson & Reise, 2000, p. 268). Comparatively, adaptive personality 

assessments have been somewhat sparse. Nevertheless, existing findings from a series 

of real-data simulation studies for SS personality assessments replicated similar levels 

of adaptive efficiency gains as those reported for cognitive ability tests. For example, 

Waller and Reise (1989) demonstrated that IRT-scored adaptive personality scales could 

be 50%-75% shorter than their classically-scored paper-and-pencil counterparts, 

although they did not quantify what proportion of that reduction was attributable to IRT 

and CAT respectively. Waller (1999) further demonstrated that CAT reduced the 

number of items needed for the Minnesota Multiphasic Personality Inventory (MMPI; 

Hathaway & Mckinley, 1940). Similarly, Hol, Vorst and Mellenbergh (2008) studied 

the adjective checklist (ACL; Gough & Heilbrun, 1980), and found that an adaptive 

version only required as few as 33% of the original items to reach similar levels of 

measurement accuracy as the IRT-scored full length test. Independently, two studies 

(Makransky, Mortensen, & Glas, 2013; Reise & Henson, 2000) involving the NEO-PI-

R (Costa & McCrea, 1992) found that CAT achieved similar measurement accuracy 

with merely 50% of the original test length. Furthermore, Nieto et al. (2017) developed 

a new item pool for the FFM and found that CAT administrations required as few as 4 

items per facet. These comparable findings reported by multiple researchers across 

different item pools and independent samples clearly demonstrated the power of CAT in 

SS personality assessments. It is therefore not surprising to see adaptive SS personality 

assessments in real-life applications, for example, the computerised adaptive assessment 
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of personality disorders (CAT-PD; Simms et al., 2011), and the adaptive schizotypal 

personality questionnaire (Moore, Calkins, Reise, Gur, & Gur, 2018). 

Following the development of IRT models for FC responses, applications of 

adaptive FC personality assessments have also gained popularity, but mainly in the field 

of occupational psychology. Houston, Borman, Farmer, and Bearden (2006) developed 

the Navy Computer Adaptive Personality Scales (NCAPS), a successful proof-of-

concept for an operational FC CAT of personality traits for US military. The Global 

Personality Inventory – Adaptive (GPI-A; SHL, 2009-2014), a measure for general 

workplace personality traits, was then developed following the same methodological 

setup as NCAPS. Both NCAPS and GPI-A use unidimensional FC blocks, and they 

employ unidimensional IRT models for item selection and scoring of each personality 

trait. In other words, they consist of instances of independent, unidimensional FC CATs 

presented in parallel. Such a unidimensional setup was methodologically simpler, but 

removed the possibility of further measurement efficiency gains from correlated traits 

within a multidimensional CAT3, nor did it take advantage of the potential increase in 

resistance to socially desirable responding and faking that the multidimensional FC 

format can provide. Multidimensional FC CATs (i.e., administering multidimensional 

FC questions and employing multidimensional IRT models for item selection and 

scoring) only emerged in the last decade, including the Tailored Adaptive Personality 

Assessment System (TAPAS; Drasgow et al., 2012) and the Adaptive Employee 

Personality Test (ADEPT-15; Boyce, Conway, & Caputo, 2014). A series of studies 

 

3 Segall (1996) demonstrated that “multidimensional adaptive testing can provide equal or higher 

reliabilities with about one-third fewer items than are required by one-dimensional adaptive testing”. 

Wang and Chen (2004) further demonstrated via simulations that the comparative advantage of 

multidimensional CAT over unidimensional CAT was greater with higher trait correlations and larger 

trait counts – both features are typical for personality assessments. 
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comparing adaptive and static FC assessments confirmed similar levels of measurement 

length reductions as those seen when comparing adaptive and static SS assessments, 

typically reaching the same level of true score correlation at about half the test length 

(Stark & Chernyshenko, 2007, 2011; Stark, Chernyshenko, Drasgow, & White, 2012). 

FC CATs therefore appear to improve measurement efficiency while also ensure good 

resistance to biases and distortions, effectively combating the two practical challenges 

of traditional personality assessments. 

Research Questions 

Despite recent advancements in FC CAT research, it remains a relatively new 

and under-explored topic. On one hand, there is next to no empirical evidence on the 

influence of context on item functioning within FC blocks. Ortner (2008) showed in an 

empirical study that item order within a SS personality assessment could have a 

significant impact on measurement, thereby raising caution on the standard assumption 

in CAT that an item’s properties stay the same regardless of the items surrounding it. As 

the influence of the context around an item is a concern even for SS response formats 

with no explicit item interactions, it ought to be even more important for FC response 

formats where the responding process requires items to be directly compared. Yet it 

seems illogical that this fundamental assumption of context-invariance of item 

properties, one that can call the feasibility of FC CAT into question, has never4 been 

tested empirically. In order to address this concern, Chapter 2 reports an empirical 

investigation into the robustness of this fundamental assumption. 

 

4 A new study (Morillo et al., 2019) on this topic has since been published following the publication of 

Study 1 of this thesis (Lin & Brown, 2017). 
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 On the other hand, there is also very limited knowledge of the functioning of FC 

CAT with dominance items. A dominance item is characterised by a monotonic 

relationship between the probability of endorsement of the item and the underlying 

personality trait5 it indicates. In other words, as the personality trait value increases, the 

probability of agreeing with the item monotonically increases if the item is positively 

keyed, or monotonically decreases if the item is negatively keyed. For example, “I am 

organised” is a dominance item for Conscientiousness. Existing personality measures 

tend to employ dominance items by default. However, most published research on FC 

CAT, as well as all four operational FC CATs (i.e., NCAPS, GPI-A, TAPAS and 

ADEPT), adopt ideal-point items (Coombs, 1964). An ideal-point item is characterised 

by a curvilinear relationship between the probability of endorsement of the item and the 

underlying personality trait it indicates. In other words, there is a particular trait value at 

which point the probability of agreeing with the item peaks, and deviations from this 

ideal point in either direction on the personality trait lowers the probability of 

endorsement. For example, “I am sometimes organised and sometimes forgetful” is an 

ideal-point item for Conscientiousness. 

Dominance and ideal point items exhibit different item characteristics, have 

different response processes, and demand different IRT models (Brown, 2015). It 

follows that the techniques for and the findings from ideal-point FC CATs cannot be 

generalised to dominance FC CATs. While one very recent study (Chen, Wang, Chiu, & 

Ro, 2019) did explore FC CAT with dominance items, it adopted the Rasch ipsative 

model that produces scores “with the constraint of zero sum across dimensions for every 

person” (Wang, Qiu, Chen, Ro, & Jin, 2017), thus focusing on within-person profiling 

 

5 It should be noted that, although it is theoretically possible for an item to indicate multiple traits, such a 

setup tends to be impractical for personality measurement. This thesis therefore focuses on the situations 

where each item indicates one and only one trait. 
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rather than cross-person comparisons of assessment results. In order to bridge this gap, 

Chapter 3 formulates and optimises algorithm components for FC CATs using the 

dominance Thurstonian IRT model (TIRT; Brown & Maydeu-Olivares, 2011, 2013). 

Since most existing personality items are dominance items, advancing research on 

dominance FC CAT methodologies enables the utilisation of validated historical content 

in the creation of new FC CATs, as opposed to needing to develop and validate new 

ideal-point items from scratch. Then, Chapter 4 tests the methodology empirically 

through the development of a dominance FC CAT for personality measurement. 

 This thesis mapped out a rough blueprint for the development of dominance FC 

CATs. However, constrained by its scope, there are still many open questions requiring 

further research. Chapter 5 summarises the findings of this thesis, considers its 

implications for research and practice, and outlines important areas for further 

investigation. 
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CHAPTER 2: FOUNDATIONS FOR FC CAT 

The most natural way of formulating a FC CAT is through the utilisation of an 

item response theory (IRT) model. An IRT model serves two purposes in a FC CAT. 

First, it enables the establishment of interpersonally comparable person scores from 

relative-to-self (or ipsative) responses resulting from the FC format. Second, it enables 

adaptive assessment tailoring through parameterisation of the psychometric properties 

of items. 

A number of IRT models have been developed for the FC response format, e.g., 

the probabilistic, multidimensional unfolding model (Zinnes & Griggs, 1974), the 

hyperbolic cosine unfolding model for pairwise preferences (Andrich, 1995), the multi-

unidimensional pairwise preference (MUPP) model (Stark, 2002; Stark, Chernyshenko, 

& Drasgow, 2005), and the Thurstonian IRT (TIRT) model (Brown & Maydeu-Olivares, 

2011, 2013). Brown (2016) discussed the similarities and differences between such 

models and how they can be organised in a unified framework. For this thesis, the TIRT 

model is chosen. The TIRT model is able to handle multidimensionality, is flexible 

when modelling FC blocks of any size, and is compatible with the most commonly used 

dominance items. Moreover, the TIRT model has demonstrated great usability and 

utility in empirical applications (e.g., Brown & Bartram, 2009, 2009-2011; Brown, 

Inceoglu & Lin, 2017). 

This chapter is structured as follows. First, the mathematical formulation of 

TIRT is described in detail. Then, the essential assumption of item parameter invariance 

(regardless of the place in a test where that item appears) for FC CAT is discussed, 

followed by an empirical study examining this assumption (Study 1). Finally, the 

chapter concludes with a summary of findings and implications for further research. 

 



15 

 

The Thurstonian Item Response Theory (TIRT) Model 

Response Modelling 

In TIRT, the full or partial ranking response to a FC block of size 𝑛 is 

decomposed into 𝑛(𝑛 − 1)/2 pairwise comparisons, as shown in Table 2 (Brown & 

Maydeu-Olivares, 2012).  

Table 2. Decomposing FC blocks into pairwise comparisons 

Block size (𝑛) Items/stimuli Binary Outcomes 

2 (“pairs”) 𝑖, 𝑘 {𝑖, 𝑘} 

3 (“triplets”) 𝑖, 𝑘, 𝑙 {𝑖, 𝑘}, {𝑖, 𝑙}, {𝑘, 𝑙} 

4 (“quads”) 𝑖, 𝑘, 𝑙, 𝑜 {𝑖, 𝑘}, {𝑖, 𝑙}, {𝑖, 𝑜}, {𝑘, 𝑙}, {𝑘, 𝑜}, {𝑙, 𝑜} 

 

Then, from the ranking response to the FC block, the binary outcome for any 

constituting pairwise comparison {𝑖, 𝑘} can be deduced. The binary outcome variable 

𝑌{𝑖,𝑘} is coded as described in Equation 1 (Maydeu-Olivares & Böckenholt, 2005). 

𝑌{𝑖,𝑘} ≡ {

1                            𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑡𝑒𝑚 𝑘
0                            𝑖𝑓 𝑖𝑡𝑒𝑚 𝑘 𝑖𝑠 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑜𝑣𝑒𝑟 𝑖𝑡𝑒𝑚 𝑖

𝑚𝑖𝑠𝑠𝑖𝑛𝑔         𝑖𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
 (1) 

TIRT models the responding process behind this binary outcome by Thurstone’s 

Law of Comparative Judgement (Thurstone, 1927), which states that the two items’ 

psychological utility values within a respondent (denoted 𝑡𝑖 and 𝑡𝑘, the person index is 

omitted in the notations) determine the outcome of the comparative judgement 

(Equation 2, Brown & Maydeu-Olivares, 2011). 

𝑌{𝑖,𝑘} = {
1     𝑖𝑓 𝑡𝑖 ≥ 𝑡𝑘
0     𝑖𝑓 𝑡𝑖 < 𝑡𝑘

 (2) 
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A respondent’s psychological utility value for an item is modelled as a function 

of their psychological profile and the characteristics of the item (Equation 3, Brown & 

Maydeu-Olivares, 2011). The respondent’s psychological profile is modelled as a latent 

trait column vector 𝜼 = (𝜂1, … , 𝜂𝑆)
𝑇 with 𝑆 dimensions. The characteristics of item 𝑖 

are modelled through TIRT item parameters: 𝜇𝑖 is the mean utility of the item; 𝝀𝒊 =

(𝜆𝑖1, … , 𝜆𝑖𝑆)
𝑇
 is a column vector of 𝑆 factor loadings; 𝜀𝑖 is a normally distributed error 

term with mean 0 and unique variance 𝜓𝑖
2. 

𝑡𝑖 = 𝜇𝑖 + 𝝀𝒊
𝑇𝜼 + 𝜀𝑖 (3) 

Based on this set-up, the response probabilities of the binary outcome 𝑌{𝑖,𝑘} can 

be deduced, giving the Item Response Function (IRF) of the TIRT model (Equation 4, 

Brown & Maydeu-Olivares, 2011). In this expression, 𝛾{𝑖,𝑘} ≡ 𝜇𝑘 − 𝜇𝑖 is the threshold 

parameter for the pairwise comparison, and Φ represents the standard normal 

cumulative distribution function. 

𝑝{𝑖,𝑘}(𝜼) ≡ 𝑃(𝑌{𝑖,𝑘} = 1|𝜼) = Φ

(

 
−𝛾{𝑖,𝑘} + (𝝀𝒊 − 𝝀𝒌)

𝑇𝜼

√𝜓𝑖
2 + 𝜓𝑘

2

)

 ≡ Φ(𝑧{𝑖,𝑘}) (4) 

Most practical FC assessments fall into a special case where items are factorially 

simple, i.e., each item indicates one and only one latent trait. In other words, for each 

item 𝑖, the factor loading vector 𝝀𝒊 contains one and only one non-zero entry 𝜆𝑖𝑠𝑖
 

corresponding to the latent trait 𝜂𝑠𝑖 indicated by the item. In such cases, Equation 4 

simplifies to Equation 5 (Brown & Maydeu-Olivares, 2011). 

𝑝{𝑖,𝑘}(𝜼) = Φ

(

 
−𝛾{𝑖,𝑘} + 𝜆𝑖𝑠𝑖

𝜂𝑠𝑖 − 𝜆𝑘𝑠𝑘
𝜂𝑠𝑘

√𝜓𝑖
2 + 𝜓𝑘

2

)

  (5) 
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 The likelihood for an observed binary response 𝑌{𝑖,𝑘} or for an entire response 

string of binary responses 𝒀 can then be expressed by Equation 6 and Equation 7 

respectively (Brown & Maydeu-Olivares, 2011). Note that Equation 7 assumes that the 

pairwise comparisons are conditionally independent (i.e., the errors for pairwise 

comparisons are independent from each other), which is true in the case of tests using 

only FC blocks with two items. Larger FC blocks with three or more items violate this 

assumption because multiple pairwise comparisons in such a block will involve the 

same item, leading to correlated errors even after controlling for the latent traits (Brown 

& Maydeu-Olivares, 2011). For example, ranking responses to a triplet {𝑖, 𝑘, 𝑙} are 

decomposed into pairs {𝑖, 𝑘}, {𝑖, 𝑙} and {𝑘, 𝑙}. Then, pairs {𝑖, 𝑘} and {𝑖, 𝑙}  have correlated 

errors due to the common item 𝑖; pairs {𝑖, 𝑘} and {𝑘, 𝑙} have correlated errors due to the 

common item 𝑘; and pairs {𝑖, 𝑙} and {𝑘, 𝑙} have correlated errors due to the common 

item 𝑙. Therefore, for FC blocks with three or more items, Equation 7 is an 

approximation with the simplifying assumption of local independence across pairwise 

comparisons within the same FC block. 

𝐿(𝑌{𝑖,𝑘}|𝜼) = 𝑝{𝑖,𝑘}(𝜼)
𝑌{𝑖,𝑘} (1 − 𝑝{𝑖,𝑘}(𝜼))

1−𝑌{𝑖,𝑘}
 (6) 

𝐿(𝒀|𝜼) =∏𝐿(𝑌{𝑖,𝑘}|𝜼)

{𝑖,𝑘}

 (7) 

It is worth noting that the TIRT model is a variant of the multidimensional 2-

parameter normal-ogive (M2PNO) model (Bock & Schilling, 2003; McDonald 1999; 

Samejima, 1974), which has an IRF as described in Equation 8. Clearly, Equation 8 and 

Equation 4 are equivalent with assignments as detailed in Equation 9. 
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𝑝𝑖(𝜽) ≡ 𝑃(𝑈𝑖 = 1|𝜽) = 𝛷(𝒂𝑖
𝑇𝜽 + 𝑑𝑖) (8) 

𝜽 = 𝜼 ;  𝒂𝑖 =
𝝀𝒊−𝝀𝒌

√𝜓𝑖
2+𝜓𝑘

2
 ;  𝑑𝑖 =

−𝛾{𝑖,𝑘}

√𝜓𝑖
2+𝜓𝑘

2
 

(9) 

The TIRT model, however, has some special features compared to the M2PNO 

model, leading to distinctions in assumptions and intended applications. Firstly, the 

research and applications of the M2PNO model had focused mainly on ability 

measurement, and hence typically assumed the elements of 𝒂𝑖 to always have non-

negative values. However, TIRT focuses on measuring preferences, using non-cognitive 

statements that sometimes result in negative loading values in 𝝀𝒊. Furthermore, even if 

no items are negative indicators of their intended traits, combining them into FC blocks 

will inevitably result in negative values for some 𝒂𝑖 =
𝝀𝒊−𝝀𝒌

√𝜓𝑖
2+𝜓𝑘

2
. The two models thus 

differ in terms of their assumption regarding the possible signs of the loading/ slope/ 

discrimination parameters. 

Secondly, the M2PNO model assumes local independence between any two item 

responses. However, for responses collected using a FC format, unless the block size 𝑛 

is 2, there will be multiple pairwise comparisons resulting from each FC block. In order 

to account for item overlaps between pairs from the same FC block, the TIRT model 

adopts additional structures and constraints, including: 1) equal factor loadings when an 

item contributes to multiple pairs within the same block, and 2) correlated error 

structures between pairs involving the same item. The formulation of correlated error 

structures is described in more details in Brown and Maydeu-Olivares (2011), and 

results in separate identification of unique variance parameters (whereas in the M2PNO 

model, error variances are all fixed to 1 for model identification). 
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Despite these differences, the similarities between TIRT and M2PNO models 

meant that much research, methods and practices from the relatively-mature M2PNO 

model and other related models (e.g., the Multidimensional 2-Parameter Logistic model, 

McKinley & Reckase, 1983) are relevant and likely extendable to the TIRT model, even 

though the response formats look very different on the surface level. 

Information and Standard Error of Measurement (SEM) 

IRT models use information functions to describe the measurement gain 

provided by each item. Equation 10 shows the item information function (IIF) for a 

general multidimensional IRT model (Reckase, 2009). In this expression, 𝜶 is a vector 

of angles with the coordinate axes, indicating a direction in the multidimensional space; 

∇𝜶 is the gradient (i.e., directional derivative) in the direction of  𝜶 (Equation 11, 

Reckase, 2009); and 𝐼𝑖
𝜶(𝜽) is the information from item 𝑖 in direction 𝜶 for an 

individual with trait profile 𝜽. 

𝐼𝑖
𝜶(𝜽) =

[∇𝜶𝑝𝑖(𝜽)]
2

𝑝𝑖(𝜽)(1 − 𝑝𝑖(𝜽))
 (10) 

∇𝜶𝑝𝑖(𝜽) =∑
𝜕𝑝𝑖(𝜽)

𝜕𝜃𝑠
𝑐𝑜𝑠𝛼𝑠

𝑆

𝑠=1

 (11) 

The same concept can be applied to the TIRT model, leading to a similar 

expression (Equation 12) for the information gain from a pairwise comparison for a 

general direction 𝜶 in the multidimensional space (Brown & Maydeu-Olivares, 2011). 

The gradient term for TIRT can be deduced by combining Equation 4 and Equation 11, 

giving Equation 13, where ϕ represents the standard normal density function. 
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𝐼{𝑖,𝑘}
𝜶 (𝜼) =

[∇𝜶𝑝{𝑖,𝑘}(𝜼)]
2

𝑝{𝑖,𝑘}(𝜼) (1 − 𝑝{𝑖,𝑘}(𝜼))
 (12) 

∇𝜶𝑝{𝑖,𝑘}(𝜼) =∑
𝑐𝑜𝑠𝛼𝑠(𝜆𝑖𝑠 − 𝜆𝑘𝑠)

√𝜓𝑖
2 + 𝜓𝑘

2

ϕ(𝑧{𝑖,𝑘})

𝑆

𝑠=1

 (13) 

For the special case where items are factorially simple (i.e., as described in 

Equation 5), there are only two non-zero factor loadings 𝜆𝑖𝑠𝑖
 and 𝜆𝑘𝑠𝑘

, and Equation 13 

further reduces to Equation 14. 

∇𝜶𝑝{𝑖,𝑘}(𝜼) =

(

 
𝑐𝑜𝑠𝛼𝑠𝑖𝜆𝑖𝑠𝑖

− 𝑐𝑜𝑠𝛼𝑠𝑘𝜆𝑘𝑠𝑘

√𝜓𝑖
2 + 𝜓𝑘

2

)

 ϕ

(

 
−𝛾{𝑖,𝑘} + 𝜆𝑖𝑠𝑖

𝜂𝑠𝑖 − 𝜆𝑘𝑠𝑘
𝜂𝑠𝑘

√𝜓𝑖
2 + 𝜓𝑘

2

)

  (14) 

 When the direction 𝜶 in the multidimensional space aligns with the direction of 

a latent trait axis (denoted 𝜶𝑠 for the 𝑠𝑡ℎ trait), the cosine term is equivalent to the 

Pearson correlation between latent traits (Bock ,1975), giving rise to Equation 15, where 

𝒄𝒐𝒓 denotes the 𝑆 × 𝑆 correlation matrix between latent traits. 

𝑐𝑜𝑠𝛼𝑠𝑖
𝑠 = 𝑐𝑜𝑟𝑠,𝑠𝑖 ;  𝑐𝑜𝑠𝛼𝑠𝑘

𝑠 = 𝑐𝑜𝑟𝑠,𝑠𝑘  (15) 

Combining Equations 12, 14 and 15, the information contributions from a 

pairwise comparison of factorially simple items for measuring the 𝑠𝑡ℎ trait can be 

deduced and take the form of Equation 16. 

𝐼{𝑖,𝑘}
𝜶𝑠 (𝜼) =

[
 
 
 

(

 
𝑐𝑜𝑟𝑠,𝑠𝑖𝜆𝑖𝑠𝑖

− 𝑐𝑜𝑟𝑠,𝑠𝑘𝜆𝑘𝑠𝑘

√𝜓𝑖
2 +𝜓𝑘

2

)

 ϕ

(

 
−𝛾{𝑖,𝑘} + 𝜆𝑖𝑠𝑖

𝜂𝑠𝑖 − 𝜆𝑘𝑠𝑘
𝜂𝑠𝑘

√𝜓𝑖
2 +𝜓𝑘

2

)

 

]
 
 
 
2

𝑝{𝑖,𝑘}(𝜼) (1 − 𝑝{𝑖,𝑘}(𝜼))
 

(16) 
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When one of the items indicates the 𝑠𝑡ℎ trait (i.e., 𝑠 = 𝑠𝑖 or 𝑠 = 𝑠𝑘, see Brown & 

Maydeu-Olivares, 2011 for full formulae), the information gain for the scale is direct 

and forms the core of measurement. When neither of the items indicates the 𝑠𝑡ℎ trait 

(i.e., 𝑠 ≠ 𝑠𝑖 and 𝑠 ≠ 𝑠𝑘), there is still peripheral information gain for the scale if the 

latent traits are correlated. It is sometimes helpful to distinguish core information gain 

(Equation 17) from peripheral information gain, in order to focus on core information as 

the main basis of measurement. 

𝐶𝐼{𝑖,𝑘}
𝜶𝑠 (𝜼) = {

𝐼{𝑖,𝑘}
𝜶𝑠 (𝜼)                𝑖𝑓 𝑠 ∈ {𝑠𝑖, 𝑠𝑘}

      0                      𝑖𝑓 𝑠 ∉ {𝑠𝑖, 𝑠𝑘}
 (17) 

Information at the test level is then calculated as the sum of information from all 

constituting pairwise comparisons across all FC blocks (Equation 18, Brown & 

Maydeu-Olivares, 2011). As in the case of total response likelihood (Equation 7), 

Equation 18 assumes local independence between pairwise comparisons, which is only 

true in the case of tests using FC pairs. For larger FC blocks, Equation 18 is an 

approximation with the simplifying assumption of local independence. 

𝐼𝜶(𝜼) = ∑ 𝐼{𝑖,𝑘}
𝜶 (𝜼)

{𝑖,𝑘}

 (18) 

In addition to the information gain from assessment responses, prior information 

also contributes to measurement when Bayesian trait estimators are adopted. TIRT often 

assumes a multivariate standard normal distribution for the latent traits. The 

multivariate normal prior leads to prior information for each trait equalling the 

“diagonal element of the inverted trait covariance matrix” (Brown & Maydeu-Olivares, 

2011). The posterior information in the direction of the 𝑠𝑡ℎ trait can thus be deduced 

(Equation 19, Brown & Maydeu-Olivares, 2011). 
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𝐼𝑃𝑜𝑠
𝜶𝑠 (𝜼) = 𝐼𝜶

𝑠
(𝜼) + (𝒄𝒐𝒗−1)𝑠,𝑠 (19) 

 Following standard IRT methodology, the standard errors of measurement 

(SEMs) associated with elements of the latent trait estimate vector �̂� = (�̂�1, … , �̂�𝑆)
𝑇 are 

then calculated as the inverse of the square root of information values in the directions 

of the latent trait axes (Equation 20 if the trait estimator is not Bayesian, Equation 21 if 

the trait estimator is Bayesian). 

𝑆𝐸𝑀(�̂�𝑠) =
1

√𝐼𝜶
𝑠(�̂�)

 (20) 

𝑆𝐸𝑀(�̂�𝑠) =
1

√𝐼𝑃𝑜𝑠
𝜶𝑠 (�̂�)

 
(21) 

Fisher Information Matrix (FIM) 

In addition to the IRT information functions, the Fisher Information Matrix 

(FIM) is often useful in CAT research. The FIM for TIRT is deduced here. Brown & 

Maydeu-Olivares (2017; expression B.3) provided the FIM for a graded preference 

response to pair {𝑖, 𝑘} where no intransitive preferences are possible. Graded preference 

is a comparative judgement expressed in 𝐶 ordered response categories between two 

items. For example, item 𝑖 can be preferred “much more” – “a little more” – “a little less” 

– “much less” to item 𝑘 (here, the number of ordered categories 𝐶 = 4). The FC format 

modelled by TIRT is a special case of the graded preference format with 𝐶 = 2 and no 

intransitivities, thus leading to a FIM as shown in Equation 22. In this expression, the 

function 𝑝{𝑖,𝑘} is as defined in Equations 4. The block-diagonal design matrix of 

contrasts 𝜜 captures the assignment of items (columns) to blocks (with rows 

corresponding to pairs within blocks). The matrix 𝜦 captures factor loadings of items 

(rows) on latent traits (columns). The matrix 𝜜𝜦 therefore details the factor loadings of 
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each pair (rows) on each latent trait (columns). The {𝑖, 𝑘} subscript for the matrix 𝜜𝜦 

denotes the row in the matrix associated with pair {𝑖, 𝑘}. It follows that (𝜜𝜦){𝑖,𝑘} = 𝝀𝑖 −

𝝀𝑘, giving Equation 23. 

𝑭{𝑖,𝑘}(𝜼) =
(𝜜𝜦){𝑖,𝑘}(𝜜𝜦){𝑖,𝑘}

𝑇

𝜓𝑖
2 +𝜓𝑘

2 (
[ϕ(𝑧{𝑖,𝑘})]

2

1 − 𝑝{𝑖,𝑘}
+
[ϕ(𝑧{𝑖,𝑘})]

2

𝑝{𝑖,𝑘}
) (22) 

=
[ϕ(𝑧{𝑖,𝑘})]

2
(𝝀𝑖 − 𝝀𝑘)

𝑻(𝝀𝑖 − 𝝀𝑘)

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})(𝜓𝑖
2 + 𝜓𝑘

2)
 (23) 

In the case where items are factorially simple, i.e., 𝜆𝑖𝑠𝑖
 and 𝜆𝑘𝑠𝑘

 being the only 

non-zero entries of 𝝀𝑖 and 𝝀𝑘 respectively, the element on the 𝑠𝑡ℎ row and 𝑣𝑡ℎ column 

in the FIM can be simplified further, giving Equation 24 if 𝑠𝑖 = 𝑠𝑘, or Equation 25 if 

𝑠𝑖 ≠ 𝑠𝑘. The FIM of a FC pair thus only has one non-zero entry for unidimensional 

comparisons, or four non-zero entries for multidimensional comparisons. Similar to the 

FIM of multidimensional items in regular IRT models, the FIM of a multidimensional 

pairwise comparison has rank one and is singular (Mulder & van der Linden, 2009). 

[𝑭{𝑖,𝑘}(𝜼)]𝑠𝑣 =

{
 
 

 
 [ϕ(𝑧{𝑖,𝑘})]

2
(𝜆𝑖𝑠𝑖

− 𝜆𝑘𝑠𝑖
)
2

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})(𝜓𝑖
2 + 𝜓𝑘

2)
          𝑖𝑓 𝑠 = 𝑣 = 𝑠𝑖 = 𝑠𝑘

                 0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (24) 

[𝑭{𝑖,𝑘}(𝜼)]𝑠𝑣 =

{
 
 
 
 
 

 
 
 
 
 [ϕ(𝑧{𝑖,𝑘})]

2
(𝜆𝑖𝑠𝑖

)
2

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})(𝜓𝑖
2 + 𝜓𝑘

2)
          𝑖𝑓 𝑠 = 𝑣 = 𝑠𝑖 ≠ 𝑠𝑘

[ϕ(𝑧{𝑖,𝑘})]
2
(𝜆𝑘𝑠𝑘

)
2

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})(𝜓𝑖
2 + 𝜓𝑘

2)
          𝑖𝑓 𝑠 = 𝑣 = 𝑠𝑘 ≠ 𝑠𝑖

[ϕ(𝑧{𝑖,𝑘})]
2
(−𝜆𝑖𝑠𝑖

𝜆𝑘𝑠𝑘
)

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})(𝜓𝑖
2 +𝜓𝑘

2)
           𝑖𝑓 {𝑠, 𝑣} = {𝑠𝑖, 𝑠𝑘}

                 0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 
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As per standard IRT models, FIM at the test level is then calculated as the sum 

of FIM from all constituting pairwise comparisons across all FC blocks (Equation 26, 

Segall, 1996). Similar to the case of total response likelihood (Equation 7) and total IRT 

information (Equation 18), Equation 26 assumes local independence between pairwise 

comparisons, which is only true in the case of tests using FC pairs. For larger FC blocks, 

Equation 26 is an approximation with the simplifying assumption of local independence. 

𝑭(𝜼) = ∑𝑭{𝑖,𝑘}(𝜼)

{𝑖,𝑘}

 (26) 

Parameter Invariance Foundation for FC CAT 

In the most unconstrained form of FC CAT, items are adaptively assembled into 

FC blocks, and the properties of FC blocks are derived from the properties of the 

constituting items. This simple process requires an item to function in exactly the same 

way regardless of what other items appear in the same FC block. In IRT terms, this is 

equivalent to making the assumption that the item parameters are invariant with respect 

to context – the items surrounding the target item in the FC block. 

However, the way items are combined into and explicitly compared within FC 

blocks can potentially introduce contextual changes, leading to respondents viewing the 

items in a different light. The impact of context on item functioning is neither new nor 

unique to forced choice. For example, Strack, Martin and Schwarz (1988) showed that 

by simply swapping the order of two satisfaction items, their correlational relationship 

changed, producing the item-order effect. At the same period, Knowles (1988) 

demonstrated that the constructs being measured by a personality assessment become 

clearer to the respondents as they consider more items, leading to more “polarized, 

consistent, and reliable” responses in items appearing later in the assessment, producing 

the serial-order effect. More recently, Steinberg (2001) showed that presenting two SS 
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items on anger experience and anger expression next to each other lead to more extreme 

responses than when they were presented on their own. Phenomenon as such can lead to 

change in item properties and thus item parameter shifts. 

While item parameter shifts due to change in context are relevant for both linear 

and CAT assessments, in practice this problem can be fully addressed for linear FC 

assessments. With a fixed FC form, estimation of item parameters can be done using 

this particular linear form. In this case, the context (i.e., surrounding items in the same 

block) remains constant between calibration and application of the assessment. In the 

more complex case when multiple, parallel linear FC forms with overlapping items are 

employed, the forms can be calibrated independently and subsequently equated at the 

form level, without necessarily imposing the parameter invariance assumption on the 

common items. It is only when the items move blocks from one form to the next, for 

example in FC CAT or any non-adaptive but dynamic FC assessments, that context 

differences between calibration and application become inevitable, and thus item 

parameter invariance becomes a paramount assumption. In other words, there is no 

guarantee that people will interpret each and every item in a consistent way (leading to 

invariant item parameters), when other items around it change as in the case of FC CAT. 

Empirical studies are needed to examine the effect of context on item 

functioning. While recent findings have provided some reassurance on the stability of 

person parameter estimation when FC block compositions vary (Lin, Inceoglu, & 

Bartram, 2013), and found item parameter estimates from SS and FC response data to 

be reasonably comparable (Morillo et al., 2019), examination of the item parameter 

stability assumption across different FC blocks had been largely ignored by most 

researchers. As an important pre-requisite assumption of FC CAT, the research question 

is whether varying contexts have negligible impact on people’s FC responding 
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behaviours and thus on the subsequently deduced item parameters. More specifically, 

research should quantify the level of item parameter stability when the context around 

one item is altered due to the presence of other items. 

Empirical Examination of Parameter Invariance Assumption (Study 1) 

This study explored the effect of context on item functioning in FC blocks, by 

examining empirically estimated item parameters across two instruments. The first 

instrument was compiled of FC blocks of three items, whereas in the second, the 

context was manipulated by adding one item to each block, resulting in FC blocks of 

four. The robustness of the parameter invariance assumption required for CAT was 

examined, and situations where this assumption was violated were identified. Practical 

strategies to avoid such violations were suggested to inform future FC CAT designs. 

Method 

Instruments 

The Occupational Personality Questionnaire (OPQ32) is an assessment of 

people’s behavioural preference or style in the workplace, providing measurement for 

32 traits (Bartram et al., 2006). The present study utilises two versions of this 

assessment that employ a multidimensional forced-choice (MFC) format (i.e., a FC 

format where items in the same block indicate different traits): the OPQ32i and the 

OPQ32r. Both versions request respondents to choose the statement that is “most” and 

“least” like them within each of the 104 FC blocks. However, the OPQ32i blocks 

consist of four items (so-called “quads”) and OPQ32r blocks consist of three items 

(“triplets”). The OPQ32r triplets were developed through removing one item per quad 

from OPQ32i (Brown & Bartram, 2009-2011). Except wording improvements for 5 

items, all other remaining items were exactly the same across versions. This nested 



27 

 

design allows studying the effect on responding behaviour of contextual change caused 

by an additional, distractor item in the same FC block. 

Samples 

Table 3. Study 1 sample composition 

Sample characteristics Quad instrument 

(OPQ32i) 

Triplet instrument 

(OPQ32r) 

Time of data collection 2004-2009 2009-2011 

Gender Male 62% 61% 

Female 38% 39% 

Missing <1% 0% 

Age Below 20 1% 4% 

20-29 23% 33% 

30-39 32% 24% 

40-49 30% 21% 

50-59 12% 8% 

60 or above 1% <1% 

Missing 1% 10% 

Ethnicity White 82% 56% 

Other 8% 8% 

Missing 10% 36% 

N  62,639 22,610 

 

Data from prior live administrations of the OPQ32 in UK English in the United 

Kingdom was used in this study after anonymisation. The samples were collected 

through a large number of assessment projects, which were typically for employee 

selection or development purposes. Respondents in the first sample (N=62,639) 

completed the older, quad instrument between 2004 and 2009. Respondents in the 

second sample (N=22,610) completed the newer, triplet instrument between 2009 and 
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2011. As shown in Table 3, the two samples had very similar gender compositions – 

each had just over 60% males and just under 40% females. In each sample, all working 

ages were represented, and the majority of respondents were white. 

Analysis strategy 

Analysis was structured in four main steps. Firstly, to create the foundation for 

all subsequent analyses, item parameters for the quad and triplet instruments were 

estimated independently using their respective samples, and equated to the same scales 

in order to remove sample-specific metric differences in the resulting model parameters. 

Secondly, to examine the impact of instrument design change on people’s responding 

behaviour at item level, item parameters for the quad and triplet instruments were 

compared directly. Thirdly, to identify underlying reasons of item parameter differences, 

qualitative contextual analysis of item content was conducted. Finally, to examine the 

robustness of measurement at trait level, trait score estimates based on different item 

parameter sets were compared. 

Item parameter estimation 

The two samples were analysed using the TIRT model. Firstly, the “most” and 

“least” responses to FC blocks were converted to binary outcomes associated with 

pairwise comparisons within blocks. Each block of four items was coded as six pairwise 

comparisons. The quad instrument thus had 104 × 6 = 624 binary outcomes. Each block 

of three items was coded as three pairwise comparisons, and the triplet instrument had 

104 × 3 = 312 binary outcomes. 

Secondly, a TIRT model (Brown & Maydeu-Olivares, 2011) with 32 correlated 

latent traits indicated by their respective observed binary outcomes was fitted to each 

sample independently using the Unweighted Least Squares estimator in Mplus software 
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(Muthén & Muthén, 1998-2012). The conditional probability for a positive outcome of 

pairwise comparison was modelled as described in Equation 5 (each item in the OPQ32 

instruments indicates one and only one latent trait, and items within the same FC block 

indicate different latent traits). 

To enhance parallelism in the comparison of model parameters later, the models 

only considered binary outcomes shared by both instruments – that is, the 312 binary 

outcomes as in the triplet version. The outcomes unique to the quad instrument were 

ignored for two reasons. First, they were not relevant for answering the question of how 

people’s responding behaviour changed when a fourth item was added into the same 

block. The fourth item acted merely as a distractor (context) in the present study’s 

design. It existed only in the quad version, and therefore the parameters relevant to this 

distractor item could not be estimated for the triplet version, and therefore provided no 

basis for any parameter comparison. Second, the inclusion of the additional outcome 

variables when estimating the model parameters for the quad instrument would make 

the two models non-equivalent, thus introducing an extra source of difference into the 

comparison of model parameters. The only type of difference of interest to this study 

was the differences caused by empirical behaviour change between the two versions. 

The OPQ32 instruments employed a well-established model of workplace 

personality (Bartram et al., 2006). Many studies had replicated OPQ32 scale 

correlations, and found them to be very stable across contexts and even language 

versions (for example, see SHL, 2014, Table 15). For the present study, both samples 

were collected from the same country (United Kingdom), in the original English 

language version. The IRT scoring protocol applied to UK English OPQ32 data in 

operational settings uses Bayesian maximum-a-posteriori estimation, informed by the 

prior distribution of the 32 traits with the correlation matrix established on “a 
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representative sample of the British population collected by the Office of National 

Statistics in parallel to their Labour Force Survey”, and contained 2028 individuals 

(Bartram et al., 2006, Table 1). Therefore, the trait correlations in our models were fixed 

to these same correlations in order to define the factorial space. Furthermore, the origin 

and unit for each latent trait was set so that the sample’s latent trait mean was 0 and 

standard deviation was 1. For model identification, the unique variance of one item per 

FC block was fixed arbitrarily to 0.5 (see Brown & Maydeu-Olivares, 2012). To ensure 

comparability of parameter estimates across instruments, for each corresponding FC 

block in quad and triplet instruments, the same item was chosen for fixing the unique 

variance. 

However, the partial ranking design of the quad instrument resulted in some 

missing outcomes that needed additional treatment before item parameters could be 

estimated. Missing data arose because the “most” and “least” response format did not 

provide full rank ordering information for blocks of four items – the rank order of the 

two unselected items was not collected by design. The mechanism was missing at 

random (MAR), but not missing completely at random (MCAR), since the pattern of 

missingness was fully determined by the observed responses (Brown & Maydeu-

Olivares, 2012). The TIRT models use limited information estimators (i.e. ULS) based 

on tetrachoric correlations of the observed binary dummy variables. Previous research 

by Asparouhov and Muthén (2010) showed that limited information estimators such as 

the ULS used in the present study result in biased parameter estimates when data were 

missing at random (MAR) but not completely at random (MCAR). Because the focus of 

the present study is on the item parameters, any systematic parameter estimation bias is 

unacceptable. However, the above bias can be eliminated almost completely using 

multiple imputation with as few as five replications (Asparouhov & Muthén, 2010). 

Following the guidance developed specifically for FC data by Brown and Maydeu-
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Olivares (2012), multiple imputation with 10 replications was applied to handle the 

MAR data in the quad instrument, in order to prevent any bias in parameter estimation. 

Table 4. Stability of quad instrument item parameter estimates across 10 imputations 

Item  

parameter 

Standard deviation for item parameter estimates across imputations 

Mean across  

all items 

SD across  

all items 

Min across  

all items 

Max across  

all items 

Threshold 𝛾{𝑖,𝑘} 0.007  0.009 0.001 0.079 

Loading 𝜆𝑖𝑠𝑖
 0.008  0.007 0.001 0.051 

Uniqueness 𝜓𝑖
2 0.013  0.024 0.000 0.206 

 

Due to the very large size of the quad instrument (416 items, resulting in 624 

dummy observed variables), it was not possible to run multiple imputation on the entire 

instrument all at once. Instead, the quad instrument was divided into 12 similarly-sized 

subsections covering all 104 FC blocks. Multiple imputation was then conducted using 

all available data for each of the subsections. Even with this sub-sectioning, due to very 

large samples used in this study, Bayesian estimation of the unrestricted model required 

for multiple imputation for each subsection still took up to one day to complete. A total 

of 10 samples were imputed for each subsection and the resulting data subsequently 

merged across subsections to reconstruct the complete instrument. The TIRT model was 

then fitted to each of the 10 imputed samples. All 10 models converged and gave 

expected parameter estimates, which were stable across imputations (see the imputation 

statistics in Table 4). The estimates from the 10 models were then averaged to give the 

final IRT parameter estimates for the quad instrument. 

Item parameter equating 

The parameters of a multidimensional IRT model have a degree of arbitrariness 

– they are indeterminant until the trait directions, origins and units have been fixed 



32 

 

(Reckase, 2009, p. 233-234). In the present study, the IRT models for the triplet and 

quad instruments were constructed using two different samples. To identify trait 

directions, both models were estimated while fixing the correlations between latent 

traits, thus ensuring identical factorial space. To identify latent trait metrics for each 

model, the latent trait origins and units were fixed to reflect the means and standard 

deviations of the individual samples. However, the two samples were far from 

randomly-equivalent, and thus it was fully expected that the resulting latent trait metrics 

of the two models would be different. As a result, the item parameters of the two 

models were not directly comparable. Therefore, equating was required to place the 

item parameters on the same scale before subsequent analyses and comparisons. 

As described in the TIRT Model section, the TIRT model is a variant of the 

M2PNO model with some special features. Metric transformation equations for the 

M2PNO model have long been published (e.g., Davey, Oshima & Lee, 1996). For the 

TIRT model, however, additional attention is needed to handle the unique variance 

parameters, thus demanding the deduction of new metric transformation equations, as 

detailed below. 

With latent trait directions fixed to be equivalent across models, transforming of 

origins and units could be captured by a linear transformation as per unidimensional 

equating (Equation 27; Kolen & Brennan, 2004, p. 162). In the present study, the aim of 

equating was to find optimal coefficients 𝑥𝑠 and 𝑦𝑠 to transform the metric of the quad 

instrument model (𝜂𝑠) to the metric of the triplet instrument model (𝜂𝑠
∗). 

𝜂𝑠
∗ = 𝑥𝑠𝜂𝑠 + 𝑦𝑠 (27) 

Transforming the metric of latent traits has implications on item parameter 

values. For the IRT model to be invariant after transformation, the conditional 

probability of responses needs to remain unchanged (Reckase, 2009, p. 235), leading to 
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Equation 28. Therefore, the conversions of the threshold and the two factor loadings 

between the old and new metrics are as shown in Equations 29, 30 and 31. 

𝑝{𝑖,𝑘}(𝜼) = Φ

(

 
−𝛾{𝑖,𝑘} + 𝜆𝑖𝑠𝑖

𝜂𝑠𝑖 − 𝜆𝑘𝑠𝑘
𝜂𝑠𝑘

√𝜓𝑖
2 + 𝜓𝑘

2

)

   

= Φ

(

 
−𝛾{𝑖.𝑘}

∗ + 𝜆𝑖𝑠𝑖
∗ 𝜂𝑠𝑖

∗ − 𝜆𝑘𝑠𝑘
∗ 𝜂𝑠𝑘

∗

√𝜓𝑖
∗2 + 𝜓𝑘

∗2

)

   

= Φ

(

 
−𝛾{𝑖,𝑘}

∗ + 𝜆𝑖𝑠𝑖
∗ 𝑦𝑠𝑖 − 𝜆𝑘𝑠𝑘

∗ 𝑦𝑠𝑘 + 𝜆𝑖𝑠𝑖
∗ 𝑥𝑠𝑖𝜂𝑠𝑖 − 𝜆𝑘𝑠𝑘

∗ 𝑥𝑠𝑘𝜂𝑠𝑘

√𝜓𝑖
∗2 + 𝜓𝑘

∗2

)

  (28) 

−𝛾{𝑖,𝑘}

√𝜓𝑖
2 + 𝜓𝑘

2

=
−𝛾{𝑖,𝑘}

∗ + 𝜆𝑖𝑠𝑖
∗ 𝑦𝑠𝑖 − 𝜆𝑘𝑠𝑘

∗ 𝑦𝑠𝑘

√𝜓𝑖
∗2 +𝜓𝑘

∗2

 
(29) 

𝜆𝑖𝑠𝑖

√𝜓𝑖
2 + 𝜓𝑘

2

=
𝜆𝑖𝑠𝑖
∗ 𝑥𝑠𝑖

√𝜓𝑖
∗2 +𝜓𝑘

∗2

 
(30) 

𝜆𝑘𝑠𝑘

√𝜓𝑖
2 + 𝜓𝑘

2

=
𝜆𝑘𝑠𝑘
∗ 𝑥𝑠𝑘

√𝜓𝑖
∗2 +𝜓𝑘

∗2

 
(31) 

Note that the unique variances provide essential scaling for thresholds and 

loadings pre- and post-transformation, but their own units are arbitrary. Because the 

models for the two instruments were fitted using identical unique variance identification 

constraints, the units for unique variances in the quad instrument model and the triplet 

instrument model are the same (i.e., 𝜓𝑖
∗2 = 𝜓𝑖

2). With this, Equations 29-31 simplify to 

Equations 32-34. 
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−𝛾{𝑖,𝑘} = −𝛾{𝑖,𝑘}
∗ + 𝜆𝑖𝑠𝑖

∗ 𝑦𝑠𝑖 − 𝜆𝑘𝑠𝑘
∗ 𝑦𝑠𝑘  (32) 

𝜆𝑖𝑠𝑖
= 𝜆𝑖𝑠𝑖

∗ 𝑥𝑠𝑖 (33) 

𝜆𝑘𝑠𝑘
= 𝜆𝑘𝑠𝑘

∗ 𝑥𝑠𝑘  (34) 

With the transformation method determined, the next step was finding the 

equating coefficients 𝑥𝑠 and 𝑦𝑠 for each latent trait. The data structure called for a 

common-item non-equivalent group linking design (Kolen & Brennan, 2004, p. 19). 

Given the nested structure of the two instruments, all but five items with wording 

change could be used as common items, thus giving a high proportion of common items 

far exceeding the essential requirements. When equating, however, the common items 

are assumed to function in exactly the same way across instruments (Kolen & Brennan, 

2004, p. 19). This assumption may not always hold in the present study, where 

contextual change across instruments takes place. However, the impact on the results 

due to possible violation of this assumption was expected to be small if the vast 

majority of items functioned in the same way across instruments. With this, the 

coefficients 𝑥𝑠 and 𝑦𝑠 were subsequently estimated by linear equating (Equation 35; 

Kolen & Brennan, 2004, p. 31). In Equation 35, 𝜂𝑠 denotes the latent trait in the default 

metric of the quad instrument model, thus 𝑚𝑒𝑎𝑛(𝜂𝑠) = 0 and 𝑆𝐷(𝜂𝑠) = 1 for the quad 

sample; 𝜂𝑠
∗ denotes the latent trait in a new metric, estimated by fitting a new model to 

the quad instrument sample, with all common item parameters fixed to values from the 

triplet instrument model, and 𝑚𝑒𝑎𝑛(𝜂𝑠
∗ ) and 𝑆𝐷(𝜂𝑠

∗ ) freely estimated. For the current 

study, Equation 35 further simplifies to Equation 36, thus giving linking coefficients 𝑥𝑠 

and 𝑦𝑠 as shown in Equations 37 and 38. 
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𝜂𝑠
∗ −𝑚𝑒𝑎𝑛(𝜂𝑠

∗)

𝑆𝐷(𝜂𝑠∗)
=
𝜂𝑠 −𝑚𝑒𝑎𝑛(𝜂𝑠)

𝑆𝐷(𝜂𝑠)
 (35) 

𝜂𝑠
∗  = 𝑆𝐷(𝜂𝑠

∗ )𝜂𝑠 +𝑚𝑒𝑎𝑛(𝜂𝑠
∗ ) (36) 

𝑥𝑠 = 𝑆𝐷(𝜂𝑠
∗ ) (37) 

𝑦𝑠 = 𝑚𝑒𝑎𝑛(𝜂𝑠
∗) (38) 

The linking coefficients 𝑥𝑠 and 𝑦𝑠 for each of the 32 latent traits were thus 

obtained by extracting the latent 𝑚𝑒𝑎𝑛(𝜂𝑠
∗) and 𝑆𝐷(𝜂𝑠

∗) estimates from Mplus outputs. 

Given the large sample sizes and similar sample characteristics across instruments, the 

latent trait distributions were expected to be similar and it was therefore not surprising 

that most 𝑥𝑠 coefficients were close to 1 and most 𝑦𝑠 coefficients were close to zero 

(Table 5), with the deviations from the expected values reflecting differences between 

the two samples. The 𝑥𝑠 parameters ranged from 0.782 to 1.016, indicating that the 

latent trait standard deviations of the quad sample were between 78% and 102% (i.e. 

generally smaller) of the triplet sample. One tentative explanation of such differences 

might be population change over time – perhaps the UK population from which 

operational assessment data were collected had become more diverse, thus explaining 

the variance increase from the older quad sample to the newer triplet sample. Another 

potential explanation might be demographic composition differences between the two 

samples. For example, there were a larger proportion of younger respondents in the 

triplet sample, which might explain why the “Rule Following” trait showed the largest 

variance increase. The item parameters for the quad instrument model were then 

equated using these coefficients as shown in Equations 32-34 before subsequent 

analysis. 
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Table 5. Equating coefficients for linear transformations between latent trait metrics 

Latent trait (𝜂𝑠)  𝑥𝑠 𝑦𝑠 

1 Persuasive 0.929 −0.168 

2 Controlling 0.908 −0.151 

3 Outspoken 0.896 −0.111 

4 Independent Minded 0.861 0.049 

5 Outgoing 0.897 −0.043 

6 Affiliative 0.852 −0.091 

7 Socially Confident 0.831 −0.147 

8 Modest 0.828 0.079 

9 Democratic 1.016 −0.082 

10 Caring 0.835 −0.233 

11 Data Rational 0.819 −0.179 

12 Evaluative 0.861 −0.257 

13 Behavioural 0.910 −0.146 

14 Conventional 0.901 −0.337 

15 Conceptual 0.890 −0.196 

16 Innovative 0.905 −0.258 

17 Variety Seeking 0.830 0.033 

18 Adaptable 0.841 0.031 

19 Forward Thinking 0.884 −0.144 

20 Detail Conscious 0.865 −0.298 

21 Conscientious 0.864 −0.373 

22 Rule Following 0.782 −0.358 

23 Relaxed 0.921 −0.090 

24 Worrying 0.809 0.085 

25 Tough Minded 0.897 −0.147 

26 Optimistic 0.885 −0.117 

27 Trusting 0.807 −0.051 

28 Emotionally Controlled 0.825 −0.057 

29 Vigorous 0.785 −0.324 

30 Competitive 0.952 −0.058 

31 Achieving 0.886 −0.318 

32 Decisive 0.896 0.030 

Mean 0.871 −0.138 

 

Stability of item parameters 

After equating, the item parameter sets were compared directly to establish their 

level of stability across the two instruments. The means and standard deviations of the 
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differences and absolute differences were calculated. Note that the loading, threshold 

and unique variance parameters were scaled arbitrarily in accordance with the unique 

variance model identification constraints, and thus the size of the differences must be 

interpreted in line with the scaling of the parameters. 

