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Abstract: Underwater machinery withstands great resistance in the water, which can 

result in consumption of a large amount of power. Inspired by the character that loach 

could move quickly in mud, the drag reduction mechanism of Paramisgurnus 

dabryanus loach is discussed in this paper. Subjected to the compression and scraping 

of water and sediments, a loach could not only secrete a lubricating mucus film, but 

also importantly, retain its mucus well from losing rapidly through its surface micro 

structure. In addition, it has been found that flexible deformations can maximize the 

drag reduction rate. This self-adaptation characteristic can keep the drag reduction 

rate always at high level in wider range of speeds. Therefore, even though the part of 

surface of underwater machinery can not secrete mucus, it should be designed by 

imitating the bionic micro-morphology to absorb and store fluid, and eventually form 

a self-lubrication film to reduce the resistance. In the present study, the 

1

mailto:Cuihongliu77@163.com
mailto:yuying.yan@nottingham.ac.uk


Paramisgurnus dabryanus loach is taken as the bionic prototype to learn how to avoid 

or slow down the mucus loss through its body surface. This combination of the 

flexible and micro morphology method provides a potential reference for drag 

reduction of underwater machinery. 

Keywords: underwater machinery; flexible; drag reduction; bionic; Paramisgurnus 

dabryanus loach 

1. Introduction 

Saving energy and reducing its consumption have long been an important topic 

that had drawn much attention of researchers. Energy consumption is also a 

significant factor in the application of underwater machinery such as ships and 

underwater vehicles, as well as civilian fishing boats, equipment for paddy fields, etc. 

The underwater machinery had a long-term contact with water. Thus, it had to 

overcome the travel resistance caused by fluid pressure, surface friction, etc.. 

Therefore, the research on drag reduction has great significance for enhancing the 

dynamic performance of underwater machinery and reducing energy consumption. 

Conventional drag reduction methods for fluid interfacial layer included adopting 

polymer additives, micro-structured surfaces, surface coating, micro-bubble layer, 

flexible wall, etc.1-6. Bionic groove drag reduction technology has been well 

recognized as drag reduction method. Walsh et al. proposed that v-shaped grooves had 

better drag reduction performance and the maximum drag reduction rate reached 8% 

under turbulent conditions7,8. Bechert et al. compared and analyzed the grooves of 

triangular, semicircular, blade and three-dimensional, and found that the viscous 

resistance of pipelines with v-shaped grooves was 9.9% lower than that with smooth 

surface. A thin film with v-grooves was coated 70% on the plane's surface to reduce 
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drag during flight and saved 1-2% on fuel9,10. Dolphin was one of the reported 

creatures with a flexible adaptive drag-reduction function, and it could break the 

theoretical swimming speed limit due to a rough body surface11. The study on bionic 

drag reduction of shark mainly focused on the microscopic groove structure on its 

scales surface. Amy et al. studied the short-fin Mako shark and found that the scales 

with groove structure could rotate freely within 50° range in order to adapt to different 

directions of flow fields. In the initial stage of the occurrence of vortex, the variation 

of scale’s angle could prevent the vortex from further development and finally 

suppress the occurrence of vortex12-14. Inspired by shapes of barchan dunes in deserts, 

Song et al. found trough numerical simulation that the maximum drag reduction rate 

of bionic non-smooth surface was 33.63%15. Kumagai et al. studied the drag reduction 

effect of micro-bubbles by injecting airflow into the machinery’s surface to form a 

layer of micro-bubbles. The method was mostly used on the surface of ships, which 

could replace the “metal-water” interface with “gas-water” interface, and 

consequently saved 5-15% of energy of the military vessels16. Researchers also found 

that the surface micro structures of bird feathers have functions of drag reduction. 

