
 

Tsapparellas, G, Jin, N, Dai, X and Fehringer, G

 Laplacian Scores-Based Feature Reduction in IoT Systems for Agricultural 
Monitoring and Decision-Making Support

http://researchonline.ljmu.ac.uk/id/eprint/13614/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Tsapparellas, G, Jin, N, Dai, X and Fehringer, G (2020) Laplacian Scores-
Based Feature Reduction in IoT Systems for Agricultural Monitoring and 
Decision-Making Support. Sensors, 20 (18). ISSN 1424-8220 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


sensors

Article

Laplacian Scores-Based Feature Reduction in IoT
Systems for Agricultural Monitoring and
Decision-Making Support

Giorgos Tsapparellas 1 , Nanlin Jin 2,*, Xuewu Dai 3 and Gerhard Fehringer 2

1 Department of Maritime and Mechanical Engineering, Liverpool John Moores University,
Liverpool L3 3AF, UK; g.tsapparellas@ljmu.ac.uk

2 Department of Computer and Information Sciences, Northumbria University,
Newcastle upon Tyne NE1 8ST, UK; gerhard.fehringer@northumbria.ac.uk

3 Department of Mathematics, Physics and Electrical Engineering, Northumbria University,
Newcastle upon Tyne NE1 8ST, UK; xuewu.dai@northumbria.ac.uk

* Correspondence: nanlin.jin@northumbria.ac.uk

Received: 31 July 2020; Accepted: 2 September 2020; Published: 8 September 2020

Abstract: Internet of things (IoT) systems generate a large volume of data all the time. How to choose
and transfer which data are essential for decision-making is a challenge. This is especially important
for low-cost and low-power designs, for example Long-Range Wide-Area Network (LoRaWan)-based
IoT systems, where data volume and frequency are constrained by the protocols. This paper presents
an unsupervised learning approach using Laplacian scores to discover which types of sensors can
be reduced, without compromising the decision-making. Here, a type of sensor is a feature. An IoT
system is designed and implemented for a plant-monitoring scenario. We have collected data and
carried out the Laplacian scores. The analytical results help choose the most important feature.
A comparative study has shown that using fewer types of sensors, the accuracy of decision-making
remains at a satisfactory level.

Keywords: Laplacian scores; data reduction; sensors; Internet of Things (IoT); LoRaWAN

1. Introduction

The Internet of Things (IoT) interconnects and embeds objects, machines and devices,
forming a highly distributed network of device broadcasting with humans and other devices [1].
Recent application areas progressing within the IoT sector include smart cities, agriculture, building,
healthcare, and shopping [2–4]. This paper proposes an open-source [5] and low-cost Long-Range
Wide-Area Network (LoRaWAN) solution for strawberry-plant monitoring.

Conducting data-mining on raw IoT data will help to reduce the cost of powering sensors,
the amount of packet transmission, latency, and response delay [6]. Moreover, the discovery of
information from raw data improves system performance. Data-mining generates knowledge models
from data received to support decision-making. Common methods include data compression,
data-mining, and data reduction [6].

Recent research introduces a range of methods, including compression [7] and reconstruction [8],
aggregation [9], redundancy removal, and reduction of the number of sensors [6] using time-discounted
histogram encoding. To replace multiple sensors that send appliance energy usage in households,
smart phone data is used as the only data source to estimate user activities [10]. A lightweight
monitoring framework has been developed to cope with limited processing capabilities. It adapts
the amount of data disseminated through the network over time [11]. Another framework transmits
updates when the sensor readings are detected to be unusual, and have triggered dissemination [12],
adapting the monitoring sensing intensity and dynamically adjusting the data volume payload.
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Reducing the amount of data to be analyzed in IoT systems can be done either offline or
online. The offline analysis is to collect data as much as possible during trials, to conduct offline
analysis, and discover patterns. During the real-time operation, data will be checked against such
learned patterns while running lightweight data analysis programs, for example signature-based
network-intrusion-detection systems [13]. The online analysis operates data reduction in real
time, to calculate the difference from normal behaviors, for example anomaly-based detection
network-intrusion-detection systems [11,12,14]. The offline approach might out-perform the online
approach in finding the previously trained events or situations, but the second approach would be
better if unknown situations happens during real-time operation. This paper focuses on the offline
approach. Here, the feature selection will not serve as pre-processing techniques for data-mining only,
but also determine the sources of data to be collected in deployment and operation.

The rest of this paper is structured as follows: Section 2 showcases Related Work, Section 3
shows the motivation and analysis behind the Data reduction in IoT monitoring, Section 4 presents
the Problem and System Architecture, including the design and implementation of the proposed
LoRaWAN-based IoT system for strawberry-plant monitoring, Section 5 shows the experimental results
and analysis including experimental set-up and sensors calibration, traffic analysis, data visualization,
feature selection and evaluation, and example in decision support, and Section 6 provides conclusions
with any future research directions.