The relationships between parameter sets were also examined graphically using 

scatter plots. Multivariate outliers away from the equating line, which had standardized 

residuals of magnitude above 3, were identified and studied in the qualitative phase of 

the analysis. 

Qualitative analysis of item context 

Qualitative analysis of items was conducted for FC blocks containing outliers as 

identified by the previous step of the analysis. To avoid confirmation bias, analysis was 

conducted purely though qualitative review of item text, without referring to their item 

parameter estimates. For each block concerned, analysis explored contextual changes 

across the triplet and quad versions of the block. Potential causes of parameter shifts 

were formulated, and predictions were made as to what the shifts may be. For a 

particular pairwise comparison of two items, contextual changes can cause parameter 

shifts in the following ways: 

• When the context caused the likelihood of endorsement for one item over the 

other to change for the average person, the threshold is expected to shift; 

• When the context moderated the relationships between items and their 

underlying traits, the loadings are expected to shift; 

• When the context changed the amount of variation in the responses that 

cannot be explained by the underlying traits, the unique variances are 

expected to shift; 
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• When the context introduced sources of biases into the responding process, 

the existing model is insufficient for describing the full responding process, 

and all parameters can shift in unpredictable ways. 

Themes emerging from qualitative analyses are reported in the Results section. 

Some general hypotheses of how the identified themes may influence item parameters 

in FC CAT are proposed in the Discussion. 

Stability of trait score estimation 

The ultimate goal of studying item parameter shift was to ensure stability of 

measurement at the trait level for each respondent. To assess this, respondents’ scores 

based on parameter sets estimated from the two different instruments were compared. 

The sample taking the triplet instrument was selected for this analysis, because the 

binary outcomes of all pairwise comparisons were known in this sample. This sample 

was first scored using the parameters estimated from the triplet instrument, and then, 

separately, scored again using the before-equating parameters estimated from the quad 

instrument. Responses associated with the five items with wording change across 

instruments were not scored. At the end of this scoring process, each respondent in the 

sample had two sets of scores – one based on triplet instrument parameters, and the 

other based on quad instrument parameters. The trait scores estimated using the quad 

instrument parameters were then transformed using Equations 27 to align the metrics. 

The resulting two sets of trait score estimates were then compared as follows: 

• Stability of rank ordering of individuals on a particular trait – correlations of 

the trait score estimates; 

• Stability of rank ordering of individuals’ personality profiles as a whole – 

correlations of profile locations (defined as the average score across all traits 

for each individual);  
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• Stability of rank ordering of traits for a particular individual – profile 

similarities (defined as the correlation between the two score profiles for the 

same individual based on two different parameter sets); 

• Size of the differences between trait score estimates – relative and absolute 

differences between trait score estimates from different parameter sets. 

Results 

Stability of item parameters 

Analysis was conducted on item parameter estimates that were neither 

associated with the 5 items with wording change, nor fixed in the model estimations. 

For example, there were 312 uniqueness terms in the models, one for each of the 312 

items. However, 104 of them were fixed for model identification purposes and 5 were 

associated with items with wording change, thus reducing the total number of parameter 

estimates for analysis to 312 – 104 – 5 = 203. 

The parameter estimates were aligned across the instruments, giving mean 

differences close to zero for all – thresholds, factor loadings and unique variances 

(Table 6). The parameters estimates also demonstrated strong linear relationships, as 

can be seen in the scatter plots of equated quad instrument parameters against triplet 

instrument parameters (Figures 1-3) and their very high correlations (Table 6). 

Estimates of item thresholds (see Figure 1) were mostly stable, giving a correlation 

of .975. Estimates of factor loadings (Figure 2) were less stable, giving a correlation 

of .878. Unique variance parameters turned out to be the most volatile to estimate across 

instruments (Figure 3), but still produced a high correlation of .841. Regarding the 

spread of the estimates, while Figure 1 shows a uniform spread around the equating line 

for thresholds, Figure 2 shows clear heterogeneity in the spread of the factor loadings. 

Specifically, larger slopes varied much more between the instruments than smaller 
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slopes did. The same was true for the uniquenesses (Figure 3). The greater fluctuations 

seen in loading and unique variance parameters were not surprising. Simulation studies 

by Brown and Maydeu-Olivares (2012, Tables 3 and 4) showed that loading parameters 

were typically recovered less accurately than threshold parameters, with larger loading 

values providing greater space for fluctuations than smaller loading values. The 

uniqueness parameters were estimated with even less precision. 

Table 6. Comparing item parameter sets estimated from quad and triplet instruments 

Parameter set comparison Item parameter 
  

Threshold 𝛾{𝑖,𝑘} Loading 𝜆𝑖𝑠𝑖
 Uniqueness 𝜓𝑖

2 

No. of free estimates 302 307 203 

Quad (equated) Mean –0.009 0.731 0.484 
 

SD 0.735 0.290 0.459 

Triplet Mean –0.028 0.726 0.497 

 SD 0.751 0.330 0.737 

Difference Mean 0.019 0.005 –0.013 

 SD 0.167 0.158 0.430 

Absolute difference Mean 0.121 0.104 0.201 

 SD 0.116 0.118 0.381 

Correlation  .975 .878 .841 
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Figure 1. Scatter plot of estimated threshold parameters from quad and triplet 

instruments 

 

 

Figure 2. Scatter plot of estimated loading parameters from quad and triplet instruments 
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Figure 3. Scatter plot of estimated uniqueness parameters from quad and triplet 

instruments 

 

Outliers 

Table 7. Outliers with respect to parameter invariance from quad and triplet instruments 

  Parameters Affected items Affected blocks 

  Total Outlier % Total Outlier % Total Outlier % 

𝛾{𝑖,𝑘} 302 7 2.3% 307 12 3.9% 104 5 4.8% 

𝜆𝑖𝑠𝑖
 307 8 2.6% 307 8 2.6% 104 5 4.8% 

𝜓𝑖
2 203 4 2.0% 307 4 1.3% 104 4 3.8% 

 

Between 2.0% and 2.6% outliers were identified for each type of parameter 

(Table 7). Note that each threshold outlier affected two items, while each loading or 

uniqueness outlier affected only one item. In total, 17 (5.5%) of the 307 common items 

(i.e., 312 items in the triplet version minus five items with wording change) were 
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marked as outliers in at least one of the parameters. These outlier items were found in 

eight (7.7%) of the 104 blocks. 

Qualitative analysis of item context 

Items within the eight FC blocks containing outliers were studied to identify 

contextual changes across the instruments. This analysis identified a number of 

recurring themes, which are outlined below and illustrated by examples. 

Theme 1: change in relative item endorsement levels 

  Change in relative item endorsement level was observed in three blocks. The 

block containing items 189-192 gives a good example. 

Item Quad Triplet Scale 

189 I consider what motivates people √ √ Behavioural 

190 I am easily bored by repetitive work √ √ Variety Seeking 

191 I worry before an interview √ √ Worrying 

192 I finish things on time √  Conscientious 

 

The triplet version contains items 189, 190 and 191. In the workplace, item 189 is likely 

to be perceived as most desirable, so the relative endorsement levels of item 189 against 

items 190 and 191 are likely to be high. In the quad version, the desirability of item 192 

is likely to be high. As a result, item 189 is no longer the obvious “best answer” in the 

quad, as it may be in the triplet. So the endorsement level of item 189 against items 190 

and 191 is likely to be lower in the quad version. To put this in terms of parameters, the 

pairs {i189, i190} and {i189, i191} in the triplet version are likely to have lower 

threshold parameters (i.e., easier to endorse the first item) than in the quad version, 

which is what was observed. 
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Theme 2: change in item’s discrimination levels 

Change in item discrimination levels was observed in five blocks. The block 

containing items 141-144 gives a good illustration.  

Item Quad Triplet Scale 

141 I am lively in conversation √  Outgoing 

142 I follow rules and regulations √ √ Rule Following 

143 I persevere with tasks √ √ Conscientious 

144 I avoid talking about my successes √ √ Modest 

 

The triplet version contains items 142, 143 and 144, and it is clear to the respondent that 

they all refer to distinct attributes. The additional item 141 in the quad version, however, 

is very similar to item 144 in content – both items have an element of talking to people. 

This “talking” emphasis in the same block creates an unintended contrast between items 

141 and 144. As a result, item 144 may shift from being a positive indicator of Modest 

to being a negative indicator of Outgoing. Thus, the factor loading for item 144 on the 

Modest trait were expected to be lower in the quad version – exactly what was observed 

in the IRT parameter estimates. Predictions of shifts of other parameters in this block, 

however, were not as successful. It was hypothesised that item 142 would be unaffected 

by the shared “talking” element, and therefore the parameters for item 142 should not 

change. This prediction was not accurate and the loading for item 142 was actually 

lower in the quad version, suggesting that some additional factors were at play. 

The qualitative study of change in context was unfortunately not always as 

simple as the examples given here. Often, multiple themes were present in the same 

block, leading to complex interactions and making the prediction of how item 

parameters would change extremely difficult. Nevertheless, based on this study, 
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possible mechanisms behind some context-induced parameter shifts are suggested and 

summarised in the Discussion. 

Stability of trait score estimation 

From a rank ordering perspective, trait score estimates for the same individuals 

based on different parameter sets were highly similar. Table 8 describes the correlations 

of scores for each of the 32 traits, the correlation of post-equating profile locations, and 

the profile similarities for all individuals in the sample (N=22,610). It was clear that the 

ordering of people at scale level as well as the similarity of whole personality profiles 

were preserved. The latter was important since selection decisions on comprehensive 

measures of personality were usually based on combinations of traits, not by comparing 

each individual trait. 

Table 8. Comparing trait scores estimated using parameters from different instruments 

Statistics Mean SD Min Max 

Correlation of trait scores .996 .002 .991 .999 

Correlation of profile locations .985 - - - 

Profile similarity .995 .002 .974 .999 

Mean score difference by trait −0.088 0.041 −0.183 0.005 

Mean absolute score difference by trait 0.113 0.031 0.050 0.184 

 

 From an absolute difference perspective, the trait score estimates from different 

parameter sets were also highly similar. Table 8 describes the mean score differences 

and mean absolute score differences across the 32 latent traits. Reassuringly, most traits 

demonstrated mean differences close to zero and mean absolute differences of small 

magnitude. However, some traits demonstrated relatively large differences. The largest 

difference was seen in the “Conventional” trait, which showed mean difference of 
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−0.183, suggesting that respondents typically received lower scores when scored using 

the quad instrument parameters as opposed to triplet instrument parameters. Note that 

one of the five items with wording change was from the Conventional trait and removed 

in the scoring process. The second largest difference was seen in the “Vigorous” trait, 

with mean difference of −0.164. Such differences may be caused by a combination of 

item parameter shift across instruments, item parameter estimation error and equating 

error. 

Discussion 

The parameter invariance assumption is fundamental to the full realisation of 

adaptive personality assessments using the FC response format. The current study 

examined the effect of context on FC responding behaviour, as represented by adding 

one extra item per FC block. Empirically-derived item parameters, estimated 

independently before and after the contextual change, were compared. The threshold, 

loading and unique variance parameters were largely stable. Furthermore, a small 

proportion (less than 10%) of parameters that yielded substantial shifts, however, had 

little impact on the person parameter estimates. Evidence from the current study thus 

largely supported the parameter invariance assumption. 

Nevertheless, a number of scenarios where this assumption was violated were 

reviewed, resulting in the identification of two recurring themes. The mechanisms 

behind parameter shifts are suggested below, and some recommendations for mitigating 

parameter shifts in adaptive FC assessments are made. 

Themes in influences of context on FC item parameters 

The two themes identified for parameter shifts are of particular interest to FC 

CAT implementations. Through understanding these themes better, appropriate test 
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assembly rules can be designed to mitigate their occurrences, thus reducing the 

likelihood of parameter shifts and enhancing the accuracy of trait estimations. With this 

purpose in mind, hypotheses are made for possible mechanisms behind parameter shifts 

due to change in context for FC items. 

Theme 1: change in relative item endorsement levels 

In FC blocks, some items can appear more desirable than others, either because 

they are more socially appealing in general, or because they are more in line with the 

purpose of the assessment (e.g., Donovan et al., 2003; Kam, 2013; Paulhus & Vazire, 

2007). When making comparative judgements in an assessment setting, respondents are 

likely to be considering the desirability of items consciously or unconsciously. As a 

result, when item desirability within a block is not balanced, endorsement can shift 

towards the more desirable “right answers”.  

There are several factors that may intensify such desirability-induced response 

biases. Firstly, it is likely to occur more often in high-stakes situations, where 

respondents have stronger motivations to do well or appear good. Secondly, it is likely 

to be worsened when the desirability difference between items within the same FC 

block is large, thus making the perceived “right answer” more obvious to more 

respondents. Finally, it is likely to be more severe with smaller FC block sizes. In a 

block of two items, once the most desirable item is chosen to be “most” like the 

respondent, the other item has to be the “least” like the respondent, and the only 

information collected from this response is bias. But in a block of three items, the 

comparison between the remaining two items can still give useful information. 

In terms of impact on measurement, such desirability-induced response biases 

introduce shifts in thresholds of the pairwise comparisons within the affected block, 

which can reduce the accuracy of latent trait estimation. To tackle this problem, items 
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should be worded neutrally or factually, so they do not sound obviously desirable or 

undesirable. Moreover, the relative endorsement levels of items should be estimated and 

controlled for in the instrument design. In a CAT setting, this translates into an 

additional rule in the test assembly algorithm – a numerical constraint preventing 

combinations of items with relative endorsement levels exceeding a certain acceptance 

threshold. 

Theme 2: change in item discrimination levels 

When considering several items simultaneously, respondents can perceive the 

item meaning differently to when they consider them independently. Most often, item 

interactions are caused by unplanned shared content between them, making their 

artificial similarity salient and deteriorating the original meaning of the items in relation 

to the attributes they indicate. Item interactions thus enhance or dilute the items’ ability 

to measure their intended constructs, leading to shifts in item discrimination parameters. 

There are several flags for identifying potential item interactions. The first clue 

comes from item wording – items sharing the same or synonymous keywords or phrases 

are likely to interact, as are items employing antonymous keywords. Furthermore, even 

if items do not explicitly share similar or opposite wordings, they can still have 

unplanned situational overlap that may lead to item interactions. The second clue comes 

from the constructs that the items measure – items from conceptually-similar constructs 

are more likely to interact than items from conceptually-distinct constructs. 

In terms of measurement, item interactions can have two kinds of impacts. On 

one hand, when the shared context is not related to the latent constructs being measured, 

not only may the items have correlated residual variance caused by a common nuisance 

factor, but also do the items’ focus shift towards that nuisance factor, thus reducing their 

power to measure the intended constructs. On the other hand, when the shared context is 



49 

 

related to the latent constructs being measured, interaction-induced item cross-loading 

happens. In such cases, the scoring model is no longer sufficient to model the response 

process. In a CAT setting, a viable solution to this problem is to prevent items that may 

interact from appearing in the same block. To do so, pairs of potentially interacting 

items need to be identified by subject matter experts and then coded in the test assembly 

algorithm as content “enemies” within (but not across) FC blocks. 

Dealing with change in item uniqueness 

Unlike the case of item thresholds and loadings, parameter shifts in item unique 

variances are harder to explain and to predict. This is perhaps not at all surprising 

because unique variances are, by definition, residual variances unexplained by the 

responding model. Unique variances characterise how closely the actual item responses 

scatter around their predicted values. While unique variances reflect certain item 

properties, for example how central or peripheral the item is to the measured attribute, 

they may also depend on environmental factors external to the items that affect the level 

of random variation in respondents’ answers.  

In terms of measurement, less random variation in answers should reduce the 

residual variances of items and give more accurate trait estimates. While reducing 

residual variances is a good thing for measurement in general, there is one complication 

in a CAT setting – if the unique variance of an item changes, the parameter invariance 

assumption is violated. And because there is no simple way to precisely quantify the 

extent of random influences a priori, it is challenging to construct test assembly rules 

that standardise unique variances across blocks. 

However, in practice, change in residual variances is less of a concern compared 

to shifts in other item parameters in FC CAT. In order for FC CAT to be effective, a 

large item bank with calibrated item parameters is required. While it is not too 
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complicated to model a FC instrument with fixed block design as in the case of this 

study, it is impossible to calibrate a large item bank using FC response data because of 

an astronomical number of combinations in which the items can be paired together. 

Therefore, large item banks designed for FC CAT assessments are calibrated using SS 

response formats, where the residual variances are likely to be at their highest due to 

many response biases that affect the SS format. Consequentially, the SS-based item 

parameters are likely to overestimate unique variances in FC CAT. This leads to 

overestimation of the resulting measurement error in FC CAT. The test assembly thus 

operates under a worst-case scenario, making more conservative decisions regarding 

measurement precision, and arriving at more accurate trait estimates. 

Unique variance fluctuations also have an impact on score estimation, through 

affecting the likelihood values of the responses. However, a small level of unique 

variance fluctuation is unlikely to dramatically change the score estimates. As can be 

seen in this study, an overall unique variance fluctuation characterized by a correlation 

of 0.841, together with a small number of shifts in other item parameters, still produced 

trait score estimates correlating to 0.991 or above. In summary, invariance of 

uniqueness in a FC CAT setting is given lower priority and importance compared to 

invariance of threshold or loading. 

Limitations 

One limitation of using historical data in this study is the confounding of 

contributions from contextual differences as well as potential sample differences in the 

observed parameter fluctuations. To partial out the contribution from potential sample 

differences, further studies need to incorporate adequate matching or randomisation 

designs during data collection. 
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The contextual difference between the two instruments used in this study is also 

limited in nature. Firstly, both instruments were constructed manually by experts while 

taking into account content requirements and best practices in measurement, so the 

additional item seldom introduces significant contextual shift into a FC block. Once the 

human factor is removed, computer-assembled FC blocks are likely to have larger 

impact of context, potentially leading to greater fluctuations in item parameters. 

Secondly, the FC block compositions were very similar across the two instruments, with 

three out of four items staying the same. The effect of fully shuffling the items into 

different blocks may lead to yet more contextual changes, and potentially larger item 

parameter shifts. This remains an area of research for further studies. However, the tight 

control over the context in this study is also its strength because it was possible to 

triangulate the potential causes behind the item parameter shifts, which would be much 

more difficult with less controlled contextual changes. 

Finally, this study only focuses on measuring personality, which comprises 

relatively stable psychological constructs. For constructs that are more situation-

dependent, contextual variations may lead to greater responding behaviour differences. 

Therefore, generalisations of the findings in this study to FC assessments of other 

constructs must be made with caution. 

Conclusions 

While modern IRT models provide the necessary theoretical foundation for FC 

CAT, a fundamental assumption in CAT is that item parameters are invariant with 

respect to context – items surrounding the administered item. This assumption is 

empirical in nature, yet there had been limited investigation into its robustness. Study 1 

empirically examined the influence of context (manipulated through the addition of 

distractor items) on item parameter stability. The item parameter estimates with and 
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without manipulation were highly similar. Moreover, person trait score estimation 

remained very stable despite a small proportion of violations of the parameter 

invariance assumption. Results thus support the adoption of the parameter invariance 

assumption in practice. 

Although infrequent, context did introduce a small number of significant item 

parameter shifts in this study. Therefore, while the parameter invariance assumption 

appears to be robust even with minor violations, it is still important to strengthen it 

through the incorporation of appropriate content rules. It is recommended that items 

within the same FC block should be constrained to have similar average endorsement 

levels. Also, items that may interact (i.e., change in item focus or meaning when 

presented together, for example due to nuisance shared context) should be prevented 

from appearing in the same FC block. Such content rules can be coded into the adaptive 

test assembly algorithm behind any FC CAT. 
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CHAPTER 3: FC CAT ALGORITHMS 

The tailoring of questions to respondents in a CAT is governed by the logics 

within an automated test assembly algorithm. A CAT algorithm typically consists of 

four main components: 1) a trait estimator; 2) an item selector; 3) a collection of content 

rules; and 4) a stopping rule. The trait estimator produces estimates for the respondent’s 

trait standings. Based on the respondent’s interim trait estimates, the item selector 

identifies the most informative question to administer next, subject to the constraints of 

content rules. The content rules capture assessment design requirements and define the 

boundaries within which the item selector operates6. The stopping rule determines when 

the assessment terminates. Figure 4 illustrates the process flow of a CAT. 

 

Figure 4. Process flow of a CAT 

 

6 The content rules are not always separable from, and may be considered an integral part of, the item 

selector. However, for the discussions here, a conceptual distinction is made between the mathematical 

criterion to be optimised for information gain (i.e., the item selector), and the content requirements that 

act as constraints in this optimisation process (i.e., the content rules). 
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Multiple methods and options exist for each of the algorithm components. As 

such, optimising the algorithmic design for an applied CAT is a complex problem, with 

design decisions heavily dependent on the purposes, needs, settings and operational 

constraints of the assessment program. While it would be impossible to design a one-

size-fits-all FC CAT algorithm, this thesis aims to shed light on the design 

considerations for FC CATs, and the relative merits of different algorithmic options for 

FC CATs using TIRT. 

This chapter is structured as follows. First, the four algorithmic components are 

reviewed and formulated for TIRT-based FC CATs, taking into account the unique 

needs and novel challenges of such assessments. Second, a simulation study (Study 2) is 

presented that compares the pros and cons of different trait estimators for scoring FC 

data. Third, a simulation study (Study 3) is presented that compares the performance of 

different item selectors for TIRT-based FC CAT. Finally, conclusions and practical 

recommendations are presented. 

Algorithm Components for FC CAT 

Trait Estimators 

Trait estimators, also known as ability estimators or scoring methods, are 

mathematical algorithms for estimating a respondent’s standings on the measured 

constructs (i.e., latent traits). Trait estimators not only determine the final scores to be 

reported at the end of an assessment, but also produce interim estimates to drive the 

item selection process forward in a CAT. An accurate and robust trait estimator is thus 

essential for the efficient functioning of a CAT. 

A respondent’s latent trait standings are estimated based on: 1) the 

characteristics of the administered items; 2) the respondent’s responses to them; and, 
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optionally, 3) any existing information (i.e., prior information) about the respondent 

and/or the population they come from. Some trait estimators utilise the first two types of 

information only, including the Maximum Likelihood (ML) Estimator (Birnbaum, 1958, 

1968) and the Weighted Likelihood (WL) Estimator (Warm, 1989). Other trait 

estimators incorporate prior information into the calculations and thus fall into the class 

of Bayesian estimators, including the Maximum a Posteriori (MAP) estimator (Lord, 

1986; Mislevy, 1986) and the Expected a Posteriori (EAP) estimator (Bock & Mislevy, 

1982). All four estimators produce point estimates for the respondent’s latent trait 

standings. Full mathematical formulations of the trait estimators for the TIRT model are 

provided in Appendix B. 

Theoretical comparison 

The four trait estimators (ML, WL, MAP and EAP) exhibit different properties 

and strengths, thus making them optimal for different application scenarios. Moreover, 

trait estimation requirements and priorities change as a CAT progresses (van der Linden 

& Pashley, 2010), so some estimators are more appropriate than the others at different 

stages of a CAT. 

The ML estimator is consistent and asymptotically efficient (Lord, 1983), and is 

traditionally the most widely-used trait estimator. However, the ML estimates tend to be 

biased outwards (i.e., the bias correlates with trait value positively), leading to 

overestimation of high trait values and underestimation of low trait values. Moreover, 

the ML estimator can be unbounded for certain response patterns (Lord, 1983), and the 

chance of this happening is especially high for shorter tests. Nevertheless, the bias of 

the ML estimator diminishes as the assessment gets longer. 

The Bayesian estimators MAP and EAP, often coupled with a multivariate 

normal prior function around the estimated population mean, are probably the modern 
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favourites. With an informative prior, the Bayesian estimators tend to be biased inwards 

(i.e., the bias correlates with trait value negatively), pulling trait estimates towards the 

population mean. However, Bayesian estimates can be biased outwards if an 

uninformative prior is used, effectively converging towards the bias of the ML estimator 

when prior information diminishes (e.g., Wang, 2015). Unlike the ML estimator, both 

MAP and EAP are bounded when an informative prior is used, making it possible to 

obtain finite estimates even just after one question (Reckase, 2009). Bayesian estimates 

also tend to be less erratic than ML estimates, especially for shorter tests such as at the 

early stages of CAT (Reckase, 2009). Moreover, the prior information about the traits’ 

covariance can enable more efficient estimation than if the traits were estimated 

separately (Segall, 1996). However, the utility of the Bayesian approach can be 

damaged by a badly chosen prior, leading to biased trait estimates and thus ultimately 

hindering rather than enhancing measurement (Gelman, Carlin, Stern & Rubin, 1995). 

Compared to the ML, MAP and EAP estimators, there are fewer research studies 

that looked into the WL method. However, the available studies that benchmarked WL 

against ML, MAP or EAP produced very promising results. Warm (1989) compared 

WL against ML and MAP for the unidimensional 3PL model using a series of Monte 

Carlo studies, and found WL to outperform both ML and MAP over a large range of 

trait values in both static tests and variable-length CAT. More recently, Wang and 

Wang (2001) tested the WL estimator on fixed-length CAT simulations using the 

unidimensional generalised partial credit model (Muraki, 1992), and found it to produce 

more accurate results than ML, EAP and MAP. Wang (2015) compared WL against ML, 

MAP and EAP on fixed length tests using the multidimensional 2PL model, and found 

it to be the best in terms of both bias and variance in all conditions, except in the case 

where the prior distribution in the Bayesian estimators are identical to the generating 

distribution of the simulation sample (in which case the Bayesian estimators performed 
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better). Moreover, the WL estimator does not produce unbounded estimates as the ML 

estimator (Warm, 1989), nor does it require the setting of a prior (Warm, 1989), and so 

it is immune to the wrong prior risk of the Bayesian estimators. It is therefore very 

tempting to try the WL estimator out on multidimensional FC assessments using TIRT, 

to see whether its success elsewhere can be replicated in this new setting. 

Aside from their statistical properties, the trait estimators also differ in 

computational procedures and complexities. The calculations for the ML, WL and MAP 

estimates all involve the maximisation of some score function, which is typically done 

by searching for zero gradient using an iterative numerical process. The score functions 

for ML and MAP are comparatively simple and quick to compute, whereas that for WL 

is significantly more complex, involving complex summations in every iteration step 

(i.e., updating the entire FIM and the ML bias term). The computational power and time 

requirement for WL is thus higher than that for ML or MAP. In contrast, the 

calculations for the EAP estimates are non-iterative in nature. Instead, numerical 

integration routines are employed to estimate the integral. In the case of unidimensional 

assessments, numerical integration is usually less computer intensive than iterative 

search, therefore the EAP estimator tends to be quicker to calculate (Bock & Mislevy, 

1982). However, in the case of multidimensional assessments, the complexity of 

numerical integration grows exponentially as the number of dimensions increases. As a 

result, EAP loses its computational advantage and can become rather cumbersome for 

assessments with a larger number of dimensions (Segall, 1996). 

A note on paradoxical results in multidimensional trait estimation 

Hooker, Finkelman and Schwartzman (2009) observed that, in cognitive ability 

assessments using compensatory (i.e., the effect of a low score on one trait can be 

compensated by a high score on another trait to arrive at the same response probabilities, 
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see Reckase, 2009) multidimensional IRT models, “it is possible for the estimate of a 

subject’s ability in some dimension to decrease after they have answered a question 

correctly”. This phenomenon is referred to as the paradoxical results in 

multidimensional IRT. Finkelman, Hooker and Wang (2009) provided an explanatory 

example, where two candidates A and B took a test assessing both mathematical and 

language skills, giving identical answers to every question apart from the last one that 

relied heavily on language skills. Candidate A answered the last question correctly, 

demonstrating excellent language skills, and so the wrong answers in earlier parts of the 

test were likely explained by lower mathematical abilities. Candidate B answered the 

last question incorrectly, demonstrating lower language skills, and so the correct 

answers in the earlier parts of the test were supported by stronger mathematical abilities. 

It then followed that candidate A received a lower score on mathematical abilities than 

candidate B, even though intuitively a correct answer should work in the favour of 

candidate A on all ability dimensions. This scenario would be particularly problematic 

if candidate A was subsequently screened out due to not meeting a cut score on 

mathematical abilities while candidate B was allowed to pass, leading to the unfair 

situation of a wrong answer actually benefitting the candidate. 

Following the initial discovery, a quick succession of studies explored this 

phenomenon in depth, attempting to understand the underlying mechanism and/or 

identify methods for avoiding such paradoxical results. Hooker, Finkelman and 

Schwartzman (2009) showed that this problem is unavoidable in linearly compensatory 

models using the ML estimator. Hooker (2010) further deduced that paradoxical results 

could occur when using a prior with all abilities positively correlated. Jordan and Spiess 

(2012) extended Hooker and colleagues’ results beyond binary linear compensatory 

multidimensional IRT models to ordinal models and other more general models, 

covering the scenarios using the ML estimator as well as Bayesian estimators. They 
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concluded that the paradoxical phenomenon was “highly prevalent” and called into 

question the general use of multidimensional IRT models because of the perceived 

unfairness, especially when cut scores were used to make decisions. At the same time, 

van der Linden (2012) showed that the paradoxical results would occur in “any 

multiparameter likelihood with monotone score functions”, and the paradoxical 

phenomenon was actually a feature of the convergence of the multiparameter ability 

estimator to its true values as the test lengthened. He thus argued against attempts to 

“fix” the perceived unfairness by modifying the ability estimates, as they would lead to 

“less accurate and more biased ability estimation”. Van der Linden’s (2012) view was 

further echoed by Reckase and Luo (2014), who showed that the paradoxical results 

were “not flaw in estimation”, but instead “the additional response improves the 

estimate of the θ-point even though the paradoxical result occurs”. These studies 

quickly enhanced the understanding of the paradoxical phenomenon, moving the field 

from considering it a detrimental artefact of multidimensional IRT to regarding it a 

mere feature of the multidimensional convergence process. 

A couple of studies were particularly useful in providing intuitive understanding 

of this phenomenon. Breaking away from the model-specific algebraic investigations 

that dominated the study of paradoxical results to date, van Rijn and Rijmen (2012, 

2015) introduced the use of graphical models instead. They realised that the paradoxical 

results were in fact examples of the more established “explaining-away” phenomenon in 

Bayesian networks (Pearl, 2009; Wellman & Henrion, 1993), also known as Berkson’s 

paradox in statistics (Berkson, 1946). They attributed the occurrences of paradoxical 

results in multidimensional IRT to the existence of a specific graphical structure called 

an “inverted fork” in the model, i.e., “when multiple latent variables are related to the 

same observed variable” (Figure 5). In multidimensional IRT terms, inverted forks 

occur when within-item multidimensionality exists, regardless of the exact functional 
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form of the multidimensional IRT model. Van Rijn and Rijmen (2015) then extended 

beyond multidimensional IRT models and showed that the “explaining-away” 

phenomenon occur in a wide class of multivariate latent variable models. With this 

widened understanding, they recommended treating tests of maximum performance and 

tests of typical performance separately in the discussion of paradoxical results, as the 

former had to conform to a higher level of social acceptability whereas the latter could 

place more emphasis on statistical optimality. 

  

Figure 5. “Inverted fork” in MIRT 

 

Figure 6. “Inverted fork” associated with a pairwise comparison in TIRT 

 

The research on paradoxical results in multidimensional IRT is relevant to this 

thesis because the TIRT model is also a compensatory multidimensional IRT model. As 

“inverted forks” are inherent in the modelling of MFC responses (Figure 6), the 

“explaining-away” phenomenon will occur regardless of the trait estimator used or the 
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format of the prior function chosen (van Rijn & Rijmen, 2012). This can lead to some 

unintuitive results. For example, an answer to a pairwise comparison involving two 

traits will understandably affect the estimates of those two traits involved, but it will 

also affect the estimates of other traits. More specifically, updating the estimates for the 

two target traits will have a knock-on effect on the likelihood of the responses in earlier 

pairwise comparisons involving one of the two target traits and some other traits, and 

this rippling effect continues on until all traits are affected. The multidimensional trait 

estimates thus converge towards their true values in a fuzzy way that do not always 

conform to the explicit direction of the latest response, hence producing “paradoxical” 

results. 

So far, research on paradoxical results in multidimensional IRT has largely 

focused on ability tests. While IRT models for ability and personality assessments are 

similar in many ways, the assessments themselves have several key differences. First, in 

most applications, personality assessments are tests of typical performance rather than 

maximum performance. For example, rather than wanting to find out how extroverted a 

person could possibly be, in most practical applications the aim is to instead find out 

how extroverted a person typically is. For this purpose, as van Rijn and Rijmen (2015) 

pointed out, one should focus on ensuring the most accurate estimation, rather than 

worrying about social acceptance of seemingly aberrant estimates. Second, personality 

assessments often intend to accurately recover the multidimensional, whole-person 

profile. The practice of using cut scores on a single personality dimension is far less 

justified than in the case of ability tests. Therefore, the problem of having paradoxical 

results occurring near a particular score for some dimension may not be a concern for 

personality assessments. Third, while ability test questions have definite right answers, 

this is not the case in personality assessments. A person can have a higher or lower 

standing on a personality trait, but whether one end of the trait is better than the other is 
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largely dependent on context. When the concept of a “better” score is removed from the 

picture, so is the concept of “unfair” scoring. Given their differences, the conclusions 

and recommendations regarding paradoxical results in ability tests require 

reconsideration in the setting of personality assessments. 

Considering both the mathematical conditions for paradoxical results to occur, 

and the practical differences between ability tests and personality assessments, I argue 

that the concerns about paradoxical results can largely be alleviated or even removed in 

most personality assessments: 1) typically SS personality assessments use 

unidimensional items, in which case there is no within-item multidimensionality or 

inverted forks in the model, and so there will be no “explaining-away” phenomenon; 2) 

SS personality assessments using multidimensional items will give rise to “explaining-

away” phenomenon, but this design is very rare in practice; 3) unidimensional FC 

personality assessments do not give rise to “explaining-away” phenomenon, because 

comparison of items from the same trait does not give rise to multidimensionality in the 

pairwise comparison outcomes; 4) multidimensional FC questions will give rise to 

“explaining-away” phenomenon, but this is not a concern given the focus on accurate 

estimation over pass/fail classifications. Weighing all considerations, this thesis focused 

on the standard trait estimators with no adjustment for potential paradoxical results in 

MIRT trait estimation. 

Item Selectors 

For a CAT to produce more accurate person scores than its non-adaptive 

counterparts, the item selector needs to identify which item(s) available in the pool to 

administer next so as to achieve the greatest information gain about the respondent, 

based on what is already known about them at the time. Because the item selector is 
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directly responsible for the adaptive assessment construction, it is arguably the most 

important component of a CAT algorithm. 

All item selectors are based on the idea of information maximisation. However, 

while information maximisation is straightforward for a unidimensional test choosing 

one item at a time, its extension to MFC assessments presents additional complexities. 

First, in a multidimensional assessment, the information is dependent on the direction of 

consideration in the multidimensional space, and often the objective is to measure all 

the traits accurately (i.e., gaining information in multiple directions in the 

multidimensional space). Item selection thus becomes a multidimensional optimisation 

problem, and finding the best item requires the amalgamation of information from 

multiple directions into a single measure. Second, in a FC assessment, multiple items 

need to be assembled into a single FC block. The number of possible blocks to consider 

increases quickly as the block size 𝑛 increases – there are |𝑅𝑟| ways to choose one item 

from 𝑅𝑟 (the pool of unused items for the 𝑟𝑡ℎ question), but (|𝑅𝑟|
𝑛
) =

| 𝑅𝑟|!

𝑛!(| 𝑅𝑟|−𝑛)!
 ways to 

construct a block of size 𝑛 from the same pool of items. Finding the best FC block thus 

often requires extensive searches even for a small item bank. To sum up, combining the 

challenges introduced by multidimensionality of the intended constructs and the 

combinatorics of FC blocks, item selection for the MFC format is a complex and 

computationally intensive optimisation problem. 

In order to address the multidimensionality challenge, researchers have 

developed a range of item selectors that reduce multidimensional information into scalar 

summary indices. These item selectors are mostly developed for assessments using 

response formats other than the MFC format, and/or developed for IRT models other 

than the TIRT model. Nevertheless, many of them can be extended to the measurement 

of personality using a MFC response format and the TIRT model. The first type of item 



64 

 

selectors are based on information maximisation that target a specific direction in the 

multidimensional trait space. Such item selectors include maximise weighted 

information (WI), maximise weighted core information (WCI), and maximise 

information in direction with minimum information (DMI; Reckase, 2009). The second 

type of item selectors make use of the FIM (see Mulder & van der Linden, 2009; Silvey, 

1980). Such item selectors include minimise trace of the inverse FIM/ minimise total 

error variance (A-optimality), minimise weighted sum of entries of the inverse FIM/ 

minimise error variance of a linear composite (C-optimality), maximise determinant of 

the FIM/ minimise the volume of the confidence ellipsoid of the trait estimates (D-

optimality), maximise minimum eigenvalue of the FIM/ minimise variance of the most 

imprecisely-estimated linear combination (E-optimality), and maximise trace of the 

FIM/ maximise information while ignoring contributions from correlated traits (T-

Optimality). Both these types of item selectors rely on interim trait estimates and are 

therefore affected by their inaccuracies. As a result, they could be optimising 

measurement at the wrong locations, especially at the beginning of a CAT session when 

trait estimates are still inaccurate (e.g., Chang and Ying, 1996). The third type of item 

selectors bypass this problem using the Kullback–Leibler (KL) global information 

concept (Cover & Thomas, 2006; Kullback, 1959; Lehmann & Casella, 1998). Such 

item selectors include maximum item KL information (KLI-U or KLI-B; Chang & Ying, 

1996; Veldkamp & van der Linden, 2002), maximum KL distance between subsequent 

posteriors (KLP; Mulder & van der Linden, 2010), maximum mutual information (MUI 

or KLB; Mulder & van der Linden, 2010; Wang & Chang, 2010, 2011; Weissman, 

2007), and the continuous entropy method (CEM; Wang & Chang, 2010, 2011). Full 

mathematical formulations of and discussions about the item selectors for MFC 

assessments using TIRT are provided in Appendix D. 
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Theoretical comparison 

Benefitting from the rapid increase in computational power and the 

psychometric advancement in IRT models over the last few decades, research on item 

selectors for CAT have progressed significantly (van der Linden & Glas, 2010). The 

fundamental idea of information maximisation underlies all item selectors. Initially, 

item selectors focused on local information, i.e., maximise information gain at the best 

interim score estimates. While this goal is simple in the unidimensional case, in 

multidimensional assessments it diverged into many ways of summarising information 

from multiple traits into a single scalar summary index required for item selection, thus 

giving rise to the differences between WI, WCI, DMI, A-, C-, D-, E-, and T-optimality 

(even though they all reduce to the same maximum information item selection criterion 

in the unidimensional case). Researchers have compared the efficiencies of FIM-based 

local information item selectors for various multidimensional assessments. For example, 

Mulder and van der Linden (2009) thoroughly examined A-, C-, D- and E-optimality 

theoretically and through simulations, and concluded that A- and D-optimality “lead to 

the most accurate estimates when all abilities are intentional, with the former slightly 

outperforming the latter”, while C-optimality was most suited for “the measurement of a 

linear combination of abilities”. Independently, Seo and Weiss (2015) simulated item 

selection in assessments using the bifactor model, and again found A- and D-optimality 

to outperform E-optimality. 

More recently, the risk of making suboptimal decisions based on inaccurate 

interim trait estimates sparked a significant paradigm shift towards utilising global 

information measures in item selection. Mulder and van der Linden (2010) conducted a 

comprehensive theoretical review of the use of KL information in item selection (see 

Appendix D for full details and discussions). In terms of efficiency in practice, Chang 
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and Ying (1996) developed and simulated KLI in unidimensional CAT, showing that it 

tended to outperform local Fisher information maximisation. Weissman (2007) 

simulated MUI in unidimensional adaptive classification tests and found it to also give 

more accurate classifications than Fisher information maximisation. Wang and Chang 

(2011) simulated D-optimality, KLI, CEM and MUI in multidimensional CAT, and 

found MUI to be the most efficient amongst them, while D-optimality performed on par 

or better than CEM or KLI despite being a local information item selector. 

Aside from their psychometric differences, the item selectors also differ in 

computational procedures and complexities. The global information item selectors (i.e., 

KLI, KLP, MUI, and CEM) all rely on numerical integration. As the computational 

complexity of numerical integration grows exponentially with increasing dimensionality, 

the global information methods can quickly become computationally challenging in 

multidimensional personality assessments that routinely involve five or more traits.  

A note on selecting larger FC blocks 

The item selectors (described in Appendix D) can be used to select FC blocks 

using three or more items, but with a couple of additional challenges: increasing 

computational demand, and local independence violation. 

As briefly mentioned before, the first challenge of increasing computational 

demand arises from the growing number of ways to combine items into larger FC 

blocks. For example, an item bank with 100 statements gives rise to (100
2
) = 4,950 

unique pairs, (100
3
) = 161,700 unique triplets, (100

4
) = 3,921,225 unique quads, and so 

on. The exponentially increasing numbers of possibilities make searching through and 

choosing larger FC blocks much more computationally expensive than choosing smaller 

FC blocks. To overcome this challenge, content rules (see next section) can be 
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introduced to reduce the number of FC blocks to search through, but at the expense of 

making the assessment less adaptive. 

The second challenge of local independence violation arises due to the shared 

residual variance between pairwise comparisons within the same FC block, which 

impacts the calculation of information measures that form the basis of all item selectors. 

The ideal way to handle this is to account for local dependence properly in the 

information calculations. However, the mathematics can get complicated fairly quickly. 

A non-ideal but practical way to handle this is to make a simplifying assumption of 

local independence and approximate the total block information by summing over 

contributions from all constituting pairwise comparisons (e.g., Equation 18). 

 In practice, there are pros and cons for using larger FC blocks in personality 

assessments. On one hand, larger blocks collect more pairwise comparisons per item 

presented, thus leading to more efficient use of the item bank for information collection. 

For example, assembling six items into pairs would yield three pairwise comparisons, 

whereas assembling six items into triplets would yield two triplets giving six pairwise 

comparisons in total – doubling the number of pairwise comparisons collected whilst 

using the same total number of items. On the other hand, because respondents need to 

consider more pairwise comparisons simultaneously when responding to a larger FC 

block, larger blocks are more cognitively demanding, making them more prone to data 

quality issues especially with unmotivated or unsophisticated respondents (Brown & 

Bartram, 2009-2011). The optimal block size for a FC personality assessment should be 

determined considering the practical settings of the assessment program in question, e.g., 

the cognition and level of motivation of the respondent population, the richness of the 

item bank, and any assessment time limits for response data collection. 
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Content Rules 

 Assessment assembly often needs to account for various content requirements, 

e.g., having a balanced mix of items measuring different personality traits. Such content 

requirements are realised by placing content rules on the automated item selection 

process7. More specifically, content rules prioritise content considerations over 

information maximisation by omitting potentially more informative FC blocks that do 

not conform to the content requirements. Content rules are therefore restrictive 

constraints that reduce the number of feasible FC blocks available for selection and thus 

the computational intensity of the item selection process. 

 Because assessment programs have different goals and requirements, content 

rules are often situation-dependent. Nevertheless, this section outlines some generic 

content rules that are applicable to many FC personality assessments. Note that the 

overlay of multiple content rules can lead to an overly restrictive content plan, thereby 

greatly reducing the freedom and effectiveness of adaptive assessment tailoring. It is 

therefore important to consider the collective effect of content rules on assessment 

assembly. 

Social desirability balancing 

 An important appeal of the FC response format is its enhanced resistance against 

faking – a property that relies on the items within the same FC block to be similarly 

desirable (Krug, 1958). Social desirability balancing of items within the same block is 

thus an important content rule in many FC personality assessments. More specifically, 

 

7 While content rules are sometimes considered a component of the item selectors, for the sake of clarity 

of discussion, I make a distinction between the mathematical criterion to be optimised (i.e., the item 

selector) and the constraints placed around this optimisation process (i.e., the content rules). 
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the range of social desirability values of items within the same FC block is constrained 

to be within a certain threshold during the automated test assembly process. The social 

desirability values of items are often derived through some rating exercise, preferably 

structured in a way to reflect the context of the assessment program (e.g., Converse et 

al., 2010; Jackson et al., 2000; Krug, 1958). In lieu of such data, the items’ mean utility 

parameters may be used as an approximation, albeit with reduced effectiveness in 

preventing faking (e.g., Heggestad, Morrison, Reeve, & McCloy, 2006). 

Scale planning 

 For content validity and face validity reasons, multidimensional personality 

assessments often have balanced proportions of items measuring different traits (e.g., 

Ashton & Lee, 2009; Costa & McCrae, 1992). This can be addressed by scale planning, 

i.e., first determining which scales to measure in the next FC block, then choosing items 

for the targeted scales to construct the block. 

There are many ways to implement scale planning in a CAT. A static scale plan 

satisfying all requirements can be pre-constructed and enforced during assessment 

assembly (e.g., Stark et al., 2012). Alternatively, dynamic scale planning can take into 

account the information collected for each scale as a CAT session progresses, in order 

to prioritise underperforming scale combinations in subsequent FC blocks. 

Underperforming scale combinations can be identified using information-based 

methods – criteria that are similar to those employed by item selectors, but adapted to 

instead model and summarise scale-level information. For example, Equations 39 and 

40 show how the WCI and A-optimality item selection criteria (Equations D3 and D6) 

can be modified to instead choose an underperforming scale combination to focus on, 

with 𝑠 = 𝑣 or 𝑠 ≠ 𝑣 depending on whether a unidimensional or multidimensional pair is 
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desired. Finally, it is also possible to adopt a hybrid approach where a mixture of static 

and dynamic scale planning techniques are used in a CAT. 

{𝑠, 𝑣} = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑠,𝑣} {
1

𝑤𝑠
[𝐶𝐼{𝑖1,𝑘1}

𝜶𝑠 (�̂�𝑟−1) + ⋯+ 𝐶𝐼{𝑖𝑟−1,𝑘𝑟−1}
𝜶𝑠 (�̂�𝑟−1)]

+
1

𝑤𝑣
[𝐶𝐼{𝑖1,𝑘1}

𝜶𝑣 (�̂�𝑟−1) + ⋯+ 𝐶𝐼{𝑖𝑟−1,𝑘𝑟−1}
𝜶𝑣 (�̂�𝑟−1)]} 

(39) 

{𝑠, 𝑣} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑠,𝑣} {[(𝑭
𝑟−1(�̂�𝑟−1))

−1
]
𝑠,𝑠
+ [(𝑭𝑟−1(�̂�𝑟−1))

−1
]
𝑣,𝑣
} (40) 

Stopping Rules 

In a CAT, the stopping rule determines when to stop asking further questions 

and terminate the assessment session. The simplest stopping rule is one based on 

assessment length, leading to a fixed length CAT with a uniform assessment experience 

where all respondents see the exact same number of questions. More advanced stopping 

rules are based on measurement status and terminate the assessment session as soon as 

the collected responses have provided a level of measurement accuracy that is adequate 

for the intended use of the assessment scores, leading to a variable length CAT with 

shorter assessment sessions for some. Stopping rules based on measurement status may 

be placed on the maximum SEM across all traits (see Equations 20 and 21), the 

maximum total error variance across all traits (see A-optimality, Equation D6), the 

maximum volume of the confidence ellipsoid of the trait estimates (see D-optimality, 

Equation D9), or other similar extensions of the methods underlying the item selectors. 

Moreover, in order to prevent an assessment session from getting too long, the stopping 

rule for a variable length CAT still tends to incorporate an absolute maximum limit on 

the number of questions asked. The choice and formulation of the stopping rule for a 

CAT should be determined considering the practical requirements, constraints and 

priorities of the assessment program in question. 
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Comparing Trait Estimators for FC Assessments (Study 2) 

Given the real-life impact of assessment results on human-related decisions and 

outcomes, it is important to estimate person scores accurately. While current research 

findings on trait estimator performance are highly relevant, the effectiveness of ML, 

MAP, EAP and especially WL has yet to be explicitly compared for TIRT-based FC 

personality assessments, which have several key differences compared to typical 

cognitive assessments that have been the focus of most trait estimator research to date. 

First, FC personality assessments tend to measure a larger number of traits, often 

using an inseparable multidimensional FC design where no single attribute can be 

estimated without estimating the whole model. Such a large number of scales and the 

accompanying multidimensional structure may have effects on trait estimation that are 

rarely seen in cognitive tests with much simpler scale structures. 

Second, while items in cognitive tests always have positive loadings onto the 

latent ability dimensions, this is not the case in personality assessments – items 

indicating the opposite characteristics of an intended trait (e.g., introversion rather than 

extraversion) will have negative item loadings. In fact, in the case of multidimensional 

FC assessments in particular, it has been shown that the presence of counter-indicative 

items can significantly improve the accuracy of trait estimation (Brown & Maydeu-

Olivares, 2011). The relative performance of trait estimators can thus be very different 

when negatively-loading items are involved. 

Finally, while local independence can be engineered when developing items for 

cognitive tests, the multidimensional FC format can lead to local dependencies by 

design. When a FC block contains three or more items, the ranking responses are 

decomposed into pairwise comparisons, and structured local dependencies occur 

between pairs involving the same items. However, trait estimation for multidimensional 
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FC assessments tends to ignore this local independence violation, which may affect the 

accuracy of the various trait estimators to different degrees. 

The presence of these special features means that current results and conclusions 

about the effectiveness of different trait estimators as established in cognitive 

assessments might not generalise to multidimensional FC personality assessments. A 

simulation study was conducted to address this knowledge gap, incorporating a variety 

of assessment designs or features that have been proven consequential for trait 

estimation (scale relationship, item bank composition, block size, test length) or are 

important for content reasons (scale plan, social desirability balancing). 

Method 

Simulation design 

A simulation study was conducted to examine the stability and accuracy of the 

ML, WL, MAP and EAP estimators in FC assessments. This study examined FC 

assessments measuring four scales for two opposing reasons. On one hand, it would be 

desirable to investigate assessments with many scales, in order to reflect the realistic 

structures of multidimensional FC personality assessments. On the other hand, in order 

to include the EAP estimator in this study, it was computationally challenging to 

include five or more scales. This study thus chose to focus on FC assessments 

measuring four traits, labelled 𝑠1, 𝑠2, 𝑠3 and 𝑠4. In addition to varying the trait 

estimators, a number of assessment design factors considered to be important for FC 

assessments were also simulated. 

Scale relationship (3 levels) 

Correlations between scales had been shown to have an impact on model 

convergence and identification of the latent trait metrics under the TIRT model (Brown 
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& Maydeu-Olivares, 2011). In order to represent the different types of psychological 

constructs that may be measured by a multidimensional FC assessment, three levels of 

scale relationship were simulated (Table 9). Then, three multivariate normal samples 

with mean 0 and variance 1 across all scales were simulated, with correlation matrices 

as described. In order to capture the performance of trait estimators at extreme true 

scores, large samples of 10,000 simulees were created for each scale relationship level. 

Table 9. Scale relationship levels 

Level Description 

Unrelated All scale correlations are zero, simulated by a 4×4 correlation matrix 

with all off-diagonal entries set to 0. 

Positive All scale correlations are positive, simulated by a 4×4 correlation 

matrix with all off-diagonal entries set to 0.5. 

Mixed Scale correlations could be positive or negative, simulated by a 4×4 

correlation matrix with entries the same as those in the positive 

condition, but reversing signs of the correlations associated with 

scales 𝑠2 and 𝑠4. 

 

Item bank composition (2 levels) 

The presence of negatively-loading items had been shown to significantly 

improve the identification of the latent trait metrics in FC assessments (Brown & 

Maydeu-Olivares, 2011). In order to study trait estimation with different item bank 

compositions, two levels of positive item proportions were simulated (Table 10). The 

100% positive item bank was simulated with item mean utility randomly sampled from 

Uniform [−3, 3], item factor loadings randomly sampled from Uniform [0.5, 1.5], and 

item unique variances randomly sampled from Uniform [0.5, 2.0]. Parameters for a total 

of 240 items (four scales with 60 items each) were simulated using these distributions. 

Item parameters for the 75% positive item bank were simulated by first simulating 

another 100% positive item bank, and then reversing the item loading directions with a 
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25% chance (as a result, the negatively-loading items do not necessarily distribute 

evenly across scales). The simulated item parameters are shown in Appendix E. 

Table 10. Item bank composition levels 

Level Description 

100% positive All items had positive loadings. 