Chen et al. adopted the replica molding method to form a stripe structure like the bird 

feather on a polymer material. They found that, when the flow rate was 5.5 m/s, the 

underwater drag reduction rate of the striped material reached 16%17. Inspired by the 

non-smooth surface of dung beetle and other species, Ren et al. created bionic micro 

structures on the earth-moving parts of bulldozers18. They achieved good drag 

reduction effect and proposed the drag reduction theory of bionic non-smooth surface 

and bionic coupling. In bionic study on the drag reduction of fish scale, Wu et al. 

designed a fish scale-shaped floating plate of the transplanter. A flow field with 

vortexes was formed in the interface layer via the scale-like structure on the material’s 
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surface. As a result, a drag reduction rate of 3.014% was obtained19,20. 

Above studies on the drag reduction of L-shaped, V-shaped, U-shaped and 

space-V-shaped grooves were deemed on rigid surface. Meanwhile, the bionic 

grooves only showed drag reduction performance within certain speed range. If the 

travel speed changed, the drag reduction effect may be simultaneously changed or 

even lost since the lack of deformation of rigid materials. In addition, numerous 

creatures in nature have evolved to possess various skills of moving faster. These 

unique skills provide bionics inspiration for researchers on drag reduction. Namely, 

drag reduction designs were fulfilled through bionic surface of microscopic 

morphology, structure and materials. Except for above mentioned methods, some 

aquatic species also benefit from the secretion of mucus, which provided a good 

lubrication effect. For instance, loach, eel and squid, etc. could swim freely in mud 

since their body surface covered by mucus which greatly reduced the resistance. 

Given this, researchers had collected the mucus secreted by the organisms and painted 

on the machinery surface, which resulted in a significant drag reduction effect. And 

the drag reduction results exhibited relation to the non-smooth morphology of the 

underwater vehicle surface. However, these coatings had poor mechanical strength 

and the drag reduction function was neither sustainable nor recoverable from 

failure21-23. 

Therefore, the ability of forming and maintaining self-lubricating was a 

meaningful research in the case where the material itself could not secrete mucus. 

Loaches and other soft body mud creatures could absorb their mucus coating when 

they were squeezed and scratched by sediments, indicating that the self-adhesion of 

mucus was excellent. However, as mentioned in the previous literature, the artificially 

collected and painted mucus gradually slipped off from the materials surface, which 
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demonstrating that secretion of mucus was not enough, and that it was also important 

to retain mucus for longer time by avoiding or slowing down its loss. Revealing the 

adsorption and retention mechanisms of mucus was beneficial for application in 

underwater machinery. This would allow a fluid lubricating film to be continuously 

formed on the surface of component via adsorbing and storing water. In this paper, the 

loach was selected as the bionic prototype. Scanning electron microscopy (SEM) and 

3D microscope were used to analyze the architectural feature and distribution of the 

surface micro morphology and the geometrical parameters of the micro-units. Then, 

Solidworks software was used to build a 3D visualization model of micro surface 

morphology. The Fluent software was used to explore the water adsorption and 

retention mechanism of the loach’s surface. Numerical simulation of bionic structures 

with different flexible deformations was carried out, and the variation rule of drag 

reduction rate and flexibility was explored. 

2. Methods 

2.1. Analysis of bionic prototype 

The pre-treatments for biological prototype include the following: 50mL of 

sodium bicarbonate solution with a concentration of 15%-20% was first prepared. 

Paramisgurnus dabryanus loach was narcotized with ether and killed without any 

kinds of cruel autopsy or abuse. Then, the loach was placed in the solution for 10 

minutes to remove the mucus on its body surface. After being taken from the solution, 

the loach was rinsed with distilled water for 30 minutes to remove the sodium 

carbonate crystals remaining on its body. The scales were taken and placed in ethanol 

with different concentrations (30%, 50%, 70%, 80% and 90%) for 5 minutes. 

Afterwards, the scales were cleaned to remove surface impurities with an ultrasonic 
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cleaner. The treated samples were observed by a 3D microscope (VHX-5000) and a 

SEM (Regulus 8100). The results are shown in Fig. 1. All above treatments definitely 

complied with the Chinese law on the Protection of Animals. Ethical approval was 

given by the animal Experimental Ethical Inspection, Shenyang Agricultural 

University. 