2. Related Work

2.1. Usage of Sensors in Agriculture

The usage of sensors and actuators has been replacing the traditional human-intensive ways of
monitoring in agriculture [15]. Sensors can measure environmental parameters and convert them into
meaningful signals [16], for example, water resource monitoring for irrigation [17]. It is reported that
in 2000, there were approximately 525 million farms on record across the globe, but none connected
to the IoT. However, by 2025 for the same base of 525 million farms, it is expected for there to be
around 600 million sensors installed, connected and in use in these farms [18]. The technological
advancement as well as size abatement of devices make employment of sensors feasible for agriculture
applications [16].

2.2. IoT LPWAN Communication Protocols: LoRa and LoRaWAN

Low-power wide-area (LPWAN) communication protocols are designed for low-power
consumption, suitable for applications which demand limited efforts for maintenance. One of the
protocols, LoRaWAN, has been introduced by the LoRa Alliance organization as the protocol for
low-power and wide-area coverage [19]. LoRaWAN, which stands for long-range wide-area network,
defines the communication protocol and the system architecture for the network [20].

By definition, LoRa is the physical layer or the wireless modulation used to create long
communication links. In terms of the LoRa functionality, an end-device communicates to a gateway
which is employing LoRa with LoRaWAN. To be more specific, a LoRa gateway passes raw LoRaWAN
packets from the end-devices to a network server [19]. Major advantages of LoRa are its low-power
consumption, long-range capability, security and relatively easily expandable network. However,
LoRa advantages have their trade-offs: for example, the time delay for the data to be stored in the
cloud after being obtained, and the final data usage or display [21]. Therefore, it might not be the ideal
choice for those applications requiring immediate responses or high-resolution data.

However for low-cost and low-power IoT systems, the data transmission is constrained. Therefore,
how to reduce the volume of data to be sent from a LoRa node to a network server, while still enabling
data-driven decision, is a challenge.
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2.3. Feature Reduction

To reduce the number of features to be used, the main data-mining methods include: feature
selection, which selects a subset of the original feature set; and feature extraction, which creates a set of
new features by combining original features. The choice of selecting features are problem-dependent,
but the resulting subset features should remain a faithful, perhaps simplified representation to
the original data set and preserve the intrinsic knowledge accurately. This paper focuses on
feature selection.

Feature selection methods were used to identify the set of features which brings high accuracy
to detect cyber-attacks [22]. It has been found that features have discriminatory contribution to
classification accuracy in identifying attacks. Some features are redundant, irrelevant, partially relevant
to the learning target and some even reduce accuracy, for example noise.

In addition, feature construction or feature transformation can create new features or transform
existing features into a new set of features, smaller than the original set [23]. This method requires
decent domain related knowledge, for example the understanding of energy usage patterns as shown
in [23]. Principal component analysis (PCA) also summarizes data into fewer dimensions by projecting
it onto an orthogonal basis.

Deep learning has demonstrated high performance in terms of accuracy [24]. However in the
setting of real-time operation in IoT, response time is one of key requirements and edge devices or
even gateways have limited computational resources to use the computationally demanding method
deep learning, especially for large scale of IoT systems. In addition, the results from deep learning is
difficult to be interpreted. This method is especially unpractical when human involves in analysis,
monitoring, decision-making and control.

3. Data Reduction in IoT Monitoring

To illustrate the feature reduction, we provide a sample scenario in a plant-monitoring context.
For example, some sensors can be used: temperature w(t), humidity h(t), lighting b(t) and soil moist
s(t). The decision-making for a specific action can be represented as a function f : <4k → < as follows:

d(t) = f (w(t), h(t), b(t), s(t), θ) (1)

where d(t) ∈ < is the decision variable representing the action to be taken. For example, d(t) = 1
means watering and d(t) = 0 means no watering. And w(t) ∈ <k, h(t) ∈ <k, b(t) ∈ <k and s(t) ∈ <k

are data vectors for temperature, humidity, lighting and soil moist for the last k samples until time
t, For example, w(t) = [w(t− k + 1), w(t− k + 2), · · · , w(t− 1), w(t)]T is the last k samples of the
temperature at time t. k is referred to as the sampling window.

The research question is how to make the correct decision with less data. More specifically,
the data reduction problem can be stated as follows: Are all these four types of data needed to make
the decision? Would it be possible to just use three type of data and which three type of data should be
selected to make the decision?