75% positive 75% of items had positive loadings and 25% of items had 

negative loadings. 

 

Then, the two simulated item banks were respectively assembled into FC 

assessments. The FC blocks were constrained to be strictly multidimensional (i.e., no 

two items within the same block would be measuring the same scale), and each block 

would contain at most one negatively-loading item. These content rules reflected 

common practices in FC personality assessments. And apart from the other content rules 

outlined in this study design, the assembly of items into FC blocks was completely 

random (i.e., with no consideration of information optimisation). 

Block size (2 levels) 

Table 11. Block size levels 

Level Description 

Pairs Each block consisted of two items, leading to one pairwise comparison 

and no local dependencies. 

Triplets Each block consisted of three items requiring a complete ranking 

response, leading to three pairwise comparisons with three correlated 

errors among them. 

 

A multidimensional FC block involving more than two items results in multiple 

pairwise comparisons with correlated uniquenesses, and a simplifying assumption of 

local independence is often made while estimating person scores (Brown & Maydeu-
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Olivares, 2011). In order to explore trait estimation in situations with and without the 

violation of local independence assumption, two block size levels were simulated 

(Table 11). 

Scale plan (2 levels) 

In a FC CAT, one has the option of pre-defining the scales to be measured by 

each block, or leaving that decision to the item selector. In order to examine whether a 

balanced but fixed scale plan could have an impact on trait estimator performance, two 

levels of scale plan were simulated (Table 12). 

Table 12. Scale plan levels 

Level Description 

Fixed Balanced scale plans were derived by creating all unique 

combinations of four scales of the required size (i.e., six possible 

combinations for pairs, four possible combinations for triplets), 

ordering them manually so that the different scales were evenly 

positioned, and then cycling through the combinations until the 

desired assessment length was reached. Items were then assembled 

into FC blocks according to the fixed scale plan.  

Dynamic No scale plan was pre-defined. In a CAT, this would allow the item 

selector to choose items from any scale, thus prioritising information 

gain over content balancing. In this study, however, there was no 

consideration of information optimisation during assessment 

assembly, so this dynamic scale plan was completely random. 

 

Social desirability balancing criteria (2 levels) 

An important content rule in FC personality assessments is the matching of item 

social desirability within the same block. Using the item mean utility parameters (which 

followed a Uniform [−3,3] distribution) as a proxy for item social desirability, two 

levels of social desirability balancing were examined (Table 13). 
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Table 13. Social desirability balancing levels 

Level Description 

Lenient Item mean utilities in the same block could differ by up to 1. 

Strict Item mean utilities in the same block could differ by up to 0.5. 

 

Test length (4 levels) 

In order to explore the amount of shrinkage of Bayesian estimators in shorter 

tests, the assessment length was varied by truncating the assembled instruments, so that 

the shorter assessments were completely nested in the longer ones (Table 14). While the 

number of items per scale was used as the basis for studying the effect of test length, in 

the case of comparing assessments with different block sizes, the number of pairwise 

comparisons collected should be align instead. For example, a triplet assessment with 

12 items per scale gives rise to 16 triplets and 48 pairwise comparisons in total, and 

therefore it should be compared to a pair assessment with 24 items per scale that also 

gives 48 pairwise comparisons in total. 

Table 14. Test length levels 

Level Description 

30 items per scale All 60 pairs / 40 triplets. 

24 items per scale The first 48 pairs / 32 triplets. 

18 items per scale The first 36 pairs / 24 triplets. 

12 items per scale The first 24 pairs / 16 triplets. 

 

Trait estimator (4 levels with sub-levels) 

Simulated responses for all conditions were scored using the ML, WL, MAP and 

EAP trait estimators. The Bayesian scorings were conducted using multivariate normal 
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priors that matched the generating distributions of the simulated samples. In addition, to 

include the situation where it would be desirable to use a theoretically uncontroversial 

prior (e.g., McDonald, 1999), the Bayesian scorings were also repeated using the 

identity matrix as prior (Table 15). The ML, WL, and MAP estimations were conducted 

in R (R Core Team, 2015), using the multiroot function in the rootSolve library 

(Soetaert, 2009; Soetaert & Herman, 2009) to solve their respective score functions. The 

EAP scoring was conducted using nine quadrature points per dimension in Mplus 

(Muthén & Muthén, 1998-2012) by setting ESTIMATOR=ML, LINK=PROBIT and 

INTEGRATION=GAUSSHERMITE(9) under the ANALYSIS command. 

Table 15. Prior options for Bayesian trait estimators 

Prior Description 

Matching 

prior 

The true scale correlations for sample generation matched the prior 

scale correlations in Bayesian scoring, mimicking practical situations 

where the scale correlations had been established robustly and could 

be used reliably to improve scoring accuracy. 

Identity 

prior 

The identity matrix was used as the prior scale correlations in 

Bayesian scoring, mimicking practical situations where the scale 

correlations were yet to be established, or when it was not desirable 

to take them into account in the calculation of assessment scores. 

 

Analysis 

Crossing the different levels of scale relationship and trait estimator gave rise to 

16 conditions in total – three conditions each for ML and WL (corresponding to the 

three scale relationship levels), and five conditions each for MAP and EAP 

(corresponding to the three scale relationship levels combined with the choice of 

matching or identity priors, see Table 16). Crossing all seven design factors thus gave 

rise to a total of 16 (scale relationship and trait estimator) × 2 (item bank composition) × 
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2 (block size) × 2 (scale plan) × 2 (social desirability balancing criteria) × 4 (test length) 

= 1024 conditions. 

Table 16. Crossing different levels of scale relationship and trait estimator 

  Scale correlations for Bayesian scoring 

  Unrelated Positive Mixed 

Scale 

correlations 

for sample 

generation 

Unrelated Identity/Matching - - 

Positive Identity Matching - 

Mixed Identity - Matching 

 

Following the simulation and scoring of all conditions, estimated trait scores 

were analysed to compare the performance of different trait estimators through four 

statistics: 

• Scoring failure rate: the proportion of cases where the trait estimator failed 

to produce a valid score for whatever reason (e.g., ML estimates can be 

unbounded); 

• Score outlier rate8: the proportion of cases where the estimated scores were 

outside [−5, 5] (e.g., ML estimates can have large biases); 

• Rank ordering: the correlations between true and estimated scores for each 

scale; 

• Absolute differences: root mean square errors (RMSE) of the differences 

between true and estimated scores. 

Note that the cases with outlier scores on any scale were then excluded from the 

analysis of rank ordering and absolute differences, as their inclusion may jeopardise 

 

8 In operational assessments, extreme outliers would likely be capped. 
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these statistics when comparing the performance of trait estimators for typical score 

ranges. 

Results 

Scoring failure rate 

Table 17. Scoring failure (cases per 10,000) by design factors (average across 

conditions) 

Trait estimator ML WL 

Test length 

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl 

Unrelated 0.44 0 0 0 1.13 1.63 0.88 0.56 

Positive 0.06 0 0 0 2.69 1.44 1.19 0.94 

Mixed 0.69 0.13 0.13 0 0.88 0.25 0.19 0.06 

Item 

bank 

100% 0.29 0 0.04 0 1.13 0.83 0.38 0.33 

75% 0.50 0.08 0.04 0 2.00 1.38 1.13 0.71 

Block 

size 

Pairs 0.79 0.08 0.08 0 2.58 1.96 1.29 1.04 

Triplets 0 0 0 0 0.54 0.25 0.21 0 

Scale 

plan 

Fixed 0.33 0.08 0.04 0 1.58 1.04 0.75 0.46 

Dynamic 0.46 0 0.04 0 1.54 1.17 0.75 0.58 

Social 

desire 

Lenient 0.21 0 0.04 0 1.50 0.88 1.00 0.67 

Strict 0.58 0.08 0.04 0 1.63 1.33 0.50 0.38 

 

The first comparison concerned the proportion of cases where the trait estimator 

failed to return a score. The MAP and EAP estimators successfully produced scores for 

all cases at all test lengths regardless of the prior chosen. The ML estimator also 

converged for the majority of cases, with a small scoring failure rate of up to 0.06% for 

some conditions with shorter test lengths. The WL estimator also failed to return scores 

for up to 0.20% of cases in some conditions. It was surprising that, despite reducing bias 

compared to the ML estimator, the scoring failure rate of the WL estimator were usually 
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slightly higher (Table 17). Upon closer inspection of the scoring process, it was 

discovered that the WL estimator was failing to return a score for a different reason than 

the ML estimator – WL estimator calculations involved the inversion of the FIM, and a 

singular FIM would cause the WL estimation to fail to return a score. Unlike the case of 

cognitive assessments (Warm, 1989; Wang & Wang, 2001; Wang, 2015), the 

multidimensional FC question design might have led to an increased likelihood of 

encountering a singular FIM in one of the iterations to convergence, therefore leading to 

a small number of cases failing to receive a score using the WL estimator. As test length 

increased, scoring success of both ML and WL estimators also increased. 

Score outlier rate 

Table 18. Score outlier rate (% of cases) by design factors (average across conditions) 

Trait estimator ML WL 

Test length 

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl 

Unrelated 14.8 6.3 3.3 1.9 1.3 0.7 0.4 0.3 

Positive 10.4 3.6 1.6 0.8 1.4 0.7 0.3 0.2 

Mixed 16.3 7.1 3.6 2.2 1.9 0.9 0.6 0.4 

Item 

bank 

100% 17.0 7.5 4.0 2.4 2.6 1.3 0.8 0.5 

75% 10.7 3.9 1.7 0.9 0.4 0.2 0.1 0.1 

Block 

size 

Pairs 21.6 9.2 4.7 2.7 2.0 1.1 0.7 0.5 

Triplets 6.1 2.2 1.0 0.6 1.0 0.5 0.2 0.2 

Scale 

plan 

Fixed 13.7 5.8 3.0 1.7 1.3 0.7 0.4 0.3 

Dynamic 14.0 5.6 2.7 1.5 1.7 0.8 0.5 0.3 

Social 

desire 

Lenient 13.7 5.5 2.7 1.5 1.5 0.8 0.5 0.3 

Strict 14.0 5.9 3.0 1.7 1.5 0.7 0.4 0.3 

 

The second comparison concerned the proportion of cases with estimated scores 

exceeding the [−5, 5] range in any of the four scales. Examination of the three simulated 
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samples of 10,000 simulees each showed that most true scores were within [−4, 4], and 

only one simulee had a true score exceeding [−5, 5] in one of the four scales. Among 

the four trait estimators, only ML and WL returned outlier scores exceeding [−5, 5]. As 

expected, the WL estimator produced fewer outliers than the ML estimator (Table 18). 

As test length increased, score outlier rates decreased for both ML and WL estimators. 

It was notable that, assessments using pairs tended to produce larger proportions of 

outliers than assessments using triplets when the number of items per scale was the 

same, likely due to the pair format resulting in fewer pairwise comparisons than the 

triplet format with the same total number of items. However, when the total number of 

pairwise comparisons was aligned (i.e., triplets with 12 items per scale and pairs with 24 

items per scale both lead to 48 pairwise comparisons), pair conditions on average 

produced less outliers than triplet conditions, likely due to reduced information gain in 

triplets caused by local dependencies. Moreover, assessments with 100% positive items 

tended to produce larger proportions of outliers, confirming previous findings that 

negative items help the accurate estimation of trait scores (Brown & Maydeu-Olivares, 

2011). In order to prevent extreme outliers from influencing the comparison of trait 

estimators for typical score ranges, all cases with outlier scores in any scale were 

removed from subsequent analysis. 

Rank ordering 

As assessments are often used to create merit lists of candidates, it is important 

to preserve the rank ordering of individuals on the traits being measured. The third 

comparison concerned the correlations between true and estimated scores. Even after 

the removal of outliers, the ML estimator still produced the lowest score correlations 

amongst all trait estimators investigated (Tables 19 and 20). The WL estimator 

produced very similar but slightly higher correlations than the ML estimator (with 
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differences up to 0.03). MAP scoring with identity prior tended to produce somewhat 

higher (with differences ranging from −0.01 to 0.12) correlations than the WL estimator. 

However, when the scales were all positively correlated or when negative items were 

present, the differences between MAP with identity prior and WL were small (with 

differences ranging from −0.01 to 0.01). When a matching prior was used, the MAP 

estimator produced even higher correlations (up to 0.04 higher than when the identity 

prior was used). The EAP estimator produced virtually identical results to MAP (with 

differences of magnitude up to 0.001). The differences between trait estimators were 

most prominent in shorter tests, but gradually reduced as the test lengthened. Full results 

by conditions are shown in Figures 7 to 12, which confirmed the general patterns 

observed from Tables 19 and 20. 

Table 19. Score correlations by design factors (average across conditions) – ML, WL 

Trait estimator ML WL 

Test length  

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl  

Unrelated .73 .80 .84 .86 .75 .81 .84 .87 

Positive .73 .80 .84 .87 .75 .81 .85 .87 

Mixed .69 .78 .83 .85 .72 .79 .83 .86 

Item 

bank 

100% .61 .70 .76 .80 .64 .72 .77 .80 

75% .82 .88 .91 .93 .84 .89 .91 .93 

Block 

size 

Pairs .66 .75 .80 .83 .69 .76 .81 .84 

Triplets .77 .83 .87 .89 .79 .84 .87 .89 

Scale 

plan 

Fixed .73 .79 .84 .86 .75 .80 .84 .87 

Dynamic .71 .79 .83 .86 .73 .80 .84 .87 

Social 

desire 

Lenient .71 .79 .83 .86 .73 .80 .84 .86 

Strict .72 .79 .84 .87 .74 .80 .84 .87 
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Table 20. Score correlations by design factors (average across conditions) – MAP, 

EAP* 

Trait estimator MAP - Matching Prior MAP - Identity Prior 

Test length 

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl  

Unrelated .83 .87 .89 .91 .83 .87 .89 .91 

Positive .78 .83 .86 .89 .75 .80 .84 .87 

Mixed .86 .89 .91 .92 .84 .88 .90 .91 

Item 

bank 

100% .78 .82 .85 .87 .76 .81 .84 .86 

75% .87 .90 .92 .94 .85 .89 .92 .93 

Block 

size 

Pairs .80 .84 .87 .89 .77 .82 .86 .88 

Triplets .85 .89 .91 .92 .84 .88 .90 .91 

Scale 

plan 

Fixed .83 .86 .89 .90 .81 .85 .88 .90 

Dynamic .82 .86 .89 .91 .80 .85 .88 .90 

Social 

desire 

Lenient .82 .86 .89 .90 .80 .85 .88 .89 

Strict .83 .86 .89 .91 .81 .85 .88 .90 

* Results for EAP differed by no more than 0.001. 
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Figure 7. Score correlations – unrelated scales and 100% positive items 

 

 

Figure 8. Score correlations – unrelated scales and 75% positive items 
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Figure 9. Score correlations – mixed scale correlations and 100% positive items 

 

 

Figure 10. Score correlations – mixed scale correlations and 75% positive items 
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Figure 11. Score correlations – positive scale correlations and 100% positive items 

 

 

Figure 12. Score correlations – positive scale correlations and 75% positive items 
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Absolute differences 

Apart from preserving the rank ordering of candidates, of equal practical 

importance is the minimisation of estimation error, which is key to accurate score 

norming and interpretation. The last comparison looked at absolute score estimation 

accuracy through the RMSEs between true and estimated scores. The performance 

ranking of trait estimators was the same as that based on true-estimated score 

correlations, with the ML estimator producing the largest RMSEs (Tables 21 and 22). 

Table 21. RMSEs by design factors (average across conditions) – ML, WL 

Trait estimator ML WL 

Test length 

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl  

Unrelated 1.01 0.82 0.70 0.62 0.85 0.71 0.63 0.57 

Positive 1.03 0.83 0.69 0.60 0.87 0.72 0.62 0.55 

Mixed 1.07 0.86 0.72 0.64 0.92 0.75 0.65 0.58 

Item 

bank 

100% 1.29 1.06 0.90 0.80 1.14 0.95 0.82 0.74 

75% 0.78 0.61 0.51 0.44 0.63 0.51 0.44 0.39 

Block 

size 

Pairs 1.17 0.95 0.80 0.71 0.97 0.81 0.70 0.63 

Triplets 0.90 0.72 0.61 0.53 0.79 0.65 0.56 0.50 

Scale 

plan 

Fixed 1.01 0.83 0.70 0.62 0.86 0.72 0.63 0.56 

Dynamic 1.06 0.84 0.71 0.62 0.90 0.74 0.64 0.57 

Social 

desire 

Lenient 1.05 0.84 0.71 0.63 0.89 0.74 0.64 0.57 

Strict 1.03 0.82 0.70 0.61 0.87 0.72 0.63 0.56 

 

In line with its theoretical rationale, the WL estimator produced notably lower 

RMSEs than the ML estimator (with differences ranging from 0.03 to 0.20). MAP with 

identity prior produced much lower RMSEs than the WL estimator (with differences 

ranging from 0.03 to 0.50). As in the results for true-estimated score correlations, when 

negative items were present, the differences between MAP with identity prior and WL 

were comparatively smaller (with differences ranging from 0.03 to 0.10). When a 
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matching prior was used, the MAP estimator produced marginally lower RMSEs than 

when the identity prior was used (with differences up to 0.04). The EAP estimator 

produced virtually identical results to MAP (with differences of magnitude up to 0.003). 

Similar to the results for rank ordering, the differences in RMSEs between trait 

estimators were most prominent in shorter tests, but gradually reduced as the test 

lengthened. Full results by conditions are shown in Figures 13 to 18, which confirmed 

the general patterns observed from Tables 21 and 22. 

Table 22. RMSEs by design factors (average across conditions) – MAP, EAP* 

Trait estimator MAP - Matching Prior MAP - Identity Prior 

Test length 

(items per scale) 

12 18 24 30 12 18 24 30 

Scale 

correl  

Unrelated 0.55 0.49 0.45 0.42 0.55 0.49 0.45 0.42 

Positive 0.60 0.54 0.49 0.45 0.64 0.57 0.52 0.48 

Mixed 0.50 0.45 0.41 0.38 0.54 0.48 0.44 0.40 

Item 

bank 

100% 0.61 0.56 0.52 0.48 0.64 0.58 0.54 0.51 

75% 0.50 0.43 0.38 0.34 0.52 0.45 0.39 0.36 

Block 

size 

Pairs 0.59 0.53 0.48 0.45 0.62 0.56 0.51 0.47 

Triplets 0.51 0.45 0.41 0.38 0.54 0.47 0.43 0.39 

Scale 

plan 

Fixed 0.55 0.49 0.45 0.41 0.58 0.51 0.47 0.43 

Dynamic 0.56 0.49 0.45 0.41 0.58 0.51 0.47 0.43 

Social 

desire 

Lenient 0.56 0.49 0.45 0.42 0.58 0.52 0.47 0.44 

Strict 0.55 0.49 0.45 0.41 0.58 0.51 0.47 0.43 

* Results for EAP differed by no more than 0.003. 
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Figure 13. RMSEs – unrelated scales and 100% positive items 

 

 

Figure 14. RMSEs – unrelated scales and 75% positive items 
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Figure 15. RMSEs – mixed scale correlations and 100% positive items 

 

 

Figure 16. RMSEs – mixed scale correlations and 75% positive items 
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Figure 17. RMSEs – positive scale correlations and 100% positive items 

 

 

Figure 18. RMSEs – positive scale correlations and 75% positive items 
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Discussion 

This simulation study examined the performance of the ML, WL, MAP and 

EAP estimators for scoring TIRT-based FC assessments. Across all conditions and after 

excluding outliers from the ML and WL scoring results, the Bayesian estimators (i.e., 

MAP and EAP) performed on par or significantly better than the non-Bayesian 

estimators (i.e., ML and WL). The Bayesian estimators produced no scoring failures, no 

outliers, and generally resulted in higher correlations between true and estimated scores 

as well as lower RMSEs. The performance differences between Bayesian and non-

Bayesian estimators were particularly profound in shorter tests and in assessments using 

only positive items. The relative performance pattern and ranking of trait estimators 

were consistent across design conditions. The MAP and EAP estimators produced 

virtually identical results, and the choice of multivariate prior (scale correlation matrix) 

had only minor impact on the estimated scores, with results using a realistic scale 

correlation matrix slightly outperforming those using an identity matrix. 

Contrary to prior findings that showed superior performance of the WL 

estimator across a number of IRT models (Warm, 1989; Wang & Wang, 2001; Wang, 

2015), the WL estimator demonstrated notable weakness in the case of 

multidimensional FC assessments – it failed to produce scores for a proportion of 

respondents, which would be unacceptable in practice. Among the four trait estimators, 

only the WL method required inverting the FIM during its calculations, and so the WL 

estimator was unable to compute a person score when a singular FIM was encountered. 

As can be seen in Equations 24 and 25, the FIM for one pairwise comparison is always 

singular when more than two traits are being measured by the assessment, and it can 

take the summation of quite some pairwise comparisons before the total FIM finally 

becomes non-singular, as demonstrated by this simulation study. It may be possible to 
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adjust a singular FIM slightly during calculations, e.g., by using the nearPD function in 

R package lmf (Kvalnes, 2013) to make the FIM positive definite before attempting to 

invert it. Though such adjustments may compromise the scoring results in unpredictable 

ways and will add to the computational complexity of the WL estimator. Nevertheless, 

when the WL estimator successfully produced scores, as expected it outperformed the 

ML estimator in terms of estimation bias, giving notably lower proportion of outliers 

and resulted in lower RMSEs across all conditions. However, in terms of preserving the 

rank ordering of individuals, once outliers were removed, the WL and ML estimators 

performed very similarly. 

The ML estimator was outperformed by MAP and EAP in every performance 

metric. Also, although to a lesser extent than the WL estimator, the ML estimator failed 

to converge and produce scores in a very small proportion of cases, therefore still 

rendering it unacceptable to use in practice. It also produced a large proportion of 

outliers at shorter test lengths, making it very undesirable for short assessments, or for 

early stages of a FC CAT. 

Aside from the comparison of different trait estimators, results of this simulation 

study also confirmed earlier findings that using a mixture of positive and negative items 

tended to result in more accurate score estimation than using only positive items (Brown 

& Maydeu-Olivares, 2011), as demonstrated by higher correlations between true and 

estimated scores and lower RMSEs in the conditions with 75% positive items compared 

to the matching conditions with 100% positive items. Moreover, true scale correlations 

had only a small effect on trait estimation performance, with slightly worse results in 

the scenarios combining positive-only true scale correlations with a positively-only item 

bank, again echoing previous findings (Brown & Maydeu-Olivares, 2011). 
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Finally, when the number of pairwise comparisons was matched, pair 

assessments had higher score correlations and lower RMSEs than triplet assessments. 

This is because the local dependencies between the three pairwise comparisons in a 

triplet lead to less information being collected than in the case of three independent 

pairs. Therefore, smaller block sizes will perform better due to having less correlated 

errors between different pairwise comparison responses. However, collecting the same 

total number of pairwise comparisons from smaller blocks will take more items, thus 

requiring more resources during test development and longer responding times during 

assessment. But on the other hand, comparing three or more statements in FC blocks is 

more cognitively demanding than comparing one pair of statements at a time. The 

choice of block size for a FC assessment is ultimately a multi-faceted balancing art of 

maximising information gain per unit time while taking into account item properties, 

candidate backgrounds, and other settings and requirements of an assessment program. 

Limitations 

Firstly, the instruments in this study were almost randomly assembled – apart 

from the content rules (i.e., scale plan, social desirability balancing criteria, strictly 

multidimensional blocks, no more than one negative item per block), the placement of 

items into blocks were completely random. There was no consideration of optimal 

assessment design according to item characteristics. Operational assessments would 

almost certainly be designed better, with FC blocks carefully assembled and balanced in 

order to optimise information gain. As a result of this limitation, the assessments in the 

current study were much less efficient in score recovery than operational assessments of 

similar lengths. In other words, well-designed FC assessments would achieve higher 

true-estimated correlations as well as lower RMSEs than those seen in this study. 
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Nevertheless, the general trend of relative performance of different trait estimators as 

observed in this study would likely still hold in a more realistic assessment design. 

Secondly, the item banks used in this study were simulated and the item 

parameters followed prescribed distributions. In reality, item bank compositions could 

vary significantly from one application to the next. As seen through the effects of 

negative items in this study, item bank composition could have a notable impact on the 

performance of trait estimators. Therefore, if item parameter distributions differed 

significantly from those used in this study, additional investigation might be needed so 

as to verify the choice of trait estimator with respect to the item bank in question. 

Thirdly, this study only investigated strictly multidimensional FC block designs, 

i.e., where all pairwise comparisons consisted of items from different dimensions. 

However, FC assessments might instead adopt a mixed design involving both 

unidimensional and multidimensional comparisons. The incorporation of 

unidimensional comparisons was important for score estimation in FC assessments 

using the Multi-Unidimensional Pairwise-Preference model (MUPP; Stark, 

Chernyshenko & Drasgow, 2005). While unidimensional comparisons are not essential 

for the TIRT model, their existence could also have an effect on score estimation 

accuracy (Brown, 2016). Future studies might choose to quantify this effect on the 

different trait estimators. 

Finally, this study assumed that each item measured one and only one dimension, 

i.e., there was no within-item multidimensionality. This assumption resulted in each 

item utility having only one non-zero loading, and therefore many trait estimation 

calculations were significantly simplified compared to the more general case involving 

within-item multidimensionality. However, the use of multidimensional items within 

FC blocks is rarely practical or desirable – good items measuring multiple dimensions 
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are difficult to develop and hard to calibrate accurately. Moreover, the response process 

involving the comparison of multiple multidimensional items within a single FC block 

can be significantly more cognitively complex and even confusing, and thus possibly 

giving rise to multiple response strategies that deviate from the simple comparison of 

item utilities as described by the TIRT model. Therefore, focusing on unidimensional 

items would be sufficient for most practical applications. 

Comparing Item Selectors for FC CAT (Study 3) 

The choice of item selector can have a significant impact on the efficiency of a 

CAT. As discussed in Study 2, TIRT-based FC personality assessments have several 

key features that reduce the generalisability of existing CAT research findings to them: 

high dimensionality with inseparable multidimensional design, item loadings in positive 

and negative directions, and by-design local dependencies in FC blocks involving more 

than two items. These special features can affect item selection as well as trait 

estimation. Another simulation study was thus conducted to examine the performance 

of the various item selectors for TIRT-based FC personality assessments. 

Method 

Simulation design 

A simulation study was conducted to examine the efficiency of item selectors in 

FC CAT. Similar to Study 2, this study focused on assessments measuring four scales 

(labelled 𝑠1 to 𝑠4 respectively). Unlike Study 2, this study only explored FC assessments 

using pairs, which was the least computationally intensive and allowed the investigation 

of more conditions. Seeing the results from Study 2, the interim and final person scores 

were estimated using the MAP estimator with matching prior. A number of assessment 
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design factors considered to be important for FC CAT were also simulated. All 

simulations were conducted in R using code written specifically for this thesis. 

Item selector (6 levels) 

Six item selectors were simulated: RANDOM, WCI, A-, C-, D-, and T-

optimality. The RANDOM item selector followed the content rules imposed on all CAT 

sessions, but otherwise chose items completely at random with no consideration of 

information optimisation, i.e., it did not adapt the assessment to the individual as a 

typical CAT would. The RANDOM item selector was introduced to provide a worst-

case-scenario baseline. Indeed, CAT algorithmic research tended to adopt the 

RANDOM item selector as the baseline for comparison when illustrating the power of 

more advanced item selectors (Stark, 2011). However, in actual assessment practices, 

presenting items randomly without information considerations is rarely a realistic 

operational alternative to CAT. Therefore, as a more realistic baseline for comparison, 

the WCI item selector (equal weights across all scales) was included, representing the 

simplest (both methodologically and computationally) CAT setup. Then, A-, C- 

(targeting sum score across all scales), D- and T-optimality formed the focus of the 

investigation. An attempt was made to simulate the global information item selectors. 

However, their computational intensity turned out to be inhibitive when handling large 

numbers of pair combinations in a FC design, and therefore they were excluded from 

this simulation study. It would be desirable to re-visit these more advanced item 

selectors in the future, once computational power ceases to be a challenge. 

Scale relationship (3 levels) 

Three levels of scale relationship were simulated as per Study 2 (Table 9). Three 

multivariate normal samples with mean 0 and covariance matrices as specified were 
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simulated. In order to capture outliers but also enable the exploration of a large number 

of design conditions, a smaller sample size of 2,000 was chosen. 

Item bank composition (2 levels) 

Two levels of item bank composition were simulated as per Study 2 (Table 10). 

The assembly of items into FC assessments were determined by the item selectors while 

following content rules similar to Study 2 – blocks were strictly multidimensional and 

contain at most one negative item each.  

Scale plan (2 levels) 

Two levels of scale plan were simulated as per Study 2 (Table 12). With the 

introduction of adaptive item selectors, the dynamic scale plan represented the 

prioritisation of information gain during assessment assembly, whereas the fixed scale 

plan represented the prioritisation of content balancing considerations during 

assessment assembly. 

Social desirability balancing criteria (2 levels) 

Two levels of social desirability balancing were examined as per Study 2 (Table 

13). 

Test length (4 levels) 

Four levels of test length were simulated as per Study 2 (Table 14 but only pairs). 

CAT sessions were simulated to reach the target test length of 60 pairs – the point at 

which half of the simulated items were administered, so that the adaptive item selection 

wasn’t constrained towards the end due to small item bank sizes. Then, the CAT 

sessions were truncated to give shorter test lengths completely nested in the longer ones. 
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Analysis 

Crossing the six design factors gave rise to a total of 6 (item selector) × 3 (scale 

relationship) × 2 (item bank composition) × 2 (scale plan) × 2 (social desirability 

balancing criteria) × 4 (test length) = 576 conditions (although only 576 ÷ 4 = 144 

samples of 2,000 CAT sessions each needed simulating due to the nested test length 

design). Across all simulees in all conditions, the target assessment length of 60 pairs 

was reached successfully. In other words, the simulated item banks were deep enough 

and the content rules were not overly restrictive, so that the item selectors never failed 

to find a FC pair satisfying all content rules for the entire assessment length. Following 

the simulation, summary statistics were computed for each condition to quantify and 

compare the performance of different item selectors: 

• Rank ordering: the correlations between true and estimated scores for each 

scale; 

• Absolute differences: RMSE of the differences between true and estimated 

scores. 

In order to summarise results across conditions, and to explore the interactions 

between design factors, cross-classified multilevel regressions were employed. The 

regression models were built on the scale-level summary statistics across conditions, i.e., 

on 576 conditions × 4 scales each = 2304 records. The performance statistics of true-

estimated score correlations and RMSE were modelled as outcome variables, and the 

design factors were modelled as predictor variables. Moreover, in order to account for 

the dependencies between records (i.e., each of the 144 CAT session samples was 

generated under a unique combination of design factors, giving rise to 16 records 

corresponding to four nested test lengths with four scales each; the four scales also 

shared common settings across different CAT session samples), a cross-classified 
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multilevel structure (see Fielding & Goldstein, 2006) was incorporated, with CAT 

session samples and scales as grouping variables. Test length could also have been 

treated as a random effect in this design in order to control for the nesting structure 

within CAT session samples, but it was more useful for the purpose of this study to 

explore it as a design factor, and thus it was entered as a fixed effect. 

A step-wise approach was adopted to arrive at the final list of significant fixed 

effects for each of the two outcome variables: first the base variance components model 

was built, followed by a model with all main effect terms for the design factors, 

followed by step-wise introduction of interaction terms and only retaining the ones with 

regression coefficients significantly different from zero. The final model was then 

interpreted to generate insight into how the item selectors performed under different 

design conditions. Details of the model setup for each outcome variable are discussed 

further in the Results section. The analysis was conducted in R: the cross-classified 

multilevel models were built using the lmer function in package lme4 (Bates, Maechler, 

Bolker, & Walker, 2015), with t-tests of fixed effect regression coefficient significance 

enabled by package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017), and semi-

partial correlations computed by package r2glmm (Jaeger, 2017) using Nakagawa and 

Schielzeth’s (2013) approach. 

Results 

Descriptive statistics 

The correlations and RMSEs between true and estimated scores were computed 

for each scale in each of the 576 conditions. Their distributions across conditions for 

each of the design factors are summarised in Table 23.  
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Table 23. True-estimated score correlations and RMSEs by design factors 

Design 

factor 

Level Number of 

conditions 

Correlation RMSE 

Mean SD Mean SD 

Item 

selector 

RANDOM 384 .850 0.066 0.513 0.098 

WCI 384 .891 0.042 0.447 0.077 

A-optimality 384 .915 0.032 0.398 0.070 

C-optimality 384 .894 0.031 0.445 0.061 

D-optimality 384 .907 0.040 0.412 0.082 

T-optimality 384 .871 0.076 0.472 0.118 

Scale 

relationship 

Unrelated 768 .887 0.046 0.450 0.087 

Positive 768 .871 0.074 0.471 0.117 

Mixed 768 .905 0.031 0.423 0.065 

Item bank 100% 1152 .859 0.059 0.501 0.088 

75% 1152 .917 0.031 0.395 0.067 

Scale plan Fixed 1152 .889 0.054 0.445 0.093 

Dynamic 1152 .886 0.057 0.450 0.096 

Social 

desirability 

Lenient 1152 .890 0.056 0.442 0.097 

Strict 1152 .885 0.054 0.454 0.092 

Test length 

(items per 

scale) 

12 576 .852 0.062 0.514 0.087 

18 576 .883 0.052 0.459 0.085 

24 576 .902 0.045 0.423 0.082 

30 576 .914 0.040 0.396 0.080 

Scale 𝑠1 576 .891 0.050 0.445 0.088 

𝑠2 576 .885 0.053 0.449 0.090 

𝑠3 576 .897 0.050 0.430 0.087 

𝑠4 576 .878 0.065 0.468 0.107 

 

Amongst the six item selectors investigated, A- and D-optimality achieved the 

best results on average, with A-optimality slightly outperforming D-optimality. These 

two item selectors were closely followed by C-optimality and WCI. T-optimality did 

not perform well, and RANDOM was the least effective item selector as expected. In 
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terms of scale relationship and item bank composition, results were in line with 

previous research (Brown & Maydeu-Olivares, 2011), with mixed scale correlations and 

mixed item loading directions achieving better results. The effects of scale plan and 

social desirability balancing criteria on the results were rather small. As expected, 

longer tests achieve better results. There were some small differences between the 

results across the four conceptually arbitrary scales, likely caused by random variations 

in simulated item content across the different scales. 

Cross-classified multilevel regressions 

Cross-classified multilevel regressions were used to model the variances of 

correlations and RMSEs between true and estimated scores from the different design 

factors and their interactions. In order to normalise the distribution of true-estimated 

score correlations for regression modelling, the Fisher-Z transformation was applied 

(Fisher, 1915). The transformed correlations displayed much less skewness and showed 

greater proximity to the normal distribution (Figures 19 and 20). The distribution of 

RMSEs already showed good proximity to the normal distribution (Figure 21), so no 

transformation was applied. 

 

 

Figure 19. True-estimated correlations before Fisher-Z transformation 
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Figure 20. True-estimated correlations after Fisher-Z transformation 

 

 

Figure 21. RMSEs with no transformation 

 

The design factors’ main effects and interactions were then explored in cross-

classified multilevel models. The design factors were dummy coded into binary 

indicators for each level, with reference categories chosen as detailed in Table 24. The 

only exception was test length, which was treated as a continuous numerical variable. 

Test length displayed a largely linear relationship with the transformed true-estimated 
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score correlations (Figure 22) and RMSEs (Figure 23), and the square term was also 

included in the model to account for the small curvilinearity. As for the categorical 

factors, due to their full systematic crossing, the correlations between binary indicators 

for any two levels within the same design factor were a constant fully determined by the 

number of levels in that factor, with fewer levels leading to stronger negative 

correlations between binary indicators (Table 24). In order to test for potential 

multicollinearity, variance inflation factors (VIF; see Hair, Black, Babin, & Anderson, 

2014) were computed for the binary indicators. Again, due to the systematic crossing of 

factors, the binary indicators for all levels within the same design factor had the same 

VIF values (Table 24). All VIF figures were low, indicating low likelihood for 

multicollinearity. 

Table 24. Dummy-coding of design factors 

Design factor Reference 

category 

Number of 

levels 

Binary indicator 

correlations within 

design factor 

VIF 

Item selector RANDOM 6 −.2 1.67 

Scale relationship Unrelated 3 −.5 1.33 

Item bank 100% positive 2 N/A 1.00 

Scale plan Fixed 2 N/A 1.00 

Social desirability Lenient 2 N/A 1.00 

Test length N/A 4 N/A 1.00 
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Figure 22. Transformed score correlations by test length (number of pairs) 

 

 

Figure 23. RMSEs by test length (number of pairs) 

 

Following the preparation of outcome and predictor variables, cross-classified 

multilevel models were tested in a stepwise fashion for each of the two outcomes. As 
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RMSEs correlated with Fisher-Z transformed true-estimated correlations to −.994, it 

was not surprising that their model results were very similar (Tables 25 and 26). 

The baseline variance components models showed that scales accounted for 

merely 2.0% and 2.6% of the variance in true-estimated score correlations and RMSEs 

respectively, representing the amount of random variations caused by different 

simulated item banks drawn from the same parameter distributions. Fixed effects were 

then added into the models. Not surprisingly, the models with only main effect terms 

found significant (p < .05) regression coefficients for predicting both outcomes from 

most of the design factors: test length, item selector, scale relationship, and item bank 

composition. Social desirability balancing criteria was merely marginally significant (p 

= .07) for predicting true-estimated score correlations and not significant (p = .11) for 

predicting RMSEs, while scale plan had no notable impact on either outcome. The large 

and varied simulated item banks likely provided sufficient content depth to counter the 

constraints from fixed scale plan and social desirability balancing. The effects of such 

content rules would likely become more apparent if the item banks were much smaller 

or the items had very similar parameters (i.e., effectively having a limited variety of 

items to choose from). 

Then, interaction terms were added into the models. The regression coefficient 

for a binary level indicator within a categorical design factor could be interpreted as the 

mean difference in the outcome variable when comparing that particular level against 

the reference category (see Table 24). The regression coefficient for the test length main 

effect term could be interpreted as the slope when predicting the outcome variable using 

test length. And the regression coefficient for the interaction term between a design 

factor and test length captured the change in this slope caused by the design factor. 

When modelling Fisher-Z transformed true-estimated score correlations, if a design 
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factor was more efficient at the early stages of a test, it would increase score 

correlations at shorter test lengths more so than at longer test lengths, thereby reducing 

the slope for the test length term and resulting in a negative regression coefficient for 

the interaction term. Likewise, if the design factor was more effective at later stages of a 

test, score correlations would be boosted at longer test lengths more so than at shorter 

test lengths, leading to a steeper slope and a positive regression coefficient for the 

interaction term. When modelling RMSEs, the interaction terms could be interpreted in 

a similar way, but with reversed signs. Interaction terms between binary indicators were 

simpler to interpret. If two design factors worked well together, true-estimated 

correlations would be boosted (RMSEs would be reduced), and the interaction effect 

would be positive for predicting Fisher-Z transformed true-estimated score correlations 

(negative for predicting RMSEs). Likewise, if two design factors worked against each 

other, the coefficient for the interaction term would be negative for predicting true-

estimated score correlations (positive for predicting RMSEs). 

All possible two-way interactions between different design factors were 

explored one by one in the order shown in Tables 25 and 26. Interaction terms between 

all levels of two design factors were entered simultaneously at first, and the whole set 

was retained in the model if at least one of the levels had a regression coefficient that 

was at least marginally significant (p < .10), while the whole set was dropped if all 

interaction terms were insignificant (p ≥ .10). Then, after exploring through all possible 

interactions, insignificant interactions for specific levels of design factors were removed 

until all remaining regression coefficients were at least marginally significant. The final 

models for the two outcome variables are presented in Tables 25 and 26. 
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Table 25. Cross-classified regression model with Fisher-Z-transformed true-estimated score correlations as outcome variable 

 
Baseline variance 

components only 

Main effects only Main effects and interactions 

Fixed effects B SE B SE Semi-partial 

correlations 

B SE Semi-partial 

correlations 

(Intercept) 1.462*** 0.024 0.672*** 0.035 
 

0.639*** 0.028 
 

Test length 
  

0.201*** 0.007 .057 0.204*** 0.007 .105 

Test length2 
  

−0.015*** 0.001 .016 − 0.001 .034 

WCI 
  

0.158*** 0.029 .134 0.247*** 0.019 .070 

A-optimality 
  

0.288*** 0.029 .339 0.336*** 0.019 .122 

C-optimality 
  

0.158*** 0.029 .134 0.333*** 0.032 .100 

D-optimality 
  

0.252*** 0.029 .282 0.271*** 0.023 .079 

T-optimality 
  

0.107*** 0.029 .066 0.156*** 0.025 .027 

Scale correlation mixed 
  

0.071*** 0.02 .059 0.185*** 0.018 .070 

Scale correlation positive 
  

−0.042* 0.02 .021 − 0.019 .019 

Negative items 
  

0.272*** 0.017 .578 0.208*** 0.019 .111 

Dynamic scale plan 
  

−0.011 0.017 .002 − 0.01 .000 

Strict social desirability 
  

−0.030^ 0.017 .016 − 0.009 .035 
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Baseline variance 

components only 

Main effects only Main effects and interactions 

Fixed effects B SE B SE Semi-partial 

correlations 

B SE Semi-partial 

correlations 

Test length × Scale correlation mixed 
     

− 0.002 .001 

Test length × Scale correlation positive 
     

0.004^ 0.002 .001 

Test length × Negative items 
     

0.026*** 0.002 .032 

Scale correlation mixed × Negative items 
     

− 0.023 .173 

Scale correlation positive × Negative items 
     

0.094*** 0.023 .055 

Test length × WCI 
     

− 0.003 .011 

Test length × A-optimality 
     

− 0.003 .003 

Test length × C-optimality 
     

− 0.003 .004 

Test length × D-optimality 
     

− 0.003 .004 

Test length × T-optimality 
     

− 0.003 .009 

C-optimality × Scale correlation mixed 
     

−^ 0.03 .012 

C-optimality × Scale correlation positive 
     

0.058^ 0.031 .012 

T-optimality × Scale correlation positive 
     

− 0.027 .051 

C-optimality × Negative items 
     

− 0.026 .158 

D-optimality × Negative items 
     

0.065* 0.026 .020 

T-optimality × Negative items 
     

0.142*** 0.026 .091 

C-optimality × Dynamic scale plan 
     

−^ 0.025 .013 
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Baseline variance 

components only 

Main effects only Main effects and interactions 

Random effects Variance 
 

Variance 
  

Variance 
  

CAT session sample  0.0384 
 

0.0099 
  

0.0029 
  

Scale 0.0011 
 

0.0011 
  

0.0011 
  

Residual 0.0155 
 

0.0025 
  

0.0022 
  

Significance codes: < .001 ‘***’; .001-.01 ‘**’; .01-.05 ‘*’; .05-.1 ‘^’. 

Test length was scaled to 1 = 6 items per scale.  
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Table 26. Cross-classified regression model with RMSEs as outcome variable 

 
Baseline variance 

components only 

Main effects only Main effects and interactions 

Fixed effects B SE B SE Semi-partial 

correlations 

B SE Semi-partial 

correlations 

(Intercept) 0.448*** 0.010 0.774*** 0.015 
 

0.798*** 0.012 
 

Test length 
  

−0.088*** 0.003 .059 −0.096*** 0.003 .125 

Test length2 
  

0.007*** 0.000 .020 0.007*** 0.000 .042 

WCI 
  

−0.066*** 0.012 .128 −0.095*** 0.009 .055 

A-optimality 
  

−0.115*** 0.012 .309 −0.139*** 0.009 .111 

C-optimality 
  

−0.069*** 0.012 .136 −0.137*** 0.013 .093 

D-optimality 
  

−0.101*** 0.012 .254 −0.126*** 0.009 .093 

T-optimality 
  

−0.041** 0.012 .053 −0.056*** 0.010 .019 

Scale correlation mixed 
  

−0.027** 0.009 .046 −0.077*** 0.008 .066 

Scale correlation positive 
  

0.021* 0.009 .028 0.091*** 0.010 .082 

Negative items 
  

−0.106*** 0.007 .530 −0.106*** 0.008 .154 

Dynamic scale plan 
  

0.005 0.007 .002 0.002 0.004 .001 

Strict social desirability 
  

0.012 0.007 .014 0.012** 0.004 .029 
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Baseline variance 

components only 

Main effects only Main effects and interactions 

Fixed effects B SE B SE Semi-partial 

correlations 

B SE Semi-partial 

correlations 

Test length × Scale correlation mixed 
     

0.003** 0.001 .001 

Test length × Scale correlation positive 
     

−0.003** 0.001 .001 

Test length × Negative items 
     

−0.004*** 0.001 .004 

Scale correlation mixed × Negative items 
     

0.073*** 0.010 .162 

Scale correlation positive × Negative items 
     

−0.044*** 0.010 .065 

Test length × WCI 
     

0.014*** 0.001 .016 

Test length × A-optimality 
     

0.012*** 0.001 .013 

Test length × C-optimality 
     

0.009*** 0.001 .007 

Test length × D-optimality 
     

0.012*** 0.001 .012 

Test length × T-optimality 
     

0.013*** 0.001 .014 

C-optimality × Scale correlation mixed 
     

0.026* 0.013 .014 

WCI × Scale correlation positive 
     

−0.057*** 0.012 .066 

A-optimality × Scale correlation positive 
     

−0.057*** 0.012 .065 

C-optimality × Scale correlation positive 
     

−0.068*** 0.014 .072 

D-optimality × Scale correlation positive 
     

−0.048*** 0.012 .047 

C-optimality × Negative items 
     

0.082*** 0.011 .164 

T-optimality × Negative items 
     

−0.059*** 0.011 .090 

C-optimality × Dynamic scale plan 
     

0.019^ 0.010 .011 
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Baseline variance 

components only 

Main effects only Main effects and interactions 

Random effects Variance 
 

Variance 
  

Variance 
  

CAT Session Sample  0.0063 
 

0.0018 
  

0.0005 
  

Scale 0.0002 
 

0.0002 
  

0.0002 
  

Residual 0.0025 
 

0.0004 
  

0.0004 
  

Significance codes: <.001 ‘***’; .001-.01 ‘**’; .01-.05 ‘*’; .05-.1 ‘^’. 

Test length was scaled to 1 = 6 items per scale. 
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The main effect terms were interpreted first. The test length variable was scaled 

to multiples of six items per scale (equivalent to 12 pairs), so that the different levels of 

the test length variable differed by one unit, and the square test length term wouldn’t 

become too large for modelling. As expected, test length had a significant effect on 

score correlations (B = 0.204, p < .001) as well as RMSEs (B = −0.096, p < .001). The 

square terms of test length were also significant for both outcomes but had opposite 

signs to the main terms, indicating that the beneficial effect of increasing test length 

gradually diminished as the test converged towards the asymptote of perfect score 

recovery. With regards to scale relationship, it was found that having mixed scale 

correlations improved true-estimated score correlations (B = 0.185, p < .001) and 

reduced RMSEs (B = −0.077, p < .001) compared to when the scales were uncorrelated, 

which was in turn better than when all scales correlated positively (B = −0.095, p < .001 

for score correlations; B = 0.091, p < .001 for RMSEs). Similarly, having some 

proportions of negatively-loading items also benefitted score recovery compared to 

when all items were in the positive direction (B = 0.208, p < .001 for score correlations; 

B = −0.106, p < .001 for RMSEs). These findings with regards to scale correlations and 

item loading directions were in line with previous findings (Brown & Maydeu-Olivares, 

2011). It was also found that, after interaction terms were added, applying stricter social 

desirability balancing significantly reduced true-estimated score correlations (B = 

−0.030, p = .002) and increased RMSEs (B = 0.012, p = .003), which was not surprising 

because content rules reduce the number and variety of available FC blocks during the 

adaptive test construction process. Whether a scale plan was imposed, however, did not 

lead to any significant change in true-estimated score correlations or RMSEs. In terms 

of the effect of item selectors, the best methods for the baseline condition (i.e., unrelated 

scales, 100% positive item bank, fixed scale plan and lenient social desirability 

balancing) were A-optimality (B = 0.336, p < .001 for score correlations; B = −0.139, p 
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< .001 for RMSEs) and C-optimality (B = 0.333, p < .001 for score correlations; B = 

−0.137, p < .001 for RMSEs), followed by D-optimality (B = 0.271, p < .001 for score 

correlations; B = −0.126, p < .001 for RMSEs) and WCI (B = 0.247, p < .001 for score 

correlations; B = −0.095, p < .001 for RMSEs), while T-optimality was the worst 

method (B = 0.156, p < .001 for score correlations; B = −0.056, p < .001 for RMSEs) 

but still did significantly better than RANDOM as expected. 

The interaction terms developed a more comprehensive picture of how the 

design factors might complement or work against each other. Interactions with test 

length were examined first. It was found that, especially for the earlier stages of an 

adaptive test, it was more beneficial to have mixed scale correlations than unrelated or 

positive scale relationships, or to apply a proper item selector instead of using 

RANDOM item selection. On the other hand, it was interesting to discover that, 

compared to when all items were positively-loading, the presence of negatively-loading 

items benefitted later stages of an adaptive test more so than the earlier stages. In TIRT 

score estimation, the comparison of items loading in the same direction contributed 

mainly to quantifying the differences between underlying scales, whereas the 

comparison of items loading in opposite directions contributed mainly to quantifying 

the sums of underlying scales (Brown & Maydeu-Olivares, 2011). When these two 

types of information were combined, the estimation of the true standings of scales were 

greatly improved, as demonstrated by the main effect term for item bank composition in 

the model. Thus, the phenomenon of negatively-loading items being even more 

effective at later stages of a CAT might have reflected the power of this second type of 

information in score estimation. In other words, it was beneficial to have negatively-

loading items in general, and the benefit became more important at longer test lengths, 

because the second type of information desired by TIRT score estimation could not be 

effectively increased by adding more blocks where all items were positively-loading. 
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Nevertheless, while many interaction terms with test length were significant, their 

effects were all relatively small compared to the main effect terms, making them 

practically negligible especially for short tests. 

Interactions between scale relationship and item bank composition were 

examined next. Brown and Maydeu-Olivares (2011) suggested that the presence of 

negative scale correlations worked in a similar way as having negatively-loading items 

in helping score recovery. So not surprisingly, their interaction terms were significant (p 

< .001). In order to study their combined effects, it was useful to combine the 

unstandardized regression coefficients of the main and interaction terms together (Table 

27). Results showed that, while it was beneficial to have mixed scale correlations or 

negatively-loading items, their benefits didn’t stack. In fact, the effect of scale 

relationship was only apparent when the item bank was 100% positive. When the item 

bank was 75% positive, scale relationship had very small influence on score recovery. 

Table 27. Combined unstandardized regression coefficients of scale relationship and 

item bank composition 

Model Score correlations RMSEs 

Item bank 

Scale relationship 

100% 

positive 

75% 

positive 

100% 

positive 

75% 

positive 

Unrelated 0 0.208 0 −0.106 

Mixed 0.185 0.215 −0.077 −0.109 

Positive −0.095 0.207 0.091 −0.059 

 

The models for the two outcome measures, however, diverged in the interactions 

between item selectors and item bank composition. When modelling score correlations, 

D-optimality (B = 0.065, p = .015) and T-optimality (B = 0.142, p < .001) were found to 

be more effective when negatively-loading items were present, but C-optimality (B = 

−0.194, p < .001) was a lot less effective when the item bank contained negatively-
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loading items. When modelling RMSEs, no significant interaction was found with D-

optimality, while T-optimality (B = −0.059, p < .001) and C-optimality (B = 0.082, p 

< .001) displayed similar preferences with regards to negatively-loading items as in the 

model for score correlations. To sum up: 1) C-optimality was more effective for an item 

bank where all items were positively-loading; 2) D-optimality and T-optimality were 

more effective when the item bank contained negatively-loading items; 3) WCI and A-

Optimality displayed no interactions with item bank composition. 

The interactions between item selectors and scale relationship demonstrated the 

greatest divergence between models. When modelling score correlations, only two item 

selectors had significant interaction terms: T-optimality was found to be less effective 

when all scale correlated positively (B = −0.107, p < .001), while C-optimality was 

marginally more effective for positively correlated scales (B = 0.058, p = .063) and 

marginally less effective for scales with mixed correlations (B = −0.057, p = .064). 