Under low magnification, the overall distribution of the surface “scales” can be 

seen clearly. Each scale is covered with V-shape grooves. The single scale surface can 

be divided into four regions: apical, focal, basal and lateral. Among these, the focal 

and basal regions embedded in the skin tissue. The lateral regions of adjacent scales 

are overlapping arranged (Figure 1b), and each single scale has shield-like overall 

shape (Figure 1c). The apical region is exposed to the body surface and contact with 

the external fluid media. Therefore this region was selected to be observed by 

scanning electron microscope (Figure. 1d). There are radiant and circular grooves on 

apical regions. These grooves could make the scales show great flexibility and 

 
Figure 1. Microscopic morphology of loach body. (a) Loach; (b) "Scale" 

morphology; (c) Different regions on a single scale; (d) Groove structure; (e) 

Cross-section image of grooves. 
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elasticity (Figure 1d). The height of the v-shaped groove is 6.5μm, the space between 

adjacent units are 5.2μm, and the vertex angle is 43°(Figure 1e).  

2.2. Modelling 

Based on the micro structure analysis of the loach scale, the geometrical 

structural parameters were measured and a 3D visualization model was built as shown 

in Figure (2). Figure 2(a) shows the triangle-like grooves and the characteristic 

parameters were measured: the height of the groove is 6.5μm; the space between 

adjacent units were 5.2μm, and the vertex angle was 43°. In order to analyse the 

mechanism of fluid absorption and drag reduction, a 2D model with 0.1 mm long and 

0.04mm wide is established through software of Integrated Computer Engineering 

and Manufacturing Code for Computational Fluid Dynamics (ICEMCFD). The upper 

and lower boundaries are set as bionic morphology and smooth surfaces, respectively. 

The left and right sides are set as flow velocity inlet and outflow (Figure 2b). 

3. Results and discussion 

3.1. Numerical simulation 

 

Figure 2. 3D model of bionic scales. (a) Structure and 

dimensions of grooves of bionic scales; (b) Establishment of 

ICEM bionic Model. 
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In this paper, when analyzing the loss prevention or sustainable lubrication of 

loach surface fluid, water is used instead of mucus, only the maintain and 

continuously ability of water medium was analyzed. Moreover, if the surface is well 

maintained to prevent loss of water medium, it must also have a maintenance effect 

on viscous medium. In the present numerical analysis. Firstly, ICEM software was 

used to divide the grid, and then it was imported into Fluent. In task page, the Time is 

set as transient, the Gravitational Acceleration in the Y direction is minus 9.81m/s2. 

Substitute the value into formula (1), and the result is 5*103<Re<4*105. Select the 

model k  the fluid medium in the model is liquid-water. Liquid-water is internal 

fluid with density of 1.0×103 kg∙m-3 and a dynamic viscosity coefficient of 1.0×

10-3Pa∙s. The smooth and bionic surfaces were set to stationary wall surfaces ( set as 

Aluminum ). The velocity-inlet is set as 0.05-4m/s, and then in the Run Calculation 

panel, the Time Stepping Method is set as Fixed mode, the Time Step Size is 0.001 s, 

the Number of Time Steps is set as 2000, and the Max Time Step is set as 50. The 

calculated result of force is shown in Table 1. Then, the near-wall turbulent intensity 

and turbulence kinetic energy can be calculated according to equation (1) and (2): 

8/1(Re)16.0 I (


uLRe )                       (1) 

2)(
2

3
uIk 

                                      
(2) 

where, I represents the turbulence intensity; eR  the Reynolds number,   the fluid 

density; u  the mean velocity of fluid; k  the turbulence kinetic energy and   the 

viscosity coefficient; L the Characteristic length. 
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Table 1. Contrast between the drag forces of the smooth and bionic non-smooth surfaces 

Velocity  

(m∙s-1) 

Smooth surface Bionic non-smooth surface 

Pressure 

drag (N) 

Viscous 

drag (N) 

Total 

drag (N) 

Pressure 

drag (N) 

Viscous 

drag (N) 

Total 

drag (N) 

0.05 0 0.0010067 

 

0.0010067 

 

0.0004377 

 

0.0005493 

 

0.0009870 

 
0.5 0 0.0108908 

 