3.1. Feature Selection Using Laplacian Score

Carrying out data analysis on many features is always computationally expensive. Its computational
complexity increases while the dimensions or the number of features increase. Therefore, to select the most
important features becomes necessary, especially in source-limited situations.

There is a rich range of dimensionality reduction methods. Some are suitable for classification,
for example, to rank features using neighborhood component analysis, to rank features using minimum
redundancy maximum relevance algorithm, to estimate predictor importance for classification tree.
Some are suitable for regression, to select those independent variables which have the best relation to
the predictor, i.e., the dependent variable, for example, to rank features using F-test. This method will
be useful if the dependent variable is known and its data is collected. In our IoT system, it has a set of



Sensors 2020, 20, 5107 4 of 18

sensors for monitoring, but its predicting variable is unknown. Therefore we will need to consider
feature selection for unsupervised learning. For unsupervised learning, Laplacian scores have been
used to rank features.

Laplacian score was designed to select features in unsupervised learning [25]. Feature selection
in unsupervised learning is more difficult than supervised learning, due to lacking of class labels to
guide search. Laplacian score was introduced as a filter method to evaluate a feature by “its power of
locality preserving”, using local neighborhood relationships between data points [25].

For feature selection in supervised learning, Laplacian score has been used for multi-label
classification, to measure feature relevance [26] to be used together with manifold learning which is
non-linear dimensionality reduction [27]. For feature selection in unsupervised learning, Laplacian
score concept has been used to produce pseudo class labels [28], in clustering [29], and to rank
multi-cluster structure [30].

3.2. Laplacian Scores to Rank Features for Unsupervised Learning

To reduce the volume of data for specific tasks, class labels are normally available for supervised
learning. However in many applications, feature reduction is needed for general usage, not limited to
a specific task. This falls into unsupervised learning. Laplacian scores can rank features and users can
select important features from the resulting rank [25] for the situations where no class label is available.

The similarity Si,j is defined as:

Si,j = exp(−(
Di,j

δ
)) (2)

where δ is a scale factor and Di,j is the distance of two data points i and j in a local neighborhood.
The ith element, Dg, of the Degree matrix D is defined as

Dg(i, i) =
n

∑
j=1

Si,j (3)

The Laplacian matrix is defined as the difference between the degree matrix Dg and the similarity
matrix S:

L = Dg − S (4)

Alternatively, the feature selection results agree with to minimize the value:

∑i,j(xir − xjr)
2 × Si,j

Var(xr)
(5)

where r is the rth feature, xir is the ith observation of the rth feature. This means that features with
large variance is preferred.

In the next section, a simple IoT system is designed to install four sensor measurements (temp,
humidity, lighting, soil moisture) to monitor an environment. Then our planned feature reduction
will be tested IoT systems. We will select more important features from the aforementioned four and
evaluate whether the reduced dataset can achieve comparative performance with the full dataset.

4. Problem Definition and System Architecture

This section starts with the design of the IoT system architecture, followed by five building blocks
and their choices of hardware/software for implementation. The gathered data of the real-world
plant-monitoring IoT system is then used to test the proposed data-mining method.



Sensors 2020, 20, 5107 5 of 18

4.1. System Architecture

The proposed system will be able to (1) collect data from sensors to monitoring agriculture related
variables; (2) transmit such data to the gateway; (3) facilitate the gateway to send data to the cloud
server; (4) enable data to be displayed at mobile APP or a client service.

The overall system design is illustrated in Figure 1. Starting from the left, sensors/actuators for
monitoring, such as temperature, humidity, light intensity and soil moisture are attached to a low-cost
development platform. This platform consists of both a FRDM-K64F ARM mbed evaluation board
(as the base) and a SX1272MB2xAS LoRa radio shield, to be explained later in this section. The main
function of this platform is to transmit sensor data to a gateway. This cluster of physically connected
devices is named “LoRa Node" in this paper. The LoRa Node sits next to the test site, for example,
a plant.

The LoRa Node is transmitting data to a Gateway, using LoRa wireless communication.
This wireless communication will be explained in Section 4.4. The Gateway is responsible for
establishing an IP communication with, and sending data to an IoT Cloud Server. The Cloud Server
sends data and its visualization to the end-user(s) through web and mobile dashboards. The following
sections will explain the main building blocks in details.

Figure 1. Overview of IoT system for strawberry-plant monitoring using LoRaWAN.

4.2. IoT Platform Development

This platform consists of both a FRDM-K64F ARM mbed evaluation board (as the base) and a
SX1272MB2xAS LoRa radio shield, to be explained later in this section. The main function of this
platform is to transmit sensor data to a gateway. This cluster of physically connected devices is named
“LoRa Node” in this paper. The LoRa Node sits next to the test site, for example, a plant.