When modelling RMSEs, however, all but T-optimality had significant interaction 

terms: C-optimality was less effective for scales with mixed correlations (B = 0.026, p 

= .042), while WCI (B = −0.057, p < .001), A-optimality (B = −0.057, p < .001), C-

optimality (B = −0.068, p < .001) and D-optimality (B = −0.048, p < .001) all worked 

more effectively for positively correlated scales. This finding was very interesting, and 

could be distilled down to two main observations: 1) regardless of outcome, C-

optimality preferred having positively correlated scales over unrelated scales, and 

preferred unrelated scales over scales with mixed correlations; 2) for WCI, A-, D- and 

T-optimality, whether having positively correlated scales was beneficial depended on 

the outcome measure – they could reduce the effectiveness of T-optimality in estimating 

the rank ordering of people, but they could also enhance the effectiveness of WCI, A-, 

C- or D-optimality in reducing RMSEs. 
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Table 28. Combined unstandardized regression coefficients of scale relationship, item 

bank composition, and item selector for predicting true-estimated score correlations 

Scale 

correlation 

Positive 

items 

Item Selector 

RAN WCI A-opti C-opti D-opti T-opti 

Unrelated 100% 0.000 0.247 0.336 0.333 0.271 0.156 

Unrelated 75% 0.208 0.455 0.544 0.347 0.544 0.506 

Mixed 100% 0.185 0.432 0.521 0.461 0.456 0.341 

Mixed 75% 0.215 0.462 0.551 0.297 0.551 0.513 

Positive 100% −0.095 0.152 0.241 0.296 0.176 −0.046 

Positive 75% 0.207 0.454 0.543 0.404 0.543 0.398 

 

Table 29. Combined unstandardized regression coefficients of scale relationship, item 

bank composition, and item selector for predicting RMSEs 

Scale 

correlation 

Positive 

items 

Item Selector 

RAN WCI A-opti C-opti D-opti T-opti 

Unrelated 100% 0.000 −0.095 −0.139 −0.137 −0.126 −0.056 

Unrelated 75% −0.106 −0.200 −0.245 −0.160 −0.290 −0.161 

Mixed 100% −0.077 −0.172 −0.216 −0.188 −0.203 −0.133 

Mixed 75% −0.109 −0.204 −0.248 −0.138 −0.294 −0.165 

Positive 100% 0.091 −0.061 −0.106 −0.114 −0.083 0.035 

Positive 75% −0.059 −0.211 −0.255 −0.181 −0.291 −0.115 

 

In order to gain a better overall understanding of the composite effects of item 

selectors, scale relationship, and item bank composition, their regression coefficients 

(both main effects and interactions) were combined and summarised for each of the two 

outcomes (Tables 28 and 29). In general, A- and D-optimality appeared to be most 

optimal. For preserving the rank ordering of people, A-optimality was the best for 

almost all settings, with D-optimality performing equally well when there were 

negatively-loading items. For reducing RMSEs, A-optimality appeared to be more 
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robust when all items were positively-loading, while D-optimality made better use of 

the presence of negatively-loading items. It was noteworthy that C-optimality with a 

unit-weighted sum target performed on par or better than A-optimality when the item 

bank was 100% positive and the scale correlations were non-negative, although this 

pattern might change when a different target was of interest. Across all conditions, WCI 

or T-optimality were consistently outperformed by some other item selectors, and 

RANDOM was the least effective as expected. 

Discussion 

This simulation study examined the performance of item selectors for TIRT-

based FC CAT. A number of notable results were uncovered. First, C-optimality 

resulted in the largest number of interactions for predicting true-estimated score 

correlations as well as RMSEs: it was more effective with positively correlated scales 

and less effective with mixed scale correlations; it was less effective when the item bank 

contained negatively-loading items; and it was less effective when there were no scale 

plans. It was interesting that the directions of interaction effects with C-optimality were 

sometimes opposite to those seen in other item selectors, making it somewhat unique 

among them. C-optimality was designed to minimise the error variance of a particular 

linear combination of scale scores, which was set to the sum of all scale scores in this 

simulation study. The results for C-optimality in this study might be specific to the 

alignment between this target linear combination and the design factors. For instance, 

the sum of positively correlated scales would be more stable than the sum of scales with 

no or mixed correlations, which likely caused the interactions between C-optimality and 

scale relationship. Likewise, the adoption of a scale plan might have resulted in more 

balanced measurement across scales, leading to a sum that was marginally more stable. 

The interaction between C-optimality and item bank composition had a strong effect in 
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the prediction of both true-estimated score correlations and RMSEs, with the presence 

of negatively-loading items greatly reducing the effectiveness of C-optimality. This 

finding was somewhat surprising, given that the comparison of items with opposite 

loading directions contributed mainly to measuring the sum of scales (Brown & 

Maydeu-Olivares, 2011), which seemed to be in line with the goal of C-optimality. 

However, C-optimality has been found to “prefers items with discrimination parameters 

that reflect the weights of importance in the composite ability” (Mulder & Van der 

Linden, 2009). In the case of this study where all scales were assigned the same weight, 

C-optimality might therefore prefer to pair up items with similar factor loadings, i.e., 

two positive items or two negative items. The introduction of negatively-loading items 

might have reduced the availability of item pairs with similar loadings than when all 

items were positively-loading, thus potentially reducing the effectiveness of C-

optimality. In order to further the understanding of C-optimality, it would be desirable 

to explore how it would function when different linear combination targets were applied. 

Second, while the RANDOM item selector was used as the non-adaptive 

baseline, the WCI item selector represented the simplest adaptive baseline for 

comparison. In other words, the differences in performance between RANDOM and 

WCI could be viewed as the incremental gain due to adaptiveness of item selection, 

while the differences between WCI and other item selectors quantified the incremental 

gain achieved by better designs of the item selectors. Results generally showed bigger 

differences between RANDOM and WCI than between WCI and other item selectors, 

representing notable benefits of CAT even with a relatively simple item selector, which 

could be further enhanced with an item selector most suited to the situation. 

Interestingly, WCI actually outperformed T-optimality most of the time (Tables 28 and 

29). In fact, T-optimality was always outperformed by A- and D-optimality (Tables 28 

and 29), so the use of T-optimality would not be recommended in general. 
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Third, when operating within the design boundaries of this simulation study, A- 

and D-optimality demonstrated the greatest success in terms of increasing true-

estimated score correlations as well as reducing RMSEs across most conditions, which 

was in line with findings from previous research (Mulder & van der Linden, 2009). For 

the recovery of rank ordering between individuals, A-optimality was more powerful, 

always matching or outperforming D-optimality. For the reduction of RMSEs, A-

optimality was superior when working with only positively-loading items, while D-

optimality was superior after negatively-loading items were introduced. In other words, 

A-optimality appeared to be an all-rounder that was minimally influenced by other 

design factors, while D-optimality was good for specific settings. Exactly which of 

them would work better would likely depend on the characteristics of the specific item 

bank and the psychological constructs being measured. 

Last but not least, the good performance of A-optimality was contrary to two 

earlier, preliminary research studies on TIRT-based FC CAT, which found it to be less 

desirable than D-optimality (Brown, 2012; Lin & Brown, 2015). These preliminary 

studies differed from the current study in three main aspects: 1) real, limited item banks 

were used, with varying item parameter distributions across scales, as opposed to large 

simulated item banks in this study with relatively similar item parameter distributions 

across scales; 2) the preliminary studies allowed an item to appear multiple times to the 

same respondent when combined with different items into different FC blocks, whereas 

the current study allowed an item to appear only once; 3) the preliminary studies were 

conducted using existing CAT software (i.e., the MAT package in R; Choi & King, 

2014), while the current study was conducted using codes written specifically for TIRT-

based FC CAT, allowing the incorporation of content rules such as scale plan and social 

desirability balancing. Given these discrepancies with earlier studies, and in order to 

further understand the interactions between item bank characteristics and item selectors, 
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this simulation study was replicated on a real item bank developed as part of this thesis 

(see Chapter 4) – the scale relationship and item bank composition would be fixed, but 

scale plan, social desirability balancing criteria and test length could be varied alongside 

item selectors. 

Limitations 

First, limited by computational power, this study only managed to explore five 

item selectors (WCI, A-, C-, D- and T-optimality) with basic settings (i.e., WCI with 

equal weights across all scales, C-optimality targeting sum across all scales). 

Regrettably, although the global information item selectors showed good potential, it 

was not computationally feasible to simulate them for a four-dimensional FC CAT with 

a pool of 240 items. Future research may choose to develop simpler approximations for 

the global information measures to enable their use in assessments with high 

dimensionality. 

 Second, limited by scope, this study only explored FC pairs. Larger blocks were 

not simulated, which might show interesting new dynamics, e.g., social desirability 

balancing may become more restrictive with more items needing to fit into the same 

block. In order to explore larger FC blocks more efficiently, future research should 

consider how the computational intensity of selecting larger blocks could be minimised. 

In the current study, 240 items led to 28,680 unique pairs, which was still manageable 

after applying content rules. However, the same item bank would result in a total of 

2,275,280 unique triplets, thus greatly increasing the computational complexity of the 

item selection process. 

Finally, the scale and item characteristics in this study were all simulated and 

can be somewhat unrealistic. However, in order to address this concern, this simulation 

study was replicated on a real item bank in Chapter 4. 
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Conclusions 

The measurement accuracy and efficiency of a CAT is highly dependent on the 

underlying automated test assembly algorithm. Optimising the design of this algorithm 

is therefore crucial. To shed light on this theoretically and computationally complex 

problem, this chapter conducted a review of key algorithmic components and 

formulated them for use in TIRT-based FC CAT. Furthermore, two extensive 

simulation studies compared the performance of trait estimators and item selectors, 

providing baseline guidance for design decisions in practice. 

In terms of trait estimators, the ML estimator is not recommended due to its 

tendency to produce outliers in shorter tests as well as its risk of non-convergence, and 

the WL estimator is not recommended due to its potential scoring failures caused by 

singular FIMs. The Bayesian estimators (MAP or EAP) are recommended as the scoring 

method for FC assessments using the TIRT model, especially when the item bank only 

contains positive items, and/or when the assessment is short (including at the beginning 

of a CAT session, where interim score estimates are based on a limited number of 

responses and are key for driving the adaptive item selection process forward). 

Moreover, an informative prior will add to the power of Bayesian score recovery, but if 

in doubt, the identity prior can be adopted without losing too much estimation accuracy. 

The MAP and EAP estimators performed very similarly across all conditions, and 

therefore the choice between them is largely dependent on available software and 

computational efficiency. As typical FC personality assessments have at least five traits, 

MAP is usually more computationally efficient. 

In terms of item selectors, A-optimality appears to be a good default choice that 

performs well across all conditions. Moreover, D-optimality may slightly outperform A-

optimality when there are negative items, while C-optimality may also have a special 
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role depending on the match between the target linear combination and the 

characteristics of the scales and items. On the other hand, WCI and T-optimality are not 

recommended. The range of global information item selectors may outperform those 

investigated, but the computational power requirement was inhibitive due to the high 

dimensionality of personality constructs and the combinatorics complexity of FC blocks. 

With quick item selection run-time being essential for minimising the wait between the 

submission of a response and the presentation of the next question, global information 

item selectors remain out of reach for delivering a seamless adaptive assessment 

experience. 
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CHAPTER 4: DEVELOPING AN ADAPTIVE FC PERSONALITY ASSESSMENT 

The motivation to refine algorithm designs for FC CAT was so that the 

measurement efficiency of FC personality assessments could be improved, leading to 

quicker and fairer people-related decisions in practice. However, the design of the FC 

CAT algorithm is only one aspect of an operational personality assessment. As an 

analogy, for a vehicle to reach its destination, it requires a powerful engine (the FC 

CAT algorithm), sufficient amount of fuel (the item bank), adequate driver steering 

controls (the computerised assessment delivery platform), and a map of the terrain (the 

psychological constructs being measured). 

In order to study FC CAT methodologies in empirical practice, the last part of 

this thesis focused on developing a simple but operational adaptive FC personality 

assessment. This chapter is structured as follows. First, a model of personality is 

described to provide a content map for item development. Second, the development of 

an item bank, including empirical trialling and analysis to establish TIRT item 

parameters, is detailed (Study 4). Third, in order to confirm the final CAT algorithm 

design to use with the new item bank, a simulation study examining item selector 

performance is reported (Studies 5 and 5b). Fourth, empirical trial results and 

participant reactions of the newly developed adaptive FC personality assessment are 

documented (Study 6). Finally, conclusions and practical recommendations are 

presented. 

The HEXACO Model of Personality 

For decades, researches have studied the structure of personality through lexicon 

research. According to Lee and Ashton (2008), “the personality lexicon captures those 

aspects of personality that are sufficiently useful in person description to have been 

encoded as adjectives by generations of speakers within a given language community”, 
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and “fundamental personality dimensions… should be expressed within the personality 

lexicon by some large set of related adjectives that convey nuances and subtle variations 

in the expression of those dimensions.” Early research led to the Five Factor Model of 

personality, also known as the Big Five model or the OCEAN model, comprising of the 

dimensions of Openness to Experience, Conscientiousness, Extraversion, Agreeableness, 

and Neuroticism (e.g., Digman & Takemoto-Chock, 1981; Goldberg, 1990; McCrae & 

John, 1992; Norman, 1963; Tupes & Christal, 1961, 1992). While the Big Five model 

had been well-established and widely-used by the 1990s, more recent lexicon research 

suggested an alternative structure. The HEXACO model of personality (Ashton et al., 

2004; Lee & Ashton, 2008) comprises of six dimensions, namely Honesty-Humility (H), 

Emotionality (E), eXtraversion (X), Agreeableness (A), Conscientiousness (C), and 

Openness to Experience (O). The notable difference with the Big Five model is the 

emergence of Honesty-Humility as a separate factor in HEXACO. Full descriptions of 

the HEXACO factors are given in Table 30 (Lee & Ashton, 2009a). 

In terms of construct validity, the HEXACO personality structure has been 

replicated in lexicon studies across multiple languages, including but not limited to: 

English (Ashton et al., 2006; Ashton, Lee, & Goldberg, 2004; Lee & Ashton, 2008), 

Dutch (Ashton et al., 2006; De Raad, 1992), French (Boies, Lee, Ashton, Pascal, Nicol, 

2001), German (Ashton, Lee, Marcus, & De Vries, 2007), Greek (Lee & Ashton, 

2009b), Hungarian (De Raad & Szirmak, 1994), Italian (Ashton et al., 2004; Ashton et 

al., 2006), Korean (Ashton et al., 2004; Hahn, Lee, & Ashton, 1999), Polish (Szarota, 

Ashton, & Lee, 2007) and Turkish (Wasti, Lee, Ashton, & Somer, 2008). In terms of 

criterion-related validity, McAbee, Casillas, Way and Guo (2019) summarised a large 

number of studies and concluded that the HEXACO personality factors have good 

utility in the prediction of educational and occupational outcomes. In particular, the 

Honesty-Humility factor demonstrated consistent predictive validity for 
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counterproductive student behaviours, cheating behaviours, organisational citizenship 

behaviours, and counterproductive work behaviours. Given its structural stability and 

predictive utility, this thesis thus adopted the HEXACO model of personality as the 

construct model in the development of the adaptive FC personality assessment. 

Table 30. HEXACO personality factors 

Factor Positive indicators Negative indicators 

H Avoid manipulating others for 

personal gain, feel little temptation 

to break rules, are uninterested in 

lavish wealth and luxuries, and feel 

no special entitlement to elevated 

social status. 

Flatter others to get what they want, 

are inclined to break rules for 

personal profit, are motivated by 

material gain, and feel a strong sense 

of self-importance. 

E Experience fear of physical dangers, 

experience anxiety in response to 

life's stresses, feel a need for 

emotional support from others, and 

feel empathy and sentimental 

attachments with others. 

Not deterred by the prospect of 

physical harm, feel little worry even 

in stressful situations, have little 

need to share their concerns with 

others, and feel emotionally 

detached from others. 

X Feel positively about themselves, 

feel confident when leading or 

addressing groups of people, enjoy 

social gatherings and interactions, 

and experience positive feelings of 

enthusiasm and energy. 

Consider themselves unpopular, feel 

awkward when they are the centre of 

social attention, are indifferent to 

social activities, and feel less lively 

and optimistic than others do. 

A Forgive the wrongs that they 

suffered, are lenient in judging 

others, are willing to compromise 

and cooperate with others, and can 

easily control their temper. 

Hold grudges against those who 

have harmed them, are rather critical 

of others' shortcomings, are stubborn 

in defending their point of view, and 

feel anger readily in response to 

mistreatment. 

C Organise their time and their 

physical surroundings, work in a 

disciplined way toward their goals, 

strive for accuracy and perfection in 

their tasks, and deliberate carefully 

when making decisions. 

Tend to be unconcerned with orderly 

surroundings or schedules, avoid 

difficult tasks or challenging goals, 

are satisfied with work that contains 

some errors, and make decisions on 

impulse or with little reflection. 

O Become absorbed in the beauty of 

art and nature, are inquisitive about 

various domains of knowledge, use 

their imagination freely in everyday 

life, and take an interest in unusual 

ideas or people. 

Rather unimpressed by most works 

of art, feel little intellectual 

curiosity, avoid creative pursuits, 

and feel little attraction toward ideas 

that may seem radical or 

unconventional. 
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Item Bank Development (Study 4) 

This study developed an item bank for measuring the HEXACO personality 

traits in a FC CAT. While personality assessments tend to use statements as items, this 

study instead focused on adjectives. Adjectives capture simple concepts which can be 

semantically compared in a FC question format. The concise nature of adjectives makes 

the comparative judgement process in FC questions cognitively simpler than if 

statements were utilised instead. Moreover, the faster comprehension and completion 

speed of FC adjective questions also allows quicker question progression, which helps 

to capitalise on the potential of adaptive testing. Finally, in terms of cross-cultural 

measurement, the factor structure of adjectives appear to be universal, as demonstrated 

by the lexicon studies that gave rise to the HEXACO model across multiple languages 

(e.g., see Lee & Ashton, 2008). Therefore, this study focused on building an item bank 

of adjectives. 

Item Development 

Item development started by finding a list of frequently used adjectives in the 

English language that would be suitable for describing personality characteristics. Lee 

and Ashton (2008) conducted a usage frequency rating study on a list of 1,710 

adjectives from Goldberg (1982), reducing it to a subset of 449 “most familiar English 

personality-descriptive adjectives”. For this study, Lee and Ashton’s (2008) list was 

refined further based on the adjectives’ suitability for use in self-rating FC personality 

questionnaires, leading to the removal of 119 items for a variety of reasons as detailed 

in Table 31. The remaining pool of 330 adjectives formed the initial item bank for 

trialling. 

 



129 

 

Table 31. Exclusion of adjectives prior to item trialling 

Reason of removal Count Examples 

The characteristic is morally wrong and self-

ratings likely won't lead to honest answers. 

3 Abusive 

Belligerent 

Violent 

People with this characteristic are unlikely to 

recognise or admit they have this characteristic, 

leading to inaccurate self-ratings. 

16 Egocentric 

Overconfident 

Unreasonable 

The adjective’s meaning is too ambiguous when 

describing personality. 

50 Antagonistic 

Childlike 

Refined 

The adjective is too strongly linked to sex or 

religion. 

8 Feminine 

Religious 

Sexy 

The adjective focuses on non-personality aspects 

of a person (e.g., looks, cognition, experience). 

36 Clever 

Economical 

Knowledgeable 

The adjective may cause people stress in a FC 

response format. 

6 Anti-social 

Self-destructive 

Unstable 

 

Item Trialling 

The 330 remaining adjectives were then mapped to the HEXACO model 

conceptually. An initial mapping rated each adjective against each of the six factors, 

giving a rating of 1 (positive indicator), −1 (negative indicator), or 0 (no relationship). 

An adjective could have non-zero ratings on multiple factors. In addition, Lee and 

Ashton (2008) reported key adjective indicators for each of the HEXACO factors. 

Collating both the conceptual mappings from this study and Lee and Ashton’s (2008) 

list of key indicators, a total of 100 items with unambiguous, factorially simple 

conceptual mappings to their respective HEXACO factors were selected to be anchors 

for item trialling. Each of the six factors was covered by between 14 to 20 anchor items 

(14, 17, 20, 16, 19 and 14 items for factors H, E, X, A, C and O respectively). 
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Item trialling was programmed in Qualtrics and designed so that each participant 

would complete 200 adjectives in total, of which 100 were anchor items, and the other 

100 were randomly selected from the remaining 230 non-anchor items. The anchor 

items were incorporated so that for every participant there would be enough data to 

estimate scores for all six factors, as complete random item selection could result in low 

item coverage for certain factors for some participants. Items were rated using a six-

point rating scale: 1) Very unlike me; 2) Somewhat unlike me; 3) A little unlike me; 4) 

A little like me; 5) Somewhat like me; 6) Very like me. In addition to the 200 adjectives, 

each participant also completed the 60-item version of the HEXACO-PI-R (Ashton & 

Lee, 2009). Basic background characteristics of the participants, such as gender and 

English proficiency level, were also collected. 

Sample 

Table 32. Data cleaning criteria 

Data cleaning criteria Cases 

Participants who did not consent to providing data for research purposes. 279 

Participants whose English proficiency level did not reach “Professional 

working proficiency” or higher. 

175 

Repeated completions by the same participants (keeping data for the first 

completion only). 

198 

Participants who completed the study too quickly (<10 minutes, indicating 

lack of proper consideration) or too slowly (>2 hours, indicating presence 

of distraction during completion). 

127 

Participants with unreliable response patterns (e.g., when the majority of the 

rating scale was never used, when a particular response option was 

overused, when the responses had a very small standard deviation). 

23 

Participants who partook in the study for reasons other than “to practice for 

pre-employment assessments” or “to find out more about myself”. 

28 
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A large online sample (N=2,515) was recruited in 2018 from a public-facing 

website specialising in pre-employment assessment practice. Participants were invited 

to complete the study in order to receive a personalised feedback report. Because the 

survey was open to any participant, extensive data cleaning was applied in order to 

ensure data quality, resulting in the removal of 33% of the collected cases (Table 32). 

Such a percentage was typical of data collected from the pre-employment assessment 

practice website used in this study. 

Table 33. Cleaned sample demographics (N=1,685) 

Sample demographics % 

Gender Male 52.0 

Female 46.9 

Other 0.1 

Missing 1.0 

Age Up to 20 3.0 

21 to 30 34.5 

31 to 40 25.9 

41 to 50 21.6 

51 to 60 12.7 

Over 60 1.4 

Missing 0.8 

English language proficiency Native or bilingual proficiency 45.9 

Full professional proficiency 27.9 

Professional working proficiency 26.2 

 

The final cleaned sample consisted of 1,685 cases. The sample was balanced in 

terms of gender, and all working ages were represented (Table 33). Nearly half (45.9%) 

of the sample indicated that they had “native or bilingual proficiency” in the English 

language, and only the participants with at least “professional working proficiency” was 
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retained in the sample to ensure that the interpretation of English adjectives was 

accurate. Most participants (54.0%) spent between 20 to 40 minutes completing the 

study, and the vast majority of participants (85.8%) indicated that their main reason for 

partaking in the research study was “to practice for pre-employment assessments”. With 

the random item selection in the trial design, each adjective was completed by between 

675 and 1,685 participants in the sample. 

Analysis and Results 

Analysis was structured into four parts. First, responses to the 60-item 

HEXACO-PI-R instrument were analysed and compared against published results. 

Second, the 330 adjectives were assigned to HEXACO factors considering conceptual 

and empirical evidence. Third, IRT calibration was conducted to estimate parameters 

for the 330 adjectives and 60 HEXACO-PI-R statements. Finally, IRT scoring was 

conducted to estimate HEXACO factor scores for the respondents. 

Properties of the HEXACO-PI-R 

Responses to the HEXACO-PI-R were analysed and results were compared 

against properties of the same instrument published by Ashton and Lee (2009). For the 

HEXACO-PI-R response data across independent samples to show comparable 

properties, two conditions were necessary: 1) in terms of the instrument and construct, 

the HEXACO conceptual model needed to be stable and the HEXACO-PI-R instrument 

needed to be reliable; 2) in terms of the sample, participants needed to be motivated and 

respond conscientiously. Therefore, comparable results against published data would 

not only provide additional empirical support for the HEXACO conceptual model and 

the HEXACO-PI-R instrument for use with the pre-employment test-taker population, 

but also provide indication of good data quality from this study. 
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First, an exploratory factor analysis (EFA) was conducted to examine the factor 

structure of the 60 HEXACO-PI-R items. The EFA was conducted in Mplus version 8.1 

(Muthén & Muthén, 1998-2012), using the ULS extraction method with OBLIMIN 

rotation. Six factors were extracted, which was supported by the scree plot (Figure 24). 

The six extracted factors corresponded one-to-one with the six conceptual factors well, 

with relatively simple factor structure and most items showing strongest loadings with 

their mapped factors (Appendix F, Table F1). The only two exceptions were item 11 (“I 

sometimes can't help worrying about little things”) and item 35 (“I worry a lot less than 

most people do”), both of which were mapped to Emotionality (with pattern matrix 

loadings of 0.361 and −0.328 respectively), but loaded slightly stronger on Extraversion 

(with pattern matrix loadings of −0.405 and 0.338 respectively). The cross-loadings 

were understandable given the content of the items, which not only related to the 

tendency to be anxious (i.e., part of Emotionality), but also related to the tendency to be 

optimistic (i.e., part of Extraversion). Two other items, although loaded strongest on 

their mapped factors, also demonstrated signs of cross-loading (i.e., with pattern matrix 

loading magnitude differences <0.1) onto another factor. Item 9 (“People sometimes tell 

me that I am too critical of others”) was mapped to Agreeableness (pattern matrix 

loading=−0.400), but also loaded onto Honesty-Humility (pattern matrix 

loading=−0.336). Item 32 (“I do only the minimum amount of work needed to get by”) 

was mapped to Conscientiousness (pattern matrix loading=−0.426), but also loaded onto 

Honesty-Humility (pattern matrix loading=−0.335). Again, both cross-loadings were 

understandable given the content of the items. The good recovery of the six-factor 

HEXACO structure without specifying any rotation targets was encouraging, 

confirming the stability of the HEXACO-PI-R instrument and the HEXACO conceptual 

model of personality. 
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Figure 24. EFA scree plot of HEXACO-PI-R items 

 

The initial EFA model did not specify any rotation targets when extracting the 

factors. However, in order to fully align the extracted factors with the HEXACO 

conceptual model, an exploratory structural equation model (ESEM; Asparouhov & 

Muthén, 2009) was constructed. The ESEM was built in Mplus version 8.1, using the 

ULSMV extraction method with TARGET rotation (Browne, 2001). The pattern matrix 

rotation target was set to minimise cross-loadings as much as possible according to the 

HEXACO-PI-R score key (i.e., the factor pattern loadings of items were targeted to zero 

unless the item was mapped to the factor by the score key). With this target rotation, all 

60 items loaded strongest on their mapped factors (Appendix F, Table F2), with only 

four items showing secondary loadings exceeding a magnitude of 0.3 – the same four 

cross-loading items as identified and discussed in the EFA model with OBLIMIN 

rotation. The model fit for the ESEM was very good according to the Root Mean Square 

Error of Approximation (RMSEA = .037) and Standardized Root Mean Residual 

(SRMR = .034). The Comparative Fit Index (CFI = .886) was somewhat worse, but 

understandable given “the breadth and brevity of the scales” (Ashton & Lee, 2009). 
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 The ESEM also estimated latent correlations between the HEXACO factors 

(Table 34). While observed score correlations are affected by measurement errors in the 

observed scores, latent correlation estimates are computed from the latent traits in the 

ESEM model, and therefore not affected by measurement errors. Thus, latent correlation 

estimates are better estimates of the true correlations between HEXACO factors than 

observed score correlations. Nevertheless, in order to directly compare against reported 

HEXACO-PI-R observed score correlations, HEXACO-PI-R scores (i.e., classical item 

sum scores calculated according to the score key) were computed and correlated (Table 

35). The magnitudes of the observed correlations were stronger than those reported by 

Ashton and Lee (2009, Table 3). The generally stronger observed correlations suggested 

that a stronger positive manifold existed in this sample compared to Ashton and Lee’s 

(2009) low-stakes research samples of college students and community participants. 

Considering that this sample was predominantly (85.8%) completing the questionnaires 

to practice for pre-employment assessments, this positive manifold might have resulted 

from typical high-stakes pre-employment assessment behaviours, such as social 

desirability responding and impression management. 

Table 34. Latent HEXACO factor correlations from ESEM 

  H* E X A C* 

E −.184 
    

X .194 −.237 
   

A .268 −.053 .287 
  

C* .300 −.189 .342 .246 
 

O .115 −.052 .230 .146 .184 

* Signs of the correlations were adjusted in order to align with the definitions 

of the conceptual factors. 
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Table 35. HEXACO-PI-R observed score correlations 

  H E X A C 

E −.083 
    

X .195 −.284 
   

A .380 −.168 .327 
  

C .305 −.154 .410 .291 
 

O .145 −.095 .237 .134 .181 

 

 Then, in order to examine the unidimensionality of the HEXACO-PI-R scales, a 

single-trait confirmatory factor analysis (CFA) model was fitted to the 10 constituting 

items for each factor (as indicated by the score key). The CFA models were built in 

Mplus version 8.1, giving model fit statistics as summarised in Table 36. The model 

chi-square p-values were significant for all models, indicating bad fit. However, the chi-

square test of model fit is sensitive to large sample sizes. Therefore, for this study with 

N=1,685, the focus should be placed on RMSEA, CFI and SRMR, which are less 

affected by sample size. All six models had RMSEA values greater than .08, indicating 

bad fit (MacCallum, Browne, & Sugawara, 1996). Because the RMSEA values for the 

null model were all greater than .158, the CFI values were not informative for these 

models (Kenny, 2015). The SRMR values, however, were in satisfactory ranges, staying 

below .08 for all six models (Hu & Bentler, 1999). In terms of possible model 

modifications, no modifications suggested by Mplus had a modification index above 1, 

indicating that there were no simple model modifications that would significantly 

improve the model fit. The unsatisfactory fit of the unidimensional models may have 

resulted partially from the breadth of the HEXACO factors, as each of them can be 

further divided into four distinct subscales (see Lee & Ashton, 2009a). 
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Table 36. Unidimensional CFA model fits for HEXACO-PI-R items 

Model Chi-

square 

Degrees of 

freedom 

P-value RMSEA  

(90 percent C.I.) 

CFI SRMR 

H 1068.624 35 <.001 .132 (.126, .139) .815 .067 

E 1045.719 35 <.001 .131 (.124, .138) .780 .059 

X 1338.177 35 <.001 .149 (.142, .156) .844 .061 

A 808.938 35 <.001 .115 (.108, .121) .839 .052 

C 423.499 35 <.001 .081 (.074, .088) .931 .040 

O 989.829 35 <.001 .127 (.120, .134) .846 .059 

 

 Finally, the internal consistencies of the HEXACO-PI-R scales were examined. 

Coefficient omega (McDonald, 1999) was computed for each scale assuming a one-

factor solution. Moreover, in order to directly compare against published internal 

consistency statistics of the HEXACO-PI-R, Cronbach’s alpha (Cronbach, 1951) was 

also computed. Both reliability measures were computed in R (R Core Team, 2015) 

using the psych package (Revelle, 2018), and reported in Table 37. The current sample 

showed internal consistency statistics comparable to those collected by Ashton and Lee 

(2009), who reported Cronbach’s alphas of .73 to .80 across samples for all scales. 

Table 37. Internal consistency of HEXACO-PI-R scales 

Scale H E X A C O 

Omega .716 .729 .821 .716 .766 .751 

Alpha .702 .728 .818 .710 .757 .751 

 

 To summarise, the responses to the 60 HEXACO-PI-R items in this sample 

showed good internal consistencies and demonstrated a factor structure matching the 

expected six-factor HEXACO conceptual model. Unidimensional CFA model fit 

statistics were unsatisfactory, but understandable given “the breadth and brevity of the 
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scales” (Ashton & Lee, 2009). Response data in this sample demonstrated signs of a 

stronger positive manifold than previously reported low-stakes research samples. This 

positive manifold likely reflected typical high-stakes pre-employment assessment 

behaviours. On the whole, the reported properties of the HEXACO-PI-R were largely 

replicated in this new sample, and when differences were observed, they were in line 

with expectations given the current data collection settings, motivation of participants, 

and sample demographics. 

Mapping adjectives to HEXACO model 

The next stage of the analysis focused on mapping the 330 adjectives to the six 

HEXACO factors, in preparation for subsequent IRT modelling. Although theoretically 

the TIRT model is capable of handling within-item multidimensionality, in practice it 

could be difficult to obtain reliable answers to FC comparisons between multiple items 

where each item indicates multiple traits. Therefore, the aim was to create a factorially 

simple item pool, sacrificing multidimensional items in the process if necessary. 

 

Figure 25. EFA scree plot of 330 adjectives 



139 

 

First, the overall factor structure of all 330 adjectives was examined. An EFA 

was conducted in Mplus version 8.1 (Muthén & Muthén, 1998-2012), using the ULS 

extraction method with OBLIMIN rotation. The scree plot (Figure 25) suggested that a 

six-factor solution was likely sufficient. However, examination of the oblique six-factor 

solution loading pattern matrix (Appendix F, Table F3) revealed many cross-loadings 

even for anchor items, suggesting that a positive manifold was at play, as seen earlier in 

the analysis of HEXACO-PI-R responses. This positive manifold, likely caused by 

social desirability responding and impression management in pre-employment 

assessment samples, appeared to have affected the HEXACO-PI-R to a smaller extent, 

resulting in conceptually distinct factors each indicated by homogeneous items. In the 

case of adjective item responses, three of the extracted factors consisted of conceptually 

homogeneous adjectives, which aligned roughly with the factors of eXtraversion, 

Conscientiousness and Openness to Experience. The other three factors were made up 

of conceptually heterogeneous adjectives and were more difficult to separate and 

summarise semantically. It was concluded that the contaminating effect of the positive 

manifold was too strong to meaningfully interpret this six-factor EFA solution. 

It was interesting that the positive manifold in this sample affected adjectives 

more so than the HEXACO-PI-R statements. The reason for this contrast may be two-

folds. On one hand, while the HEXACO-PI-R statements were carefully crafted to 

minimise bias and achieve balanced psychometric measurement (Lee & Ashton, 2004), 

the unedited adjectives can come with strong positive or negative linguistic 

connotations, making them more likely to trigger stronger social desirability responding. 

Furthermore, generic adjectives tend to have less nuance, complexity or context 

compared to longer HEXACO-PI-R statements, making them more prone to fast 

emotive responses (System 1, Kahneman, 2011). Therefore, it seems that adjectives, 

when used in a rating scale question format, may introduce unwanted artefacts into the 
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measurement of personality traits compared to HEXACO-PI-R statements. However, in 

a FC format, adjectives in the same FC block can be balanced by social desirability in 

order to minimise social desirability responding, and the comparative judgement format 

of similarly desirable characteristics will likely encourage slow conscious responses 

(System 2, Kahneman, 2011). The combination of adjectives and FC response format 

thus has the potential to retain the simplicity of adjective items, encourage more 

deliberate thinking, as well as removing the contamination of social desirability 

responding. 

 Following the EFA analysis, and subsequent bifactor EFA and ESEM analysis 

that failed to isolate the positive manifold, it was concluded that a conceptual mapping 

of items to the HEXACO factors would lead to the most meaningful assignment. In 

order to come up with this mapping, two psychometricians mapped each of the 

adjectives to one and only one HEXACO factor conceptually. The mappings were then 

compared and collated. Where the mappings agreed, the item was retained in the pool. 

Where the mappings disagreed, the adjective was reviewed again, and a judgement was 

made to either map it to one of the mapped factors, or to drop it from the pool due to its 

semantic multidimensionality. Some additional items were also dropped due to their 

negative connotations, which likely triggered a greater extent of social desirability 

responding compared to other items. At the end of this qualitative item review process, 

299 out of the 330 adjectives were retained, covering each factor with between 24 to 82 

items (51, 44, 45, 82, 53 and 24 items for factors H, E, X, A, C and O respectively). 

Then, this qualitative mapping was refined further quantitatively by building a CFA 

model for each of the HEXACO factors, using the ML estimator and treating item 

responses as categorical variables (i.e., effectively calibrating the items under 

Samejima’s graded response IRT model, Samejima, 1969). Items whose standardised 
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loadings had magnitudes below 0.2 were removed, leaving a total of 286 adjectives 

(Table 38). 

Table 38. Items mapped qualitatively and quantitatively to each HEXACO factor 

Scale H E X A C O 

Mapped items 46 41 41 81 53 24 

Anchor items 10 14 20 19 19 9 

 

Item calibration for TIRT 

The next stage of the analysis focused on establishing measurement properties of 

the selected adjectives, in order to serve as an item bank for a TIRT-based FC CAT for 

HEXACO personality factors. Parameters pertaining to item utilities 𝑡𝑖 needed to be 

estimated, namely, item mean 𝜇𝑖, item factor loading 𝜆𝑖, and item error variance 𝜓𝑖
2 (see 

Equation 3). The use of a six-point rating scale gave rise to enough variance in the 

adjective item responses, allowing them to be treated as continuous item utility. By 

aligning the arbitrary scaling of latent item utilities 𝑡𝑖 to the response categories ranging 

from 1 to 6, the same scaling for item utility was enforced across different adjectives, 

allowing them to be meaningfully compared when eventually placed into a FC setting. 

With the item responses being treated as continuous variables, a simple unidimensional 

CFA model would provide parameters in a format that would be directly usable for 

TIRT modelling. 

Thanks to the randomised item administration, calibration was conducted on the 

entire sample simultaneously (N=1,685 participants in total, each item being completed 

by between 675 to 1,685 participants), with no need for linking. The completion of 

anchor items by all participants ensured stability of the measured constructs. In addition, 

the 60 HEXACO-PI-R statements were included in the same calibration models, so as 
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to stabilise the constructs further and to obtain IRT parameters for the HEXACO-PI-R 

statements for subsequent analysis. 

The unidimensional CFA model for each HEXACO factor was fitted 

independently in Mplus version 8.1 (Muthén & Muthén, 1998-2012) using a maximum 

likelihood estimator (ESTIMATOR = ML). Rubin (1976) showed that the use of the 

ML estimator ensures unbiased item parameter estimates for data that are missing 

completely at random (MCAR) or missing at random (MAR). In this study, the random 

presentation of adjectives determined by the survey randomisation algorithm ensured 

that responses to the non-anchor items were MCAR, so the ML estimator was adequate. 

The CFA model fit statistics were then examined in order to determine whether 

additional model adjustments were necessary. After seeing the CFA model fit statistics 

for HEXACO-PI-R items earlier, it was acknowledged that the CFIs would be low 

given the breadth of the factors (Ashton & Lee, 2009), and a good model fit was defined 

to be one with RMSEA < .08 (MacCallum, et al., 1996) and SRMR < .08 (Hu & Bentler, 

1999). Based on this criteria, five out of the six HEXACO scales produced satisfactory 

model fit without any adjustments. The model fit for Emotionality was less ideal 

(RMSEA = .062, SRMR = .102), and the model was reviewed and refined further by 

removing seven adjectives and one HEXACO-PI-R statement with 1) relatively weak 

and ambiguous conceptual mapping, 2) relatively large modification indices (i.e., 

undesirable correlations with multiple items that were not accounted for by the latent 

factor), or 3) relatively small magnitude of slope parameter (slope was calculated as 

𝜆𝑖 𝜓𝑖⁄ , which matched the definition of the discrimination parameter in standard 

unidimensional IRT parameterisation). At the end of this process, IRT parameters were 

established for a final set of 279 adjectives. The final model characteristics are given in 

Table 39. The distributions of item parameters for the 279 adjectives are summarised in 
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Table 40. The full calibrated item bank and parameters are presented in Appendix F, 

Table F4. 

Finally, in order to enable multidimensional MAP scoring using TIRT, the 

correlations between HEXACO factors were also required. For this purpose, the latent 

correlation estimates from the ESEM model on the 60 HEXACO-PI-R items were 

adopted (Table 34). 

Table 39. Final calibration model characteristics 

Factor Adjectives count RMSEA 

(90 Percent C.I.) 

CFI SRMR 

Total Positive 

loading 

Negative 

loading 

H 46 19 27 .041 (.040, .042) .679 .067 

E 34 23 11 .055 (.054, .057) .658 .078 

X 41 26 15 .066 (.065, .067) .706 .076 

A 81 39 42 .044 (.043, .045) .636 .074 

C 53 28 25 .048 (.047, .049) .733 .065 

O 24 20 4 .062 (.060, .064) .631 .076 

Total 279 155 124    
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Table 40. Final calibrated adjectives item bank characteristics 

Parameter Statistics H E X A C O 

𝜇𝑖 Mean 3.24 3.23 3.83 3.65 3.64 4.28 

 Minimum 1.22 1.53 1.71 1.25 1.31 1.43 

  Maximum 5.80 5.30 5.31 5.67 5.72 5.49 

𝜆𝑖 Mean −0.20 0.29 0.14 −0.05 −0.05 0.31 

 Minimum −0.70 −0.56 −1.07 −0.71 −0.80 −0.58 

  Maximum 0.53 1.00 0.96 0.63 0.65 0.89 

𝜓𝑖
2 Mean 1.05 1.17 1.03 0.88 0.77 0.91 

 Minimum 0.22 0.58 0.39 0.22 0.20 0.32 

  Maximum 2.60 2.29 2.16 2.22 2.10 2.05 

|𝜆𝑖| Mean 0.45 0.54 0.62 0.49 0.48 0.43 

 Minimum 0.15 0.24 0.29 0.23 0.25 0.19 

  Maximum 0.70 1.00 1.07 0.71 0.80 0.89 

𝜆𝑖 𝜓𝑖⁄  Mean −0.17 0.26 0.23 0.05 −0.01 0.34 

 Minimum −0.78 −0.66 −0.95 −0.82 −1.18 −0.75 

  Maximum 0.67 0.97 1.18 1.01 1.07 1.03 

| 𝜆𝑖 𝜓𝑖⁄ | Mean 0.49 0.52 0.68 0.61 0.61 0.49 

 Minimum 0.15 0.17 0.20 0.20 0.22 0.20 

  Maximum 0.78 0.97 1.18 1.01 1.18 1.03 

 

IRT scoring 

Following calibration, responses to the adjectives were scored using the newly 

estimated IRT parameters. The number of adjectives completed for each scale varied by 

participants due to the randomised item administration design, but each participant 

completed at least 10 adjectives in every scale. Separately, the HEXACO-PI-R items 

were also scored using their newly established IRT parameters. The IRT scores for 

HEXACO-PI-R items were based on 10 items per scale, except for the Emotionality 
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scale which was based on nine items only (one item was removed during IRT 

calibration). The distributions for the two sets of IRT scores, as well as the classical 

HEXACO-PI-R scores, are shown in Table 41. Both sets of IRT scores had near zero 

means, as would be expected when scored using IRT parameters established on the 

same sample. Later, when the adjectives were administered in a FC format, the mean 

scores would likely be lowered, due to the FC response format greatly reducing social 

desirability responding. 

Table 41. Distributions of the three versions of HEXACO scores 

Factor HEXACO-PI-R CTT HEXACO-PI-R IRT Adjectives IRT 

Mean SD Mean SD Mean SD 

H 39.9 5.38 0.0001 0.886 0.0002 0.945 

E 28.2 5.89 −0.0001 0.865 −0.0005 0.946 

X 38.2 5.81 0.0002 0.939 0.0000 0.976 

A 36.2 5.24 0.0001 0.894 −0.0002 0.975 

C 41.7 4.67 −0.0003 0.915 0.0002 0.973 

O 37.7 5.68 0.0000 0.899 −0.0018 0.917 

 

Correlations between the three versions of HEXACO scores are shown in Table 

42. Not surprisingly, the HEXACO-PI-R items produced similar estimates when scored 

using different methods, resulting in correlations of .963 or higher (with a mean of .976) 

across all scales. The correspondence between scores based on HEXACO-PI-R and 

those based on adjectives were weaker but still showed signs of convergent and 

divergent validity, with scale correlations ranging from .589 to .793 (with a mean 

of .670) and average off-diagonal correlation of .129 when the same scoring 

methodology was applied. 
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Table 42. Correlations between the three versions of HEXACO scores 

Factor HEXACO-PI-R CTT 

with  

HEXACO-PI-R IRT 

HEXACO-PI-R 

CTT with 

Adjectives IRT 

HEXACO-PI-R 

IRT with 

Adjectives IRT 

H .968 .555 .589 

E .963 .541 .595 

X .995 .782 .793 

A .979 .647 .669 

C .980 .720 .746 

O .969 .568 .625 

Diagonal mean .976 .635 .670 

Off-diagonal mean .124 .127 .129 

 

Summary 

This study developed an item bank of 279 adjectives for measuring the 

HEXACO personality traits, covering the six scales with between 24 to 81 items each. 

The IRT calibration models for all six scales achieved good fit (Table 39) that surpassed 

the fits of the models for the 60-item HEXACO-PI-R (Table 36). Scores estimated from 

adjectives demonstrated moderate convergent and divergent validity against the 

previously validated HEXACO-PI-R. This item bank thus provided the content for 

driving a FC CAT for HEXACO personality traits. 

Comparing Adaptive Algorithms for HEXACO Item Bank (Study 5) 

This study simulated FC CAT sessions using the HEXACO adjectives item bank 

developed in Study 4. The purpose of this study was two-folds. First, it investigated 

item selector performance with a realistic item bank, to examine whether findings from 

Study 3 (which used simulated item banks) would still hold. Second, it examined the 

functioning of the new HEXACO adjectives item bank in a CAT setting, in order to 
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gauge its suitability and limits for practical use, and to determine the CAT algorithm 

settings (e.g., item selector, target test length) to adopt in a subsequent empirical study. 

Method 

Simulation design 

A simulation study was conducted to examine the efficiency of item selectors in 

FC CAT using the HEXACO adjectives item bank developed in Study 4. Similar to 

Study 3, this study focused on FC assessments using pairs, and the interim and final 

person scores were estimated using the Bayesian MAP estimator with a trait correlation 

prior as established in Study 4 (Table 34). The assessment design factors investigated 

are described in this section, which largely replicated the design of Study 3. All 

simulations were conducted using the same R codes written specifically for this thesis. 

Item selector (6 levels) 

Six item selectors were simulated: RANDOM, WCI, A-, C-, D-, and T-

optimality. 

Scale plan (2 levels) 

Two levels of scale plan were simulated as per Study 2 (Table 12). 

Social desirability balancing criteria (2 levels) 

Two levels of social desirability balancing were examined as per Study 2 (Table 

13). 

Test length (8 levels) 

In order to examine the effect of test length on CAT score recovery accuracy, 

the assessment length was varied by truncating the simulated CAT sessions, so that the 
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shorter test lengths were completely nested in the longer ones. Matching the design of 

Study 3, test lengths of up to 30 items per scale (i.e., 30 × 6 ÷ 2 = 90 pairs) were 

examined. Within each CAT session for each simulee, the CAT algorithm continued to 

create pairwise comparisons, until the target of 90 pairs was reached, or until no 

remaining pairs of items would satisfy all content constraints (i.e., scale plan if there 

were any, social desirability balancing criteria, no two items from the same scale in each 

pair, and no more than one negative item in each pair). However, because the HEXACO 

adjectives item pool was much smaller compared to the simulated item banks (e.g., the 

Openness to Experience scale only had 24 items), it was anticipated that some test 

sessions would not reach the full length requested. It was therefore desirable to look at 

more levels of test length, so that comparisons could be conducted at the most 

meaningful test lengths. Having data at multiple test lengths also provided better 

information for determining the test length to adopt in the subsequent empirical CAT 

study. Eight levels of test length were simulated (Table 43). 

Table 43. Test length levels 

Level Description 

9 items per scale The first 27 pairs. 

12 items per scale The first 36 pairs. 

15 items per scale The first 45 pairs. 

18 items per scale The first 54 pairs. 

21 items per scale The first 63 pairs. 

24 items per scale The first 72 pairs. 

27 items per scale The first 81 pairs. 

30 items per scale All 90 pairs. 
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Analysis 

Crossing the different levels of the four design factors gave rise to 6 (item 

selector) × 2 (scale plan) × 2 (social desirability balancing) × 8 (test length) = 192 

conditions in total, with each condition being covered by a sample of 2,000 simulees 

generated from a multivariate normal distribution following HEXACO scale 

correlations established from Study 4 (Table 34). As anticipated, the maximum 

assessment length was not reached all the time. In other words, for some conditions 

or/and simulees, before the target assessment length was reached, the item bank was 

depleted sufficiently that no viable pairs meeting all content constraints remained. 

Analysis therefore examined the following summary statistics for each condition: 

• Normal test termination: the percentage of simulees successfully reaching 

a given test length; 

• Rank ordering: the correlations between true and estimated scores for each 

scale; 

• Absolute differences: RMSEs of the differences between true and estimated 

scores. 

As this study had a simpler design and a narrower focus compared to Study 3, it 

was concluded that cross-classified multilevel regression analysis was neither necessary 

nor desirable. Instead, the results were summarised and visualised graphically. 

Results 

Normal test termination 

The percentage of simulees successfully reaching each level of test length for 

each condition is shown in Table 44. Not surprisingly, scale plan had the most 

significant effect on a limited item bank. Sessions with a fixed scale plan reached at 
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least 52 pairs/ 17.3 items per scale but never exceeded 68 pairs/ 22.7 items per scale, 

while all sessions with dynamic scales reached at least 87 pairs/ 29 items per scale. The 

effect of social desirability balancing was also in line with expectations, with the strict 

criterion leading to shorter average test lengths than the lenient criterion. Interestingly, 

for sessions with a fixed scale plan, the RANDOM and C-optimality item selectors led 

to much shorter average test lengths compared to the other item selectors. For sessions 

with dynamic scales, as almost all sessions reached the maximum test length, the 

differences between item selectors was not apparent, although there were some signs 

that the RANDOM and A-optimality item selectors might lead to shorter average test 

lengths if the sessions were allowed to continue beyond 90 pairs. 

The fact that certain item selectors lead to faster item depletion was interesting 

and not expected prior to this simulation study being completed. How certain item 

selectors and the various content rules interplayed to lead to fewer remaining viable 

pairs was unclear without further investigation. Nevertheless, current results suggested 

that some item selectors may be more demanding on the size and composition of item 

content than others, especially when the item pool was limited after the application of 

stringent content rules. 
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Table 44. Percentage of simulees reaching each level of test length by condition 

Scale plan Social 

desire 

Item selector Test length % simulees 

successfully reaching 

a test length (pairs) 

Mean Min Max 63 72 / 81 90 

Fixed Lenient RANDOM 62.5 54 68 44.9 0.0 0.0 
  

WCI 67.4 60 68 98.5 0.0 0.0 
  

A-optimality 67.3 60 68 98.9 0.0 0.0 
  

C-optimality 60.0 57 60 0.0 0.0 0.0 
  

D-optimality 66.4 60 68 90.0 0.0 0.0 
  

T-optimality 67.1 60 68 96.3 0.0 0.0 
 

Strict RANDOM 60.8 52 68 26.9 0.0 0.0 
  

WCI 65.4 60 68 99.3 0.0 0.0 
  

A-optimality 64.6 57 68 94.0 0.0 0.0 
  

C-optimality 59.9 57 60 0.0 0.0 0.0 
  

D-optimality 64.8 60 68 95.6 0.0 0.0 
  

T-optimality 65.2 60 68 99.4 0.0 0.0 

Dynamic Lenient RANDOM 90.0 89 90 100.0 100.0 100.0 
  

WCI/A/C/D/T 
 

90.0 90 90 100.0 100.0 100.0 
 

Strict RANDOM 90.0 87 90 100.0 100.0 99.4 
  

A-optimality 90.0 88 90 100.0 100.0 97.3 
  

WCI/C/D/T 90.0 90 90 100.0 100.0 100.0 

 

Rank ordering and absolute differences 

The correlations and RMSEs between true and estimated scores were computed 

for each scale in each condition and summarised graphically (Figures 26 to 33). All 

plots were made for test lengths up to 90 pairs, so the graphs demonstrated plateauing 

effects when the CAT sessions did not reach the longer lengths. 