0.0108908 

 

0.0045929 

 

0.0060618 

 

0.0106547 

 
1.0 0 0.0237039 

 

0.0237039 

 

0.0099905 

 

0.0132042 

 

0.0231947 

 
1.5 0 0.0383821 

 

0.0383821 

 

0.0163724 

 

0.0212631 

 

0.0376355 

 
2.0 0 0.0547412 

 

0.0547412 

 

0.0237191 

 

0.0301941 

 

0.0539132 

 
2.5 0 0.0726247 

 

0.0726247 

 

0.0320074 

 

0.0398022 

 

0.0718096 

 
3.0 0 0.0919406 

 

0.0919406 

 

0.0412286 

 

0.0500343 

 

0.0912629 

 
3.5 0 0.1126005 

 

0.1126005 

 

0.0513640 

 

0.060840 

 

0.1122040 

 
4.0 0 0.1345099 0.1345099 0.0623983 0.0721853 0.1345836 

The pressure drag, viscous drag and total drag on smooth surface and bionic 

surface under different water velocity are shown in Table 1, respectively. Then, the 

drag reduction rate was calculated according to equation (3) 

%100








 


ts

tbts

F

FF
  ;                         (3)

 

where,   represents the drag reduction rate, Ftb the total drag of bionic surface, Fts 

the total drag of smooth surface.  

 

 

Figure 3. Drag reduction rate at different flow velocity. 
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As shown in Figure 3, the maximum of drag reduction rate appeared at velocity range 

of 0.5-1.0m/s, and the drag reduction rate decreases with the increase of velocity. 

When the speed exceeds 1m/s, the drag reduction rate decreases sharply. Figure 4 

shows the distributions of velocity and pressure in the near-wall region of at flow 

velocity of 1 m/s.  

There are stable low-pressure regions near each micro units, which absorb fluid 

from surrounding and finally formed a stable “water trapping” region (Figure 4a). 

Namely, in these micro groove areas, due to the low pressure, the grooves will absorb 

water. At the same time, the higher pressure of the surrounding environment will 

drive the water to flow into these areas. So even if there is a loss of water in the 

groove, the surrounding water will be replenished constantly. To ensure that there is 

 

Figure 4. Simulated results of Fluent numerical analysis. (a) 

Distribution of pressure; (b) Distribution of velocity. 
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always some moisture in these groove areas. This creates a phenomenon that seems to 

trap the water. The “water trapping” units were formed between two adjacent 

grooves and vortexes with low velocity were formed around the surface of micro 

structure, exhibiting a clockwise motion as shown in Figure 4(b). The flow above 

vortex has the same direction with incoming flow, and the flow below vortex eddied 

to the opposite direction. All adjacent vortex were noninterference. Therefore, the 

existence of grooves generated the effect of rolling bearings between fluid and the 

wall surfaces, and the sliding friction was transformed to a rolling friction24. But as 

the speed increases, part of the vortex water was lost. The Rolling bearings effect 

would be weakened or even destroyed. That is why the drag reduction rate decreased 

after 1 m/s in Figure 3. Under the action of such vortexes, a large amount of fluid with 

low velocity can accumulate between the adjacent cells and form a layer of water film. 

Under the joint action of groove micro structure and flow field, the fluid could be 

continuously absorbed on the surface of micro structure.  

In order to analyse the variation of flow field on different surfaces, a series of 

hypothetical points (Mi, Ni) were selected to analyse the fluid velocity, turbulence 

kinetic energy and turbulence intensity. Each point position of Mi and Ni are 

symmetric along the axis of the center, as shown in Figure 4b. 