The LoRa Node is transmitting data to a Gateway, using LoRa wireless communication.
This wireless communication will be explained in Section 4.4. The Gateway is responsible for
establishing an IP communication with, and sending data to an IoT Cloud Server. The Cloud Server
sends data and its visualization to the end-user(s) through web and mobile dashboards. The following
sections will explain the main building blocks in detail.
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4.2.1. Sensors

There is a rich range of sensors available in the market. The sensors chosen here are examples.

Soil Moisture Sensor

A soil moisture sensor detects the moisture of soil based on soil resistance measurement. In other
words, sensor output value will decrease once soil moisture deficits. The output signal from the sensor
is an analog value [31]. Notice that its measurements can be converted to a specific unit (e.g., voltage
extraction) by employing FRDM–K64F ARM mbed board’s 16-bit ADC converter for meaningful data.
The soil resistance measurement is in a range of 0 to 5 Volts soil moisture excitation. For instance,
the soil resistance measurement can be calculated using the analog value as:

moistureVoltage = moistureAnalog ∗ (5.0/65, 536.0) (6)

Temperature and Humidity Sensor

The chosen temperature and humidity sensor provides both temperature and humidity
measurements as a pre-calibrated digital output using a negative temperature coefficient thermistor
and a capacitive sensor element, accordingly [32]. Its detailed characteristics can be viewed through
Table 1. At the beginning, the temperature and humidity sensor starts running the active mode
from the low-power consumption mode once MCU sends a trigger signal. As a result, 40-bit data
is collected back by the MCU consisting of 16-bit humidity data, 16-bit temperature data and 8-bit
checksum number.

Table 1. Temperature and Humidity Sensor Main Characteristics.

Grove Temperature and Humidity Sensor

VCC 3.3–5 Volts

Measuring Range: Temperature 0–50 ◦C

Measuring Range: Humidity 20–90%

Sensitivity: Humidity 1%

Sensitivity: Temperature 1 ◦C

Light-Intensity Sensor

A light-intensity sensor exposes the intensity of light based on the resistance value of a
photo-resistor (for the device chosen, GL5528 photo-resistor (Seeed, Shenzhen, China) ). In particular,
the resistance of a photo-resistor increases when the intensity of light decreases. The output signal is
an analog value [33]. The measurements can be converted to a specific unit (e.g., voltage extraction)
by deploying FRDM–K64F ARM mbed board’s 16-bit ADC converter for meaningful data gathering.
For example, the following calculation:

lightVoltage = lightAnalog ∗ (5.0/65, 536.0) (7)

can be considered to be a 0 to 5 Volts light-intensity excitation.

4.2.2. Lora Node Platform

As shown in Figure 1, a development platform attaches sensors and a transceiver send such data
to a gateway.
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FRDM–K64F ARM Mbed Board

FRDM–K64F ARM mbed board (ARM mbed, Cambridge, UK) is an ultra-low-cost development
platform designed by NXP in collaboration with ARM mbed [34]. FRDM–K64F ARM mbed board will
be the base device of LoRa Node along with SX1272MB2xAS LoRa shield and temperature, humidity,
light intensity and soil moisture sensors. The sensors are physically attached on it. The specification of
a FRDM–K64F ARM mbed board is in Table 2.

Table 2. FRDM–K64F ARM mbed board Main Hardware Specifications.

FRDM–K64F ARM Mbed Board

MCU Kinetis MK64FN1M0VLL12 (ARM Cortex-M4)

Flash 1024 KB

RAM 256 KB

CPU max. frequency 120 MHz

SX1272MB2xAS Semtech LoRa Shield

A SX1272MB2xAS Semtech LoRa shield (ARM mbed, Cambridge, UK) contains a SX1272
transceiver which features a spread communication using LoRa modulation over either 868 MHz
or 915 MHz frequency [35]. For this particular product, the SX1272MB2xAS Semtech LoRa shield
is attached to the base device FRDM–K64F ARM mbed board, constructing the desired LoRa node.
The SX1272MB2xAS Semtech LoRa shield provides a reliable transmitting sensor measurement directly
to a Gateway. The specification of the SX1272MB2xAS Semtech LoRa shield is in Table 3.

Table 3. SX1272MB2xAS Semtech LoRa shield Main Hardware Specifications.

SX1272MB2xAS Semtech LoRa Shield

Transceiver SX1272

Frequency Ranges 868 MHz and 915 MHz

Link Budget 157dB max.