The effectiveness of different item selectors within conditions was considered 

first. Across all conditions, A-optimality was consistently one of the best according to 
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both correlations and RMSEs. There were instances where another item selector 

outperformed A-optimality for some scales, but the same item selector would also 

demonstrate notable weakness for some other scales. For example, WCI worked 

marginally better than A-optimality on the eXtraversion scale across multiple conditions, 

but it was notably worse for the Honesty-Humility scale in all conditions. In fact, the 

relative merit of WCI amongst the item selectors appeared to be somewhat dependent 

on the scale, often performing as one of the best in some scales while showing 

significant weakness for other scales. C-optimality exhibited similar characteristics to 

WCI, performing on par with A-optimality on some scales but was even worse than the 

RANDOM method for Emotionality when a fixed scale plan was applied. D-optimality 

was the next best item selector after A-optimality, often performing on par with or 

slightly worse than A-optimality across most conditions. The worst performing item 

selectors were usually RANDOM and T-optimality. The relative merits of item 

selectors were in line with results seen in Study 3. Based on the results of this study and 

Study 3, A-optimality was chosen for the subsequent empirical study. 
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Figure 26. Score correlations – fixed scale plan and strict social desirability 

 

 

Figure 27. Score correlations – fixed scale plan and lenient social desirability 
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Figure 28. Score correlations – dynamic scale plan and strict social desirability 

 

 

Figure 29. Score correlations – dynamic scale plan and lenient social desirability 
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Figure 30. RMSEs – fixed scale plan and strict social desirability 

 

 

Figure 31. RMSEs – fixed scale plan and lenient social desirability 
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Figure 32. RMSEs – dynamic scale plan and strict social desirability 

 

 

Figure 33. RMSEs – dynamic scale plan and lenient social desirability 
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Next, the effect of scale plan was considered. Due to the CAT sessions with 

fixed scale plans only reaching lengths of 60-70 pairs on average, the comparison 

focused on results up to 60 pairs. In most situations, the presence of a fixed scale plan 

had a weakening effect on measurement. For example, when A-optimality was used 

(Figures 34 and 35), the Honesty-Humility scale was the most problematic in terms of 

measurement and a fixed scale plan made it much worse. This finding was contrary to 

results from Study 3, which found little restrictive effects of a fixed scale plan on large 

simulated item banks. The weakening effect found in this study likely arose from the 

interaction between the fixed scale plan and the very limited item bank. This effect was 

not surprising as a scale plan placed constraints on achievable test lengths as well as 

denied the item selector’s freedom to prioritise measurement on underperforming scales. 

This limiting effect might be alleviated to some degree if the scale plan was designed 

with consideration for the characteristics of the available items for different scales, 

and/or designed in a way that didn’t place as strong a limit on the scale selection for 

each pair. One possible way to implement this was to use a scale plan that covered only 

the beginning of the test in order to ensure that the minimum number of items per scale 

would be reached, after which the algorithm was allowed to freely choose items to 

enhance the measurement of underperforming scales. Nevertheless, unless there was a 

strong face validity argument to have a perfectly balanced scale plan, results suggested 

that it would be better to allow the item selector to decide which scales to test next. 

Given these observations, the subsequent empirical study would allow scales to be 

dynamically chosen. 

In terms of social desirability balancing, results were as expected – a more 

lenient social desirability balancing criteria led to slightly better measurement in a pure 

theoretical sense (e.g., Figures 34 and 35 for when A-optimality was used). However, in 

practice, especially in high-stakes testing situations, more lenient social desirability 
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balancing may lead to greater impression management. Therefore, the effect of different 

social desirability balancing criteria would be explored further in the subsequent 

empirical study. 

 

Figure 34. Correlations between true and estimated scores for A-optimality 

 

 

Figure 35. RMSEs between true and estimated scores for A-optimality 



159 

 

Next, results for different HEXACO scales were compared. The Honesty-

Humility scale was clearly underperforming compared to other scales, which was 

interesting as it wasn’t the scale with the least number of items: Honest-Humility had 46 

items, eXtraversion had 41 and was the scale with the best measurement precision, 

Emotionality had 34, and Openness to Experience had merely 24. A closer inspection of 

the results against item parameter distributions (Tables 39 and 40) revealed that the 

approximate ranking of measurement accuracy of the six scales as determined by the 

simulations (i.e., X>A>C/E>O>H, Figures 34 and 35) lined up roughly with the ranking 

of mean | 𝜆𝑖 𝜓𝑖⁄ |  values across all items within the scales (i.e., X>A/C>E>O/H, Table 

40). This observation suggested that, in an item bank for FC CAT, quantity did not 

make up for quality, and it was more beneficial to have a smaller pool of highly 

discriminating items, rather than a larger pool of items with low discrimination power. 

Aside from item discrimination powers, another contributing factor to the 

underperformance of the Honesty-Humility scale might have been its larger proportion 

of negative items (Table 39) in combination with the algorithmic setting of only 

allowing one negative item in every pair. Under this setting, a positive item could be 

paired with any other item, but a negative item could only be paired with a positive one. 

Therefore, the number of allowable pairs for a scale with high proportions of negative 

items would be greatly reduced. The content rule of avoiding the comparison of two 

negatively-loading items originated from best practices in FC assessments using 

statements as stimuli, where the comparison of two statements containing negations 

would significantly increase the cognitive load of the responding process. However, 

comparing two negatively-loading adjectives would likely pose no problem, as 

adjectives are simple concepts and do not contain negations. Considering this, and 

observing the difficulty in measuring the Honesty-Humility scale with the current item 
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bank, the subsequent empirical study would allow both adjectives in a pair to be 

negatively-loading. 

Table 45. Simulated CAT measurement properties at 90 pairs with A-optimality, 

dynamic scales and no negative pairs 

Social desirability Scale True-estimated 

score correlation 

Reliability RMSE 

Strict H .74 .55 0.69 
 

E .82 .67 0.57 
 

X .88 .78 0.48 
 

A .86 .74 0.51 
 

C .83 .68 0.57 

  O .75 .56 0.66 

Lenient H .76 .58 0.67 
 

E .84 .70 0.55 
 

X .89 .80 0.46 
 

A .87 .76 0.48 
 

C .85 .72 0.53 

  O .79 .63 0.61 

 

Finally, the actual values of score correlations and RMSEs when using A-

optimality and dynamic scales (i.e., the settings chosen for the subsequent empirical 

study) were considered in order to formulate test length recommendations for the 

subsequent empirical study. Even with a length of 90 pairs, measurement accuracy was 

still unsatisfactory (Table 45). The Honesty-Humility scale and the Openness to 

Experience scale reached true-estimated score correlations of .74 to .79, which 

translated to a reliability of merely .55 to .63. RMSEs were also relatively high, with 

four scales ending in the 0.45 to 0.60 range, and two scales ending in the 0.60 to 0.70 

range. In an ideal situation, additional adjectives should be sought and calibrated to 

build a more discriminating item bank. However, as a short-term solution, it was 
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desirable to consider elongating the assessment and relaxing content constraints in order 

to achieve better measurement accuracy. The effects of longer test lengths and the 

removal of the content constraint around negative pairs were tested in a follow-up 

simulation study using settings matching those chosen for the subsequent empirical 

study. 

Summary 

This study simulated FC CAT sessions using the item bank of 279 adjectives for 

measuring the HEXACO personality traits. The relative performance of item selectors 

on this new item bank largely replicated findings from Study 3, with A-optimality being 

the most efficient, followed by D-optimality, while RANDOM and T-optimality were 

the worst. Although having minimal effect in Study 3, a fixed scale plan was clearly 

restrictive for this new item bank, leading to early test terminations and reduced 

measurement accuracy. Moreover, the distribution of item parameters for each scale 

also had a notable effect on measurement accuracy of that scale. More specifically, the 

scales with fewer but more discriminating items tended to outperform the scales with 

more items but with lower discriminations. Finally, even at the maximum test length 

explored, the measurement accuracy was still unsatisfactory even in the most optimal 

design condition. Therefore, an additional simulation study (Study 5b) was conducted to 

further optimise the assessment design prior to conducting the empirical FC CAT study. 

Optimising the Design for HEXACO FC CAT (Study 5b) 

This simulation study built upon the recommendations from Study 5, and further 

refined the assessment design for the subsequent empirical FC CAT study. Moreover, 

results from this study would provide theoretical benchmarks for comparing subsequent 

empirical results against. 
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Method 

This study used the same HEXACO adjectives item pool and focused on the 

chosen settings for the subsequent empirical study: A-optimality, dynamic scales, and 

both lenient and strict social desirability as two different conditions. To further enhance 

measurement accuracy, this study also allowed both adjectives in a pair to be 

negatively-loading, which had not been explored in previous simulations. This study 

also allowed the test creation to continue until there was no viable pairs left, thus 

providing data for all achievable test lengths with the current item bank, in order to 

inform the choice of target test length in the subsequent empirical study. 

In addition, this study explored the expected measurement differences between 

adaptive assessments and non-adaptive control conditions that were otherwise the same 

(i.e., generated using the exact same algorithmic settings but without interim score 

updates, effectively always targeting measurement at the average person). Both adaptive 

and non-adaptive measures would be included in the subsequent empirical study. 

This study employed the same sample of 2,000 simulees from Study 5. The 

analysis strategy from Study 5 was also followed. 

Results 

Normal test termination 

With the chosen assessment design, all CAT sessions reached at least 123 pairs 

(Table 46). The shortest and longest test sessions were 123 and 137 pairs respectively. 

Using a more lenient social desirability balancing criterion led to three extra pairs being 

generated on average. Compared to the test lengths reached in Study 5 using the exact 

same item bank, it appeared that allowing both items in a pair to be negatively-loading 
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greatly increased the availability of viable pairs, leading to longer achievable 

assessment lengths. 

Table 46. Percentage of simulees reaching each level of test length by condition 

Social 

desirability 

Test length 

(pairs) 

% simulees successfully reaching a certain 

test length (pairs) 

Mean Min Max 123 126 129 132 135 138 

Strict 129.1 123 134 100.0 93.9 69.0 6.2 0.0 0.0 

Lenient 132.1 125 137 100.0 99.9 93.4 65.7 9.9 0.0 

 

Rank ordering and absolute differences 

For adaptive assessments, the correlations and RMSEs between true and 

estimated scores were summarised graphically (Figures 36 and 37). The effect of social 

desirability balancing criteria was consistent with previous findings, with a more lenient 

criteria leading to better measurement from a theoretical standpoint. 

Compared to Study 5, allowing negatively-loading item pairs provided more 

viable options in adaptive item selection, leading to slightly better measurement 

outcomes at a test length of 90 pairs (Table 47). Although the improvement was small 

for most scales, it made a huge difference for the Honesty-Humility scale. This finding 

was in line with earlier hypothesis that the constraint around negatively-loading item 

pairs might have had a greater impact on the Honesty-Humility scale due to its larger 

proportion of negatively-loading items. After removing this constraint, the Honesty-

Humility scale was no longer the worst scale. The worst scale under the new settings 

was Openness to Experience, which had the smallest item pool of merely 24 adjectives. 

Apart from the Honesty-Humility scale, the relative ranking of measurement accuracy 

of the other five scales were largely consistent with previous simulation findings. 
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Figure 36. Correlations between true and estimated scores 

 

 

Figure 37. RMSEs between true and estimated scores 
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Table 47. Score correlations and RMSEs at 90 pairs with A-optimality and dynamic 

scales 

Social 

desirability 

Scale No negative pairs Allowing negative pairs 

Correlation RMSE Correlation RMSE 

Strict H .74 0.69 .82 0.58 
 

E .82 0.57 .82 0.56 
 

X .88 0.48 .89 0.47 
 

A .86 0.51 .86 0.51 
 

C .83 0.57 .86 0.52 
 

O .75 0.66 .76 0.65 

 Mean .81 0.58 .84 0.55 

Lenient H .76 0.67 .82 0.58 
 

E .84 0.55 .84 0.55 
 

X .89 0.46 .90 0.44 
 

A .87 0.48 .87 0.49 
 

C .85 0.53 .87 0.51 
 

O .79 0.61 .79 0.62 

 Mean .83 0.55 .85 0.53 

 

Next, the correlations and RMSEs between true and estimated scores at different 

test lengths were considered in order to determine the target test length for the 

subsequent empirical study. According to Figures 36 and 37, it appeared that the 

additional gain in measurement accuracy was minimal from about 125 pairs onwards, so 

there was little reason to extending the test length beyond 125 pairs with the current 

item bank. Seeing that all simulated CAT sessions managed to reach 120 pairs, and that 

a typical respondent could comfortably complete 120 pairs of adjectives in 20 minutes 

(i.e., 6 pairs per minute, 10 seconds per pair), the test length for the subsequent 

empirical study was set to be 120 pairs. The simulated measurement properties at this 

test length are presented in Table 48. The Openness to Experience scale was still 

lacking in measurement accuracy, with reliability estimates of merely .59 and .63 for the 
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two social desirability conditions. The Honesty-Humility and Emotionality scales were 

also not optimal, with reliability estimates approaching .70. However, it was difficult to 

improve measurement any further with the limited item bank. 

Table 48. Simulated CAT measurement properties at 120 pairs with A-optimality, 

dynamic scales, and allowing negative pairs 

Social desirability Scale True-estimated 

score correlation 

Reliability RMSE 

Strict H .83 .69 0.57 
 

E .83 .68 0.56 
 

X .90 .80 0.45 
 

A .88 .77 0.48 
 

C .87 .76 0.50 
 

O .77 .59 0.65 

Lenient H .83 .69 0.57 
 

E .84 .70 0.54 
 

X .91 .82 0.43 
 

A .89 .80 0.45 
 

C .88 .78 0.48 
 

O .79 .63 0.61 

 

Finally, with the target test length established, the measurement properties of 

non-adaptive versions of the assessments were simulated. Results are presented in Table 

49. The differences in measurement efficiencies between adaptive and non-adaptive 

assessments were mostly small (Figures 38 and 39), with the non-adaptive conditions 

sometimes even doing better than the adaptive conditions. This likely resulted from 

having a small item bank, with the vast majority of items being used up at 120 pairs, 

thus greatly limiting the potential of adaptive item selection. The biggest difference was 

observed on the Openness to Experience scale, where the adaptive setting led to notably 

higher true-estimated correlations and lower RMSEs under the lenient social desirability 
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condition. This improvement was timely especially given that the Openness to 

Experience scale was the weakest measurement-wise. The practical effect of adaptive 

testing and different social desirability balancing criteria would be examined further in 

the subsequent empirical study. 

Table 49. Simulated non-adaptive measurement properties at 120 pairs with A-

optimality, dynamic scales, and allowing negative pairs 

Social Desirability Scale True-estimated 

score correlation 

Reliability RMSE 

Strict H .83 .68 0.58 
 

E .82 .68 0.56 
 

X .89 .79 0.47 
 

A .88 .77 0.48 
 

C .87 .76 0.50 

  O .77 .59 0.64 

Lenient H .84 .71 0.55 
 

E .82 .68 0.57 
 

X .90 .80 0.45 
 

A .89 .80 0.45 
 

C .87 .75 0.50 

  O .77 .59 0.64 
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Figure 38. Correlations between true and estimated scores 

 

 

Figure 39. RMSEs between true and estimated scores 
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Summary 

This study extended Study 5 and finalised the assessment design decisions for 

the subsequent empirical FC CAT study. It was discovered that allowing negatively-

loading adjective pairs greatly increased the achievable test length with the current item 

bank, as well as improved measurement accuracy for the Honesty-Humility scale which 

had an item pool with a high proportion of negative items. Based on the CAT 

simulation results, a target test length of 120 pairs was chosen for the subsequent 

empirical study. The measurement differences between adaptive and non-adaptive (but 

otherwise optimised) assessments at the chosen test length appeared to be small, but still 

helpful in boosting measurement for the weaker scales especially given the limited item 

bank. 

HEXACO FC CAT Empirical Trial (Study 6) 

The final study of this thesis trialled the newly developed adaptive FC 

HEXACO personality assessment empirically. This study aimed to 1) explore the 

efficiency and utility of adaptive item selection and social desirability balancing criteria 

in empirical applications to identify further research questions and practical challenges; 

2) examine participants’ perceptions and opinions about FC and SS personality 

questionnaires. 

Method 

Sample and instruments 

A large sample (N=1,440 who consented to providing data for research purposes) 

was recruited online in 2019 from a public-facing, pre-employment assessment practice 

website that was also used in the HEXACO item bank development study (Study 4). 

Using the same website for both studies helped to align their sampling populations, as 
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the characteristics of visitors to this website had been relatively stable historically. Just 

like Study 4, participants in this study were invited to complete the questionnaires in 

order to receive a personalised report. 

After giving consent to partake in the research study, participants were invited to 

complete a FC personality instrument. The FC measures were constructed from the 

HEXACO adjective item bank developed in Study 4, using algorithm settings 

determined in Studies 5 and 5b: multidimensional pairs, A-optimality, dynamic scales, 

allowing both adjectives in a pair to be negatively-loading, and a target test length of 

120 pairs. The investigation crossed the settings of adaptive item selection (adaptive 

versus non-adaptive) and social desirability balancing criteria (lenient versus strict, 

defined as per previous studies), giving rise to four design conditions: adaptive with 

lenient social desirability (AL), adaptive with strict social desirability (AS), non-

adaptive with lenient social desirability (NL), and non-adaptive with strict social 

desirability (NS). The adaptive measures always attempted to find the best FC pair for 

the participants’ interim trait estimates (starting from the origin), leading to initially 

similar but subsequently divergent questions for different participants as their trait 

estimates evolved. The non-adaptive measures, on the other hand, always targeted 

measurement at the origin (i.e., the calibration sample mean), and did not change 

between participants as the assessments progressed. A between-subject design was 

adopted – each participant was randomly routed into one of the four design conditions. 

Participants were not informed of the random routing and did not know which route 

they were assigned to. 

Following the FC instrument, each participant then responded to the 60-item 

HEXACO-PI-R (Ashton & Lee, 2009). The administration of the HEXACO-PI-R 

served three purposes. First, it generated HEXACO personality scores as a personalised 
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report to incentivise participation. Second, it provided data to examine the construct 

validity of the new FC measures. Third, it offered assessment experience with the SS 

question format, prior to asking participants to compare the FC and SS question formats. 

Following the FC and SS instruments, participants were presented with 10 

feedback questions about their experience with the two questionnaires (Appendix G). It 

was made clear to the participants that these questions were optional and would not 

affect their personality reports in any way, so that only the participants who were 

motivated to help with the research effort would complete them. The feedback questions 

asked how frequently the participants noticed pairs of adjectives that were both like 

them or both unlike them (i.e., pairs with similar item utilities), in order to investigate 

whether adaptive item selection would lead to notably more difficult choices for the 

participants. The perception around social desirability of items was also investigated, 

through quantifying the perceived frequencies of FC adjective pairs with clearly 

unmatched social desirability, and the perceived frequencies of SS statements with 

clearly desirable or undesirable social connotations. Participants were then asked to 

compare the FC and SS instruments, indicating whether they felt that one of them: 1) 

was easier to complete; 2) made them think deeper about their own personality when 

answering; 3) gave them a better chance to describe their personality fully; 4) gave a 

more preferable test experience on the whole; and 5) made a fairer test for comparison 

between people. Finally, in order to gauge the perception of how fakable the different 

question formats were, participants were asked to imagine someone trying to answer the 

questions dishonestly in order to appear good, and rated how successful they thought 

that person would be in increasing their scores on the FC and SS instruments 

respectively. 
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Finally, participants were presented with six background questions (Appendix 

H). Gender, age and self-rated English proficiency data were collected in order to 

capture the characteristics of the sample. English proficiency data also helped to ensure 

that the final sample consisted of participants who had good understandings of the 

English adjectives used in the FC measures. Then, in order to understand the mindsets 

in which participants were completing the personality questionnaires, the questions 

explored whether their completion was a repeated participation, and whether their 

motivations to participate were associated with gaining experience for pre-employment 

assessments, finding out more about themselves, or something else. Repeated 

completions and uncommon motivations to participate could result in unnatural 

responding behaviours, thus introducing unpredictable contaminations to the study 

results. 

The study website was built using javascript and integrated with R codes 

developed for this thesis. The website was hosted on an Amazon Web Services (AWS) 

server, which was chosen to provide enough computational power for running 

simultaneous FC CAT sessions for multiple participates without causing notable delays 

in adaptive item presentation. In order to monitor that this was indeed the case, the 

server processing time from receiving a FC response to sending the next FC question 

was logged. In addition, the elapsed time between the server sending a FC question till 

receiving the question response was also logged in order to give an estimate of the 

typical time participants spent considering each question. However, these response 

times could be inflated by bad internet connections or by participants taking breaks. 

Given the likelihood of such contaminations, all analysis involving response times were 

merely exploratory. A proper study of response times would necessitate the 

standardisation of study environment across participants, which was not possible with 

this online study. Nevertheless, the data on question generation times and participant 
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response times helped to reconstruct what it felt like for the respondents to complete the 

FC measures in this study. For each participant, the HEXACO-PI-R item response times 

were also logged, as well as the overall elapsed time from the first response (giving 

consent to participate) to the last response (submitting background questions prior to 

receiving personalised report). 

Table 50. Data cleaning criteria 

Data cleaning criteria Cases 

Participants whose English proficiency level did not reach “Professional 

working proficiency” or higher. 

102 

Completions by the same participants (keeping data for the first 

completion only). 

87 

Participants who partook in the study for reasons other than “to practice 

for pre-employment assessments” or “to find out more about myself”. 

31 

Participants who completed the study too quickly (<10 minutes, 

indicating lack of proper consideration) or too slowly (>2 hours, 

indicating presence of distraction during completion). 

57 

Participants with unreliable response patterns (e.g. when the majority of 

the rating scale was never used, when a particular response option was 

overused, when the responses had a very small standard deviation). 

13 

 

Due to the lack of participation control in online studies, extensive cleaning was 

applied in order to ensure data quality (Table 50). The final cleaned sample consisted of 

1,150 cases. The sample was balanced in terms of gender, and all working ages were 

represented (Table 51). About two fifths (39.1%) of the sample indicated that they had 

“native or bilingual proficiency” in the English language, a further third (32.0%) had 

“full professional proficiency”, while the remaining (28.9%) had “professional working 

proficiency”. Most participants (57.8%) spent between 20 to 40 minutes completing the 

study. Participants joined the study in order to practice for pre-employment assessments 

(87.4%) and/or to find out more about themselves (70.6%). With the random routing of 
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different FC measures, each of the four conditions was completed by between 279 to 

301 participants. 

Table 51. Cleaned sample demographics (N=1,150) 

Sample Demographics % 

Gender Male 51.0 

Female 44.8 

Missing 4.3 

Age Up to 20 1.8 

21 to 30 31.7 

31 to 40 32.0 

41 to 50 20.0 

51 to 60 8.7 

Missing 5.8 

English language proficiency Native or bilingual proficiency 39.1 

Full professional proficiency 32.0 

Professional working proficiency 28.9 

 

Across all four conditions, the server was responsive in returning the next 

question in a timely manner despite a traffic flow of approximately 100 completions per 

day. Across all FC questions for all participants, most of the time (96.9% to 99.3% per 

condition) the next question was ready in less than one second, ensuring that the 

assessment experience was not hindered by excessively long wait times due to adaptive 

item selection. Very occasionally (0.02% to 0.09% per condition), the server had taken 

over 5 seconds to return the next question. This occasional delay appeared to be random 

and affected both adaptive and non-adaptive sessions equally. It was likely caused by 

server overload and would not introduce systematic bias to the comparison between 

adaptive and non-adaptive conditions. 
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Analysis strategy 

Analysis explored the effect of three assessment design factors on three types of 

outcomes. The design factors considered were: 1) adaptive versus non-adaptive FC 

measures; 2) strict versus lenient social desirability balancing in FC measures; and 3) 

FC versus SS measures. The outcomes explored included: 1) measurement; 2) response 

times; and 3) participant perception. The relationships between design factors and 

outcomes were examined systematically. Although a small number of predictions were 

made, most of the analysis was exploratory. 

Measurement precision and score distributions 

For FC measures, SEMs were computed according to TIRT information 

functions (Equation 21). In general, adaptive measures were expected to achieve greater 

measurement precision, resulting in lower SEMs. However, based on earlier simulation 

results using the same item pool (Study 5b), measurement improvement due to adaptive 

item selection would likely only occur for some of the scales. In terms of social 

desirability balancing, while lenient criteria tended to lead to better measurement in a 

pure simulation setting (i.e., responding according to latent trait values only), analysis 

would explore whether that would remain the case in a practical setting with the 

presence of actual social desirable responding behaviours. 

In terms of question format, the FC and SS measures utilised completely 

different item banks. As item content played a significant role in measurement, any 

differences in measurement precision cannot be attributed to the question format alone. 

Therefore, the analysis of question format on measurement focused on comparing score 

distributions and intercorrelations instead. For this purpose, it was useful to also 

consider the sample from Study 4, as it deployed adjectives in a SS format, leading to 

three different measurement setups across the two studies: 1) adjectives in FC format, 2) 
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adjectives in SS format, and 3) HEXACO-PI-R statements in SS format. As participants 

for both studies were recruited from the same assessment practice website using the 

same incentive and shared similar characteristics and motivations, it is reasonable to 

assume that the samples were drawn from the same population and are therefore directly 

comparable. The similarity of HEXACO-PI-R scores across samples would signify any 

sampling differences, as this instrument did not change across studies. As for the 

adjective-based scores, moving from SS to FC format would likely introduce some 

differences. More specifically, due to the removal of uniform response biases and the 

reduction of social desirability responding using the FC format, the resulting score 

means and correlations would likely be lowered, and the correlations with HEXACO-

PI-R scores (which would be affected by social desirability responding as per adjectives 

administered in SS format) would likely be reduced. 

Response time 

For each participant, response times were captured for 120 pages of one FC 

adjective pair each, and 20 pages of three SS statements each (the response time per SS 

statement was then calculated as the response time for the entire page divided by three). 

In order to avoid the influence of outliers (i.e., excessively long response times caused 

by slow internet speed or participants taking a break), the analysis of response time 

focused on percentiles rather than means. It was anticipated that adaptive item selection 

would result in pairs of adjectives that had similar utilities for the participant, and strict 

social desirability balancing criterion would result in pairs of adjectives with more 

aligned average endorsement levels in the population. Both scenarios were expected to 

lead to more difficult choices and possibly longer response times. In terms of response 

format, FC adjectives were expected to require less time per question than SS adjectives 

because 1) reading two adjectives would likely be faster than reading a long statement; 
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and 2) FC pairs demanded a simple binary judgement but SS statements demanded a 

more complex judgement against several response categories, which would likely take 

longer (but would also provide more information about the respondent per response). 

Participant perceptions 

Response frequencies for the 10 feedback questions were summarised and 

compared across design conditions. As explained earlier, it was anticipated that adaptive 

item selection/ strict social desirability balancing would result in more difficult choices, 

leading to higher reported frequencies of adjective pairs that were equally like the 

participants/ socially desirable, as well as lower success in faking good. In terms of 

question format, it was anticipated that participants would find the SS format easier to 

complete but also easier to fake good due to its familiarity and transparency. However, 

the FC format was expected to provoke deeper thinking about ones’ personality when 

responding. It remained unclear which type of measure would be perceived as giving 

participants a better chance to describe their personality, giving a more preferable test 

experience, or providing fairer comparisons between people. 

Results 

Measurement and adaptive item selection 

Measurement precision statistics showed that the adaptive conditions tended to 

achieve lower SEMs compared to non-adaptive conditions with the same social 

desirability balancing criteria (Table 52). With lenient social desirability balancing, 

adaptive item selection reduced sample mean SEMs (by –0.014 to –0.002) for all six 

scales. With strict social desirability balancing, adaptive item selection reduced sample 

mean SEMs (by –0.007 to –0.004) for five out of six scales, but instead resulted in 

lower measurement precision for the Conscientious scale (sample mean SEM +0.002). 



178 

 

The full distributions of SEMs across all individuals in the sample are shown in Figure 

40, which confirmed the notable but small advantage of adaptive item selection on 

measurement precision. Simulation Study 5b suggested that the advantage of adaptive 

item selection would be more prominent on the Emotionality, eXtraversion and 

Openness to Experience scales, which was confirmed by the empirical results. 

Table 52. Sample mean SEMs by design conditions 

Scale AL (N=301) AS (N=288) NL (N=279) NS (N=282) 

H 0.527 0.530 0.529 0.534 

E 0.502 0.517 0.516 0.524 

X 0.417 0.423 0.426 0.431 

A 0.400 0.408 0.402 0.411 

C 0.449 0.449 0.452 0.447 

O 0.605 0.614 0.615 0.619 

 

 

 

Figure 40. SEMs by design conditions 
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 The effect of assessment length on measurement precision was also examined 

(Figure 41). For the initial phase of measurement (i.e., up to approximately 25 pairs), 

there were no visible differences between adaptive and non-adaptive conditions, likely 

due to having insufficient information to produce reliable interim trait estimates for 

driving an effective tailored assessment approach. As measurement progressed, interim 

trait estimates improved and adaptive item selection started to make an impact. 

However, for this particular study, the item pool also started drying out (i.e., each 

measure used 240 out of 279 items in the limited pool), thus limiting the potential of 

adaptive item selection towards the later phase of measurement. In the end, only 

Emotionality, eXtraversion and Openness to Experience scales showed visible but very 

small improvements when adaptive item selection was used. 

 

Figure 41. Sample mean SEMs by test length and design conditions 

 

In order to understand the effect of adaptive item selection at the individual level, 

measurement precision was examined against estimated trait values for each scale 

(Figure 42). It appeared that the advantage of adaptive item selection was more 
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prominent for certain trait values. For example, with lenient social desirability balancing, 

adaptive item selection enhanced measurement for low Emotionality and high 

eXtraversion, but made little difference to measurement for high Emotionality or low 

eXtraversion. These results suggested that the relative merit of adaptive item selection 

in increasing measurement precision might be highly dependent on the composition of 

the underlying item pool, as well as the characteristics of the target candidate population. 

 

Figure 42. Sample mean SEMs by trait values and design conditions 

 

Finally, in order to gauge the overall effect of adaptive item selection across all 

six scales simultaneously, measurement precision was examined against the participants’ 

profile distance from the origin (i.e., the starting location of adaptive item selection). 

Figure 43 plots the profile mean SEMs (i.e., average SEM across all six scales for each 

participant) against the Euclidean distance between their estimated score profile and the 

origin. Regardless of design conditions, results showed that the score profiles further 

away from the origin tended to have larger SEMs compared to the score profiles nearer 

to the origin. This observation was not surprising, because item selection was optimised 
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for profiles around the origin at least initially for adaptive sessions, and at all times for 

non-adaptive sessions. Results also showed that adaptive item selection helped to 

counter this effect, by improving measurement precision for profiles further away from 

the origin. 

 

Figure 43. Profile mean SEMs by distance from the origin and design conditions 

 

Measurement and social desirability balancing criteria 

Measurement precision statistics showed that lenient social desirability 

balancing tended to achieve lower SEMs compared to strict social desirability balancing 

with the same item selection method (Table 52). With adaptive item selection, lenient 

social desirability balancing reduced sample mean SEMs (by –0.015 to –0.001) for all 

six scales. With non-adaptive item selection, lenient social desirability balancing 

reduced sample mean SEMs (by –0.009 to –0.005) for five out of six scales, but instead 

resulted in lower measurement precision for the Conscientious scale (sample mean SEM 

+0.004). The full distributions of SEMs across all individuals in the sample are shown 
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in Figure 40, which confirmed the visible but small advantage of lenient social 

desirability balancing on improving measurement precision. Moreover, lenient social 

desirability balancing was sometimes required for the advantage of adaptive item 

selection to emerge (Figure 42), and helped such advantage to appear earlier in the 

assessment process (Figure 41). With lenient social desirability balancing, the difference 

between adaptive and non-adaptive item selection also became more prominent further 

away from the origin (Figure 43). 

Moreover, having lenient social desirability balancing didn’t lead to more 

desirable scores than when strict social desirability balancing criterion was applied. For 

non-adaptive conditions, the sample mean different effect sizes across social desirability 

balancing criteria were negligible (Cohen’s d magnitude < 0.10 on all six factors). For 

adaptive conditions, the sample with lenient social desirability balancing actually 

received generally less desirable scores (Cohen’s d = −0.250 for H, 0.180 for E,  −0.178 

for X, −0.163 for A, 0.079 for C, and −0.158 for O), suggesting that it wasn’t affected 

by social desirability responding more so than the sample with strict social desirability 

balancing. 

It appeared that the lenient social desirability balancing criterion (i.e., item mean 

difference of 1 or less) did not provide less resistance to score inflation than the strict 

social desirability balancing criterion (i.e., item mean difference of 0.5 or less). Rather, 

the strict social desirability balancing criterion was overly restrictive and hindered 

freedom of adaptive item selection in this study, reducing measurement accuracy as a 

result. So the more lenient criterion was more preferable for this study. However, it 

remains unclear whether this conclusion will still hold beyond the range of social 

desirability balancing values considered in this study (i.e., item mean difference of over 

1) – it is plausible that larger social desirability differences in a pair would trigger 
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greater opportunities for social desirability responding, so it is likely that the social 

desirability balancing would become too relaxed after a certain range. Furthermore, the 

extent of social desirability responding is correlated with the stakes of the assessment 

(e.g., Birkeland et al., 2006), so the point at which social desirability responding 

becomes a problem could vary depending on the assessment setting and purpose, with 

high-stakes assessments demanding stricter social desirability balancing criteria. 

Measurement and question format 

Table 53. Score means and standard deviations by measure and study 

Study Study 4 (N=1,685) Study 6 (N=1,150) 

Items Adjectives HEXACO-PI-R Adjectives HEXACO-PI-R 

Format SS SS FC SS 

Scale Mean SD Mean SD Mean SD Mean SD 

H 0.00 0.94 0.00 0.89 –0.25 0.76 –0.23 0.91 

E 0.00 0.95 0.00 0.86 0.22 0.63 0.23 0.85 

X 0.00 0.98 0.00 0.94 –0.24 0.86 –0.11 0.92 

A 0.00 0.98 0.00 0.89 –0.54 0.72 –0.37 0.93 

C 0.00 0.97 0.00 0.92 –0.35 0.64 –0.29 0.96 

O 0.00 0.92 0.00 0.90 –0.16 0.76 –0.10 0.89 

 

The distributions of HEXACO scores from this study and Study 4 are presented 

in Table 53. All scores were calculated using the item parameters estimated as part of 

Study 4. Despite both studies having a common source of participants, on average the 

current study received less desirable scores (i.e., higher mean scores in Emotionality but 

lower mean scores in the other five traits) than Study 4, even on the same HEXACO-PI-

R instrument. This indicates the presence of some differences between the samples from 

the two studies. Interestingly, while the SS adjective scores and SS HEXACO-PI-R 

scores in Study 4 had the same means, the FC adjective scores in the current study 
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tended to be lower than the SS HEXACO-PI-R scores for the same sample. This was 

likely due to the FC format preventing uniform response biases (e.g., acquiescence) and 

reducing social desirability responding. Moreover, the FC adjective scores demonstrated 

smaller variances compared to scores based on SS measures, possibly as a result of the 

shrinkage caused by multidimensional Bayesian scoring. 

Table 54. Score correlations by measure and study 

Study Scale H E X A C O 

Study 4 

(N=1,685) 

H .59 –.14 .24 .42 .37 .15 

E –.47 .60 –.36 –.27 –.23 –.12 

X .37 –.55 .79 .36 .44 .27 

A .72 –.51 .54 .67 .36 .17 

C .64 –.61 .50 .64 .75 .20 

O .37 –.40 .42 .46 .44 .63 

Study 6 

(N=1,150) 

H .33 –.16 .24 .40 .39 .20 

E –.24 .45 –.33 –.21 –.19 –.19 

X .14 –.49 .61 .33 .37 .34 

A .36 .01 .21 .34 .31 .15 

C .18 –.22 .27 .05 .43 .22 

O .08 –.25 .33 .00 .15 .52 

Above diagonal: HEXACO-PI-R score intercorrelations (SS format). 

Below diagonal: Adjectives score intercorrelations (SS or FC format). 

Diagonal: Correlations between HEXACO-PI-R and adjective measures. 

 

The correlations between estimated scores were also considered. Table 54 

presents the intercorrelations between HEXACO scores from the same measure (above 

diagonal for HEXACO-PI-R, below diagonal for adjectives) and the convergent 

correlations across different measures for the same sample (on the diagonal). The 

intercorrelations of HEXACO-PI-R scores were very stable across studies, with all 

differences having a magnitude smaller than 0.1. This was expected as the HEXACO-
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PI-R instrument was identical across studies and the sampling population remained the 

same. The intercorrelations of adjective-based scores, however, differed significantly 

across studies. Adjective-based scores using the SS format (i.e., Study 4) demonstrated 

much stronger correlations than those using the FC format (i.e., Study 6). For example, 

the correlations between Agreeableness and Conscientiousness was .64 based on SS 

scores, but .05 based on FC scores. Similarly, the correlations between Agreeableness 

and Emotionality was –.51 based on SS scores, but .01 based on FC scores. It should be 

noted that the low intercorrelations of FC scores were not a result of the FC scores 

being ipsative – the average off-diagonal correlations for the FC adjective scores was 

small yet positive (.04), whereas ipsative scores would have resulted in negative average 

off-diagonal correlations. It was noted that the correlations based on FC adjective scores 

were more conceptually plausible than those based on SS adjectives. The inflation of 

intercorrelations between SS adjective scores thus suggested that a strong method factor 

was at play (likely an ideal employee factor given the source of the samples), making 

the observed scores across different traits more closely aligned than their conceptual 

relationships. Also, the FC response format resulted in score correlations that were more 

in line with (but slightly lower than) those from the HEXACO-PI-R instrument. It was 

interesting that, despite adopting a SS response format, the HEXACO-PI-R instrument 

appeared to be much less affected by the method factor than the adjectives. The reason 

of this difference might be the vagueness of the adjectives, which might elicit quick 

system 1 responses (Kahneman, 2011) and making them more prone to biases including 

socially desirable responding, whereas HEXACO-PI-R statements provide more context 

and thus likely encourage system 2 thinking (Kahneman, 2011) more so than simple 

adjectives. Finally, the convergent correlations between adjective and HEXACO-PI-R 

scores were stronger in Study 4 (.59 to .79, mean .67) than Study 6 (.33 to .61, 

mean .45). This result suggested that the response format had a substantial effect on 
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construct validity. Note that the biggest reductions in convergent validity were observed 

for Agreeableness (–0.33), Conscientiousness (–0.31) and Honesty-Humility (–0.26), 

which are consistently found to be most important in the employee selection settings 

and thus providing supporting evidence that the difference in construct validity is 

related to method (i.e. response format). 

Response time 

The distributions of question-level response times (seconds per FC pair) across 

all questions for all candidates (120 × 1150 = 138,000 data points in total) are shown in 

Table 55. In general, the response times were very comparable across design conditions. 

In line with the direction of prediction, adaptive conditions resulted in consistent (Table 

56) but negligible (Table 55) increases in response time. However, contrary to 

prediction, strict social desirability matching showed consistent (Table 56) but 

negligible (Table 55) decreases in response time. One possible explanation for the latter 

was that, when social desirability was less balanced within a FC pair, participants spent 

slightly longer weighing up their own personality against social expectations; whereas 

when social desirability was balanced, participant only needed to consider their own 

personality. This observation was in line with suggestions that when candidates were 

presented with equally desirable or undesirable items, they would give up guessing 

which ones were more desirable and respond honestly. Nevertheless, the differences 

observed were very small and must be interpreted with caution given the limitations 

around data collection settings in this study. The true effect of adaptive item selection 

and/or social desirability balancing on response time needs to be studied in a more 

controlled environment than this unsupervised online study. 
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Table 55. FC pair response time percentiles by design conditions 

Percentiles AL 

(N=36,120) 

AS 

(N=34,560) 

NL 

(N=33,480) 

NS 

(N=33,840) 

10th 2.93 2.85 2.72 2.75 

20th 3.55 3.44 3.31 3.32 

30th 4.12 4.01 3.88 3.86 

40th 4.73 4.61 4.51 4.40 

50th 5.46 5.33 5.21 5.03 

60th 6.44 6.36 6.30 5.96 

70th 7.69 7.74 7.66 7.11 

80th 10.12 10.45 10.21 9.18 

90th 18.25 18.56 18.17 15.11 

 

Table 56. Kruskal-Wallis rank sum test of response time by condition 

Comparison Kruskal-Wallis 

chi-squared 

df p-value Epsilon squared 

effect size 

All four conditions 302.76 3 < 0.001 0.0022 

A vs N 234.84 1 < 0.001 0.0017 

S vs L 64.08 1 < 0.001 0.0005 

AL vs NL 76.99 1 < 0.001 0.0011 

AS vs NS 158.65 1 < 0.001 0.0023 

AL vs AS 13.43 1 < 0.001 0.0002 

NL vs NS 51.52 1 < 0.001 0.0008 

 

The analysis of response time with respect to question location gave rise to an 

interesting observation. For the FC measures, there were clear signs that response time 

decreased greatly as the assessment continued – the median response time was about 

eight seconds per pair at the start and reduced to about five seconds per pair at the end 

(Figure 44). The reduction in response time likely resulted from participants getting 

more comfortable with the FC response format, or/and participants getting less 

motivated towards the end of a long questionnaire. Response time for the SS measure 
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remained relatively stable throughout the assessment – after familiarisation with the 

initial couple of pages taking nearly nine seconds per item, the median response time 

quickly settled to around seven seconds per item till the end (Figure 45). The median 

response time of about seven seconds per rating scale statement was in line with the 

historical response times on similar content by participants from the same pre-

employment assessment practice website. The stable and historically-aligned response 

times on HEXACO-PI-R despite it being taken after the 120-pair FC measure suggested 

that the likelihood of fatigue leading to reduced response times was low, and thus the 

decreasing response time for FC pairs was more likely attributable to increased 

familiarity and comfort with the FC response format. 

 

Figure 44. Median FC pair response time by question location and design conditions 
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Figure 45. Median SS item response time by question location and design conditions 

 

Participant perceptions 

Despite clearly stating that the 10 feedback questions (Appendix G) were 

optional and inconsequential, most participants were still motivated enough to provide 

responses to them to help with the research effort (valid N=1,045 to 1,090 per question). 

Despite having “don’t know” as one of the response options, all respondents indicated 

the approximate frequency in which they encountered adjectives with similar utility 

(Table 57). The same was not true for item social desirability, where a small number of 

respondents indicated that they “don’t know” (6.4% and 6.7% for FC and SS formats 

respectively, Table 57). These respondents likely were not considering social 

desirability when answering the questionnaires. Contrary to a priori predictions, 

participants across different design conditions appeared to share very similar 

observations around item utility and social desirability, with no significant differences 

across conditions (Table 58). 
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Table 57. Participant perception around item utility and social desirability 

Frequency of 

occurrence 

FC: 

similar utility 

 

(N=1,045) 

FC: 

similar social 

desirability 

(N=1,081) 

SS: 

obvious social 

desirability 

(N=1,090) 

0% of the time 1.1% 1.5% 3.3% 

25% of the time 30.8% 36.7% 35.3% 

50% of the time 42.8% 34.4% 30.6% 

75% of the time 23.3% 18.8% 19.9% 

100% of the time 2.0% 2.2% 4.1% 

Don’t know 0.0% 6.4% 6.7% 

 

Table 58. Kruskal-Wallis rank sum test of participant perception of item utility and 

social desirability 

Feedback question* Kruskal-Wallis 

chi-squared 

df p-value 

FC: similar utility 2.84 3 .42 

FC: similar social desirability 6.70 3 .08 

SS: obvious social desirability 2.46 3 .48 

* For significance testing, "don't know" responses were treated as missing. 

 

Participants also compared their experience across the 120-pair FC and 60-item 

SS instruments (Table 59). In terms of ease of completion, as anticipated the majority 

(70.0%) of respondents preferred the SS instrument, but about one in six (16.3%) 

preferred the FC instrument despite it containing twice as many questions, and about 

one in seven considered them to be the same (10.8%) or had no opinion (3.0%). Very 

similar percentages were observed when respondents considered which instrument gave 

them a better chance to describe their personality. On the other hand, as anticipated, the 

FC instrument was more successful than the SS instrument (63.1% versus 25.9%) in 

provoking respondents to think deeper about their own personality. Overall, more 
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respondents preferred the testing experience of the SS instrument (63.0%) than the FC 

instrument (13.1%), and about one in four respondents found them to be the same 

(17.7%) or had no opinion (6.2%). In terms of perceived fairness for comparison 

between people, just over half (53.5%) of the respondents considered the SS instrument 

to be fairer, about one in seven (13.7%) found the FC instrument fairer, about one in 

seven (14.0%) considered both instrument to be equally fair, and nearly one in five 

(18.9%) did not have an opinion. Participants across different design conditions 

appeared to share very similar opinions when comparing the questionnaires (Table 60). 

Table 59. Participant opinions on the FC and SS questionnaires 

Question N FC SS The 

same 

Don’t 

know 

Easier to complete 1082 16.3% 70.0% 10.8% 3.0% 

Think deeper about own personality 1083 63.1% 25.9% 8.0% 3.0% 

Better chance to describe personality 1082 16.1% 68.2% 9.9% 5.8% 

More preferable test experience 1082 13.1% 63.0% 17.7% 6.2% 

Fairer for people comparison 1082 13.7% 53.5% 14.0% 18.9% 

 

Table 60. Kruskal-Wallis rank sum test of participant opinions on the FC and SS 

questionnaires by condition 

Question format comparison* Kruskal-Wallis 

chi-squared 

df p-value 

Easier to complete 1.60 3 .66 

Think deeper about own personality 2.83 3 .42 

Better chance to describe personality 2.00 3 .57 

More preferable test experience 6.88 3 .08 

Fairer for people comparison 1.20 3 .75 

* For significance testing, responses were reordered so that "Rating Scale"=–1, 

"The same"=0, "Forced Choice"=1. "Don't know" responses were treated as 

missing. 
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Table 61. Participant opinions on question formats and faking good 

Score Inflation Success Rating Scale 

(N=1,090) 

Forced Choice 

(N=1,090) 

Not at all successful 20.0% 35.8% 

Somewhat successful 41.9% 40.5% 

Very successful 21.5% 6.1% 

Extremely successful 3.9% 1.3% 

Don't know 12.8% 16.3% 

 

Table 62. Kruskal-Wallis rank sum test of participant opinions on question formats and 

faking good by condition 

Score inflation success* Kruskal-Wallis 

chi-squared 

df p-value 

SS 1.82 3 .61 

FC 3.14 3 .37 

* For significance testing, "don't know" responses were treated as missing. 

 

Finally, participants considered how successful a dishonest candidate might be 

in inflating scores for the SS and FC instruments. While most respondents considered 

the SS instrument to be fairer when comparing between people (Table 59), the FC 

instrument was considered less fakable (Table 61). About a third (35.8%) of 

respondents indicated that faking good on the FC instrument would be “not at all 

successful”, compared to one in five (20.0%) for the SS instrument. About one in five 

respondents (21.5%) thought faking the SS instrument could be done “very 

successfully”, compared to merely 6.1% who thought the same for the FC instrument. 

When the ratings were averaged across participants (coding “Not at all successful” to 

“Extremely successful” as 1 to 4, and coding “Don't know” as missing), the means were 

significantly different between SS and FC (SS mean = 2.105, FC mean = 1.677, t = –
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16.797, df = 883, p < 0.001). Opinions appeared to be relatively stable across 

participants in different design conditions (Table 62). 

Discussion 

This study explored the empirical effect of adaptive item selection, social 

desirability balancing criteria and question format on measurement, response time, and 

participant perception. The analysis was largely exploratory and the results were mixed. 

Adaptive item selection 

It was confirmed that adaptive item selection achieved greater measurement 

precision than non-adaptive item selection. However, the incremental gain of adaptive 

item selection on measurement precision was much smaller than those reported in 

similar literature (e.g., Joo et al., 2019; Stark & Chernyshenko, 2007, 2011; Stark et al., 

2012). One contributing factor to this was the choice of baseline reference in this study 

– while CAT research typically adopted random item selection with some content 

constraints as the baseline for comparison (e.g., Stark & Chernyshenko, 2011), this 

study chose a more realistic operational alternative that incorporated measurement 

optimisation considerations (i.e., by choosing FC pairs to maximise information gain at 

the population average as opposed to choosing FC pairs randomly). In other words, this 

study explored the practical return on investment when converting an otherwise-

optimised static assessment into an adaptive one. Another contributing factor to the 

small adaptive advantage was the very limited item bank, with each FC assessment 

using up 240 out of 279 available items, thus greatly limiting the possibility and 

potential of adaptive item selection towards the end of the assessment sessions. 

Therefore, the presence of a large and varied item bank would likely be a pre-requisite 

for effective FC CAT. Nevertheless, the benefit of adaptive item selection on 

measurement precision was consistent, and became more prominent when considering 
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particular scales or score profiles. In particular, profiles further away from the sample 

mean benefitted more from adaptive item selection. There were also signs that the 

benefit of adaptive testing varied across different value ranges of the same trait, 

suggesting the presence of complex interactions between adaptive item selection, item 

bank composition and candidate score distributions. Such interactions made the 

generalisation of results across different item banks particularly difficult, and further 

studies with different item banks would be desirable to understand FC CAT better. 

 Unfortunately, adaptive item selection did not produce any notable measurement 

advantages at shorter test lengths. The lack of improvements at the beginning of 

assessment despite having plenty of items to choose from was likely due to the 

unreliability of interim trait estimates. Indeed, despite its bias-reducing qualities, the FC 

pair format elicits less information per binary response compared to a SS item with a 

more detailed graded response (Brown & Maydeu-Olivares, 2017). There are multiple 

implications of this finding in practice. At the simplest level, there might be a test length 

below which adaptive item selection would not be worthwhile for FC assessments. 

Instead, it would be more economical to delay adaptive item selection till after a certain 

test length has been reached (e.g., by administering a fixed optimal test first), and/or 

make use of other data (e.g., prior information from alternative data sources, initial SS 

questions) to arrive at more reliable interim trait estimates prior to converting to FC 

CAT for reducing SEMs for the scales that are still lacking in measurement. 

Alternatively, the use of larger FC blocks (e.g., triplets, quads) would result in more 

information gain per question than pairs (Brown & Maydeu-Olivares, 2017) while also 

being less demanding on the richness of the item bank (i.e., larger blocks produce more 

pairwise comparisons per item used), thus allowing faster convergence to reliable 

interim trait estimates but at the expense of greater computational complexity in item 

selection and higher cognitive complexity for the candidates. At a more technical level, 



195 

 

once computational power ceased to be a limiting factor, it will be beneficial to explore 

item selectors that don’t rely on point estimates (e.g., KLI, KLP, MUI and CEM, all 

requiring intensive numerical integrations in the multidimensional trait space). The 

power of item selectors that consider the entire posterior distribution has been 

demonstrated by past research (see Chapter 3 and Appendix D) and it is reasonable to 

hypothesise the findings would generalise to FC CAT. 

 The impact of item selection methodology was largely limited to measurement 

precision only. Compared to static assessments, adaptive item selection had 

inconsequential impact on response times, and made practically no impact on 

participant perceptions. While candidates may hold different views about adaptive and 

non-adaptive assessments, the actual assessment experience appeared to be largely 

indistinguishable in practice. 

Social desirability balancing 

There is a trade-off between the strictness of social desirability balancing and the 

effectiveness of adaptive item selection – a more stringent social desirability balancing 

criterion inevitably reduces the number of acceptable FC blocks, therefore reducing the 

potential of adaptive item selection. In this study, the more lenient social desirability 

balancing criterion indeed lead to better measurement precision. However, social 

desirability balancing is important for ensuring resistance against faking (Krug, 1958). 

Therefore, the setting of the social desirability balancing criterion is a balancing act – it 

should be as lenient as possible, but not so lenient that there are notable “right answers” 

in FC blocks. The optimal threshold could be identified through an empirical study that 

asks participants to purposefully choose the “right answer” in FC blocks with different 

levels of social desirability balancing. Note that, in a realistic assessment setting, a 

candidate will not necessarily choose the “right answer” even if they can spot it. It is 
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hypothesised that whether a candidate would choose the “right answer” over their real 

answer depends not only on the size of the difference in social desirability of items, but 

also on the stakes of the assessment. Therefore, low-stakes assessments could likely 

afford to use more lenient criteria, while high-stakes assessments should use more 

stringent thresholds. For a low-to-medium stakes assessment setting as in the current 

study (i.e., assessment results were inconsequential for the participants, but most of 

them were likely answering the questions as if they were applying for a job so as to 

practice for their actual pre-employment assessments), the lenient criteria used was 

adequate, and could possibly be relaxed even further without impairing fake resistance 

of the FC measures. For high-stakes assessments, social desirability balancing becomes 

more important, and the presence of a large and varied item bank becomes necessary for 

effective FC CAT. In other words, for high-stakes assessments with a limited item bank, 

the strict social desirability balancing requirement may negate any measurement 

improvement potential of adaptive item selection. In such a situation, the benefits of 

adaptive item selection are mainly around enhancing test security, by creating different 

question sequences for different candidates. 