Figure 5 shows the variations of the dynamic pressure, velocity, turbulence 

kinetic energy and turbulence intensity on two types of surfaces. It can be seen that 

the dynamic pressure and velocities at all points are higher than those equivalents of 

the smooth surface (5a, 5b). As for the thickness, water membrane on bionic surface 
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is thicker than that on smooth surface. It also can be seen that the velocity gradient of 

bionic surface was lower than that of smooth surface. So it is easy to conclude that the 

viscous stress of bionic surface is much lower than the smooth surface. Figures 5(c) 

and 5(d) show the variation values of turbulence kinetic energy and intensity at every 

points along the y axle. From these results, the turbulence intensity and kinetic energy 

of bionic surface were both lower than those of smooth surface, and the Reynolds 

stress of bionic surface was consequent lower than smooth one. The viscous and 

Reynolds stress of bionic surface was both lower than smooth surface, so the viscous 

drag of bionic surface was lower than the smooth surface. As part of total drag, 

viscous drag is reduced by the bionic surface. As another part of the total drag, 

pressure drag is generated on the bionic non-smooth surface. But the ratio of pressure 

 

Figure 5. Numerical analysis results. (a) Dynamic pressure; (b) Velocity; (c) Turbulence kinetic 

energy; (d) Turbulence intensity. 
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drag is relative smaller, and the increment of pressure drag less than that decrement of 

viscous drag (Table 1). Therefore, the total drag is reduced on the bionic surface. 

3.2. Analysis of flexible surfaces 

Figure 6 shows the different flexible deformations of bionic grooves. The 

pressure drag of surface is numerically analyzed. From the results shown in Figure 7a , 

the pressure drags also increases gradually with flow velocity under all deformations. 

However, among the deformations, the pressure drag of the largest flexible 

deformation (D4) is the lowest. Eventually, the flexible surface helps reduce the 

pressure drags through its self-adaptive character. 

Figure 7b shows drag reduction rate of the flexible surface under different 

deformations. The variation tendency indicates that the values increases at the 

beginning stage, and then decreases until to a minus drag reduction rate; namely, the 

drag increasing effect would disappear unless greater deformation happened. For 

example, the rigid material surface will lost the drag reducing function at 5 m/s 

 

Figure 6. Bionic grooves with different flexible 

deformations.(D1=0.7μm, D2=1.4μm, D3=2.1μm, 

D4=2.8μm) 
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velocity point, and increase drag after 5 m/s. Therefore, the material need a real-time 

deformation to suit to the flow velocity and make the fluid pass easily. The 

deformation D4 that shows relative higher level of drag reduction rate and wider flow 

velocity range.  

For a self-adaptive trait of flexible material, when a hypothetical flow passing on 

this flexible surface, a dynamical variation will happen and real-time drag reduction 

will combine of subsections ab, bc and cd (Figure 7b). The average value will 

definitely be maximized. Meanwhile, the velocity range of drag reduction was also 

expanded by the flexible material. 

4. Conclusions 

In this paper, the distribution microscopic morphology and structure 

characteristics of loach scales are observed and analyzed by using 3D microscope and 

SEM. It has been found that the adjacent scales on loach body surface are arranged in 

a fan-shaped overlapping style. Each scale is composed of four regions, namely apical, 

focal, basal and lateral. Each zone is covered with micro groove structures, which are 

 

Figure 7. Analysis of flexible deformation. (a) Pressure drag; (b) Total drag reduction rate under 

different deformations. 
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embedded in the skin tissue in the focal and basal regions. The marvellous groove-like 

strips covers on the apical part, and such area directly contacts with the incoming flow 

and generates frictional resistance. The structure of groove-like stripes within the 

apical zone is affected by the remaining mucus, which can avoid or slow down the 

loss of mucus and reduce the swimming resistance. 

The drag reduction mechanism is revealed through our numerical analysis. The 

pressure near the wall of bionic surface is found lower than the surrounding, which 

created a “water absorption” area and formed a stable lubricating water film near the 

wall surface. The thickness of water membrane on the bionic surface was more 

thicker than that on the smooth surface, and consequently the velocity gradient, 

turbulence intensity and turbulence kinetic energy were reduced. Its shear resistance 

was less than that of the smooth surface. On the other hand, a number of clockwise 

vortex were generated in micro architectures, acting as anti-friction bearings.  

In addition, the flexible body had marvelous self adaptive characteristic which 

could reduce the pressure drag through real time deformation, and kept the drag 

reduction rate at relative level in more wider velocity range. 
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