Sensitivity down to –137 dBm

Bit-Rate 300 kbps

Dynamic Range RSSI 127 dB

4.2.3. Gateway

A Dragino LG01–P LoRa Gateway (Dragino, China) is a single-channel gateway that bridges the
data gathered from the LoRa node (s) to the dedicated cloud service using either Wi-Fi, Ethernet, 3G or
4G cellular [36]. The specification of a Dragino LG01–P LoRa Gateway is in Table 4.
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Table 4. Dragino LG01–P LoRa Gateway Main Hardware Specifications.

Dragino LG01–P LoRa Gateway

Processor 400 MHz

MCU ATMega328P

Flash 32 KB

Link Budget 168dB max.

Dynamic Range RSSI 127 dB

Bit-Rate up to 300 kbps

RJ45 Ports 2 (WAN and LAN)

Wi-Fi IEEE 802.11 b/g/n

Power Input 12V DC

4.2.4. Cloud Server

The “Things Network” Cloud Server is an open-source decentralized network service enabling
devices (such as a LoRa Node) as well as Gateways (such as Dragino LG01-P LoRa Gateway) to be
connected to it [37]. The Things Network is an open community with more than 3000 Gateways up
and running, and 35,000 registered members. The goal of The Things Network is building a distributed
IoT data infrastructure by creating sufficient data connectivity through LoRaWAN technology [37].

Certainly, there are various alternative options of Cloud Servers, such as the Mbed Cloud and the
IBM Watson. Here the Things Network Cloud Server is chosen for its open-source providence and its
concentration to the LoRaWAN technology. This aligns with this research which applies LoRaWAN
into monitoring agriculture.

4.2.5. Data Visualization and Client-Side Application

The “All Things Talk” application platform is chosen as it provides open-source data visualization
through either web or mobile dashboards using an in-house HTTP API [38]. Some core features of
All Things Talk API are real-time data gathering and instant notifications through either Web/Mobile
dashboards or registered e-mail. Finally, All Things Talk API’s end-user(s) has/have the privilege of
viewing, processing and downloading any historical measurements for data analysis purposes.

4.3. Software Development

Lora Node

Software architecture of LoRa Node can be observed in Algorithm 1. Functions, events and
possible errors are illustrated. At first instance, setUp() function represents a local function call
intended to initialize ARM mbed operating system environment as well as SX1272 Radio’s and
IBM’s LMiC libraries configuration aspects. As a result, LMIC_setSession() application callback
can then be implemented for acquiring an activation by personalization session. For a successful
session establishment, static constants such as Network ID, Device Address, Network Session
Key and Application Session Key extracted from The Things Network Cloud Server should be
employed. After LMIC_setSession() callback, LoRa stack should output either EV_JOINED or
EV_JOINED_FAILED event, indicating successful or unsuccessful join to the network service.

Then, getTemperatureHumidity() local function call is core for gathering related
measurement parameters. Beyond that, DHT11 library which is intended to be used for
temperature and humidity sensor’s implementation provides various error enumerations.
Specifically, error enumerations of temperature and humidity sensors are ERROR_NONE,
BUS_BUSY, ERROR_NOT_PRESENT, ERROR_ACK_TOO_LONG, ERROR_SYNC_TIMEOUT,
ERROR_DATA_TIMEOUT, ERROR_CHECKSUM and ERROR_NO_PATIENCE in sequence.
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Additionally, both light-intensity and soil moisture measurement parameters are collected through
getLightIntensity() and getSoilMoisture() local function calls, respectively.

Moving to data transmission, a time-triggered local function call should be initialized for sending
desired LoRa packet to the Gateway in a context of set time interval. As with LMIC_setSession()
application callback, events such as EV_TXCOMPLETE, EV_LOST_TSYNC or EV_LINK_DEAD
should be outputted from transmit() function call indicating whether LoRa packet had successfully
be transmitted to the connected Gateway. Apart from that, IBM’s LMiC library provides a
_setTimedCallback() application callback which settles the program down until set time interval
is being triggered signaling the next LoRa packet transmission.

Following embedded systems good principles, reset button deployment is giving the opportunity
of completely resetting the LoRa Node, manually, at any time.

Finally, yet importantly, software architecture of LoRa Node has been implemented in a sequential
form, avoiding any unnecessary computational complexity which could result in poor performance
and increased power-consumption.

Algorithm 1: LoRa Node algorithmic software architecture.

TIMEINTERVAL⇐ 300 . 5 min. transmission rate;
setUp();
LMICsetSession();
if LMICsetSession() is EV JOINED then

EV JOINED;
else

EV JOIN FAILED;
end
while EV JOINED and TIME INTERVAL is 300 do

getTemperatureHumidity();
getLightIntensity();
getSoilMoisture();
transmit();
os setTimedCallback();

end

4.4. Network Architecture

This section provides the implementation of network architecture.