Social desirability balancing criteria had inconsequential impact on response 

times. Also, the use of different social desirability balancing criteria led to no notable 

differences in participant perceptions, suggesting that the assessment experience 

appeared to be largely indistinguishable in practice. 

Question format 

In line with previous research, data showed that a strong bias affected SS 

responses but not FC responses (e.g., Brown et al., 2017). The SS method in both Study 

4 and Study 6 greatly inflated the observed score correlations between conceptually 

distinct latent traits. It was discovered that quick and context-poor adjectives were 
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especially prone to biases in a SS format. Compared to adjectives, the HEXACO-PI-R 

statements were affected to a much lesser extent, but still had higher scale 

intercorrelations and slightly higher sample mean scores than FC measures. With a 

higher stakes sample than Study 4 or Study 6, the inflation effect of the SS method 

would likely become more prominent (e.g., Lee et al., 2019), making FC a better 

assessment option. Therefore, for brief item content such as adjectives, the SS response 

format should be avoided, and a FC format would elicit more meaningful responses. For 

more complex item content such as HEXACO-PI-R statements, the SS format appeared 

to be adequate for the current samples but would likely be disadvantaged in high-stakes 

samples. 

In terms of assessment experience, the SS question format appeared to be the 

accepted status quo amongst participants currently. However, there were also signs that 

participants could became more comfortable with the FC format if given more exposure, 

as indicated by faster response times as the FC assessment progressed. Indeed, at the 

end of the study, more than one eighth of participants indicated a preference for the FC 

questionnaire despite it containing twice as many questions as the SS instrument. 

Nevertheless, until the FC question format becomes commonly accepted, it is important 

to consider measures for improving candidate experience when using FC instruments. 

For example, assessment instructions could provide detailed explanations and examples 

of how to understand and answer FC questions, and how the collected responses would 

be interpreted. An enquiry from a participant highlighted a common worry and 

confusion with the FC format – that choosing A over B would be interpreted as saying 

“yes” to A and saying “no” to B. Therefore, it is important to explain the relative nature 

of FC responses to respondents, especially when most of them are used to providing 

absolute responses in a SS format. 
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Limitations 

This empirical study explored a very specific instance of TIRT-based 

multidimensional FC assessment – it made use of a specific HEXACO item bank; it 

explored the effect of only one content rule (i.e., social desirability balancing criteria); it 

adopted the simplest pair format which is not the most information-efficient FC design; 

and it adopted an item selector that relies heavily on interim point estimates of trait 

values. Also, the instruments were completed under only one specific assessment setting 

(i.e., practice for pre-employment assessments). Given the numerous design possibilities 

and assessment situations, it would be unwise to conclude the merits of TIRT-based FC 

CATs based on the findings of this one study. Nevertheless, this study provided an 

initial exploratory baseline for furthering research on FC CATs using the TIRT model. 

Conclusions 

A simple but operational adaptive FC personality assessment was developed and 

deployed. A well-fitting item bank of 279 adjectives was collated (Study 4) that 

measured the HEXACO personality model with good convergent and divergent validity, 

although subsequent studies showed that a larger and more varied item bank would have 

been more desirable for use in a CAT. A simulation study using this new item bank 

(Study 5) largely replicated previous findings using simulated item banks (Study 3), 

favouring A-optimality as the best item selector. Moreover, with a realistic item bank, 

the distribution of item parameters varied between scales, which resulted in variable 

levels of measurement accuracy across scales. In the case of this study, it appeared that 

having fewer but more discriminating items was more beneficial than having more 

items with lower discriminations. A follow-up simulation study (Study 5b) further 

refined the CAT algorithm design for the FC HEXACO measure, and explored the 

differences between adaptive and non-adaptive (but with measurement optimised for the 
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average person) versions of the FC HEXACO measure. Simulation showed that the 

advantage of adaptive item selection over non-adaptive item presentation appeared to be 

small on average, but CAT was helpful in boosting measurement for the weaker scales. 

Finally, the adaptive and non-adaptive FC HEXACO personality measures were trialled 

empirically (Study 6). As predicted by the simulation results (Study 5b), adaptive item 

selection resulted in some small gains on measurement precision on average. Moreover, 

certain score profiles, for example those further away from the population mean, 

benefitted more from adaptive item selection. However, there was no notable advantage 

of adaptive item selection at shorter test lengths despite having plenty of items to 

choose from, signalling the weakness of item selectors that rely on interim point 

estimates of the trait values, which could be fairly inaccurate at the beginning of the 

assessment. Instead, it would be more economical to deploy adaptive item selection at 

later parts of an assessment, and/or use larger FC blocks that give more information per 

question, and/or employ global information item selectors (computational power 

permitting) that don’t rely on point estimates. Aside from its impact on measurement 

precision, adaptive item selection didn’t appear to have any effect on response times or 

participant perceptions. 

In line with previous research findings, empirical data (Studies 4 and 6) showed 

the existence of a method bias when the SS response format was used, leading to more 

desirable observed scores as well as inflated score correlations. Adjectives were notably 

more prone to this bias compared to HEXACO-PI-R statements, but remained 

unaffected when instead administered in a FC format with adequate social desirability 

balancing. For many respondents, however, the FC format wasn’t preferable compared 

to the SS format as the familiar and accepted status quo. This was despite most 

respondents acknowledging that the FC format elicited deeper thinking about their 

personality as well as offered less opportunities for faking good. Therefore, when using 
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the FC response format, researchers should take care to provide participants with a clear 

explanation of how FC responses would be interpreted, especially when participants 

might be required to provide response to FC blocks consisting of only negative-

sounding items.  
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CHAPTER 5: GENERAL DISCUSSIONS 

 This thesis mapped out a rough blueprint for the development of dominance FC 

CATs using the TIRT model. As this thesis followed a sequential structure where each 

chapter’s conclusions informed key decisions in the next one, full results, discussions, 

limitations and recommendations are provided at the end of each chapter. Here, a brief 

summary of the key findings from each area of investigation is provided. Then, main 

limitations and suggestions for further research are outlined. Finally, implications for 

research and practice are discussed. 

Thesis Summary 

The development of a good FC CAT is a journey that requires considerations 

from many angles. This thesis investigated the key methodologies for TIRT-based FC 

CAT, covering research questions in essential assumption testing, CAT algorithm 

optimisation, and operational deployment. 

From a feasibility perspective, in order to adaptively assemble items into FC 

blocks, the invariance of item parameters is essential. Study 1 provided empirical 

support for this requirement based on large operational samples, showing that person 

score estimation remained very stable despite minor violations to the item parameter 

invariance assumption. Study 1 also suggested practical remedies for minimising the 

effect of context when creating FC blocks, including ensuring the items had similar 

social desirability, and avoiding combining items that might interact semantically.  

From an optimality perspective, the automated test assembly algorithm plays an 

important role in upholding both content and measurement requirements in a CAT. 

Chapter 3 systematically reviewed CAT algorithm components for TIRT-based FC 

CAT. Moreover, a series of intensive simulation studies were conducted to compare the 
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performance of trait estimators (Study 2) and item selectors (Studies 3 and 5), leading to 

the recommendations of the MAP trait estimator and the A-optimality item selector as 

best choices for TIRT-based FC CAT in general, although D- and C-optimality could 

potentially be more optimal for specific assessment content and setup. 

From a practical perspective, Simulation (Study 5b) and empirical trialling 

(Study 6) demonstrated the power of CAT in improving measurement precision, and 

also showed that the magnitudes of such improvements were heavily dependent on both 

the item bank characteristics and the respondent profiles. In terms of respondent 

feedback, no systematic differences were found between respondents taking adaptive 

and non-adaptive FC assessments. However, respondents expressed a predominant 

preference for the assessment experience of SS questionnaires over FC assessments. 

Therefore, researchers and practitioners should take extra care to inform and reassure 

participants when deploying FC assessments. 

Incidentally, while the focus of this thesis was on testing and refining the 

psychometric methodologies underlying TIRT-based FC CAT, in the fulfilment of this 

purpose an operational FC CAT for the HEXACO personality model was created 

(Studies 4, 5b and 6). This assessment may be used in future research studies 

concerning the HEXACO personality model. 

Limitations and Further Research 

Constrained by the scope of this thesis, the investigations have several 

limitations and a number of areas inviting further exploration. While study-specific 

limitations have been discussed in previous chapters, the overarching gaps and further 

research questions in psychometric methodology and empirical practice are outlined 

here. 
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Psychometric Methodology 

Limited by computational power, this thesis only explored a selection of local 

information item selectors. Once computational power ceased to be an inhibition, or/and 

simplifying approximations became available for the calculations involved, the global 

information item selectors should be re-visited. It would also be beneficial to explore 

some item selector modifications. For example, measurement precision might be 

improved further by applying item bank stratification (Chang & Ying, 1999), preserving 

highly discriminating items till later in CAT sessions. Moreover, this thesis largely 

focused on comparing the measurement efficiency and precision of item selectors, but 

other aspects of item selector performance could also be important in practice. For 

example, item bank utilisation and item exposure control might be relevant for high-

stakes FC assessments (e.g, Chen et al., 2019). The way item selectors could interact 

with changing item characteristics could also be informative when working with various 

operational item banks. 

The implementation of content rules in this thesis was additive, static and 

absolute, i.e., the rules stacked on top of each other, remained unchanged throughout a 

CAT session, and stayed firmly in place even if they became too restrictive for item 

selection (as seen in Study 5 with a fixed scale plan). For complex assessment designs 

with many content rules, such an implementation could quickly become prohibitive 

especially with smaller item banks. A more fluid implementation considering the 

interplay of different content rules as well as information gain requirements would be 

more effective in practice. In fact, a number of content rule management heuristics have 

been developed, for example, the weighted deviation method (Stocking & Swanson, 

1993), the shadow test approach (van der Linden, 2005), and the maximum priority 

index method (Cheng & Chang, 2009). Incorporating such content rule management 
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heuristics into FC CAT algorithms could be very beneficial for complex assessment 

designs or/and small item banks. 

Constrained by time, this thesis only studied FC CAT using pairs. However, 

some operational FC assessments adopt larger FC blocks, e.g., the OPQ32 have quad 

and triplet versions (Bartram et al., 2006; Brown & Bartram, 2009-2011), while the 

Employee Selection Questionnaire-2 (Jackson, 2001) and the Gordon Personal Profile 

Inventory (Gordon, 1993) both use most/least quads. As larger FC blocks tend to be 

more efficient in gaining information, it would be beneficial to expand FC CAT 

methodology to larger block sizes. Joo, Lee, & Stark (2018, 2019) explored FC CAT 

with triplets and quads using ideal-point items modelled by the generalized graded 

unfolding model (Roberts, Donoghue, & Laughlin, 2000), which could inform research 

on the same front but instead using dominance items and associated IRT models. 

Empirical Practice 

While Study 1 provided reassurance on the stability of item parameters thus 

enabling FC CAT with item shuffling, the effect of context on item functioning in FC 

blocks should be investigated further. Empirical studies may examine different 

psychological constructs (e.g., personality vs. interest), item formats (e.g., adjectives vs. 

statements), or assessment settings (e.g., low vs. high stakes), seeking to verify the 

invariance of item parameters or to identify the conditions where this assumption would 

be violated. Apart from Lin et al. (2013), Study 1 (Lin & Brown, 2017), and 

subsequently Morillo et al. (2019), FC CAT researchers have largely taken the 

parameter invariance assumption for granted with no empirical justification. 

In lieu of item social desirability estimates, this thesis adopted the item mean 

utility parameter as a proxy. These two item attributes are highly correlated – both 

concern the ease with which respondents endorse an item. However, they’re also subtly 
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different – item utility is viewed from one’s own perspective (i.e., “Am I X”) while 

social desirability considers the perception in others’ eyes (i.e., “Would others find X 

desirable”). To illustrate this divergence, consider the item “I never lie” (high social 

desirability), which is hard for the average person to achieve (low item mean utility). 

Therefore, where possible, empirical ratings of item social desirability should be 

collected and deployed. In order to maximise resistance against faking, rating 

instructions should be drafted to reflect the context in which the FC assessments would 

be taken (Converse et al., 2010). 

Last but not least, this thesis offered only one empirical instance of FC CAT 

(Study 6). In order to further the understanding of FC CAT with dominance items, it 

would be necessary to conduct more empirical studies with varying scale constructs, 

item banks, assessment designs, respondent population, etc. At the time of writing, I 

was unable to find more reported empirical studies of FC CAT using dominance items 

and non-ipsative IRT scoring models. 

Implications for Research and Practice 

This thesis extended the literature on FC assessments using the TIRT model. In 

particular, it addressed some knowledge gaps regarding FC CAT using dominance 

items in much greater depth than previous studies on the same topic (Brown, 2012; Lin 

& Brown, 2015). Findings of this thesis inform research and practice around FC 

assessments scored using the TIRT model (e.g., the OPQ32 in Study 1; the Motivational 

Value Systems Questionnaire by Merk, Schlotz, & Falter, 2017), providing 

considerations and recommendations for the psychometric design of such assessments. 

Findings of this thesis also inform FC assessment development even if the TIRT model 

isn’t adopted (e.g., see meta-analysis of FC measures by Salgado, 2014, 2015, 2017), 

providing empirical insight into respondent behaviours and reactions with respect to the 
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FC question format in general. Finally, as many personality items were developed under 

the dominance rather than ideal-point paradigm (e.g., the International Personality Item 

Pool, Goldberg et al., 2006), improving the understanding of FC CAT methodologies 

for dominance items opens up more opportunities for leveraging such legacy items for 

future FC CAT applications. 

Ultimately, this thesis aims to increase the fairness and accuracy of personality 

assessments through CAT, which is achieved from three angles: 1) adopting the FC 

response format in order to reduce response biases and distortions; 2) selecting items 

adaptively in order to increase the accuracy of person score estimation; and 3) 

understanding participants’ views on the FC question format in order to enhance 

assessment experience and engagement. As personality assessments are frequently used 

to drive educational, occupational, and even clinical decisions, methodologies that 

improve the fairness and accuracy of personality assessments even just slightly can still 

have large cumulative benefits when applied to a large number of assessment takers, 

leading to improved decision making and human cost savings. 
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APPENDIX A: LIST OF MATHEMATICAL NOTATIONS 

Notation Definition 

𝑖, 𝑘, 𝑙, 𝑜 Individual items 

𝑖1, 𝑖2, … A string of questions in the order they appeared 

in a test 

{𝑖, 𝑘}, {𝑖, 𝑘, 𝑙}, {𝑖, 𝑘, 𝑙, 𝑜} FC blocks with two, three, or four items 

{𝑖1, 𝑘1}, {𝑖2, 𝑘2}, … A string of pairwise comparisons in the order 

they appeared in a test 

𝑛 The number of items within a FC block 

𝑠, 𝑣 Individual traits/dimensions/scales 

{𝑠, 𝑣} A pair of traits/dimensions/scales to be measured 

by a FC block 

𝑟 The number of item responses from a respondent 

𝑟 − 1 The number of item responses already collected 

from a respondent in a CAT session 

𝑅𝑟 The set of unused items after administering  

𝑟 − 1 questions/ when selecting the 𝑟𝑡ℎ question 

| 𝑅𝑟| The number of unused items after administering 

𝑟 − 1 questions/ when selecting the 𝑟𝑡ℎ question 

𝑆 Number of traits/dimensions measured 

𝑠𝑖 The trait indicated by a unidimensional item 𝑖 

𝒄𝒐𝒓 𝑆 × 𝑆 correlation matrix of latent traits 

𝒄𝒐𝒗 𝑆 × 𝑆 variance-covariance matrix of latent traits 

𝜽 = (𝜃1, … , 𝜃𝑆)
𝑇 Column vector of a respondent’s latent trait 

values – unobserved true scores 

�̂�𝑟−1 = (𝜃1
𝑟−1, … , 𝜃𝑆

𝑟−1)
𝑇
 Column vector of a respondent’s latent trait 

values – estimated scores after responding to 𝑟 −

1 questions 

𝜼 = (𝜂1, … , 𝜂𝑆)
𝑇 Column vector of a respondent’s latent trait 

values – unobserved true scores 
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Notation Definition 

𝜼∗ = (𝜂1
∗, … , 𝜂𝑆

∗)𝑇 Column vector of a respondent’s latent trait 

values – unobserved true scores in a different 

metric (Chapter 2/ Study 1) 

𝒙, 𝒚 In Chapter 2: column vectors of linear 

transformation coefficients between 𝜼 and 𝜼∗ 

(i.e., 𝜼∗ = 𝒙𝑻𝜼 + 𝒚) 

In Appendix D: generic random variables, 

possibly multidimensional, can be continuous or 

discrete. 

�̂� = (�̂�1, … , �̂�𝑆)
𝑇 Column vector of a respondent’s latent trait 

values – estimated scores 

�̂�𝑟−1 = (�̂�1
𝑟−1, … , �̂�𝑆

𝑟−1)𝑇 Column vector of a respondent’s latent trait 

values – estimated scores after responding to 𝑟 −

1 pairwise comparisons 

�̂�𝑀𝐿, �̂�𝑊𝐿, �̂�𝑀𝐴𝑃, �̂�𝐸𝐴𝑃 Column vector of a respondent’s latent trait 

values – estimated scores using ML/ WL/ MAP/ 

EAP estimators 

𝜂𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 A scalar overall score calculated as a weighted 

sum of different trait scores 

𝒘 = (𝑤1, … , 𝑤𝑆)
𝑇 A column vector of weights assigned to traits in 

item selectors (where applicable), can be a 

constant or a function 

𝑈𝑖 Binary response to a single item 𝑖 

𝑌{𝑖,𝑘} Binary response to a pairwise comparison {𝑖, 𝑘} 

𝒀 An entire response string of binary pairwise 

responses  

𝒀𝑟−1 Response string of the first 𝑟 − 1 binary pairwise 

comparisons 

𝑝𝑖(𝜽) ≡ 𝑃(𝑈𝑖 = 1|𝜽) The probability of responding favourably to item 

𝑖 given latent trait vector 𝜽 in M2PNO model 

𝑝{𝑖,𝑘}(𝜼) ≡ 𝑃(𝑌{𝑖,𝑘} = 1|𝜼) The probability of endorsing the first item in 

pairwise comparison {𝑖, 𝑘} given latent trait 

vector 𝜼 in TIRT model 
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Notation Definition 

Φ(∙) The standard normal cumulative distribution 

function 

ϕ(∙) The standard normal density function 

𝐸(∙) The expectation of a random variable 

𝑃(∙) The probability mass function of a discrete 

random variable 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(∙) The probability density function of a continuous 

random variable 

𝒂𝑖 Column vector of 𝑆 slope parameters of item 𝑖 in 

M2PNO model 

𝑑𝑖 Intercept parameter of item 𝑖 in M2PNO model 

𝑡𝑖 An item’s psychological utility values within a 

respondent in TIRT model (the person index is 

omitted in the notation) 

𝜇𝑖 Mean utility of item 𝑖 in TIRT model 

𝝀𝒊 = (𝜆𝑖1, … , 𝜆𝑖𝑆)
𝑇
 Column vector of 𝑆 factor loadings of item 𝑖 in 

TIRT model 

𝝀𝒊
∗ = (𝜆𝑖1

∗ , … , 𝜆𝑖𝑆
∗ )

𝑇
 Column vector of 𝑆 factor loadings of item 𝑖 in 

TIRT model – in a different metric (Study 1) 

𝜀𝑖~𝑁(0, 𝜓𝑖
2) Normally distributed error term for item 𝑖 in 

TIRT model, with mean 0 and unique variance 

𝜓𝑖
2 

𝜀𝑖
∗~𝑁(0, 𝜓𝑖

∗2) Normally distributed error term for item 𝑖 in 

TIRT model, with mean 0 and unique variance 

𝜓𝑖
2 – in a different metric (Study 1) 

𝛾{𝑖,𝑘} ≡ 𝜇𝑘 − 𝜇𝑖 Threshold parameter for the pairwise comparison 

{𝑖, 𝑘} in TIRT model 

𝛾{𝑖,𝑘}
∗  Threshold parameter for the pairwise comparison 

{𝑖, 𝑘} in TIRT model – in a different metric 

(Study 1) 
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Notation Definition 

𝑧{𝑖,𝑘} ≡
−𝛾{𝑖,𝑘} + (𝝀𝒊 − 𝝀𝒌)

𝑇𝜼

√𝜓𝑖
2 + 𝜓𝑘

2

 
The argument for the standard normal cumulative 

distribution function in TIRT model 

𝐿(∙ |𝜼) The likelihood of the observed response(s) given 

latent trait vector 𝜼 

𝜶 = (𝛼1, … , 𝛼𝑆)
𝑇 A vector of angles with the coordinate axes, 

indicating a direction in the multidimensional 

space 

𝜶𝑠 A vector of angles with the coordinate axes, 

indicating the direction along trait 𝑠 in the 

multidimensional space 

𝜶𝑚𝑖𝑛 A vector of angles with the coordinate axes, 

indicating the direction in the multidimensional 

trait space that has minimum information 

∇𝜶 The gradient or directional derivative in the 

direction of  𝜶 

𝐼𝑖
𝜶(𝜽) The information from item 𝑖 in direction 𝜶 for an 

individual with trait profile 𝜽 

𝐼{𝑖,𝑘}
𝜶 (𝜼) The information from pairwise comparison {𝑖, 𝑘} 

in direction 𝜶 for an individual with trait profile 

𝜼 in TIRT model 

𝐶𝐼{𝑖,𝑘}
𝜶𝑠 (𝜼) Core information from pairwise comparison 

{𝑖, 𝑘} for trait 𝑠 for an individual with trait profile 

𝜼 in TIRT model 

𝐼𝜶(𝜼) The total information from all responses in 

direction 𝜶 for an individual with trait profile 𝜼 

𝐼𝑃𝑜𝑠
𝜶𝑠 (𝜼) The posterior information for trait 𝑠 for an 

individual with trait profile 𝜼 

𝑆𝐸𝑀(�̂�𝑠) The standard error of measurement associated 

with the estimated score for trait 𝑠 

𝜜 Block-diagonal design matrix of contrasts 

capturing the assignment of items (columns) to 

blocks (with rows corresponding to pairs within 

blocks) 
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Notation Definition 

𝜦 Matrix of factor loadings of items (rows) on 

latent traits (columns) 

𝜜𝜦 Matrix of factor loadings of each pair (rows) on 

each latent trait (columns) 

(𝜜𝜦){𝑖,𝑘} Row in matrix 𝜜𝜦 with factor loadings associated 

with pair {𝑖, 𝑘} 

𝑭{𝑖,𝑘}(𝜼) 𝑆 × 𝑆 Fisher Information Matrix for pair {𝑖, 𝑘} 

for an individual with trait profile 𝜼 

𝑭(𝜼) 𝑆 × 𝑆 Fisher Information Matrix for all responses 

for an individual with trait profile 𝜼 

𝑭𝑟−1(𝜼) 𝑆 × 𝑆 Fisher Information Matrix for the first 𝑟 −

1 responses for an individual with trait profile 𝜼 

𝑆𝜶
𝑀𝐿(𝜼) The score function for the ML estimator (i.e., the 

gradient of the log likelihood in direction 𝜶) 

𝑆𝜶
𝑊𝐿(𝜼) The score function for the WL estimator (i.e., the 

gradient of the weighted log likelihood in 

direction 𝜶) 

𝑆𝜶
𝑀𝐴𝑃(𝜼) The score function for the MAP estimator (i.e., 

the gradient of the log posterior function in 

direction 𝜶) 

𝐵𝑖𝑎𝑠𝑠
𝑀𝐿(𝜼) The asymptotic bias of the ML estimator in trait 

𝑠 

𝑩𝒊𝒂𝒔𝑀𝐿(𝜼)

≡ (𝐵𝑖𝑎𝑠1
𝑀𝐿(𝜼),… , 𝐵𝑖𝑎𝑠𝑆

𝑀𝐿(𝜼))
𝑇
 

Column vector of asymptotic bias of the ML 

estimator for each of the 𝑆 traits 

𝑀(𝜼) Weight function for the WL estimator 

𝜕{∙}

𝜕𝜼
≡

[
 
 
 
 
 
𝜕{∙}

𝜕𝜂1
⋯
⋯
𝜕{∙}

𝜕𝜂𝑆]
 
 
 
 
 

 

Column vector of partial derivatives along the 

directions of each of the 𝑆 traits 

𝑝𝑟𝑖𝑜𝑟(𝜼) Density of the prior distribution of latent traits 
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Notation Definition 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀) Density of the posterior distribution of latent 

traits given responses 𝒀 

𝑓(∙), 𝑔(∙) Density functions describing the distributions of 

some generic random variables. 

𝐾𝐿(𝑓 ∥ 𝑔) Kullback–Leibler (KL) information/ distance 

between two probability distributions 𝑓 and 𝑔 

that share the same parameters 

𝐾𝐿{𝑖,𝑘}
𝐼  KL index, quantifying the KL distance between 

the probabilities of response to a pairwise 

comparison {𝑖, 𝑘} at the current trait estimates 

and at true trait values. 

ℎ(𝜼) Density of the trait space to integrate over in 

order to account for information at different true 

trait values in KLI item selector 

𝐾𝐿{𝑖,𝑘}
𝑃  KL distance between subsequent posterior 

distributions of the trait estimates before and 

after an additional response to a pairwise 

comparison {𝑖, 𝑘} 

𝑀𝐼(𝒙; 𝒚) The mutual information between two random 

variables 𝒙 and 𝒚, which is equal to the KL 

distance between their joint density and their 

product marginal densities 

𝑀𝐼{𝑖,𝑘} The mutual information between the current 

posterior distribution of trait estimates (i.e., 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)) and the response distribution 

of a possible new question (i.e., 

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1)) 

𝛨(𝒚) Shannon entropy of a random variable 𝒚 

𝛨(𝒚|𝒙) Conditional entropy of a random variable 𝒚 given 

𝒙 
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APPENDIX B: FORMULATION OF TRAIT ESTIMATORS FOR TIRT MODEL 

Classical Estimators 

Classical trait estimators only incorporate information from the assessment (i.e., 

item characteristics and item responses) in the estimation of person scores. They make 

no prior assumptions about the distribution of the latent traits. 

Maximum Likelihood (ML) Estimator 

The traditional statistical method of maximum likelihood (Fisher, 1922) can be 

applied to trait estimation, giving rise to the ML estimator. The ML estimator estimates 

person scores by finding the vector of trait parameters that maximises the likelihood of 

the item responses (Birnbaum, 1958, 1968; Segall, 1996; Tam, 1992). For the TIRT 

model, ML estimates are achieved through maximising Equation 7, leading to Equation 

B1. 

�̂�𝑀𝐿 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜼 {∏𝐿(𝑌{𝑖,𝑘}|𝜼)

{𝑖,𝑘}

} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜼 {∑ 𝑙𝑛[𝐿(𝑌{𝑖,𝑘}|𝜼)]

{𝑖,𝑘}

} (B1) 

Typically, the ML estimates are calculated by setting the gradient of the log 

likelihood of responses to zero and solving for the values of 𝜼, as shown in Equation B2. 

In this expression, the gradient of the log likelihood in direction 𝜶 is denoted by 𝑆𝜶
𝑀𝐿(𝜼), 

which is known as the score function for the ML estimator. When solving Equation B2, 

it is sufficient to consider the gradients along the directions of the trait axes, 𝜶𝑠 (Segall, 

1996), leading to Equation B3. 
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𝑆𝜶
𝑀𝐿(𝜼) ≡ ∇𝜶 {∑ 𝑙𝑛[𝐿(𝑌{𝑖,𝑘}|𝜼)]

{𝑖,𝑘}

} = 0        ∀ 𝜶 (B2) 

𝑆𝜶𝑠
𝑀𝐿(𝜼) ≡

𝜕

𝜕𝜂𝑠
{∑ 𝑙𝑛[𝐿(𝑌{𝑖,𝑘}|𝜼)]
{𝑖,𝑘}

} = 0        ∀ 𝑠 (B3) 

One issue with the ML estimator is that it has notable bias, which tends to 

stretch the trait estimates outwards when the assessment is short (Lord, 1983). 

Following the work of Lord (1983) and Warm (1989) on the asymptotic bias of the ML 

estimator for unidimensional IRT models, and utilising the statistical properties of the 

ML estimator as shown by Cox and Snell (1968, equation 20),  the asymptotic bias of 

the ML estimator for any multidimensional IRT model for dichotomous responses can 

be deduced (see Appendix C). Considering that the binary outcome variable modelled in 

the TIRT model is the pairwise comparison {𝑖, 𝑘}, the resulting expression reads: 

𝐵𝑖𝑎𝑠𝑠
𝑀𝐿(𝜼) =

1

2
∑ (𝑭−1)𝑣𝑠(𝑭

−1)𝑤𝑥∑[−
𝜕2𝑝{𝑖,𝑘}

𝜕𝜂𝑤𝜕𝜂𝑥

𝜕𝑝{𝑖,𝑘}

𝜕𝜂𝑣
{𝑖,𝑘}𝑣,𝑤,𝑥

+
𝜕2𝑝{𝑖,𝑘}

𝜕𝜂𝑣𝜕𝜂𝑥

𝜕𝑝{𝑖,𝑘}

𝜕𝜂𝑤
−
𝜕2𝑝{𝑖,𝑘}

𝜕𝜂𝑣𝜕𝜂𝑤

𝜕𝑝{𝑖,𝑘}

𝜕𝜂𝑥
] (

1

𝑝{𝑖,𝑘}(1 − 𝑝{𝑖,𝑘})
). 

(B4) 

With this bias, high scores tend to get higher and low scores tend to get lower. 

However, because this bias is of order 𝑂(𝑟−1) where 𝑟 is the number of item responses 

(Cox & Snell, 1968), it diminishes as the assessment gets longer. Nevertheless, it 

prompted searches for alternative estimators with less bias. 

Weighted Likelihood (WL) Estimator 

Motivated by a desire to reduce bias associated with the ML estimator, Warm 

(1989), Tseng and Hsu (2001), and Wang (2015) developed the WL estimator, and 

independently showed that it is less outwardly biased than the ML estimator whilst 
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retaining similar variance. The formulation of the WL estimator is shown in Equation 

B5, which only differs from the ML estimator by an additional weight function, 𝑀(𝜼). 

�̂�𝑊𝐿 = arg𝑚𝑎𝑥𝜼 {𝑀(𝜼) [∏𝐿(𝑌{𝑖,𝑘}|𝜼)
{𝑖,𝑘}

]} (B5) 

Similar to ML, the WL estimates are typically calculated by setting the gradient 

of the weighted log likelihood (also known as the score function for the WL estimator, 

𝑆𝜶
𝑊𝐿(𝜼)) to zero and solving for 𝜼. And again, it is sufficient to consider the gradient 

along each trait axis (Tseng & Hsu, 2001), as shown in Equation B6. 

𝑆𝜶𝑠
𝑊𝐿(𝜼) ≡

𝜕

𝜕𝜂𝑠
{𝑙𝑛[𝑀(𝜼)] +∑ 𝑙𝑛[𝐿(𝑌{𝑖,𝑘}|𝜼)]

{𝑖,𝑘}

} = 0        ∀ 𝑠 (B6) 

Warm (1989) observed that, when the weight function is set to a positive 

constant, Equation B6 is equivalent to the ML estimator; alternatively, when the weight 

function is set to the prior density of the latent traits, Equation B6 is equivalent to the 

MAP estimator (see next section). Warm then designed a weight function for the 

unidimensional three-parameter logistic model that removes first-order bias from the 

ML estimator. Warm’s weight function makes no prior assumption about the latent trait 

distribution, and therefore the WL estimator is not Bayesian. Tseng and Hsu (2001) and 

Wang (2015) subsequently extended Warm’s weight function to the case of 

multidimensional IRT models, which can be directly applied to the TIRT model 

(Equation B7). In Equation B7, 𝑩𝒊𝒂𝒔𝑀𝐿(𝜼) ≡ (𝐵𝑖𝑎𝑠1
𝑀𝐿(𝜼),… , 𝐵𝑖𝑎𝑠𝑆

𝑀𝐿(𝜼))
𝑇
 denotes 

the column vector of ML bias values for each of the 𝑆 traits. Note that in the 

calculations for the WL estimates, it is not necessary to deduce the functional form of 

𝑀(𝜼). This is because the WL estimates are calculated by solving Equation B6, which 
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only depends on 
𝜕{𝑙𝑛[𝑀(𝜼)]}

𝜕𝜼
. Moreover, using Equation B7, the relationship between 

score functions for the ML and WL estimators can be expressed as in Equation B8. 

𝜕{𝑙𝑛[𝑀(𝜼)]}

𝜕𝜼
≡

[
 
 
 
 
 
 
 
 
 
𝜕{𝑙𝑛[𝑀(𝜼)]}

𝜕𝜂1…
…

𝜕{𝑙𝑛[𝑀(𝜼)]}

𝜕𝜂𝑠…
…

𝜕{𝑙𝑛[𝑀(𝜼)]}

𝜕𝜂𝑆 ]
 
 
 
 
 
 
 
 
 

= −𝑭(𝜼)𝑩𝒊𝒂𝒔𝑀𝐿(𝜼) (B7) 

𝑆𝜶𝑠
𝑊𝐿(𝜼) = 𝑆𝜶𝑠

𝑀𝐿(𝜼) − [𝑭(𝜼)𝑩𝒊𝒂𝒔𝑀𝐿(𝜼)]𝑠       ∀ 𝑠 (B8) 

Bayesian Estimators 

Bayesian trait estimators not only account for data obtained directly from the 

assessment, but also incorporate information gained from other sources. For example, 

one may hold information about the respondent population in general, and/or have prior 

knowledge about a particular respondent from previous assessments or interactions. 

Such information is captured in the prior distribution of latent traits with density 

𝑝𝑟𝑖𝑜𝑟(𝜼), which is typically set to be multivariate normal. Then, the posterior 

distribution of traits, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀), can be calculated as per Equation B9 (Segall, 1996). 

Bayesian estimators make use of the posterior distribution in the estimation of trait 

values. 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀) =
𝐿(𝒀|𝜼) × 𝑝𝑟𝑖𝑜𝑟(𝜼)

∫ 𝐿(𝒀|𝜼) × 𝑝𝑟𝑖𝑜𝑟(𝜼)𝑑𝜼
 (B9) 

Maximum a Posteriori (MAP) Estimator 

One popular Bayesian estimator is the MAP estimator, also referred to as the 

Bayesian Modal (BM) estimator, which estimates trait scores by finding the maximisers 
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of the posterior function, as described in Equation B10 (Bock & Aitkin, 1981; Lord, 

1986; Mislevy, 1986; Samejima, 1969; Segall, 1996). 

�̂�𝑀𝐴𝑃 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜼{𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀)} = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜼{𝑙𝑛[𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀)]} (B10) 

Similar to ML and WL, the MAP estimates are calculated by setting the gradient 

of the log posterior function to zero and solving for 𝜼. The score function for MAP can 

be deduced accordingly (Equation B11). It can be seen in this expression that, when a 

uniform prior is assumed (i.e., when there is no prior information), the term containing 

the prior function is zero and the MAP estimator reduces to the ML estimator. And 

again, it is sufficient to consider only the directions along the trait axes when solving 

Equation B11 (Segall, 1996). 

𝑆𝜶
𝑀𝐴𝑃(𝜼) = 𝑆𝜶

𝑀𝐿(𝜼) + ∇𝜶{𝑙𝑛[𝑝𝑟𝑖𝑜𝑟(𝜼)]} = 0        ∀ 𝜶 (B11) 

Expected a Posteriori (EAP) Estimator 

Another popular Bayesian estimator is the EAP estimator, which estimates trait 

scores as the expected value (mean) of the posterior distribution function, as described 

in Equation B12 (Bock & Aitkin, 1981; Bock & Mislevy, 1982; Segall, 1996). Unlike 

the other trait estimators, the EAP estimates are not calculated by solving a score 

function. Instead, numerical integration routines, for example the Gauss-Hermite 

quadrature method (Abramowitz & Stegun, 1972; Stroud & Sechrest, 1966), are 

typically employed to approximate the integral. 

�̂�𝐸𝐴𝑃 = ∫𝜼 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀)𝒅𝜼 (B12) 

Full Posterior 

Instead of extracting point estimates from the posterior distribution, it is 

sometimes possible to utilise the entire posterior function 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀) as the 
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estimator. This method is only compatible with some of the more advanced item 

selectors (see Appendix D for details). Using the full posterior function bypasses the 

need to calculate point estimates until the very end of the assessment, where point 

estimates are typically preferred for reporting. 
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APPENDIX C: BIAS OF THE ML ESTIMATOR IN MULTIDIMENSIONAL IRT 

MODELS 

Cox and Snell (1968, equation 20) deduced the general formula for the bias of 

the ML estimator which, in the case of multidimensional IRT models (including but not 

limited to the TIRT model), is as follows: 

𝐵𝑖𝑎𝑠𝑠
𝑀𝐿(𝜼) ≡ 𝐸[�̂�𝑠

𝑀𝐿 − 𝜂𝑠] =
1

2
∑ (𝑭−1)𝑣𝑠(𝑭

−1)𝑤𝑥(𝑲𝑣𝑤𝑥 + 2𝑱𝑤,𝑣𝑥)

𝑣,𝑤,𝑥

. (C1) 

In this expression, 𝐵𝑖𝑎𝑠𝑠
𝑀𝐿(𝜼) denotes the bias of the 𝑠𝑡ℎ element of the ML estimator 

�̂�𝑀𝐿 for the person parameters 𝜼 = (𝜂1, … , 𝜂𝑆)
𝑇; 𝑣,𝑤, 𝑥 ∈ {1,… , 𝑆} are indices for traits; 

𝑭 is the total FIM for a respondent obtained from all 𝑟 item responses 𝑈𝑖 with likelihood 

𝐿(𝑈𝑖|𝜼); and 𝑲 and 𝑱 are three-dimensional arrays defined as follows: 

𝐽𝑤,𝑣𝑥 ≡∑𝐸 [
𝜕

𝜕𝜂𝑤
𝑙𝑛[𝐿(𝑈𝑖|𝜼)] ×

𝜕2

𝜕𝜂𝑣𝜕𝜂𝑥
𝑙𝑛[𝐿(𝑈𝑖|𝜼)]]

𝑖

; (C2) 

𝐾𝑣𝑤𝑥 ≡∑𝐸 [
𝜕3

𝜕𝜂𝑣𝜕𝜂𝑤𝜕𝜂𝑥
𝑙𝑛[𝐿(𝑈𝑖|𝜼)]]

𝑖

. (C3) 

This bias term is of order 𝑂(𝑟−1) and thus tends to zero as the number of item 

responses increases (Cox & Snell, 1968). For any multidimensional IRT model with 

dichotomous responses (i.e., 𝑈𝑖 ∈ {0,1}), the likelihood function has the format of 

𝐿(𝑈𝑖|𝜼) = 𝑝𝑖
𝑈𝑖𝑞𝑖

1−𝑈𝑖 where 𝑝𝑖 ≡ 𝑃(𝑈𝑖 = 1|𝜼) and 𝑞𝑖 ≡ 1 − 𝑝𝑖, and it can be deduced 

that: 

𝜕

𝜕𝜂𝑤
𝐿(𝑈𝑖|𝜼) =

𝜕

𝜕𝜂𝑤
(𝑝𝑖

𝑈𝑖𝑞𝑖
1−𝑈𝑖) = 𝐿(𝑈𝑖|𝜼)

𝜕𝑝𝑖
𝜕𝜂𝑤

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) ; (C4) 

and 

𝜕

𝜕𝜂𝑤
(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) = −
𝜕𝑝𝑖
𝜕𝜂𝑤

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
2

. (C5) 
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It follows from Equations C4 and C5 that: 

𝜕

𝜕𝜂𝑤
𝑙𝑛[𝐿(𝑈𝑖|𝜼)] =

1

𝐿(𝑈𝑖|𝜼)

𝜕

𝜕𝜂𝑤
𝐿(𝑈𝑖|𝜼) =

𝜕𝑝𝑖
𝜕𝜂𝑤

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) ; (C6) 

and 

𝜕2

𝜕𝜂𝑣𝜕𝜂𝑥
𝑙𝑛[𝐿(𝑈𝑖|𝜼)] =

𝜕

𝜕𝜂𝑣
(
𝜕𝑝𝑖
𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

))  

=
𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) −
𝜕𝑝𝑖
𝜕𝜂𝑣

𝜕𝑝𝑖
𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
2

; (C7) 

and 

𝜕3

𝜕𝜂𝑣𝜕𝜂𝑤𝜕𝜂𝑥
𝑙𝑛[𝐿(𝑈𝑖|𝜼)] =

𝜕

𝜕𝜂𝑣
(
𝜕2𝑝𝑖

𝜕𝜂𝑤𝜕𝜂𝑥
(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) −
𝜕𝑝𝑖
𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
2

)  

=
𝜕3𝑝𝑖

𝜕𝜂𝑣𝜕𝜂𝑤𝜕𝜂𝑥
(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)

− [
𝜕2𝑝𝑖

𝜕𝜂𝑤𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑣

+
𝜕2𝑝𝑖

𝜕𝜂𝑣𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

+
𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑤

] (
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
2

+ 2
𝜕𝑝𝑖
𝜕𝜂𝑣

𝜕𝑝𝑖
𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
3

. 

(C8) 

Substituting Equations C6 and C7 into Equation C2 gives: 

𝑱𝑤,𝑣𝑥 =∑𝐸 {
𝜕𝑝𝑖
𝜕𝜂𝑤

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) [
𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

) −
𝜕𝑝𝑖
𝜕𝜂𝑣

𝜕𝑝𝑖
𝜕𝜂𝑥

(
𝑈𝑖 − 𝑝𝑖
𝑝𝑖𝑞𝑖

)
2

]}

𝑖

  

=∑
𝜕𝑝𝑖
𝜕𝜂𝑤

𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

(
1

𝑝𝑖𝑞𝑖
) +

𝜕𝑝𝑖
𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑣

𝜕𝑝𝑖
𝜕𝜂𝑥

(
2𝑝𝑖 − 1

𝑝𝑖2𝑞𝑖2
)

𝑖

. (C9) 

Similarly, substituting Equation C8 into Equation C3 gives: 

𝑲𝑣𝑤𝑥 =∑{2
𝜕𝑝𝑖
𝜕𝜂𝑣

𝜕𝑝𝑖
𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

(
1 − 2𝑝𝑖
𝑝𝑖2𝑞𝑖2

)

𝑖

− [
𝜕2𝑝𝑖

𝜕𝜂𝑤𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑣

+
𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑤

+
𝜕2𝑝𝑖

𝜕𝜂𝑣𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

] (
1

𝑝𝑖𝑞𝑖
)}. 

(C10) 
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Finally, substituting Equations C9 and C10 back into Equation C1 gives the 

formula for the bias of the ML estimator for multidimensional IRT models with 

dichotomous item responses: 

𝐵𝑖𝑎𝑠𝑠
𝑀𝐿(𝜼) =

1

2
∑ (𝑭−1)𝑣𝑠(𝑭

−1)𝑤𝑥∑[−
𝜕2𝑝𝑖

𝜕𝜂𝑤𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑣

+
𝜕2𝑝𝑖
𝜕𝜂𝑣𝜕𝜂𝑥

𝜕𝑝𝑖
𝜕𝜂𝑤

𝑖𝑣,𝑤,𝑥

−
𝜕2𝑝𝑖

𝜕𝜂𝑣𝜕𝜂𝑤

𝜕𝑝𝑖
𝜕𝜂𝑥

] (
1

𝑝𝑖𝑞𝑖
). 

(C11) 

Note that Equation C11 is the multidimensional extension of the unidimensional 

ML bias formula presented by Lord (1983) and Warm (1989, equation 6). Indeed, 

reducing the dimensionality of 𝜼 to one arrives at the same expression: 

𝐵𝑖𝑎𝑠𝑀𝐿(𝜂) =
−∑ [

𝜕𝑝𝑖
𝜕𝜂

𝜕2𝑝𝑖
𝜕𝜂2

𝑝𝑖(1 − 𝑝𝑖)⁄ ]𝑖

2𝐹2
. 

(C12) 
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APPENDIX D: FORMULATION OF ITEM SELECTORS FOR TIRT FC CAT 

Criteria Based on Information Maximisation 

Consider first the simplest case of a unidimensional CAT (i.e., all questions in 

the test measure the same construct). Let 𝑖1, … 𝑖𝑟−1 be the first 𝑟 − 1 questions in an 

adaptive test session, let 𝑅𝑟 be the set of unused items up to this point, and let 𝜃𝑟−1 be 

the trait estimate at this point. The classic method of selecting the 𝑟𝑡ℎ item 𝑖𝑟 is to pick 

an item in 𝑅𝑟 that maximises the total test information at 𝜃𝑟−1 (Birnbaum, 1968; van 

der Linden, 2010), as shown in Equation D1. 

𝑖𝑟 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖∈𝑅𝑟{𝐼𝑖1(𝜃
𝑟−1) + ⋯+ 𝐼𝑖𝑟−1(𝜃

𝑟−1) + 𝐼𝑖(𝜃
𝑟−1)}  

= 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖∈𝑅𝑟{𝐼𝑖(𝜃
𝑟−1)} (D1) 

While this information maximisation method is straightforward for a 

unidimensional test choosing one item at a time, its extension to MFC assessments 

presents additional complexities (see Chapter 3). In order to address the 

multidimensionality challenge, researchers have developed a range of item selectors that 

reduce multidimensional information into scalar summary indices. The subsequent 

sections formulate a selection of such indices for MFC assessments using TIRT. To 

begin with, this section describes mathematically-simple but likely sub-optimal item 

selection criteria based on the idea of information maximisation. These simple item 

selectors, together with random item selection, can serve as worst-case benchmarks 

when appraising the efficiency of the more sophisticated item selectors. 

Maximise Weighted Information (WI) 

Equation 12 describes the information gain from a FC pair {𝑖, 𝑘} in the direction 

of 𝜶. Since the typical measurement goal is to optimise information gain in the direction 
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of all intended traits (i.e., 𝜶1, … , 𝜶𝑆), the simplest criterion is to maximise the sum of 

information across all traits. Moreover, weights can be assigned to each of the measured 

traits to indicate the relative priorities between them. Such a total weighted information 

criteria can be used to choose FC pairs to be present next (Equation D2). Note that the 

weights assigned to the measured traits, 𝒘 = (𝑤1, … , 𝑤𝑆)
𝑇, can be static (e.g., 

indicating the level of importance of each trait for the purpose of the assessment) or 

dynamic (e.g., prioritising the traits still lacking in measurement precision). 

{𝑖𝑟, 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∑𝑤𝑠

𝑆

𝑠=1

[𝐼{𝑖,𝑘}
𝜶𝑠 (�̂�𝑟−1)]} (D2) 

Maximise Weighted Core Information (WCI) 

The aforementioned WI item selector may be simplified further by considering 

only the core information from a FC pair (see Equation 17), giving rise to the WCI item 

selector (Equation D3). This way, item selection focuses only on the information gain 

on the traits directly involved in the FC pair, ignoring any peripheral information gain 

from responses to items measuring correlated traits. 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∑𝑤𝑠

𝑆

𝑠=1

[𝐶𝐼{𝑖,𝑘}
𝜶𝑠 (�̂�𝑟−1)]} (D3) 

Maximise Information in Direction with Minimum Information (DMI) 

Reckase (2009) proposed to prioritise information gain in the direction of the 

trait space that currently has minimum information (here denoted as 𝜶𝑚𝑖𝑛). To apply 

this method, a two-step process is followed: finding the direction with minimum 

information (Equation D4), and then selecting items to maximise information gain in 

that direction (Equation D5).  
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𝜶𝑚𝑖𝑛 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜶{𝐼{𝑖1,𝑘1}
𝜶 (�̂�𝑟−1) + ⋯+ 𝐼{𝑖𝑟−1,𝑘𝑟−1}

𝜶 (�̂�𝑟−1)} (D4) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {𝐼{𝑖,𝑘}
𝜶𝑚𝑖𝑛(�̂�𝑟−1)} (D5) 

However, given all the possible directions in the multidimensional trait space, 

solving Equation D4 can be difficult. Reckase (2009) suggested grid-searching through 

directions in equally-spaced small intervals (e.g., 10-degree intervals) throughout the 

entire trait space in order to find an approximation for 𝜶𝑚𝑖𝑛. While this operation is 

manageable with two traits, the number of directions to search through rises quickly as 

the dimensionality of the trait space increases. Moreover, the focus of personality 

assessments tends to be precise estimation of the personality traits (i.e., gaining 

information along the trait axes in the multidimensional trait space), or prediction of 

some outcome variable using a regression model of personality traits (i.e., gaining 

information in a specific direction in the multidimensional trait space). If 𝜶𝑚𝑖𝑛 is far 

away from the intended directions as determined by the assessment purpose, selecting 

items to maximise information in the direction of 𝜶𝑚𝑖𝑛 can be counterproductive. A 

modification of this method may work better for personality assessments: select items to 

maximise information along the trait axis with minimum information. This 

simplification reduces Reckase’s method to a special case of the WI item selector, i.e., 

setting the weights 𝑤𝑠 to 1 for the axis with minimum information and 0 otherwise. 

Criteria Based on FIM 

The FIM (Equation 26) is closely related to the accuracy of trait estimations. It is 

therefore frequently used in the designing of item selectors. Let 𝑭𝑟−1(𝜼) be the total 

FIM from the first 𝑟 − 1 responses. 
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Minimise Trace of the Inverse FIM (A-optimality) 

One way to optimise measurement on all intended traits simultaneously is to 

minimise their total error variance, which is equivalent to minimising the trace of the 

inverse FIM (see Mulder & van der Linden, 2009; Silvey, 1980). Equation D6 shows 

how this method, often termed “A-optimality”, can be applied to choosing a FC pair. 

{𝑖𝑟, 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑖,𝑘}∈𝑅𝑟 {𝑡𝑟 [(𝑭
𝑟−1(�̂�𝑟−1) + 𝑭{𝑖,𝑘}(�̂�

𝑟−1))
−1

]} (D6) 

A-optimality is one of the most popular item selectors for multidimensional 

CAT. However, the calculation for the A-optimality criterion is more intensive 

compared to that for the WI and WCI criteria. First, while the information contributions 

from previous responses drop out in the WI and WCI item selectors, they are 

inseparable in the A-optimality criterion. As a result, after every response the FIM of all 

previous responses need to be re-computed based on the latest person parameter 

estimates. Second, to compute the A-optimality criterion, the total FIM needs to be 

inverted for each one of the possible FC pairs, which is a more computationally 

intensive operation than simple arithmetic calculations. Moreover, the number of 

possible FC pairs (|𝑅𝑟|
2
) grows multiplicatively with the size of the item bank, and thus 

even the smallest computational delay may be exaggerated many times and become 

noticeable to the respondents. 

With modern computational power, the calculation complexity of A-optimality 

is likely manageable even for FC assessments. However, the same may not be true for 

the more demanding item selectors described in later parts of this section. Therefore, the 

comparison of item selectors should consider not only their measurement efficiency, but 

also their computational feasibility. 
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Minimise Weighted Sum of Entries of the Inverse FIM (C-optimality) 

Sometimes the focus of a personality assessment is to produce a scalar overall 

score, for example, to predict an important outcome (e.g., job performance) based on a 

regression equation of multiple personality traits. When the goal is to report a composite 

score 𝜂𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 calculated as a weighted sum of different trait scores (Equation D7), 

the adaptive item selection process may attempt to minimise the error variance of 

𝜂𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒, which is equivalent to minimising a weighted sum of components of the 

inverse FIM (see Mulder & van der Linden, 2009; Silvey, 1980). Equation D8 shows 

how this method, often termed “C-optimality”, can be applied to choosing a FC pair. 

𝜂𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 𝒘𝑇𝜼 =∑𝑤𝑠𝜂𝑠

𝑆

𝑠=1

 (D7) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑖,𝑘}∈𝑅𝑟 {𝒘
𝑇 [(𝑭𝑟−1(�̂�𝑟−1) + 𝑭{𝑖,𝑘}(�̂�

𝑟−1))
−1

]𝒘} (D8) 

When all traits are equally important, all entries of 𝑾 can be set to 1, and the C-

optimality criterion simplifies to minimising the sum of all entries of the inverse FIM. 

In this case, C-optimality is similar to A-optimality – the latter sums over the diagonal 

of the inverse FIM, whereas the former also includes the off-diagonal terms. 