4.4.1. Gateway

The LoRa Gateway’s block architecture is given in Figure 2. This Gateway can handle LoRa
packets coming from the LoRa Node using the SX1276/78 LoRa wireless module which is attached
on ATMega328P micro-controller. Then the Arduino environment communicates and passes LoRa
packets to the Dragino HE AR9331 Linux module by employing a bridge library.

The Linux environment of Dragino’s LG01–P LoRa Gateway provides three different options for
bridging the LoRa wireless network to an IP network for the successful transmission of LoRa packets
to a Cloud Server: namely 802.11 b/g/n Wi-Fi, Ethernet (LAN and WAN RJ45 communications),
and 3G/4G module. Please note that the chosen Dragino LG01–P LoRa Gateway does not include an
internal 3G/4G module. As a result, cellular communications cannot be applied to our IoT system for
agriculture.

The gateway is configured in a way that acts as the “middle station” between the LoRa Node and
the IoT Cloud Server.
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Figure 2. Block diagram of Dragino LG01–P LoRa Gateway architecture [36].

4.4.2. Cloud Server

The block architecture of the “Things Network” Cloud Server is illustrated in Figure 3. Its open-
sourced elements such as packet forwarder, router, broker, handler, network and discovery servers
enable the employment of the LoRaWAN standard for IoT systems [39].

The main functionality of this cloud server includes: first, this cloud server forwards LoRa
messages using a remotely configurable and secure packet forwarder [39]. Then, the router micro-
service is liable for identifying a broker to forward the LoRa message [39]. When it comes to the
handling procedure, a micro-service handler is reliable to encrypt as well as decrypt the play-load
and therefore publishes it to the desired Application Manager API through a suitable integration [39].
Please note that the integration functionality bridges The Things Network Cloud Server with the IoT
applications to support data visualization, analysis and storage [39].

In this infrastructure, both Discovery and Network servers are being employed. The discovery
server keeps track of network’s components such as router, broker and handler. On the other hand,
the network server monitors device states as well as device registries [39].

This cloud server is designed and implemented in a distributed and scalable way by allowing
high-performance, high-availability and end-to-end security [39]. In addition, stack components such
as gateway software, device libraries, cloud routing services and integration are being covered [39].

4.4.3. Client/User Interface API

We have chosen “All Things Talk API” to support clients and User Interface. Its architecture is
illustrated in Figure 4. Entities such as applications, notifications, connectivity and data management,
together build up an application manager API. This offers end users the opportunities to visualize,
store and process gathered sensor data (measurements).

The All Things Talk API offers the choices of joining a device through either WAN, LPWAN or
Gateway connections. In particular, the LoRa Node of our IoT system for agriculture, is integrated
through the Low-Power Wide-Area Network (LPWAN) connection with The Things Network
Cloud Server.
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In the IoT system for agriculture, the measurement parameters such as temperature, humidity,
light intensity and soil moisture will be displayed on the client side. In addition, a virtual watchdog
has been initialized for monitoring any potential warnings or errors.

Figure 3. Block diagram of The Things Network Cloud Server architecture [39].

Figure 4. Domain diagram of All Things Talk API architecture [40].
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5. Experimental Results, Analysis and Discussion

5.1. Experimental Set-Up and Sensors Calibration

To measure the functionality and performance of the proposed LoRaWAN empowered IoT
architecture and implementation for agriculture, a testbed has been setup. An indoor greenhouse is
used for this purpose, as seen in Figure 5a.

The hardware used are the Dragino LG01-P LoRa Gateway, FRDM–K64F ARM mbed board, LoRa
shield, light-intensity sensor, soil moisture sensor, temperature and humidity sensor. A strawberry
plant in this greenhouse is used for the tests which could be assumed to be representative of a plot in
the greenhouse.

Sensors are attached to FRDM–K64F ARM mbed board and Semtech SX1272MB2xAS LoRa shield
as seen in Figure 5b. The temperature and humidity sensors are connected through the D6 digital
input port of the LoRa shield, while the soil moisture sensors are attached by employing the A3 analog
input port. Similarly, the light-intensity sensor is used through A1 analog input port of the LoRa shield.

(a) Overall view of strawberry greenhouse. (b) LoRa Node, sensors and strawberry plant.

Figure 5. Greenhouse and LoRa node monitoring strawberry-plant growth.

The Gateway is placed approximately 100 m away, due to the size of the greenhouse, from the
above connected devices. The required Internet connection of Dragino LG01-P LoRa Gateway is
established by deploying the WAN port of the device connected to an Ethernet admission. After that,
the soil moisture sensor is placed inside the soil surrounding the strawberry plant, while the
temperature, humidity and light-intensity sensors settle nearby, as seen in Figure 5b.

Data is flashed into the FRDM–K64F ARM mbed evaluation board’s micro-controller through the
Mbed online compiler. The IoT system runs as an autonomous time-triggered program based on set
transmit interval. Once data is collected, it will be sent to the cloud server, i.e., “The Things Network”
and consecutively to the client interface API, i.e., “All Things Talk API”.

Before powering-up the whole IoT system, where compulsory, calibration tests have been
conducted to measure the accuracy and stability of the sensor readings. For example, the temperature
and humidity sensor is pre- calibrated with minimal sensitivity levels of humidity 1% RH and
temperature 1 ◦C (see Table 1). On the other hand, for the soil moisture sensor, calibration has
been conducted for three different levels of moisture; (A) sensor in dry soil, (B) sensor in humid
soil and (C) sensor in water. Similarly, for the light-intensity sensor, calibration has been deployed
for two different levels of light; (A) HIGH when sensor in daylight and (B) LOW when sensor in
dark. The results for soil moisture and light-intensity sensors during calibration test are shown in
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Figure 6. Data gathered from temperature and humidity sensor is also being visualized for a more
comprehensive review.

After the sensor calibration test, the real-environment test has been deployed. Test 1 (Real-condition)
was set to transmit all sensor data at the interval of 300,000 milliseconds, which is 5 min.

Figure 6. Visualization of sensors calibration test data. x axis is time (Number of Measurements). y
axis represents the sensor readings. (a) Temp unit is ◦C, (b) Hum unit is % RH, (c) LightInt unit is Volts
and (d) SoilMoist unit is Volts. Soil moisture calibrated against three different levels; (A) sensor in dry
soil, (B) sensor in humid soil and (C) sensor in water. For the light-intensity sensor, calibration has
been deployed for two different levels of light; (A) HIGH when sensor in daylight and (B) LOW when
sensor in dark.

5.2. Traffic Analysis

As seen in Tables 5 and 6, Sensors Calibration Test is executed 4% data transmission loss,
while Test 1 (Real-condition) is executed with 12% data transmission loss. It is clear that a higher
number of measurements causes a higher data transmission loss.

Table 5. Sensors Calibration Test Traffic Analysis.

Sensors Calibration Test Traffic Analysis (321 Num. of Measurements).

LoRa packets to send 336

LoRa packets to arrive 321

LoRa packets lost 15

LoRa packet loss percentage 4%
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Table 6. Test 1 (Real-condition) Traffic Analysis.

Test 1 (Real-Condition) Traffic Analysis (1776 Num. of Measurements).

LoRa packets to send 2016

LoRa packets to arrive 1776

LoRa packets lost 240

LoRa packet loss percentage 12%

5.3. Data Visualization

Figure 7 visualizes the sensing reading of temperature (legend: Temp), humidity (legend:
Hum), light intensity (legend:LightInt) and soil moisture (legend: SoilMoist), collected in the Test 1
(Real-condition), in total of 1776 observations. For decision-making purposes, three different watering
events have been tested and can be observed; (A) Strawberry plant not watered, (B) Strawberry plant
in humid soil and (C) Strawberry plant watered.

Figure 7. Visualization of Test 1 (Real-condition) data. x axis is time (Number of Measurements). y axis
represents the sensor readings. (a) Temp unit is ◦C, (b) Hum unit is % RH, (c) LightInt unit is Volts and
(d) SoilMoist unit is Volts. For decision-making purposes, three different watering events have been
tested and can be observed; (A) Strawberry plant not watered, (B) Strawberry plant in humid soil and
(C) Strawberry plant watered.

Correlation Coefficients

Correlation coefficients are used to measure the dependence of the readings between two sensors
X and Y. The Pearson correlation coefficient is defined as:

ρ(X, Y) =
cov(X, Y)

σXσY
,

where cov(X, Y) is the covariance of X and Y, and σX and σY are the standard deviation of X and Y,
respectively. The values of the coefficients can range from −1 to 1. Value −1 represents a directly
negative correlation, 0 represents no correlation, and 1 represents a directly positive correlation.
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Table 7 lists the ρ(X, Y) values for each pairwise variable combinations of temperature, humidity,
light intensity and soil moisture, shorted as Temp, Hum, LightInt and SoilMoist respectively. It shows
that Temp and Hum has a strong negative linear relationship, Temp and SoilMoist has a moderate
positive linear relationship, and Hum and SoilMoist has a moderate negative linear relationship.

These findings are consistent with domain knowledge in agriculture: relative humidity relies on
both pressure and temperature. At a lower temperature, less water vapor is needed to reach a high
level of humidity. However, at a higher temperature, a higher water vapor is needed to obtain a high
level of relative humidity.

Table 7. Correlation coefficients ρ values.