Maximise Determinant of the FIM (D-optimality) 

Another way to achieve good measurement on all traits simultaneously is to 

minimise the volume of the confidence ellipsoid of the trait estimates, which is 

equivalent to maximising the determinant of the FIM (see Mulder & van der Linden, 

2009; Silvey, 1980). Equation D9 shows how this method, often termed “D-optimality”, 

can be applied to choosing a FC pair. 
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{𝑖𝑟, 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {𝑑𝑒𝑡 (𝑭
𝑟−1(�̂�𝑟−1) + 𝑭{𝑖,𝑘}(�̂�

𝑟−1))} (D9) 

D-optimality is also one of the most popular item selectors for multidimensional 

CAT. Similar to A-optimality and C-optimality, the information contributions from 

previous responses are inseparable in the D-optimality criterion, leading to more 

intensive calculations than the WI and WCI item selectors. But unlike A-optimality and 

C-optimality which had to invert (|𝑅𝑟|
2
) matrices, D-optimality instead calculates the 

determinants for the same matrices. As matrix determinant calculations tend to be less 

intensive than matrix inversion operations, D-optimality is less computationally 

intensive compared to A-optimality or C-optimality. 

Maximise Minimum Eigenvalue of the FIM (E-optimality) 

As Atkinson, Donev, and Tobias (2007, p. 135-136) explained, E-optimality 

aims to minimise the variance of the most imprecisely-estimated linear combination 

𝒘𝑇𝜼 where 𝒘𝑇𝒘 = 1, which is equivalent to maximising the minimum eigenvalue of 

the FIM. Mulder and van der Linden (2009) applied this criterion to CAT, and found 

that it had a tendency to select bad items especially for respondents with extreme trait 

locations, thus contradicting the aim of adaptively choosing appropriate items for the 

respondent. Mulder and van der Linden (2009) therefore recommended against using E-

Optimality in CAT. For this reason, E-Optimality was not explored further in this thesis. 

Maximise Trace of the FIM (T-Optimality) 

Another relevant method is “T-optimality”, which maximises the trace of the 

FIM (Allen-Zhu, Li, Singh, & Wang, 2017; Pukelsheim, 2006). Equation D10 shows 

how T-optimality can be applied to choosing a FC pair. 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟{𝑡𝑟[𝑭{𝑖,𝑘}(�̂�
𝑟−1)]} (D10) 



256 

 

T-optimality is closely related to information maximisation criteria. Comparing 

the functional forms of 𝐼{𝑖,𝑘}
𝜶𝑠 (𝜼) (Equation 16), 𝐶𝐼{𝑖,𝑘}

𝜶𝑠 (𝜼) (Equation 17) and 𝑭{𝑖,𝑘}(𝜼) 

(Equation 23), it can be seen that WI, WCI and T-optimality criteria are very similar, 

differing only in how the information from correlated traits are handled. In fact, these 

three item selectors are mathematically equivalent when the traits are uncorrelated and 

the weights are equal across traits. 

In terms of computational complexity, calculating the trace of a matrix is much 

simpler than inverting a matrix or computing its determinant. Moreover, the information 

contributions from previous responses drop out in the T-optimality criterion. Therefore, 

the computational complexity of T-optimality is less than A-, C- or D-Optimality, but 

on par with WI and WCI. 

Criteria Based on Kullback–Leibler (KL) Information 

All item selectors described so far rely on interim trait estimates, which may be 

far from the true trait standings. As a result, the item selectors may be choosing items 

that optimise measurement at the wrong locations, especially at the beginning of a CAT 

session when trait estimates are still inaccurate (e.g., Chang and Ying, 1996). This 

phenomenon is called the attenuation paradox (Lord & Novick, 1968). In order to tackle 

this problem, researchers have explored methods that optimise information globally (i.e., 

considering information for all trait locations as opposed to focusing on interim point 

estimates), often utilising the Kullback–Leibler (KL) information concept (Cover & 

Thomas, 2006; Kullback, 1959; Lehmann & Casella, 1998). The KL information for 

two density functions 𝑓(𝒙) and 𝑔(𝒙) is defined by Equation D11 for continuous 𝒙, or 

Equation D12 for discrete 𝒙 (Cover & Thomas, 2006; Kullback, 1959; Lehmann & 

Casella, 1998; Mulder & van der Linden, 2010). 
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𝐾𝐿(𝑓 ∥ 𝑔) = 𝐸𝑓 [𝑙𝑛
𝑓(𝒙)

𝑔(𝒙)
] = ∫𝑓(𝒙)𝑙𝑛

𝑓(𝒙)

𝑔(𝒙)
𝑑𝒙 (D11) 

𝐾𝐿(𝑓 ∥ 𝑔) =∑𝑓(𝒙)𝑙𝑛
𝑓(𝒙)

𝑔(𝒙)
𝒙

 (D12) 

KL information is the “distance” between two probability distributions 𝑓 and 𝑔 

that share the same parameters 𝒙 (Kullback & Leibler, 1951; Lehmann & Casella, 1998). 

Note that KL information is not a proper distance measure because it is not symmetrical, 

i.e., 𝐾𝐿(𝑓 ∥ 𝑔) ≠ 𝐾𝐿(𝑔 ∥ 𝑓) (Mulder & van der Linden, 2010). In typical applications 

of KL information, 𝑓 is set to some prior probability distribution and 𝑔 is set to the 

revised posterior distribution or the true probability distribution; then KL information 

represents the information gained when updating one’s hypothesis from 𝑓 to 𝑔 

(Burnham & Anderson, 2002). By selecting appropriate distributions to substitute into 

𝑓(𝒙) and 𝑔(𝒙), the KL information measure can be utilised in CAT. 

Maximum Item KL Information (KLI-U and KLI-B) 

Chang and Ying (1996) proposed the KL index (KLI) for item selection in 

unidimensional CAT, which was subsequently extended to multidimensional CAT by 

Veldkamp and van der Linden (2002). In this method, 𝑓 and 𝑔 are set to the 

probabilities of a new item response at the current trait estimates and at true trait values 

respectively. Then, the KL distance between these two specific density functions 

(denoted by 𝐾𝐿𝐼) quantifies the power of the new item to differentiate between the 

current trait estimates and true trait values, with larger distances indicating greater 

discriminations and thus greater power to improve measurement accuracy (Mulder & 

van der Linden, 2010; Veldkamp & van der Linden, 2002). Equations D13 to D15 show 

how this method can be applied to FC assessments. 



258 

 

𝑓(𝑌{𝑖,𝑘}) = 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|�̂�) (D13) 

𝑔(𝑌{𝑖,𝑘}) = 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼) (D14) 

𝐾𝐿{𝑖,𝑘}
𝐼 ≡ 𝐾𝐿 (𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|�̂�) ∥ 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼))

= 𝑝{𝑖,𝑘}(�̂�) [𝑙𝑛
𝑝{𝑖,𝑘}(�̂�)

𝑝{𝑖,𝑘}(𝜼)
] + (1 − 𝑝{𝑖,𝑘}(�̂�)) [𝑙𝑛

1 − 𝑝{𝑖,𝑘}(�̂�)

1 − 𝑝{𝑖,𝑘}(𝜼)
] 

(D15) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∫ℎ(𝜼) × 𝐾𝐿{𝑖,𝑘}
𝐼

 

𝜼

𝑑𝜼} (D16) 

Because the true trait values 𝜼 are unknown, Equation D15 is integrated over the 

trait space with some density function ℎ(𝜼) to arrive at a global information criterion as 

shown in Equation D16. The choice of the density function ℎ(𝜼) gives rise to different 

varieties of the KLI item selector. Chang and Ying (1996) proposed setting ℎ(𝜼) = 1 

over a confidence region of the trait estimates that shrinks as the adaptive test 

progresses (and ℎ(𝜼) = 0 elsewhere), giving rise to the KLI-U (uniform) item selector. 

Chang and Ying (1996) and Veldkamp and van der Linden (2002) also suggested 

incorporating the likelihood variations of 𝜼 at different locations of the trait space by 

setting ℎ(𝜼) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1), i.e., the posterior density of the trait estimates after 

considering the previous 𝑟 − 1 responses 𝒀𝑟−1, giving rise to the KLI-B (Bayesian) 

item selector. 

 The KLI item selectors have a couple of desirable features compared to those 

based on the FIM. In terms of measurement efficiency, KLI-U had been shown to 

outperform FIM-based methods9 in unidimensional CAT, especially at the early stages 

when the person location estimates were inaccurate (Chang & Ying, 1996). In terms of 

 

9 In the unidimensional case, A-, C-, D- and T-optimality are all equivalent. 
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dimensional simplicity, KLI is always a scalar regardless of the number of traits 

measured, whereas the size of the FIM grows with the dimensionality of the test and 

thus an additional step of dimension-reduction is required to produce a scalar summary 

index suited for item selection (Mulder & van der Linden, 2010). The measurement 

efficiency and dimensional simplicity of KLI, however, come with significant 

computational complexity due to the integration in Equation D16. This integration is 

often approximated using Gauss-Hermite quadrature (Abramowitz & Stegun, 1972; 

Stroud & Sechrest, 1966). Because the computational intensity of numerical integration 

increases exponentially with the number of traits being measured, the computational 

power demands of KLI in the case of multidimensional personality assessments are 

likely significantly higher than that in the case of ability assessments with only one or 

two dimensions. Furthermore, the computational power demands of KLI are further 

intensified in the case of FC personality assessments where even a small item bank can 

lead to a large number of possible FC pairs to consider, all of which require integration 

when computing the KLI criteria for choosing the best pair to present next. 

Maximum KL Distance Between Subsequent Posteriors (KLP) 

Mulder and van der Linden (2010) suggested that the KL distance between 

subsequent posterior distributions of the trait estimates can be utilised in item selection. 

They proposed setting 𝑓 and 𝑔 respectively to the posterior distributions of the trait 

estimates before and after an additional response. Then, the KL distance between these 

two specific density functions (denoted by 𝐾𝐿𝑃) quantifies how much the new response 

changes the posterior distribution of the trait estimates, with larger distances indicating 

greater power to refine the trait estimates. Equations D17 to D21 show how this method 

can be applied to FC assessments. 
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𝑓(𝜼) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1) (D17) 

𝑔(𝜼) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1, 𝑌{𝑖,𝑘}) =
𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀

𝑟−1)

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀𝑟−1)
 (D18) 

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1) = ∫𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀

𝑟−1)
 

𝜼

𝑑𝜼 (D19) 

𝐾𝐿{𝑖,𝑘}
𝑃 ≡ 𝐾𝐿 (𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1) ∥ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1, 𝑌{𝑖,𝑘}))

= ∫ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)𝑙𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1, 𝑌{𝑖,𝑘})

 

𝜼

𝑑𝜼

= ∫ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)𝑙𝑛
𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀

𝑟−1)

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼)

 

𝜼

𝑑𝜼 

(D20) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∑[𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1) × 𝐾𝐿{𝑖,𝑘}

𝑃 ]

𝑌{𝑖,𝑘}

} (D21) 

Updating of the posterior distribution of the trait estimates after an additional 

response is an iterative process utilising Bayes’ theorem, as described by Equations D18 

and D19 (Mulder & van der Linden, 2010). And because the subsequent response 𝑌{𝑖,𝑘} 

is unknown, Mulder and van der Linden (2010) suggested taking the expectation over 

all possible values of 𝑌{𝑖,𝑘} to arrive at the KLP criterion, as shown in Equation D21. 

Mulder and van der Linden (2010) demonstrated algebraically that KLP and 

KLI-B are closely related and only differ in how the item response probabilities are 

computed: KLI-B estimates it based on the current trait estimate (i.e., 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|�̂�)), 

whereas KLP estimates it conditional on the existing response string (i.e., 

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1)). They thus concluded that KLP is theoretically more robust and less 

prone to inaccurate interim trait estimates than KLI-B. However, as the calculations for 
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𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1) involve yet another integration, the computational complexity of 

KLP is much higher than that of KLI-B, especially for MFC personality assessments. 

Maximum Mutual Information (MUI or KLB) 

Weissman (2007) suggested making use of a special version of the KL 

information measure – the mutual information measure – for adaptive item selection. 

The mutual information between two random variables 𝒙 and 𝒚 is given by Equations 

D22 and D23 for the continuous and discrete variables respectively (Cover & Thomas, 

2006). From its algebraic expressions, it can be seen that the mutual information 

between two random variables is the KL distance between their joint density and their 

product marginal densities (Equation D24; Cover & Thomas, 2006). 

𝑀𝐼(𝒙; 𝒚) = ∫ ∫ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚)𝑙𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚)

 

𝒙

𝑑𝒙
 

𝒚

𝑑𝒚 (D22) 

𝑀𝐼(𝒙; 𝒚) =∑∑𝑃𝑟𝑜𝑏(𝒙, 𝒚)𝑙𝑛
𝑃𝑟𝑜𝑏(𝒙, 𝒚)

𝑃𝑟𝑜𝑏(𝒙)𝑃𝑟𝑜𝑏(𝒚)
𝒙𝒚

 (D23) 

𝑀𝐼(𝒙; 𝒚) = 𝐾𝐿(𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚) ∥ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚)) (D24) 

Mutual information is a measure of the amount of information that 𝒙 and 𝒚 

provide about each other (Mulder & van der Linden, 2010). Mutual information is equal 

to zero when 𝒙 and 𝒚 are not related, i.e., when 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚) =

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚). The closer 𝒙 and 𝒚 are related to each other, the larger their 

mutual information. Weissman (2007) observed that the mutual information between 

the current posterior distribution of trait estimates (i.e., 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)) and the 

response distribution of a possible new question (i.e., 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1)) indicates the 

match between the question’s operational range in the trait space and the posterior 

distribution of traits, with larger values indicating better match. Weissman (2007) thus 
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proposed the MUI item selector, which attempts to maximise this mutual information 

measure. Equations D25 and D26 show how this method can be applied to FC 

assessments. 

𝑀𝐼{𝑖,𝑘} ≡ 𝑀𝐼 ((𝜼|𝒀𝑟−1); (𝑌{𝑖,𝑘}|𝒀
𝑟−1))  

= ∑ ∫𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼, 𝑌{𝑖,𝑘}|𝒀
𝑟−1)

 

𝜼𝑌{𝑖,𝑘}

× 𝑙𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼, 𝑌{𝑖,𝑘}|𝒀

𝑟−1)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀𝑟−1)𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀𝑟−1)
𝑑𝜼 

 

= ∑ ∫𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼)𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜼|𝒀
𝑟−1) × 𝑙𝑛

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝜼)

𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀𝑟−1)

 

𝜼

𝑑𝜼

𝑌{𝑖,𝑘}

 (D25) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟{𝑀𝐼{𝑖,𝑘}} (D26) 

 Mulder and van der Linden (2010) demonstrated algebraically that MUI and 

KLP are almost the same except that KLP considers the KL distance between the 

current and new posteriors, whereas MUI considers the KL distance between the new 

and current posteriors. In other words, they differ only because the KL distance 

measure is not symmetrical. And because of this interpretation within the framework of 

KL information measures, the MUI item selector is also known as the KL information 

with Bayesian update method, or KLB (Wang & Chang, 2010, 2011). Although MUI 

and KLP have similar computational complexities, Mulder and van der Linden (2010) 

predicted that MUI would be more robust to interim trait estimation errors than KLP. 

Continuous Entropy Method (CEM) 

 Wang and Chang (2010, 2011) suggested making use of some other special 

measures within the framework of KL information, namely Shannon entropy measures, 

for adaptive item selection. Shannon entropy of a random variable 𝒚 is given by 



263 

 

Equation D27, while the conditional entropy10 of a random variable 𝒚 given 𝒙 is 

described by Equation D28 (Cover & Thomas, 2006; Shannon, 1948). It can be deduced 

algebraically that Shannon entropy 𝛨(𝒚) differs from the negative KL distance between 

the distribution of 𝒚 and the uniform distribution by a mere constant (Equation D29), 

and that Shannon entropy measures are related to the mutual information measure 

(Equation D30; Cover & Thomas, 2006). 

𝛨(𝒚) = −∫𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚)𝑙𝑛(𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚)) 𝑑𝒚 (D27) 

𝛨(𝒚|𝒙) = ∫∫𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚)𝑙𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙)

𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒙, 𝒚)
𝑑𝒚

 

𝒚

𝑑𝒙

 

𝒙

 (D28) 

𝛨(𝒚) = −𝐾𝐿(𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝒚) ∥ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑢𝑛𝑖𝑓𝑜𝑟𝑚))

− 𝑙𝑛(𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑢𝑛𝑖𝑓𝑜𝑟𝑚)) 

(D29) 

𝛨(𝒚) − 𝛨(𝒚|𝒙) = 𝑀𝐼(𝒙; 𝒚) (D30) 

Shannon entropy “measures the uncertainty inherent in the distribution of a 

random variable”, with smaller values indicating more concentrated distributions and 

larger values indicating more uniform distributions (Wang & Chang, 2011). As the goal 

of CAT is to make the posterior distribution of trait estimates as precise and 

concentrated as possible, Wang and Chang (2010, 2011) proposed the CEM item 

selector, which attempts to minimise the expected entropy (following the administration 

of a new question) of the posterior distribution of trait estimates. Equation D31 shows 

how this method can be applied to FC assessments. 

 

10 Also referred to as “continuous entropy” or “differential entropy”. 
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{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑖,𝑘}∈𝑅𝑟 {𝐸𝑌{𝑖,𝑘}[𝛨(𝜼|𝒀
𝑟−1, 𝑌{𝑖,𝑘})]}  

= ∑ 𝑃𝑟𝑜𝑏(𝑌{𝑖,𝑘}|𝒀
𝑟−1) × 𝛨(𝜼|𝒀𝑟−1, 𝑌{𝑖,𝑘})

𝑌{𝑖,𝑘}

 (D31) 

 Wang and Chang (2011) observed that CEM and MUI are closely related and 

only differ in terms of the baseline used: CEM uses the uniform distribution as the 

baseline, whereas MUI uses the current posterior distribution as the baseline. With a 

more realistic baseline, Wang and Chang (2011) expected MUI to be more robust than 

CEM, and subsequently confirmed their hypothesis via simulations using two different 

item bank conditions. 

Criteria Modifications and Extensions 

So far, this appendix described the most basic formulations of the item selectors. 

This section develops them further through the application of three common 

modifications and extensions. 

Incorporating Prior Information 

Often, some information about the respondents is already available prior to the 

assessments taking place. For example, the distribution of trait scores in the respondent 

population is often quantified as part of the assessment development process. Moreover, 

information about a specific respondent may be available from past assessments and/or 

other data sources. Such prior information can be incorporated into most item selectors. 

For example, Segall (1996) showed how a multivariate normal prior distribution 

(characterised by a variance-covariance matrix 𝒄𝒐𝒗) of latent traits can be incorporated 

into D-optimality, leading to the Bayesian extension of D-optimality that minimises the 

volume of the Bayesian credibility ellipsoid of the trait estimates (Equation D32). 
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{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟{𝑑𝑒𝑡(𝑭
𝑟−1(�̂�𝑟−1) + 𝑭{𝑖,𝑘}(�̂�

𝑟−1) + 𝒄𝒐𝒗−𝟏)} (D32) 

For item selectors based on information maximisation or the FIM, prior 

information can be added to total information or the FIM alongside the information 

contributions from assessment responses. For item selectors based on KL information, 

the prior distribution of trait values can be used as the initial baseline for posterior 

updates. Table D1 describes how this Bayesian extension can be applied to the item 

selectors described in this appendix. 

Table D1. Bayesian extensions of item selectors 

Item selector Modification and effect 

WI, WCI Prior information only adds a constant to the total information 

and has no real effect on the maximisation process. Bayesian 

extension is thus redundant. 

DMI Prior information can potentially change the direction with 

minimum information, but the prior information term drops 

out in the calculations for the item selection criterion. 

A-, C-, D-, E-

optimality 

The prior information matrix is added to the total FIM before 

computing the FIM’s inverse/eigenvalues. 

T-optimality Prior information only adds a constant matrix to the FIM and 

has no real effect on the maximisation of the trace. Bayesian 

extension is thus redundant. 

KLI-U KLI-U only concerns the KL information of future questions 

and ignores any prior information. The Bayesian extension is 

irrelevant for this item selector. 

KLI-B, KLP, 

MUI/KLB, CEM 

Prior information is used as the initial baseline for updating 

the posterior density of trait estimates.  
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Prior information can also be incorporated into the trait estimator of a CAT, 

leading to different interim trait estimates and thus indirectly affecting item selection 

decisions even if Bayesian extension isn’t incorporated into the item selector. Note that 

the inclusion of a prior in trait estimation is an independent decision from the inclusion 

of prior information in item selection – it is technically possible to add a prior to both, 

neither, or either one but not the other. 

Incorporating Likelihood or Posterior Weighting 

While the adoption of a global information measure is one way to address the 

attenuation paradox caused by interim point estimates (Lord & Novick, 1968), another 

way around this problem is likelihood (if using a frequentist approach) or posterior (if 

using a Bayesian approach) weighting. More specifically, the item selection criterion is 

weighted by the likelihood or posterior of the trait distribution, and then integrated over 

the trait space. Veerkamp and Berger (1997) and van der Linden and Pashley (2010) 

respectively presented likelihood-weighted and posterior-weighted maximum 

information item selection criteria for unidimensional CAT. Their methodologies may 

be extended to multidimensional CAT in a similar way. For example, the frequentist 

and Bayesian versions of D-optimality may be likelihood-weighted and posterior-

weighted as shown in Equations D33 and D34 respectively. 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∫ [𝑑𝑒𝑡 (𝑭
𝑟−1(𝜼) + 𝑭{𝑖,𝑘}(𝜼))

× 𝐿(𝒀𝑟−1|𝜼)] 𝑑𝜼} 

(D33) 

{𝑖𝑟 , 𝑘𝑟} = 𝑎𝑟𝑔 𝑚𝑎𝑥{𝑖,𝑘}∈𝑅𝑟 {∫[𝑑𝑒𝑡(𝑭
𝑟−1(𝜼) + 𝑭{𝑖,𝑘}(𝜼) + 𝒄𝒐𝒗

−𝟏)

× 𝐿(𝒀𝑟−1|𝜼) × 𝑝𝑟𝑖𝑜𝑟(𝜼)] 𝑑𝜼} 

(D34) 
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Following the same principle, likelihood or posterior weighting can be applied 

to item selectors that rely on local information measures. However, likelihood or 

posterior weighting would be unnecessary for item selectors that rely on global 

information measures. Table D2 describes how likelihood or posterior weighting can be 

applied to the item selectors described in this appendix. 

Table D2. Likelihood or posterior weighting of item selectors 

Item selector Modification and effect 

WI, WCI, 

DMI, A-, C-, 

D-, E-, T-

optimality 

Multiply the item selection criterion by the likelihood or 

posterior of the trait distribution, then integrating over the trait 

space before taking the maximum or minimum. 

KLI-U Likelihood-weighted KLI-U is equivalent to KLI-B without 

prior information, and posterior-weighted KLI-U is equivalent 

to KLI-B with prior information incorporated. 

KLI-B, KLP, 

MUI/KLB, 

CEM 

Global information measures are utilised by design, which 

incorporate weighting by the current trait density already. So 

additional likelihood or posterior weighting is unnecessary. 

 

Incorporating Item Bank Stratification 

As described by Davey and Nering (2002), items with high discriminations are 

intense “spotlights” that focus on measuring a small region in the trait space, whereas 

items with low discriminations are less-intense “floodlights” that give less targeted 

information but over a larger region in the trait space. Information-based item selection 

criteria have a tendency to favour items with larger discrimination parameters (e.g., 

Mulder & van der Linden, 2009), thus using up the “spotlight” items too early and 

leaving only “floodlight” items that provide limited local information towards the end 
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of a CAT. This tendency also results in an overexposure of “spotlight” items across 

many respondents while the “floodlight” items remain under-used.  

Observing this issue, Chang and Ying (1999) proposed forcing the usage of 

“floodlight” items early on to roughly locate the respondent, and then utilise the 

“spotlight” items to get precise measurement at targeted locations when the interim trait 

estimates become more accurate. This is achieved by stratifying the item bank by item 

discrimination parameters and blocking subsets of items from use according to the 

current measurement stage and status. 

Item bank stratification does not change the functional form of the item selection 

criteria and can be applied to all of the item selectors described in this appendix. For FC 

adaptive personality assessments with each item indicating one and only one trait, each 

item has only one non-zero discrimination parameter, thus allowing the direct 

application of existing item bank stratification methods originally designed for 

unidimensional CAT (Chang & Ying, 1999; Chang, Qian, & Ying, 2001). Moreover, as 

item bank stratification reduces the number of available items to search through at each 

item selection step, the computational intensity of item selection will be reduced. 
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APPENDIX E: STUDY 2 SIMULATED ITEM BANKS 

Table E1. Simulated item bank – 100% positive 

Item Scale Mean utility Loading Unique variance 

I1 S1 −0.70717 1.044764 1.709273 

I2 S1 1.776714 0.521984 1.159328 

I3 S1 −2.97055 0.597848 1.918757 

I4 S1 −0.78604 0.837094 1.465483 

I5 S1 1.763968 0.943131 1.775363 

I6 S1 −0.37533 1.03983 0.746428 

I7 S1 0.055738 1.347173 1.261252 

I8 S1 −1.4333 0.530354 1.711655 

I9 S1 2.109475 0.814683 1.374312 

I10 S1 2.222574 1.381934 1.589197 

I11 S1 2.408814 1.251946 1.111888 

I12 S1 2.858291 0.635261 0.723369 

I13 S1 0.877976 0.998649 1.681363 

I14 S1 −2.52309 1.135166 1.158618 

I15 S1 1.738301 1.056274 1.83603 

I16 S1 −2.23214 1.256136 0.858689 

I17 S1 −1.49682 0.677328 0.642739 

I18 S1 1.338091 1.334109 0.980379 

I19 S1 2.542173 0.509001 1.722056 

I20 S1 0.254422 1.456636 0.641377 

I21 S1 −1.52033 0.626646 0.621635 

I22 S1 1.286766 0.957425 1.307904 

I23 S1 −1.46239 1.291039 1.301192 

I24 S1 0.487458 0.825032 1.498967 

I25 S1 −0.47645 0.994172 1.485816 

I26 S1 −0.30307 0.762203 1.740826 

I27 S1 −2.29736 0.904577 1.586327 

I28 S1 2.566231 1.268938 1.998251 

I29 S1 −0.76049 0.535093 1.0373 

I30 S1 −2.1732 1.101808 1.734048 
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Item Scale Mean utility Loading Unique variance 

I31 S1 −2.70143 1.470858 0.605768 

I32 S1 2.44367 1.130876 1.657164 

I33 S1 −0.01648 0.980106 1.180476 

I34 S1 −1.04665 1.487247 1.166657 

I35 S1 −0.20002 1.396372 0.974691 

I36 S1 2.373314 0.578374 1.49604 

I37 S1 −1.9373 1.307447 0.668385 

I38 S1 −1.01221 1.30304 1.333969 

I39 S1 1.006367 1.127418 0.852887 

I40 S1 −2.95298 1.294949 1.926699 

I41 S1 1.35794 0.606184 1.292774 

I42 S1 −2.6723 1.455788 1.536501 

I43 S1 1.541513 0.667618 1.153456 

I44 S1 1.774449 0.506914 1.583871 

I45 S1 1.022068 0.63724 0.92261 

I46 S1 −1.28199 0.748686 0.533322 

I47 S1 −2.00839 1.256875 0.753026 

I48 S1 1.395604 1.034006 1.312848 

I49 S1 −1.7708 0.68934 0.679371 

I50 S1 −2.75252 1.186829 1.231235 

I51 S1 1.940873 1.162276 0.711712 

I52 S1 −1.12319 1.215094 1.955734 

I53 S1 0.887513 0.541971 1.558018 

I54 S1 2.695767 1.244847 1.225814 

I55 S1 −0.84728 1.476441 1.543151 

I56 S1 2.724339 1.052975 0.683382 

I57 S1 −1.43594 0.918003 1.451041 

I58 S1 2.166961 0.764956 1.121029 

I59 S1 1.785916 1.425376 1.432784 

I60 S1 −0.30565 1.164398 1.375679 

I61 S2 −1.00086 1.314333 0.656758 

I62 S2 −0.23282 1.098962 0.539763 

I63 S2 −0.70935 1.112086 0.858855 
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Item Scale Mean utility Loading Unique variance 

I64 S2 2.251604 1.231069 1.945818 

I65 S2 0.80617 0.609337 1.817204 

I66 S2 2.962207 0.655697 1.676377 

I67 S2 0.93262 1.307993 1.695263 

I68 S2 1.077605 1.20564 1.797696 

I69 S2 2.63775 1.491399 0.741045 

I70 S2 −1.44849 1.071221 0.640828 

I71 S2 2.497214 1.052483 1.055205 

I72 S2 −1.36475 0.654232 0.669546 

I73 S2 2.389784 1.114059 1.416965 

I74 S2 2.106327 1.412757 1.262848 

I75 S2 0.199509 0.777704 1.498026 

I76 S2 0.695199 1.471867 1.864336 

I77 S2 −2.11685 0.786797 1.426781 

I78 S2 −1.48568 1.244354 1.55485 

I79 S2 −0.05293 1.354789 1.013078 

I80 S2 −2.36611 0.780531 1.641007 

I81 S2 −2.81852 1.477087 1.580083 

I82 S2 0.768142 1.0957 0.7764 

I83 S2 −1.95379 1.268915 0.915201 

I84 S2 1.201951 1.244745 0.630123 

I85 S2 −1.13315 0.536401 1.1212 

I86 S2 0.156165 0.723865 1.110339 

I87 S2 −0.57256 1.233276 1.325592 

I88 S2 −1.17561 0.965104 0.60785 

I89 S2 0.597976 0.88356 1.684607 

I90 S2 −1.95029 1.162302 1.367657 

I91 S2 −0.82385 1.236888 1.421738 

I92 S2 1.793103 0.929132 1.52211 

I93 S2 −2.46621 0.80587 1.210501 

I94 S2 −2.20879 1.394776 1.91838 

I95 S2 0.110063 0.826422 1.347841 

I96 S2 2.805448 1.212081 1.54258 
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I97 S2 −2.04789 0.688374 0.931942 

I98 S2 −1.34274 1.164239 1.176277 

I99 S2 −1.83278 1.290975 1.982132 

I100 S2 −1.83442 0.989969 1.181699 

I101 S2 −0.84331 0.750039 1.361267 

I102 S2 −1.96162 1.479281 1.780192 

I103 S2 2.088592 1.160997 1.384894 

I104 S2 2.292348 1.460164 1.510745 

I105 S2 2.45239 1.363981 1.630625 

I106 S2 −1.61573 0.800252 1.17007 

I107 S2 −0.6609 1.140738 1.793021 

I108 S2 −2.92597 1.181677 0.956483 

I109 S2 −0.93999 1.424051 1.818617 

I110 S2 −2.88119 0.808724 0.605688 

I111 S2 2.332869 0.993394 1.130501 

I112 S2 1.288734 0.998845 1.32662 

I113 S2 −1.23537 0.55261 1.346665 

I114 S2 1.332569 1.066582 1.567246 

I115 S2 1.998022 1.210246 1.594587 

I116 S2 −2.93306 0.783299 1.784913 

I117 S2 2.203721 0.868696 1.987004 

I118 S2 −2.89067 1.078161 1.603016 

I119 S2 −1.46551 1.253589 1.015734 

I120 S2 2.050612 0.788272 1.295783 

I121 S3 1.905365 1.320729 1.5379 

I122 S3 2.874162 1.298887 0.869254 

I123 S3 2.102413 1.004574 1.325582 

I124 S3 1.113874 1.456304 1.724762 

I125 S3 0.571454 0.990924 0.855801 

I126 S3 0.761949 0.792522 1.663985 

I127 S3 2.840616 1.088611 0.529747 

I128 S3 2.063539 1.389637 1.85313 

I129 S3 −0.7873 0.975724 0.602414 
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I130 S3 −2.86111 0.946514 0.971073 

I131 S3 1.010706 1.449034 0.631331 

I132 S3 −2.50178 1.176475 1.356271 

I133 S3 1.780011 1.274073 1.097156 

I134 S3 1.431167 1.115502 0.536032 

I135 S3 −0.48227 0.652287 1.817361 

I136 S3 2.906664 1.451132 0.959309 

I137 S3 0.774475 0.844575 1.514362 

I138 S3 −2.40328 0.904077 1.541425 

I139 S3 2.3731 0.631884 1.655328 

I140 S3 −2.09769 1.399702 0.959637 

I141 S3 0.989295 0.757439 1.666095 

I142 S3 −2.68112 1.293044 1.715216 

I143 S3 −0.65609 0.741059 0.800702 

I144 S3 −1.15864 1.260875 0.501656 

I145 S3 1.325911 1.106558 0.82537 

I146 S3 −2.46422 1.148801 0.611531 

I147 S3 −1.77634 0.653253 1.396422 

I148 S3 −0.48226 0.753627 1.386698 

I149 S3 −1.88242 1.414389 1.133791 

I150 S3 −2.63865 0.80737 0.95742 

I151 S3 0.858229 0.59095 1.841757 

I152 S3 −1.38814 1.412835 0.959257 

I153 S3 −1.26254 0.821435 1.866857 

I154 S3 2.573805 0.965535 0.537992 

I155 S3 2.822335 0.599631 1.504073 

I156 S3 1.030967 0.509947 0.924916 

I157 S3 0.633957 1.0376 1.099161 

I158 S3 2.188902 1.11063 0.646553 

I159 S3 −1.38696 1.031026 1.959634 

I160 S3 2.95891 0.680724 1.676718 

I161 S3 2.746844 1.379173 0.768446 

I162 S3 −1.02651 0.739163 1.061255 
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I163 S3 −2.16705 1.005682 1.894634 

I164 S3 −0.00974 0.539527 1.145638 

I165 S3 −2.50124 1.062885 0.875363 

I166 S3 2.541305 1.499678 1.393498 

I167 S3 −2.05582 0.783394 0.968895 

I168 S3 −2.15554 0.996658 1.674064 

I169 S3 0.779925 1.02982 1.646921 

I170 S3 2.021863 1.181353 1.701442 

I171 S3 −1.6939 1.226192 1.580581 

I172 S3 −0.79724 0.690048 1.28086 

I173 S3 −0.66997 1.46952 1.732528 

I174 S3 0.927324 0.920868 1.596561 

I175 S3 −2.78193 1.392045 1.43742 

I176 S3 1.343639 0.747108 1.046478 

I177 S3 −2.73642 0.700285 0.555626 

I178 S3 1.411008 0.554969 1.740477 

I179 S3 −1.22854 1.323831 1.11128 

I180 S3 0.066916 1.170432 1.651138 

I181 S4 2.701035 1.29944 1.835487 

I182 S4 1.629159 1.082557 1.768946 

I183 S4 2.982132 0.524793 0.584199 

I184 S4 0.34643 1.099608 1.388931 

I185 S4 2.199607 0.654908 0.577527 

I186 S4 −2.16101 1.127358 1.839987 

I187 S4 −1.28504 1.179491 1.598822 

I188 S4 −1.42704 1.289826 1.042475 

I189 S4 0.377099 0.530906 0.651169 

I190 S4 −1.33169 0.698314 1.215724 

I191 S4 −2.95414 0.94246 0.523479 

I192 S4 1.071671 0.884617 0.725637 

I193 S4 −0.85087 1.013881 1.929788 

I194 S4 0.083232 1.220094 1.662475 

I195 S4 −1.08012 1.088174 0.843882 
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I196 S4 −2.07003 1.054425 1.53246 

I197 S4 1.362294 0.90027 0.664637 

I198 S4 −1.62554 0.67286 1.406437 

I199 S4 2.665035 0.621725 1.535995 

I200 S4 0.360646 1.396951 1.423617 

I201 S4 0.894452 1.133047 0.565219 

I202 S4 −2.17174 1.025278 1.864178 

I203 S4 −1.83806 1.155104 1.649784 

I204 S4 −2.46192 0.562721 0.661366 

I205 S4 −1.44658 0.717503 1.239353 

I206 S4 −1.82096 1.135589 1.9552 

I207 S4 −0.44104 0.800768 1.325154 

I208 S4 2.554475 0.515687 1.282952 

I209 S4 −0.75691 1.178059 1.857148 

I210 S4 0.669504 1.159846 1.673772 

I211 S4 0.382614 1.052489 1.948729 

I212 S4 1.245584 1.361889 1.182306 

I213 S4 2.529668 0.78575 1.829132 

I214 S4 −2.14579 1.147671 0.629497 

I215 S4 0.324265 0.626727 1.681962 

I216 S4 −1.6184 0.690967 1.20852 

I217 S4 −1.51799 0.555603 1.70861 

I218 S4 −0.23399 0.814726 1.354336 

I219 S4 −1.04584 0.578794 0.895708 

I220 S4 −2.44882 0.795116 1.26398 

I221 S4 −1.73837 1.043629 1.135328 

I222 S4 −1.25779 1.216859 1.16813 

I223 S4 1.615201 1.05802 1.148718 

I224 S4 0.584745 1.222584 0.944466 

I225 S4 −2.0807 1.234347 1.420496 

I226 S4 2.959551 0.756777 1.48828 

I227 S4 1.411305 0.61726 1.015189 

I228 S4 1.978808 0.681078 1.179577 
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I229 S4 0.873955 0.673808 0.839654 

I230 S4 2.349058 0.739181 1.431902 

I231 S4 −1.52837 0.808565 0.656232 

I232 S4 2.94154 0.633979 1.429061 

I233 S4 −1.3363 1.20652 0.644636 

I234 S4 −1.90734 0.886839 0.803271 

I235 S4 −0.90322 0.668134 1.863185 

I236 S4 1.062545 0.707674 1.871761 

I237 S4 0.064844 0.876164 0.776131 

I238 S4 −2.72946 0.657057 1.101567 

I239 S4 −0.69719 0.55783 0.689128 

I240 S4 −1.30336 1.088996 0.949722 
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Table E2. Simulated item bank – 75% positive 

Item Scale Mean utility Loading Unique variance 

I1 S1 −1.52727 1.039403 1.158735 

I2 S1 1.331374 −0.91953 0.733098 

I3 S1 −0.58906 0.515618 1.731037 

I4 S1 −0.72761 −1.24808 1.643265 

I5 S1 −1.64405 1.482661 1.62885 

I6 S1 −2.62161 −1.41998 1.591264 

I7 S1 −2.8082 1.256383 1.139884 

I8 S1 −1.80533 1.280572 0.964826 

I9 S1 2.758434 1.238582 1.616543 

I10 S1 −1.24985 1.457736 1.903991 

I11 S1 1.646294 1.249631 0.944753 

I12 S1 −1.52598 1.305556 0.574035 

I13 S1 2.6042 0.817222 0.576856 

I14 S1 −0.58646 1.074111 1.707827 

I15 S1 −1.01932 1.482211 1.869893 

I16 S1 1.710495 −1.3259 0.853066 

I17 S1 0.964381 −0.6784 0.613116 

I18 S1 2.825593 1.359718 0.684994 

I19 S1 1.011978 0.860682 0.64319 

I20 S1 −0.2748 1.363666 1.416607 

I21 S1 0.215266 0.84509 1.709916 

I22 S1 2.275884 1.039317 1.954364 

I23 S1 −0.49419 −0.65985 1.162402 

I24 S1 1.004494 −1.27036 1.156624 

I25 S1 1.941083 0.60721 1.820822 

I26 S1 2.810882 0.802103 1.792857 

I27 S1 2.628163 1.135359 1.079096 

I28 S1 −2.59655 1.404104 1.912003 

I29 S1 −1.0306 −0.9757 1.576904 

I30 S1 −1.73559 0.93288 1.326837 

I31 S1 −0.00019 1.038492 1.315302 

I32 S1 0.108303 0.951533 0.670451 
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I33 S1 0.350351 1.363981 1.758647 

I34 S1 −1.39254 −0.91415 0.622721 

I35 S1 −2.51538 1.094876 0.856303 

I36 S1 −2.05713 0.507796 0.72451 

I37 S1 1.721832 1.455338 0.79499 

I38 S1 1.750965 1.024268 1.051979 

I39 S1 −0.41764 1.182759 0.730891 

I40 S1 −2.11907 1.175938 1.92906 

I41 S1 2.698202 0.958158 0.554602 

I42 S1 −1.51648 −0.651 1.680723 

I43 S1 −0.06162 −1.26978 1.934597 

I44 S1 0.287151 0.716776 1.759265 

I45 S1 −2.89733 0.834485 1.896444 

I46 S1 2.119246 0.743339 1.472789 

I47 S1 0.146531 0.747357 1.789578 

I48 S1 0.502056 1.375629 1.097286 

I49 S1 −2.24892 −1.42912 1.358657 

I50 S1 0.640592 −1.38087 1.269794 

I51 S1 −2.55463 0.912866 0.955385 

I52 S1 1.369237 0.665562 1.804924 

I53 S1 −0.29076 1.21312 1.851356 

I54 S1 −1.36037 0.838684 1.025571 

I55 S1 −0.45134 −1.45697 0.726835 

I56 S1 0.182962 0.898078 1.415622 

I57 S1 −1.56885 −1.00966 1.322713 

I58 S1 1.544609 0.659854 0.703412 

I59 S1 2.638707 −1.12778 0.558842 

I60 S1 1.75356 0.671386 1.82035 

I61 S2 2.270468 −1.13654 0.766203 

I62 S2 −2.68809 1.472265 1.007288 

I63 S2 0.21971 0.829099 1.817985 

I64 S2 0.71706 −0.51349 0.880107 

I65 S2 0.686074 0.53948 0.80413 
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I66 S2 −0.42309 −1.24902 0.585186 

I67 S2 2.549205 1.402838 1.997247 

I68 S2 2.348675 1.199985 1.184162 

I69 S2 1.021643 1.109731 1.68759 

I70 S2 −1.54393 0.833863 1.046161 

I71 S2 1.918327 0.515441 1.120971 

I72 S2 −0.90593 0.754402 1.394209 

I73 S2 −0.24919 0.599489 1.969739 

I74 S2 0.331937 0.886202 1.156745 

I75 S2 2.84811 0.536462 1.895636 

I76 S2 −0.36394 0.89772 1.303994 

I77 S2 2.088846 1.356582 1.680671 

I78 S2 1.383212 0.904306 1.580151 

I79 S2 1.955943 0.76776 1.973709 

I80 S2 −2.38697 0.818926 0.898461 

I81 S2 −0.85129 1.013973 0.550442 

I82 S2 −2.53092 0.985726 1.433393 

I83 S2 −2.12505 0.873522 0.518149 

I84 S2 1.22488 −0.57855 1.974627 

I85 S2 2.486688 0.9343 1.709765 

I86 S2 −0.46111 −1.32246 0.536707 

I87 S2 −1.15122 0.888431 1.528376 

I88 S2 −0.4695 0.99081 1.876348 

I89 S2 −1.22126 −1.47161 1.815302 

I90 S2 −2.68641 1.48779 1.065039 

I91 S2 −2.82429 1.263535 0.540071 

I92 S2 −2.35335 1.308078 0.996951 

I93 S2 1.512981 0.610702 1.710313 

I94 S2 1.011369 0.940638 0.739884 

I95 S2 −1.54662 1.454184 1.712722 

I96 S2 −1.78402 −0.66835 1.695852 

I97 S2 −2.48505 1.139585 0.863075 

I98 S2 −2.18959 1.351204 1.150824 
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I99 S2 −0.61388 −0.53336 1.833551 

I100 S2 0.619604 0.785451 0.958615 

I101 S2 −0.59885 1.484778 0.817624 

I102 S2 1.871789 1.232816 1.457406 

I103 S2 −2.663 0.545272 0.965919 

I104 S2 1.571305 −1.20088 0.680592 

I105 S2 −0.84133 0.963063 1.325005 

I106 S2 −2.19197 −1.08178 0.598026 

I107 S2 −2.79643 0.604584 1.637894 

I108 S2 2.470946 1.105365 0.819337 

I109 S2 −1.3028 1.139573 0.877839 

I110 S2 1.76606 1.17867 1.653632 

I111 S2 2.997332 0.628633 1.548733 

I112 S2 0.823125 0.911534 0.821786 

I113 S2 −0.99374 1.074148 1.949712 

I114 S2 −2.97283 1.380048 1.326228 

I115 S2 −2.50635 0.67551 0.858234 

I116 S2 −0.28211 −1.19068 0.975327 

I117 S2 −2.41377 1.113249 0.762466 

I118 S2 2.141457 0.649766 0.937073 

I119 S2 0.276858 0.820212 0.568652 

I120 S2 0.779602 −0.6836 1.344755 

I121 S3 2.535792 1.453253 0.535136 

I122 S3 2.490829 0.944041 1.80183 

I123 S3 1.980719 1.354037 1.663047 

I124 S3 −1.26817 0.693196 1.506293 

I125 S3 0.266677 0.587056 0.599414 

I126 S3 −1.47982 0.868405 1.405504 

I127 S3 2.242694 0.698696 0.708201 

I128 S3 −2.48644 −1.21475 1.881475 

I129 S3 2.748967 −0.96499 1.137041 

I130 S3 −2.76339 1.397327 1.449094 

I131 S3 −1.65051 −1.48462 1.377449 
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I132 S3 0.845993 1.313858 1.225321 

I133 S3 0.699062 0.793094 0.752191 

I134 S3 −1.81036 1.302708 1.890411 

I135 S3 −2.28634 1.166052 0.800122 

I136 S3 −0.10869 −0.82389 1.408314 

I137 S3 −2.60994 0.639796 1.794373 

I138 S3 −0.25695 −1.28879 1.080076 

I139 S3 −2.00339 1.087328 1.161993 

I140 S3 −2.31721 −0.91783 1.436085 

I141 S3 −2.23688 1.074456 0.946314 

I142 S3 −0.69464 0.503893 1.930048 

I143 S3 −2.71091 1.44118 0.735169 

I144 S3 −1.84128 0.695828 1.170296 

I145 S3 −1.02725 0.96807 1.118704 

I146 S3 1.172695 −0.73896 1.824352 

I147 S3 2.543087 0.921182 1.169723 

I148 S3 −2.14213 1.029017 0.738513 

I149 S3 −2.88165 0.917719 0.572146 

I150 S3 −0.30827 1.476473 0.669292 

I151 S3 −2.82943 −0.77353 1.329324 

I152 S3 1.892158 1.14584 1.024494 

I153 S3 −1.98173 1.450897 0.701069 

I154 S3 0.810805 −0.69769 1.66749 

I155 S3 −1.31419 −0.84914 1.050131 

I156 S3 −0.10915 0.611127 1.347795 

I157 S3 −2.32751 0.973604 1.505251 

I158 S3 1.11898 0.907873 1.132963 

I159 S3 1.836153 −1.25121 1.496931 

I160 S3 2.11375 0.579597 0.914551 

I161 S3 2.38556 0.610642 1.624932 

I162 S3 −0.08318 1.267537 1.51979 

I163 S3 −0.22453 1.189735 1.662027 

I164 S3 −2.27341 1.439811 1.292087 
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I165 S3 −1.90162 0.902644 1.090572 

I166 S3 0.944469 1.25216 0.991138 

I167 S3 −1.7722 0.532685 0.515995 

I168 S3 1.785324 1.219448 1.387513 

I169 S3 1.13149 0.667863 1.508287 

I170 S3 −2.33367 0.767753 0.888653 

I171 S3 −2.14927 −1.28336 0.623142 

I172 S3 −1.55096 1.021074 1.174626 

I173 S3 −2.25179 1.370759 1.510455 

I174 S3 1.833031 0.531363 0.859513 

I175 S3 −1.99124 −0.57301 1.883557 

I176 S3 −0.65385 0.787546 1.426762 

I177 S3 −0.39236 −0.92806 1.889425 

I178 S3 −1.60506 1.472942 1.265203 

I179 S3 −1.08686 0.656271 1.92996 

I180 S3 −1.99206 −1.13726 1.817828 

I181 S4 1.275777 0.791714 0.806782 

I182 S4 0.217087 1.216128 0.926474 

I183 S4 0.686916 1.041199 1.797586 

I184 S4 −2.03226 1.150862 1.752832 

I185 S4 −0.76593 0.899802 1.1507 

I186 S4 −2.61463 −0.51316 1.279348 

I187 S4 −2.29918 0.96255 0.576761 

I188 S4 1.084747 −1.19687 0.964577 

I189 S4 1.627327 −0.5366 0.802577 

I190 S4 −2.63024 0.597939 1.363758 

I191 S4 2.858081 −0.99071 1.050736 

I192 S4 −0.14245 1.244697 1.79236 

I193 S4 2.022958 1.175586 0.627854 

I194 S4 2.874978 −1.10837 0.745153 

I195 S4 −0.88976 −0.73809 1.661603 

I196 S4 −0.31446 0.849581 1.533003 

I197 S4 −2.99484 −1.1282 1.570524 
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I198 S4 0.548677 1.404308 0.922622 

I199 S4 1.376283 −0.93021 0.577918 

I200 S4 −2.10283 −1.24263 1.033832 

I201 S4 0.24247 −0.77914 0.823449 

I202 S4 −1.45395 1.479635 1.255664 

I203 S4 −2.35301 0.524987 0.806084 

I204 S4 2.191876 0.711672 1.767907 

I205 S4 −2.90609 −0.97831 1.325674 

I206 S4 1.321593 1.099337 0.579617 

I207 S4 −1.02297 −0.65417 1.708322 

I208 S4 0.830063 1.154141 1.415372 

I209 S4 0.457997 0.539002 1.604893 

I210 S4 −2.37279 1.276379 1.199899 

I211 S4 −2.6664 0.73332 1.219893 

I212 S4 2.264197 0.765962 0.742091 

I213 S4 0.459508 1.406902 1.006315 

I214 S4 −0.67339 0.750876 0.922533 

I215 S4 −2.86929 −0.78608 1.932197 

I216 S4 −2.76023 1.34352 1.708117 

I217 S4 2.652934 1.120324 1.995337 

I218 S4 −0.18875 0.936407 1.987321 

I219 S4 1.826791 1.095951 1.179323 

I220 S4 −0.06983 0.62004 1.958971 

I221 S4 −2.79142 1.273217 1.974166 

I222 S4 −1.5147 −0.85242 1.024309 

I223 S4 0.084557 −0.81269 1.111171 

I224 S4 1.14671 −0.54603 1.534478 

I225 S4 0.025774 −0.74487 1.211677 

I226 S4 2.108342 1.387284 1.511095 

I227 S4 −0.93176 1.119688 0.946089 

I228 S4 −0.95914 1.236624 1.44023 

I229 S4 1.636763 1.253559 1.480816 

I230 S4 −1.66918 0.826947 1.078861 
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Item Scale Mean utility Loading Unique variance 

I231 S4 −1.48774 0.98209 0.77515 

I232 S4 1.281074 −1.48737 1.635362 

I233 S4 −0.84713 1.148947 1.435073 

I234 S4 1.849931 −1.10379 0.600523 

I235 S4 1.201282 −1.05583 0.870676 

I236 S4 1.22601 1.088623 1.366947 

I237 S4 0.23315 −0.70052 1.565296 

I238 S4 −2.80445 −1.24715 1.967237 

I239 S4 −2.2235 0.714197 1.491673 

I240 S4 −2.78304 1.027425 0.586466 
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APPENDIX F: STUDY 4 ANALYSIS RESULTS 

Table F1. EFA pattern matrix loadings of HEXACO-PI-R items 

Item Mapped 

Scale 

H* E X A C* O 

I1 O −0.110 −0.031 0.028 0.036 0.024 −0.644 

I2 C 0.005 0.020 0.073 0.089 0.601 −0.124 

I3 A 0.124 −0.092 0.120 0.462 −0.005 0.035 

I4 X 0.189 −0.099 0.421 0.102 0.110 −0.031 

I5 E −0.009 0.392 −0.173 0.048 0.067 −0.141 

I6 H 0.355 0.064 −0.127 0.051 0.063 0.046 

I7 O 0.005 −0.147 0.090 −0.081 0.016 0.524 

I8 C −0.063 −0.011 0.225 0.013 0.527 0.078 

I9 A −0.336 −0.038 −0.053 −0.400 0.067 0.038 

I10 X −0.060 0.025 −0.573 0.114 −0.073 −0.109 

I11 E −0.161 0.361 −0.405 −0.130 0.175 0.028 

I12 H −0.502 −0.097 −0.183 −0.081 −0.147 −0.017 

I13 O −0.027 0.096 −0.070 0.113 −0.060 0.718 

I14 C −0.058 −0.002 0.077 −0.019 −0.586 −0.132 

I15 A −0.243 0.029 −0.117 −0.400 −0.075 0.038 

I16 X −0.030 0.192 0.520 0.099 −0.092 0.055 

I17 E −0.050 0.578 0.121 −0.039 −0.126 −0.024 

I18 H 0.342 0.065 −0.072 0.162 −0.032 0.105 

I19 O 0.026 0.023 −0.062 0.101 −0.114 −0.283 

I20 C −0.136 0.164 0.020 −0.093 −0.494 −0.068 

I21 A −0.191 0.189 −0.008 −0.441 −0.166 −0.026 

I22 X 0.118 −0.016 0.566 0.184 0.126 −0.007 

I23 E 0.001 0.553 −0.004 0.079 −0.052 0.088 

I24 H −0.476 −0.044 0.011 −0.107 −0.011 −0.040 

I25 O 0.041 −0.011 −0.044 −0.042 −0.008 0.615 

I26 C −0.212 0.097 −0.166 0.017 −0.480 0.068 

I27 A 0.107 0.007 0.168 0.542 −0.036 0.064 

I28 X −0.210 0.046 −0.547 0.031 −0.039 −0.024 

I29 E −0.058 0.354 −0.200 0.073 0.133 −0.164 
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Item Mapped 