ρ Temp Hum LightInt SoilMoist

Temp 1 −0.8381 0.34 0.6573
Hum 1 −0.2273 −0.685
LightInt 1 0.0148
SoilMoist 1

5.4. Feature Selection and Evaluation

Data generating in this IoT system comes from four sensors. They measure temperature, humidity,
light intensity and soil moisture. In the dataset, one feature contains the readings from one sensor.
Data of each feature is being generated by the according sensor node. Laplacian scores are calculated
to measure the important of features.

Laplacian scores here are for unsupervised learning. To further evaluate it, we test the result on
the following example, as an application in future decision support.

Example in Decision Support

The outputs from the unsupervised method Laplacian scores can be used to for decision-making.
For example, an expert labeled the data collected and decided when watering is needed. We compare
the classification outcomes of using the selected features from using Laplacian scores and of using the
all sensor data. Please note that the class label is only for one action here, while Laplacian scores is
generated without class labels for general purpose.

Classifiers’ accuracy and performance measured using data inputs with 5 min transmission rate
and last 2 h average. In both cases, classification conducted using the 4 and 3 most important features
based on their scores.

The accuracy and performance of resulting classifiers using data inputs with 5 min transmission
rate is shown in Table 8 for the 4 and 3 most important features, respectively.

Table 8. The accuracy and performance of resulting classifiers using data inputs with 5 min transmission
rate for the 4 and 3 most important features.

Features Correctly Classified Instances Incorrectly Classified Instances

Hum, Temp, Light, Soil 1776 (100%) 0 (0%)
Hum, Temp, Light 1680 (94.5946%) 96 (5.4054%)

The accuracy and performance of resulting classifiers using data inputs with last 2 h average is
shown in Table 9 for the 4 and 3 most important features, respectively.

Overall, the classification results showed that the decision of watering or not a plant can be made
using a reduced number of sensors. With 5 min transmission rate, the accuracy for decision-making
achieved 95% when the least important feature has been removed. With the last 2 h average data set,
the accuracy for decision-making achieved 97% when reducing the features to 3.
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Table 9. The accuracy and performance of resulting classifiers using data inputs with last 2 h average
for the 4 and 3 most important features.

Features Correctly Classified Instances Incorrectly Classified Instances

Hum, Temp, Light, Soil 1752 (99.943%) 1 (0.057%)
Hum, Temp, Light 1698 (96.8625%) 55 (3.1375%)

Often the acceptable level of accuracy is user defined, depending the nature of the subject or
scenarios [41]. In this case, the accuracy reduces from nearly 100% to 97% and 95%, which means the
error is within 5%. In statistics, when the type of error rate is within 5%, which is acceptable to have a
5% probability of incorrectly rejecting the true null hypothesis [41]. In addition, it is a common practice.

This approach can be promising for a large-scale deployment. The sum of a large amount of data
from the least important sensor(s) might be reduced, if using appropriate data-mining methods to
select sensors which are more important to the chosen decision-making.

6. Conclusions

This paper addresses the open challenge of feature reduction in IoT systems for agricultural
plant-monitoring and decision-making support. Our data reduction approach is unsupervised
learning using Laplacian scores. This approach is especially useful when class labels are unavailable.
Using similarity and difference, features are ranked, so that users can select the most important
features, rather than the whole feature set. Giving high resolutions of some features in real-world IoT
applications, this will help reduce the volume of data to be transmitted. To evaluate our proposal,
a real-world strawberry-plant monitoring IoT system has been implemented, calibrated and tested,
measuring real-condition parameters such as temperature, relative humidity, soil moisture and light
intensity. Our research has demonstrated that the proposed feature reduction can significantly
reduce the volume data required to be transferred from the LoRa Node (edge device) to the network,
while keeping the IoT system functioning at high accuracy levels. Moreover, the proposed IoT system
has been tested on a specific decision-making support task (to water or not to water). The experimental
results clearly show that the accuracy of decision-making on the reduced data decreases at an acceptable
level (only 3–5%). The proposed research can potentially be used and provide insights for a rich range
of decision-making tasks related to agricultural monitoring which can release the burden of data
volume off the IoT systems.

In the future, this work can be expanded to another decision-making task except for watering
a plant. For instance, if a greenhouse includes cooling fans, the event of turning them on/off could
be controlled through an IoT system, similarly to what is proposed above. Strawberry and any other
plants are very sensitive to very high/low level values of temperature or relative humidity so this could
prevent them from being destroyed. Moreover, farmers can take advantage of this decision-making
support to become more efficient on the usage of cooling fans, preventing high amount electricity bills.
This decision-making scenario is planned to be conducted in the future when a greenhouse with such
cooler fans is identified.
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