Scale 

H* E X A C* O 

I30 H −0.501 0.087 0.065 −0.039 −0.079 −0.080 

I31 O −0.151 0.086 0.022 0.094 −0.081 −0.487 

I32 C −0.335 −0.019 −0.194 0.130 −0.426 −0.051 

I33 A 0.031 0.083 0.000 0.363 −0.103 0.073 

I34 X −0.171 0.063 0.694 0.068 0.040 0.009 

I35 E −0.005 −0.328 0.338 0.206 −0.201 −0.029 

I36 H 0.409 −0.004 0.141 0.002 0.123 0.080 

I37 O −0.208 0.035 0.179 0.129 0.168 0.470 

I38 C −0.137 0.102 −0.088 0.176 0.478 0.041 

I39 A −0.050 0.072 −0.027 0.436 0.152 0.002 

I40 X −0.197 0.228 0.496 0.307 0.033 0.058 

I41 E −0.153 −0.499 −0.020 0.182 0.218 0.065 

I42 H −0.447 0.020 0.073 −0.088 −0.025 −0.079 

I43 O −0.055 −0.085 0.070 −0.091 −0.144 0.320 

I44 C −0.211 0.174 −0.129 −0.031 −0.543 −0.031 

I45 A −0.022 −0.211 0.009 0.343 0.063 0.071 

I46 X −0.119 0.037 −0.583 0.016 −0.079 −0.034 

I47 E 0.021 0.528 0.037 0.059 0.063 0.059 

I48 H −0.575 −0.003 0.159 −0.148 0.025 −0.027 

I49 O 0.106 −0.096 −0.126 −0.085 −0.100 −0.448 

I50 C −0.231 0.101 −0.034 −0.083 0.552 0.050 

I51 A −0.115 0.041 −0.206 0.496 0.001 −0.028 

I52 X −0.202 0.213 −0.555 0.000 −0.104 0.047 

I53 E −0.042 −0.458 0.158 0.096 −0.056 0.178 

I54 H 0.409 −0.004 −0.063 0.115 0.005 0.053 

I55 O −0.038 0.084 0.000 0.054 0.027 −0.635 

I56 C −0.104 0.070 −0.055 0.012 −0.500 0.087 

I57 A −0.198 0.095 0.009 −0.375 −0.256 −0.012 

I58 X −0.212 −0.049 0.632 −0.092 0.096 0.043 

I59 E −0.235 −0.596 −0.041 −0.024 0.024 −0.065 

I60 H −0.558 −0.146 −0.143 −0.006 −0.223 −0.064 

* Signs of the loadings were reversed to align with the conceptual definitions. 
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Table F2. ESEM pattern matrix loadings of HEXACO-PI-R items 

Item Mapped Scale H* E X A C* O 

I1 O −0.136 −0.035 0.045 0.026 0.033 −0.643 

I2 C −0.027 0.049 0.080 0.090 0.609 −0.120 

I3 A 0.087 −0.110 0.117 0.474 −0.026 0.023 

I4 X 0.156 −0.125 0.409 0.100 0.119 −0.039 

I5 E 0.001 0.415 −0.117 0.045 0.054 −0.134 

I6 H 0.355 0.074 −0.118 0.065 0.064 0.034 

I7 O 0.020 −0.151 0.053 −0.076 0.016 0.524 

I8 C −0.086 0.006 0.219 0.010 0.535 0.085 

I9 A −0.306 −0.022 −0.069 −0.414 0.084 0.055 

I10 X −0.045 0.056 −0.559 0.128 −0.088 −0.110 

I11 E −0.128 0.409 −0.361 −0.131 0.166 0.044 

I12 H −0.483 −0.091 −0.195 −0.090 −0.155 −0.002 

I13 O −0.001 0.101 −0.078 0.124 −0.085 0.722 

I14 C −0.045 −0.041 0.081 −0.027 −0.592 −0.135 

I15 A −0.205 0.041 −0.123 −0.413 −0.060 0.051 

I16 X −0.045 0.157 0.541 0.084 −0.099 0.059 

I17 E −0.029 0.577 0.191 −0.054 −0.140 −0.011 

I18 H 0.337 0.064 −0.062 0.177 −0.040 0.091 

I19 O 0.016 0.018 −0.047 0.100 −0.117 −0.287 

I20 C −0.110 0.140 0.040 −0.105 −0.502 −0.063 

I21 A −0.150 0.193 0.007 −0.460 −0.151 −0.011 

I22 X 0.078 −0.049 0.564 0.178 0.128 −0.012 

I23 E 0.020 0.562 0.064 0.073 −0.075 0.099 

I24 H −0.466 −0.041 0.004 −0.122 −0.012 −0.023 

I25 O 0.067 −0.005 −0.066 −0.033 −0.016 0.616 

I26 C −0.183 0.084 −0.154 0.013 −0.500 0.074 

I27 A 0.068 −0.015 0.178 0.553 −0.066 0.054 

I28 X −0.186 0.081 −0.536 0.039 −0.054 −0.017 

I29 E −0.052 0.381 −0.148 0.071 0.121 −0.156 

I30 H −0.493 0.085 0.076 −0.057 −0.088 −0.061 

I31 O −0.168 0.079 0.050 0.084 −0.083 −0.484 

I32 C −0.321 −0.031 −0.190 0.127 −0.449 −0.045 
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Item Mapped Scale H* E X A C* O 

I33 A 0.016 0.073 0.017 0.371 −0.130 0.069 

I34 X −0.199 0.023 0.697 0.046 0.041 0.018 

I35 E −0.037 −0.372 0.300 0.205 −0.202 −0.039 

I36 H 0.398 −0.008 0.137 0.011 0.134 0.067 

I37 O −0.209 0.037 0.169 0.129 0.151 0.481 

I38 C −0.153 0.137 −0.073 0.180 0.467 0.050 

I39 A −0.078 0.078 −0.008 0.444 0.125 0.001 

I40 X −0.224 0.201 0.525 0.293 0.011 0.068 

I41 E −0.183 −0.497 −0.080 0.192 0.220 0.060 

I42 H −0.440 0.019 0.075 −0.104 −0.028 −0.061 

I43 O −0.038 −0.096 0.047 −0.091 −0.145 0.322 

I44 C −0.179 0.157 −0.106 −0.039 −0.560 −0.024 

I45 A −0.051 −0.218 −0.012 0.354 0.048 0.063 

I46 X −0.094 0.071 −0.572 0.027 −0.092 −0.031 

I47 E 0.034 0.540 0.101 0.052 0.046 0.069 

I48 H −0.567 −0.005 0.154 −0.170 0.025 −0.004 

I49 O 0.100 −0.098 −0.124 −0.086 −0.085 −0.456 

I50 C −0.234 0.142 −0.026 −0.088 0.557 0.067 

I51 A −0.136 0.049 −0.187 0.508 −0.034 −0.030 

I52 X −0.166 0.250 −0.525 0.006 −0.124 0.057 

I53 E −0.061 −0.482 0.097 0.102 −0.052 0.169 

I54 H 0.401 −0.005 −0.061 0.130 0.005 0.037 

I55 O −0.062 0.083 0.031 0.044 0.034 −0.635 

I56 C −0.080 0.047 −0.048 0.009 −0.515 0.089 

I57 A −0.161 0.089 0.013 −0.391 −0.244 0.000 

I58 X −0.231 −0.081 0.617 −0.114 0.108 0.054 

I59 E −0.252 −0.604 −0.113 −0.021 0.038 −0.069 

I60 H −0.546 −0.149 −0.159 −0.016 −0.235 −0.049 

* Signs of the loadings were reversed to align with the conceptual definitions. 
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Table F3. EFA pattern matrix loadings of 330 adjectives 

Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A1 Abrasive 0.442 0.332 −0.116 −0.154 −0.022 0.004 

A2 Abrupt 0.229 0.338 0.012 −0.159 0.138 0.060 

A3 Absent-minded 0.010 0.277 0.141 0.102 0.531 −0.057 

A4 Accommodating 0.073 −0.164 0.008 0.618 −0.065 0.039 

A5 Adaptable −0.069 −0.177 −0.090 0.322 −0.149 0.344 

A6 Adventurous 0.221 −0.109 −0.312 0.189 0.079 0.409 

A7 Affectionate −0.029 0.063 −0.194 0.662 0.039 0.008 

A8 Aggressive 0.292 0.364 −0.096 −0.252 −0.009 0.131 

A9 Agreeable 0.025 −0.056 0.068 0.435 −0.053 0.152 

A10 Aloof 0.397 0.117 0.384 −0.164 0.073 −0.040 

A11 Altruistic −0.052 0.010 0.011 0.151 0.174 0.366 

A12 Ambitious 0.221 −0.025 −0.293 0.033 −0.371 0.289 

A13 Analytical 0.017 −0.067 0.156 −0.021 −0.219 0.539 

A14 Animated −0.008 0.149 −0.376 0.252 0.119 0.227 

A15 Anxious 0.164 0.383 0.308 0.297 0.098 −0.178 

A16 Approachable −0.145 −0.037 −0.275 0.438 −0.105 0.101 

A17 Argumentative 0.183 0.385 −0.046 −0.113 0.133 0.213 

A18 Arrogant 0.219 0.392 −0.012 −0.375 0.158 0.148 

A19 Articulate −0.196 0.045 −0.111 0.095 −0.170 0.369 

A20 Artistic 0.115 −0.060 0.017 0.359 0.115 0.326 

A21 Assertive 0.055 0.129 −0.230 −0.051 −0.253 0.399 

A22 Authoritative −0.031 0.320 −0.111 −0.181 −0.275 0.175 

A23 Bashful 0.107 0.217 0.344 0.276 0.051 −0.130 

A24 Big-hearted −0.079 −0.020 −0.228 0.680 0.015 −0.001 

A25 Bigoted 0.741 0.040 0.060 −0.028 −0.073 −0.034 

A26 Bitter 0.334 0.298 0.188 −0.261 0.087 −0.085 

A27 Blunt 0.085 0.388 −0.020 −0.221 −0.023 0.265 

A28 Bold 0.256 −0.019 −0.247 0.007 −0.115 0.495 

A29 Bossy −0.013 0.569 −0.153 −0.148 −0.133 0.030 

A30 Brave 0.185 −0.102 −0.323 0.112 −0.151 0.445 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A31 Bubbly 0.043 0.045 −0.573 0.366 −0.026 −0.106 

A32 Bull-headed 0.070 0.453 −0.077 −0.181 0.114 0.118 

A33 Calculating 0.521 −0.112 0.061 −0.043 −0.174 0.280 

A34 Callous 0.671 0.034 0.021 −0.139 0.041 −0.028 

A35 Calm 0.049 −0.450 0.111 0.222 −0.071 0.289 

A36 Candid −0.087 0.064 0.007 0.030 −0.168 0.355 

A37 Carefree 0.135 0.002 −0.207 0.161 0.303 0.068 

A38 Careful 0.236 −0.143 0.154 0.360 −0.520 −0.007 

A39 Careless 0.167 0.162 0.044 −0.101 0.524 −0.032 

A40 Casual 0.168 −0.018 0.078 0.370 0.173 0.074 

A41 Cautious 0.302 −0.068 0.269 0.339 −0.380 0.012 

A42 Charitable −0.010 −0.128 −0.041 0.545 −0.111 0.190 

A43 Chatty −0.017 0.294 −0.529 0.274 0.096 −0.160 

A44 Cheerful −0.015 −0.114 −0.473 0.387 −0.051 0.021 

A45 Civil −0.125 −0.025 0.111 0.357 −0.231 0.270 

A46 Clingy 0.494 0.205 0.117 0.184 0.132 −0.181 

A47 Closed-minded 0.403 0.203 0.127 −0.220 −0.105 −0.329 

A48 Cold 0.456 0.086 0.302 −0.324 0.057 0.193 

A49 Cold-hearted 0.484 0.015 0.126 −0.415 0.002 0.124 

A50 Compassionate −0.169 −0.023 −0.065 0.687 −0.043 0.043 

A51 Complaining 0.125 0.452 0.107 −0.061 0.219 −0.222 

A52 Complex −0.011 0.333 0.300 0.024 0.161 0.261 

A53 Compliant −0.101 −0.020 0.027 0.261 −0.186 −0.096 

A54 Compulsive 0.216 0.352 −0.071 0.100 0.152 −0.028 

A55 Conceited 0.668 −0.034 −0.108 −0.041 0.018 −0.070 

A56 Condescending 0.454 0.106 −0.004 −0.099 0.057 0.015 

A57 Confident 0.174 −0.185 −0.468 0.000 −0.384 0.347 

A58 Conscientious −0.396 0.032 0.116 0.106 −0.224 0.341 

A59 Conservative 0.167 0.113 0.280 0.122 −0.399 −0.158 

A60 Considerate −0.234 0.020 −0.023 0.599 −0.094 0.124 

A61 Conventional 0.271 −0.006 0.048 0.181 −0.538 −0.340 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A62 Cooperative −0.068 −0.112 −0.092 0.435 −0.205 0.090 

A63 Courageous 0.237 −0.095 −0.238 0.157 −0.199 0.450 

A64 Courteous −0.327 0.028 0.070 0.432 −0.079 0.202 

A65 Cowardly 0.274 0.136 0.235 −0.043 0.262 −0.263 

A66 Crabby 0.321 0.435 0.145 −0.125 0.019 −0.080 

A67 Crafty 0.278 0.028 −0.049 0.082 0.076 0.224 

A68 Creative 0.108 −0.120 −0.089 0.324 0.190 0.511 

A69 Cunning 0.197 0.142 0.003 −0.171 0.154 0.223 

A70 Curious −0.182 0.247 0.010 0.186 0.084 0.478 

A71 Daring 0.226 0.020 −0.264 0.030 0.057 0.493 

A72 Deceitful 0.515 0.088 −0.027 −0.129 0.164 −0.029 

A73 Deceptive 0.515 0.103 0.016 −0.159 0.153 −0.075 

A74 Decisive −0.161 0.026 −0.168 −0.100 −0.306 0.381 

A75 Deep 0.199 0.000 0.138 0.230 0.123 0.436 

A76 Defensive 0.410 0.283 0.143 0.066 −0.008 −0.145 

A77 Defiant 0.270 0.393 −0.046 −0.110 0.049 0.120 

A78 Demanding −0.033 0.545 −0.097 −0.295 −0.118 0.259 

A79 Dependable −0.461 0.220 0.043 0.126 −0.225 0.120 

A80 Detached 0.246 0.105 0.371 −0.133 0.181 0.120 

A81 Determined −0.020 0.097 −0.135 0.204 −0.477 0.363 

A82 Devious 0.621 0.017 −0.041 −0.080 0.125 0.081 

A83 Diligent −0.260 0.039 0.055 0.149 −0.462 0.227 

A84 Diplomatic −0.245 −0.101 0.092 0.158 0.028 0.269 

A85 Direct 0.105 0.250 −0.135 0.046 −0.340 0.418 

A86 Discreet −0.437 0.170 0.209 0.106 −0.040 0.237 

A87 Dishonest 0.413 0.065 0.025 −0.189 0.376 −0.072 

A88 Disorganized 0.017 0.126 0.107 0.039 0.746 0.005 

A89 Disrespectful 0.229 0.210 −0.050 −0.360 0.292 −0.078 

A90 Distant 0.244 0.169 0.490 −0.106 0.166 0.152 

A91 Dominant 0.132 0.465 −0.168 −0.233 −0.238 0.259 

A92 Domineering 0.305 0.427 −0.171 −0.290 −0.121 0.076 



292 

 

Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A93 Down-to-earth −0.070 −0.051 0.080 0.405 −0.266 0.067 

A94 Dull 0.169 0.220 0.452 −0.157 0.158 −0.126 

A95 Dynamic 0.124 0.014 −0.341 0.172 −0.185 0.431 

A96 Easygoing 0.035 −0.226 −0.153 0.507 0.168 0.074 

A97 Efficient −0.081 −0.047 −0.058 0.100 −0.450 0.347 

A98 Egotistical 0.401 0.213 −0.045 −0.288 0.131 0.011 

A99 Emotional 0.033 0.372 0.003 0.437 0.085 −0.193 

A100 Empathetic −0.298 0.063 0.017 0.463 0.086 0.161 

A101 Energetic 0.141 −0.077 −0.463 0.186 −0.233 0.270 

A102 Enthusiastic −0.091 0.022 −0.448 0.299 −0.103 0.206 

A103 Ethical −0.281 0.060 0.031 0.293 −0.112 0.390 

A104 Expressive 0.000 0.177 −0.460 0.284 −0.074 0.262 

A105 Extroverted 0.080 0.056 −0.659 0.044 0.021 0.133 

A106 Faithful −0.123 0.034 −0.023 0.425 −0.349 0.071 

A107 Fearful 0.132 0.241 0.293 0.128 0.002 −0.337 

A108 Fearless 0.206 −0.083 −0.256 −0.045 −0.047 0.492 

A109 Flexible 0.004 −0.200 −0.064 0.433 −0.064 0.236 

A110 Flighty 0.485 0.094 −0.020 0.052 0.298 −0.066 

A111 Flippant 0.342 0.203 0.047 −0.047 0.246 −0.037 

A112 Forceful −0.128 0.419 −0.139 −0.296 −0.036 0.219 

A113 Forgetful 0.215 0.105 0.095 0.193 0.411 −0.074 

A114 Forgiving 0.024 −0.232 −0.062 0.524 −0.039 0.083 

A115 Frank 0.127 0.187 −0.077 0.010 −0.243 0.432 

A116 Friendly −0.036 −0.128 −0.350 0.538 −0.079 −0.003 

A117 Frivolous 0.298 0.259 −0.068 0.083 0.266 −0.179 

A118 Fussy −0.009 0.476 0.081 −0.004 0.027 −0.153 

A119 Generous −0.050 −0.029 −0.109 0.632 −0.120 0.069 

A120 Gentle 0.242 −0.237 0.119 0.629 −0.061 0.052 

A121 Giving −0.034 0.002 −0.110 0.612 −0.117 0.031 

A122 Gloomy 0.365 0.220 0.357 −0.003 0.179 −0.022 

A123 Good-hearted −0.084 0.041 −0.110 0.646 −0.123 0.099 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A124 Good-natured −0.078 −0.139 −0.133 0.588 −0.053 0.103 

A125 Gracious 0.082 −0.209 −0.062 0.555 −0.110 0.177 

A126 Greedy 0.243 0.275 −0.019 −0.240 0.198 0.028 

A127 Grumpy 0.095 0.489 0.267 −0.083 0.178 −0.056 

A128 Gullible 0.339 0.211 0.142 0.242 0.151 −0.248 

A129 Happy-go-lucky 0.229 −0.062 −0.274 0.372 0.091 −0.046 

A130 Hard-headed 0.066 0.409 −0.006 −0.201 0.040 0.130 

A131 Hard-working −0.143 0.067 −0.094 0.144 −0.536 0.038 

A132 Harsh 0.167 0.416 0.062 −0.380 −0.012 0.157 

A133 Heartless 0.334 0.085 0.171 −0.485 0.071 0.146 

A134 Helpful −0.098 0.043 −0.041 0.582 −0.278 0.121 

A135 High-strung 0.441 0.347 0.035 0.090 −0.002 −0.110 

A136 Honest −0.189 0.012 0.065 0.339 −0.363 0.143 

A137 Hospitable −0.148 −0.027 −0.160 0.534 −0.014 0.157 

A138 Hostile 0.505 0.340 −0.009 −0.217 −0.066 −0.041 

A139 Hot-tempered 0.110 0.586 0.015 −0.126 0.070 −0.027 

A140 Humble 0.201 −0.180 0.220 0.500 −0.202 0.122 

A141 Idealistic 0.265 0.031 0.001 0.309 0.093 0.262 

A142 Illogical 0.262 0.099 −0.015 0.058 0.270 −0.295 

A143 Imaginative 0.012 −0.016 −0.107 0.243 0.139 0.493 

A144 Immature 0.233 0.158 −0.012 −0.025 0.495 −0.177 

A145 Impartial −0.160 0.006 0.130 −0.032 0.002 0.338 

A146 Impatient −0.176 0.549 0.059 −0.145 0.191 −0.034 

A147 Impersonal 0.487 −0.207 0.287 −0.165 0.015 0.079 

A148 Impolite 0.290 0.118 0.105 −0.269 0.198 −0.152 

A149 Impressionable 0.179 0.109 −0.112 0.182 0.029 −0.130 

A150 Impulsive 0.106 0.372 −0.177 0.107 0.330 0.058 

A151 Inconsiderate 0.379 0.107 0.010 −0.397 0.221 0.071 

A152 Inconsistent 0.146 0.172 0.047 0.030 0.480 −0.084 

A153 Indecisive 0.110 0.235 0.240 0.203 0.403 −0.197 

A154 Independent −0.099 0.016 −0.046 0.138 −0.132 0.380 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A155 Individualistic −0.062 0.145 0.117 0.036 0.100 0.174 

A156 Industrious −0.289 0.036 −0.005 0.014 −0.195 0.419 

A157 Inefficient 0.144 0.087 0.133 −0.059 0.529 −0.158 

A158 Informal −0.275 0.167 0.037 0.083 0.406 0.106 

A159 Ingenious 0.012 −0.080 −0.011 −0.001 −0.016 0.467 

A160 Inhibited 0.144 0.220 0.417 0.121 −0.048 −0.120 

A161 Innovative 0.001 −0.099 −0.098 0.142 0.031 0.621 

A162 Inquisitive −0.227 0.165 −0.008 0.084 0.084 0.346 

A163 Insecure −0.013 0.421 0.371 0.247 0.257 −0.223 

A164 Insensitive 0.364 0.027 0.122 −0.399 0.125 0.088 

A165 Insightful −0.187 −0.042 0.028 0.085 0.030 0.610 

A166 Insincere 0.358 0.005 0.071 −0.286 0.208 −0.142 

A167 Intense 0.204 0.258 −0.042 −0.078 0.028 0.328 

A168 Introspective 0.129 0.016 0.375 0.126 0.100 0.383 

A169 Introverted 0.049 0.065 0.750 0.079 0.104 0.089 

A170 Intuitive −0.246 0.091 0.066 0.124 0.016 0.467 

A171 Irrational 0.342 0.194 0.007 0.005 0.318 −0.179 

A172 Irresponsible 0.190 0.054 0.032 −0.048 0.587 −0.039 

A173 Irritable 0.072 0.576 0.193 −0.083 0.150 −0.039 

A174 Jolly 0.093 −0.088 −0.507 0.382 −0.053 0.021 

A175 Kind −0.056 −0.064 −0.021 0.705 −0.137 0.033 

A176 Kind-hearted −0.108 0.015 −0.008 0.698 −0.113 0.089 

A177 Law-abiding −0.266 0.054 0.038 0.247 −0.432 −0.021 

A178 Lazy 0.168 0.073 0.217 0.025 0.567 −0.023 

A179 Lenient 0.095 −0.101 0.102 0.393 0.118 0.004 

A180 Lethargic 0.282 0.171 0.248 0.202 0.413 −0.107 

A181 Light-hearted −0.144 −0.014 −0.144 0.282 0.109 0.120 

A182 Lively 0.187 −0.046 −0.582 0.368 −0.131 0.118 

A183 Logical 0.054 −0.192 0.207 0.036 −0.292 0.533 

A184 Loud 0.185 0.482 −0.469 0.086 0.048 −0.086 

A185 Loving 0.051 0.021 −0.182 0.749 −0.069 −0.030 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A186 Loyal −0.134 0.076 −0.017 0.444 −0.321 0.040 

A187 Manipulative 0.372 0.181 −0.039 −0.145 0.115 0.088 

A188 Materialistic 0.340 0.206 −0.058 −0.051 −0.013 −0.069 

A189 Meek 0.461 −0.082 0.237 0.248 0.013 −0.030 

A190 Melodramatic 0.254 0.418 −0.121 0.205 0.166 −0.167 

A191 Messy 0.005 0.153 0.098 0.057 0.663 0.070 

A192 Methodical −0.086 0.009 0.103 −0.071 −0.471 0.292 

A193 Meticulous −0.131 0.080 0.107 0.024 −0.438 0.232 

A194 Mild 0.153 −0.141 0.246 0.321 0.037 0.052 

A195 Mischievous 0.072 0.251 −0.038 −0.049 0.372 0.127 

A196 Modest 0.050 −0.147 0.279 0.317 −0.118 0.148 

A197 Moody 0.140 0.469 0.229 0.085 0.132 −0.079 

A198 Moral −0.210 0.052 0.024 0.176 −0.333 0.245 

A199 Narrow-minded 0.262 0.250 0.133 −0.107 0.014 −0.271 

A200 Negative 0.037 0.321 0.346 −0.042 0.234 −0.180 

A201 Nervous 0.052 0.310 0.368 0.277 0.135 −0.268 

A202 Noisy 0.043 0.435 −0.421 −0.038 0.248 −0.149 

A203 Nonchalant 0.202 −0.153 0.010 0.033 0.273 0.145 

A204 Nosey −0.021 0.476 −0.114 −0.067 0.149 −0.040 

A205 Objective −0.088 −0.010 0.102 −0.046 −0.198 0.565 

A206 Old-fashioned 0.185 0.165 0.238 0.140 −0.249 −0.196 

A207 Open-minded −0.119 −0.174 −0.111 0.348 0.114 0.466 

A208 Opinionated 0.165 0.437 −0.070 0.113 0.023 0.156 

A209 Opportunistic 0.261 0.016 −0.163 0.005 −0.079 0.073 

A210 Optimistic 0.097 −0.196 −0.368 0.253 −0.147 0.227 

A211 Organized 0.043 −0.021 −0.108 0.094 −0.693 0.017 

A212 Original 0.260 −0.124 −0.079 0.165 −0.060 0.512 

A213 Outgoing 0.093 0.025 −0.646 0.235 −0.059 0.089 

A214 Outspoken 0.100 0.214 −0.374 0.077 0.046 0.425 

A215 Overbearing 0.531 0.221 −0.090 −0.155 0.024 0.031 

A216 Oversensitive 0.056 0.494 0.197 0.270 0.137 −0.188 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A217 Passive 0.272 0.047 0.312 0.304 0.090 −0.191 

A218 Patient 0.118 −0.430 0.162 0.410 −0.100 0.161 

A219 Peaceful 0.147 −0.380 0.155 0.488 −0.012 0.179 

A220 Perceptive −0.208 0.115 0.048 0.139 −0.026 0.412 

A221 Perfectionistic 0.060 0.321 0.058 0.230 −0.418 0.086 

A222 Persistent −0.056 0.146 −0.015 0.067 −0.317 0.449 

A223 Pessimistic 0.135 0.241 0.323 −0.015 0.135 −0.127 

A224 Philosophical −0.005 −0.059 0.161 0.249 0.147 0.387 

A225 Picky 0.131 0.451 0.144 −0.033 −0.073 0.216 

A226 Playful 0.009 0.086 −0.253 0.443 0.277 0.160 

A227 Pleasant −0.077 −0.153 −0.200 0.523 −0.131 0.100 

A228 Polite −0.138 −0.136 0.050 0.520 −0.237 0.093 

A229 Pompous 0.627 0.019 −0.111 −0.137 0.024 0.011 

A230 Practical −0.041 −0.017 0.014 0.206 −0.276 0.335 

A231 Pretentious 0.549 0.156 −0.069 −0.158 −0.003 −0.034 

A232 Prompt −0.203 0.135 −0.048 0.056 −0.421 0.131 

A233 Proper 0.224 −0.095 −0.017 0.215 −0.409 0.197 

A234 Proud 0.018 0.217 −0.221 0.044 −0.231 −0.031 

A235 Quick-tempered 0.042 0.597 0.005 −0.016 0.014 −0.044 

A236 Quiet 0.109 −0.052 0.726 0.104 −0.044 0.051 

A237 Rambunctious 0.142 0.284 −0.173 −0.027 0.170 −0.005 

A238 Rash 0.278 0.367 −0.068 −0.066 0.284 −0.003 

A239 Rational −0.211 −0.014 0.066 0.076 −0.114 0.481 

A240 Realistic −0.009 0.018 0.027 0.122 −0.376 0.295 

A241 Reasonable −0.114 −0.194 0.087 0.430 −0.131 0.302 

A242 Rebellious 0.021 0.372 −0.086 −0.122 0.413 0.247 

A243 Reckless 0.261 0.188 −0.065 −0.124 0.445 0.065 

A244 Relaxed 0.061 −0.358 −0.079 0.230 0.157 0.234 

A245 Reliable −0.337 0.056 −0.071 0.230 −0.414 0.157 

A246 Resentful 0.337 0.283 0.215 0.032 0.053 −0.070 

A247 Reserved 0.077 0.014 0.639 0.123 −0.081 0.031 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A248 Resilient −0.406 0.074 0.003 −0.036 −0.061 0.477 

A249 Resourceful −0.172 0.021 −0.057 0.079 −0.199 0.524 

A250 Respectful −0.185 −0.022 0.004 0.446 −0.343 0.184 

A251 Responsible −0.167 0.041 −0.043 0.174 −0.605 0.184 

A252 Restless 0.106 0.436 0.032 −0.057 0.103 0.071 

A253 Rough 0.355 0.283 −0.001 −0.262 0.078 0.104 

A254 Rugged 0.101 0.135 0.000 −0.221 0.122 0.287 

A255 Ruthless 0.201 0.294 −0.116 −0.372 −0.009 0.215 

A256 Scatterbrained 0.249 0.238 0.072 0.175 0.499 −0.108 

A257 Scheming 0.563 0.064 −0.050 −0.132 0.105 0.061 

A258 Secretive 0.382 0.099 0.218 0.060 0.045 0.115 

A259 Self-assured 0.105 −0.180 −0.279 −0.016 −0.263 0.397 

A260 Self-centered 0.361 0.222 0.051 −0.247 0.166 0.082 

A261 Self-confident 0.109 −0.320 −0.362 −0.073 −0.128 0.446 

A262 Self-conscious 0.370 0.037 0.307 0.274 0.012 0.096 

A263 Self-disciplined 0.016 −0.073 −0.039 0.115 −0.615 0.188 

A264 Self-indulgent 0.522 0.137 −0.062 0.034 0.144 0.052 

A265 Selfless −0.172 0.014 0.067 0.390 −0.095 0.155 

A266 Self-reliant −0.189 0.175 0.065 0.117 −0.246 0.374 

A267 Self-righteous 0.621 0.066 0.027 0.063 −0.120 0.078 

A268 Sensitive −0.059 0.313 0.204 0.351 0.086 −0.045 

A269 Sentimental −0.100 0.318 0.053 0.493 0.034 −0.216 

A270 Serious 0.119 0.120 0.295 0.010 −0.363 0.227 

A271 Short-tempered 0.073 0.606 0.056 −0.099 0.075 −0.052 

A272 Shy 0.044 0.116 0.678 0.206 0.035 −0.088 

A273 Simple 0.404 −0.107 0.097 0.373 −0.157 0.066 

A274 Sincere −0.176 −0.013 0.010 0.397 −0.138 0.142 

A275 Skeptical 0.073 0.361 0.278 −0.056 0.075 0.171 

A276 Sloppy 0.338 0.102 0.112 −0.009 0.502 −0.090 

A277 Sly 0.393 0.071 0.014 −0.130 0.186 0.167 

A278 Sneaky 0.413 0.183 0.018 −0.145 0.204 0.047 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A279 Snobbish 0.345 0.275 0.012 −0.164 0.012 −0.064 

A280 Sociable 0.021 −0.010 −0.640 0.299 −0.088 −0.023 

A281 Social 0.025 −0.015 −0.680 0.262 −0.061 −0.006 

A282 Spineless 0.490 −0.062 0.220 0.084 0.188 −0.194 

A283 Spontaneous 0.244 0.110 −0.419 0.280 0.099 0.228 

A284 Stern 0.273 0.172 0.003 −0.176 −0.267 0.109 

A285 Straightforward −0.155 0.248 −0.069 0.033 −0.369 0.276 

A286 Stubborn −0.104 0.594 0.086 −0.108 0.135 0.090 

A287 Studious 0.064 −0.027 0.136 0.109 −0.305 0.378 

A288 Stuffy 0.487 0.125 0.239 −0.087 0.058 −0.039 

A289 Sympathetic −0.105 0.000 0.012 0.747 0.028 0.071 

A290 Talkative −0.017 0.275 −0.633 0.245 0.100 −0.071 

A291 Temperamental 0.238 0.470 0.052 −0.022 0.095 −0.060 

A292 Tense 0.085 0.512 0.293 0.002 0.047 −0.041 

A293 Thorough −0.261 0.118 0.071 0.092 −0.480 0.114 

A294 Tidy 0.124 −0.027 −0.087 0.138 −0.617 −0.106 

A295 Timid 0.245 0.112 0.489 0.242 0.104 −0.177 

A296 Tolerant −0.105 −0.243 0.047 0.413 0.130 0.236 

A297 Touchy 0.268 0.344 0.003 0.158 0.143 −0.185 

A298 Tough 0.022 0.203 −0.087 −0.116 −0.089 0.427 

A299 Traditional 0.232 0.074 0.101 0.189 −0.461 −0.237 

A300 Trustworthy −0.216 0.007 0.022 0.334 −0.348 0.151 

A301 Truthful −0.233 −0.091 −0.021 0.292 −0.295 0.186 

A302 Unapproachable 0.197 0.188 0.255 −0.342 0.128 0.043 

A303 Unassuming −0.266 0.020 0.098 0.018 0.055 0.169 

A304 Uncompromising 0.126 0.204 0.069 −0.225 0.060 0.131 

A305 Unconventional −0.195 0.071 0.015 −0.093 0.512 0.515 

A306 Uncooperative 0.295 0.159 0.134 −0.369 0.240 −0.038 

A307 Underhanded 0.608 0.050 −0.005 −0.087 0.141 −0.100 

A308 Understanding −0.034 −0.134 −0.021 0.672 −0.035 0.180 

A309 Undisciplined −0.002 0.179 0.085 −0.083 0.586 0.032 
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Item Adjective H(-) 

/E(-) 

E(+) 

/A(+) 

X(-) A(+) 

/E(+) 

/H(+) 

C(-) O(+) 

A310 Unemotional 0.135 −0.179 0.120 −0.460 0.012 0.251 

A311 Unfeeling 0.324 0.040 0.165 −0.395 0.061 0.151 

A312 Unforgiving 0.114 0.418 0.166 −0.342 −0.024 −0.091 

A313 Unfriendly 0.109 0.142 0.334 −0.488 0.197 0.017 

A314 Unimaginative 0.216 0.158 0.137 −0.133 −0.132 −0.419 

A315 Uninhibited −0.052 0.127 −0.249 −0.111 0.268 0.129 

A316 Unkind 0.271 0.154 0.072 −0.533 0.107 −0.045 

A317 Unreliable 0.230 −0.102 0.088 −0.066 0.643 −0.032 

A318 Unruly 0.346 0.140 −0.197 −0.211 0.306 0.020 

A319 Unsympathetic 0.293 0.132 0.135 −0.459 0.076 0.069 

A320 Untidy −0.106 0.115 0.118 0.020 0.693 0.111 

A321 Vain 0.419 0.201 −0.088 −0.042 0.128 −0.023 

A322 Verbal −0.122 0.332 −0.394 0.170 0.032 0.299 

A323 Vibrant 0.115 −0.049 −0.542 0.259 −0.075 0.192 

A324 Vindictive 0.535 0.156 0.072 −0.161 0.173 0.080 

A325 Vocal 0.015 0.213 −0.452 0.101 −0.091 0.268 

A326 Warm −0.195 −0.040 −0.224 0.628 −0.015 −0.028 

A327 Warm-hearted −0.130 −0.009 −0.129 0.741 −0.042 −0.020 

A328 Well-mannered −0.123 −0.041 0.018 0.489 −0.257 0.136 

A329 Whiny 0.347 0.305 0.113 0.067 0.200 −0.176 

A330 Withdrawn 0.248 0.168 0.552 0.023 0.234 0.052 
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Table F4. Final calibrated item parameters for 279 adjectives 

No. Adjective Scale 𝜇𝑖 𝜆𝑖 𝜓𝑖
2 

A25 Bigoted H 1.510 −0.487 0.659 

A33 Calculating H 3.709 −0.458 2.595 

A36 Candid H 4.548 0.306 1.448 

A55 Conceited H 1.931 −0.555 1.236 

A56 Condescending H 1.990 −0.551 1.469 

A69 Cunning H 2.326 −0.544 1.951 

A72 Deceitful H 1.300 −0.392 0.406 

A73 Deceptive H 1.513 −0.550 0.586 

A82 Devious H 1.622 −0.580 0.837 

A85 Direct H 4.778 0.150 0.954 

A86 Discreet H 4.658 0.319 1.638 

A87 Dishonest H 1.217 −0.351 0.233 

A93 Down-to-earth H 5.357 0.344 0.612 

A98 Egotistical H 1.786 −0.599 0.841 

A103 Ethical H 5.542 0.347 0.424 

A106 Faithful H 5.515 0.391 0.508 

A126 Greedy H 1.715 −0.583 0.818 

A136 Honest H 5.725 0.313 0.245 

A140 Humble H 4.953 0.284 0.952 

A145 Impartial H 4.290 0.226 2.269 

A166 Insincere H 1.384 −0.415 0.404 

A177 Law-abiding H 5.428 0.380 0.723 

A187 Manipulative H 1.880 −0.639 1.011 

A188 Materialistic H 2.628 −0.634 1.673 

A196 Modest H 4.728 0.263 1.123 

A198 Moral H 5.419 0.376 0.596 

A205 Objective H 5.009 0.186 0.988 

A229 Pompous H 1.696 −0.533 0.907 

A231 Pretentious H 1.799 −0.539 0.876 

A255 Ruthless H 1.942 −0.481 1.272 

A257 Scheming H 1.868 −0.696 1.134 

A258 Secretive H 2.740 −0.519 2.056 
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No. Adjective Scale 𝜇𝑖 𝜆𝑖 𝜓𝑖
2 

A260 Self-centred H 1.994 −0.697 0.982 

A264 Self-indulgent H 2.706 −0.665 1.785 

A265 Selfless H 4.464 0.529 1.634 

A267 Self-righteous H 2.855 −0.627 2.433 

A274 Sincere H 5.628 0.304 0.351 

A277 Sly H 1.850 −0.595 1.235 

A278 Sneaky H 1.584 −0.604 0.602 

A279 Snobbish H 1.734 −0.498 0.888 

A285 Straightforward H 5.104 0.295 0.736 

A300 Trustworthy H 5.802 0.241 0.216 

A301 Truthful H 5.647 0.341 0.257 

A303 Unassuming H 3.822 0.274 2.238 

A307 Underhanded H 1.553 −0.521 0.538 

A321 Vain H 1.837 −0.551 1.018 

A15 Anxious E 2.896 0.996 1.060 

A30 Brave E 4.833 −0.463 0.668 

A34 Callous E 1.610 0.260 1.013 

A35 Calm E 5.049 −0.418 0.683 

A46 Clingy E 1.876 0.623 1.052 

A51 Complaining E 1.881 0.648 0.710 

A63 Courageous E 4.946 −0.401 0.707 

A65 Cowardly E 1.529 0.408 0.584 

A71 Daring E 4.255 −0.325 1.298 

A80 Detached E 2.220 0.396 1.473 

A99 Emotional E 3.452 0.613 1.428 

A107 Fearful E 2.402 0.669 1.074 

A108 Fearless E 4.220 −0.486 1.270 

A130 Hard-headed E 2.743 0.307 2.290 

A135 High-strung E 2.270 0.579 1.488 

A153 Indecisive E 2.120 0.736 0.976 

A154 Independent E 5.304 −0.270 0.702 

A160 Inhibited E 2.536 0.514 1.477 

A163 Insecure E 2.216 0.882 0.865 
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No. Adjective Scale 𝜇𝑖 𝜆𝑖 𝜓𝑖
2 

A190 Melodramatic E 1.943 0.593 1.187 

A197 Moody E 2.193 0.719 1.033 

A201 Nervous E 2.834 0.891 1.019 

A216 Oversensitive E 2.347 0.855 1.060 

A244 Relaxed E 4.497 −0.411 1.175 

A248 Resilient E 5.077 −0.366 1.130 

A259 Self-assured E 4.872 −0.562 0.719 

A262 Self-conscious E 4.208 0.436 1.912 

A266 Self-reliant E 5.187 −0.276 0.834 

A268 Sensitive E 3.695 0.601 1.816 

A269 Sentimental E 3.884 0.415 1.896 

A292 Tense E 2.456 0.797 1.023 

A297 Touchy E 2.408 0.620 1.566 

A298 Tough E 4.092 −0.241 1.918 

A329 Whiny E 1.612 0.540 0.679 

A10 Aloof X 1.943 −0.632 0.938 

A14 Animated X 4.140 0.528 1.414 

A21 Assertive X 4.684 0.414 1.086 

A23 Bashful X 2.569 −0.478 1.674 

A28 Bold X 4.352 0.434 1.251 

A31 Bubbly X 4.222 0.838 1.225 

A43 Chatty X 4.068 0.570 1.487 

A44 Cheerful X 5.202 0.558 0.464 

A57 Confident X 5.107 0.614 0.409 

A90 Distant X 2.272 −0.734 1.126 

A94 Dull X 1.724 −0.601 0.598 

A95 Dynamic X 4.909 0.545 0.589 

A101 Energetic X 5.133 0.608 0.430 

A102 Enthusiastic X 5.307 0.520 0.421 

A104 Expressive X 4.749 0.593 0.692 

A105 Extroverted X 4.009 0.960 1.289 

A122 Gloomy X 1.705 −0.524 0.822 

A169 Introverted X 2.897 −1.068 1.256 
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No. Adjective Scale 𝜇𝑖 𝜆𝑖 𝜓𝑖
2 

A174 Jolly X 4.820 0.697 0.653 

A180 Lethargic X 1.772 −0.474 0.948 

A181 Light-hearted X 4.328 0.311 1.533 

A182 Lively X 4.968 0.684 0.386 

A184 Loud X 2.744 0.336 1.853 

A210 Optimistic X 5.165 0.575 0.613 

A213 Outgoing X 4.780 0.806 0.592 

A214 Outspoken X 4.168 0.577 1.451 

A217 Passive X 2.710 −0.488 1.860 

A223 Pessimistic X 2.233 −0.627 1.440 

A236 Quiet X 3.233 −0.810 1.230 

A247 Reserved X 3.586 −0.733 1.544 

A252 Restless X 2.972 −0.289 2.160 

A261 Self-confident X 5.023 0.566 0.630 

A272 Shy X 2.824 −0.889 1.259 

A280 Sociable X 5.086 0.721 0.444 

A281 Social X 5.005 0.757 0.412 

A290 Talkative X 4.261 0.691 1.194 

A295 Timid X 2.352 −0.711 1.303 

A322 Verbal X 4.526 0.502 1.222 

A323 Vibrant X 4.806 0.707 0.568 

A325 Vocal X 4.513 0.591 0.922 

A330 Withdrawn X 2.065 −0.794 0.831 

A1 Abrasive A 1.942 −0.493 1.073 

A2 Abrupt A 2.302 −0.617 1.186 

A4 Accommodating A 5.150 0.503 0.550 

A5 Adaptable A 5.485 0.447 0.403 

A8 Aggressive A 2.044 −0.542 1.498 

A9 Agreeable A 4.847 0.368 0.826 

A16 Approachable A 5.493 0.480 0.447 

A17 Argumentative A 3.017 −0.620 1.969 

A24 Big-hearted A 5.141 0.567 0.663 

A26 Bitter A 1.497 −0.515 0.470 
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A27 Blunt A 3.060 −0.544 2.038 

A29 Bossy A 2.871 −0.447 1.815 

A32 Bull-headed A 2.377 −0.630 1.639 

A45 Civil A 5.364 0.379 0.538 

A50 Compassionate A 5.309 0.548 0.415 

A53 Compliant A 4.565 0.331 1.881 

A60 Considerate A 5.390 0.483 0.366 

A62 Cooperative A 5.614 0.346 0.267 

A64 Courteous A 5.376 0.436 0.526 

A66 Crabby A 1.621 −0.517 0.577 

A76 Defensive A 2.912 −0.547 1.546 

A77 Defiant A 2.477 −0.580 1.691 

A78 Demanding A 3.225 −0.524 2.109 

A84 Diplomatic A 4.883 0.345 1.124 

A89 Disrespectful A 1.245 −0.338 0.269 

A96 Easygoing A 5.028 0.472 0.904 

A100 Empathetic A 5.074 0.402 1.055 

A109 Flexible A 5.384 0.439 0.343 

A112 Forceful A 3.093 −0.441 2.219 

A114 Forgiving A 5.093 0.570 0.535 

A116 Friendly A 5.528 0.449 0.281 

A118 Fussy A 2.388 −0.404 1.752 

A119 Generous A 5.265 0.514 0.386 

A120 Gentle A 4.872 0.512 0.776 

A121 Giving A 5.246 0.456 0.457 

A123 Good-hearted A 5.514 0.435 0.299 

A124 Good-natured A 5.520 0.440 0.270 

A125 Gracious A 5.046 0.573 0.509 

A127 Grumpy A 1.900 −0.661 0.750 

A132 Harsh A 1.985 −0.631 0.973 

A137 Hospitable A 5.307 0.491 0.514 

A138 Hostile A 1.482 −0.431 0.630 

A139 Hot-tempered A 1.859 −0.664 0.915 
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A146 Impatient A 2.524 −0.666 1.481 

A148 Impolite A 1.290 −0.302 0.374 

A151 Inconsiderate A 1.494 −0.485 0.466 

A173 Irritable A 2.011 −0.707 0.894 

A175 Kind A 5.456 0.482 0.275 

A176 Kind-hearted A 5.400 0.479 0.396 

A179 Lenient A 4.156 0.231 1.312 

A185 Loving A 5.312 0.489 0.388 

A208 Opinionated A 3.674 −0.306 2.136 

A218 Patient A 4.983 0.632 0.805 

A219 Peaceful A 5.019 0.504 0.647 

A225 Picky A 3.142 −0.458 1.911 

A227 Pleasant A 5.323 0.538 0.282 

A228 Polite A 5.623 0.419 0.238 

A235 Quick-tempered A 2.344 −0.650 1.461 

A246 Resentful A 1.972 −0.492 1.182 

A250 Respectful A 5.665 0.381 0.220 

A253 Rough A 1.871 −0.575 0.863 

A271 Short-tempered A 1.888 −0.670 0.892 

A275 Sceptical A 3.419 −0.498 1.627 

A284 Stern A 3.126 −0.331 1.992 

A286 Stubborn A 2.919 −0.705 1.690 

A289 Sympathetic A 5.207 0.524 0.463 

A291 Temperamental A 2.136 −0.599 1.355 

A296 Tolerant A 5.215 0.426 0.545 

A302 Unapproachable A 1.532 −0.521 0.666 

A304 Uncompromising A 2.543 −0.449 1.852 

A306 Uncooperative A 1.313 −0.387 0.270 

A308 Understanding A 5.447 0.462 0.288 

A312 Unforgiving A 1.709 −0.600 0.651 

A313 Unfriendly A 1.381 −0.468 0.325 

A316 Unkind A 1.319 −0.425 0.295 

A318 Unruly A 1.642 −0.445 0.829 
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A319 Unsympathetic A 1.534 −0.519 0.473 

A324 Vindictive A 1.525 −0.490 0.740 

A326 Warm A 5.160 0.593 0.493 

A327 Warm-hearted A 5.319 0.580 0.383 

A328 Well-mannered A 5.592 0.354 0.343 

A3 Absent-minded C 1.972 −0.720 0.833 

A12 Ambitious C 5.258 0.448 0.634 

A38 Careful C 5.146 0.394 0.550 

A39 Careless C 1.642 −0.597 0.513 

A41 Cautious C 4.516 0.268 1.194 

A54 Compulsive C 2.726 −0.404 1.771 

A58 Conscientious C 5.283 0.411 0.742 

A79 Dependable C 5.204 0.286 1.763 

A81 Determined C 5.458 0.459 0.316 

A83 Diligent C 5.404 0.495 0.446 

A88 Disorganised C 1.722 −0.799 0.459 

A97 Efficient C 5.417 0.504 0.330 

A110 Flighty C 1.836 −0.503 1.051 

A111 Flippant C 1.813 −0.489 1.017 

A113 Forgetful C 2.500 −0.684 1.754 

A117 Frivolous C 1.996 −0.482 1.182 

A131 Hard-working C 5.699 0.350 0.275 

A142 Illogical C 1.512 −0.302 0.612 

A144 Immature C 1.572 −0.615 0.565 

A150 Impulsive C 2.803 −0.498 1.684 

A152 Inconsistent C 1.736 −0.569 0.711 

A156 Industrious C 5.053 0.420 0.981 

A157 Inefficient C 1.494 −0.526 0.372 

A158 Informal C 3.665 −0.329 2.098 

A171 Irrational C 1.567 −0.450 0.604 

A172 Irresponsible C 1.334 −0.436 0.434 

A178 Lazy C 1.669 −0.708 0.698 

A183 Logical C 5.368 0.386 0.492 
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A191 Messy C 1.881 −0.784 0.791 

A192 Methodical C 5.017 0.456 0.749 

A193 Meticulous C 4.918 0.534 1.064 

A211 Organised C 5.293 0.646 0.365 

A221 Perfectionistic C 4.663 0.369 1.259 

A222 Persistent C 5.159 0.360 0.746 

A230 Practical C 5.351 0.355 0.430 

A232 Prompt C 5.023 0.449 0.903 

A233 Proper C 4.925 0.409 0.885 

A238 Rash C 1.898 −0.542 0.905 

A239 Rational C 5.261 0.315 0.766 

A240 Realistic C 5.375 0.331 0.444 

A241 Reasonable C 5.431 0.299 0.332 

A243 Reckless C 1.738 −0.559 0.791 

A245 Reliable C 5.716 0.299 0.296 

A251 Responsible C 5.689 0.408 0.202 

A256 Scatterbrained C 1.913 −0.787 0.880 

A263 Self-disciplined C 5.334 0.595 0.350 

A270 Serious C 4.433 0.246 1.220 

A276 Sloppy C 1.541 −0.580 0.401 

A293 Thorough C 5.371 0.453 0.479 

A294 Tidy C 4.951 0.640 0.818 

A309 Undisciplined C 1.539 −0.558 0.561 

A317 Unreliable C 1.306 −0.373 0.362 

A320 Untidy C 1.887 −0.713 0.878 

A13 Analytical O 5.274 0.361 0.666 

A19 Articulate O 5.115 0.384 0.693 

A20 Artistic O 4.026 0.889 1.275 

A47 Closed-minded O 1.486 −0.347 0.568 

A68 Creative O 4.930 0.709 0.472 

A70 Curious O 5.293 0.303 0.665 

A75 Deep O 4.353 0.399 1.573 

A143 Imaginative O 5.038 0.600 0.517 
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A159 Ingenious O 4.414 0.468 1.389 

A161 Innovative O 4.994 0.640 0.507 

A162 Inquisitive O 5.173 0.273 1.189 

A165 Insightful O 5.041 0.466 0.901 

A168 Introspective O 4.190 0.311 2.053 

A170 Intuitive O 4.874 0.359 1.158 

A199 Narrow-minded O 1.433 −0.258 0.573 

A207 Open-minded O 5.493 0.299 0.316 

A212 Original O 4.928 0.445 0.639 

A220 Perceptive O 5.093 0.320 0.816 

A224 Philosophical O 4.325 0.520 1.299 

A249 Resourceful O 5.363 0.324 0.404 

A287 Studious O 4.940 0.492 0.906 

A288 Stuffy O 1.677 −0.191 0.875 

A305 Unconventional O 3.428 0.347 1.807 

A314 Unimaginative O 1.763 −0.584 0.612 
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APPENDIX G: STUDY 6 PARTICIPANT FEEDBACK QUESTIONS 
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APPENDIX H: STUDY 6 PARTICIPANT BACKGROUND QUESTIONS 

 

 


