
HARDWARE IMPLEMENTATION OF THE BASE TWO

LOGARITHMIC NUMBER SYSTEM

by

Steve Chih Hsiung

B.Ed., National Kaohsiung Teachers' College (Taiwan), 1981

M.S., University of North Dakota, 1986

A MASTER'S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and

Computer Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

Approved by:

Major Professor-

2b*
Aii5o? 5%st4

EECE TABLE OF CONTENTS

H U-> List of Figures i i i

C Z. List of Table .

.

List of Symbols

I . INTRODUCTION

1 V

I

1.1 Fixed-Point and Floating-Point Representation ... 1

1.2 Logarithmic Representation 3

II. ANALYSIS OF THE BASE TWO LOGARITHMIC NUMBER
SYSTEM 6

2 . 1 Simple Shifting and Counting 6

2 .

2

Piece-Wise Linear Approximation 9

2 .

3

Table Look-Up Method 12

III

.

HARDWARE IMPLEMENTATION AND DESCRIPTION 17

3.1 Binary Logarithmic Number Conversion 17

3.2 Binary Logarithmic Number Converter 21

3.3 Anti-Binary Logarithmic Number Converter 33
3.4 Description of the Four Basic Arithmetic

Operations 41

IV. SUMMARY AND CONCLUSIONS 45

REFERENCES 47

ACKNOWLEDGEMENTS 52

LIST OF FIGURES

Figure Page

1. Logarithmic Curve And Straight-Line
Approximation \q

2. Block Diagram of the Binary Logarithmic
Number System 20

3

.

Block Diagram of the BLNC 22

4

.

The Priority Unit I 24

5

.

The Priority Unit II 26

6. The Logic Network I & III 28

7

.

The Logic Network II 30

8

.

The Logic Network IV 32

9

.

The Block Diagram of ABLNC 34

10. The Logic Network V-l.l ,•;(.:

11. The Logic Network V-1.2 37

12. The Logic Network V-2 38

13. The Logic Network VI 40

14. The Block Diagram of Multiplication And
Division Operations 42

15. The Block Diagram of Addition And
Subtraction Operations 44

LIST OF TABLE

Table Page

1. Error Comparison of Binary Logarithmic

Number System \q

List of Symbols

Symbol Meaning

Fixed-Point or Floating-

Point Number

Mantissa of an Integer
Number

Exponent of an Integer
Number

log
2
T The Base Two Logarithmic

Number

N Decimal Number

x Binary Fraction

E Error

A Decimal Number

B Decimal Number

A Base Two Logarithmic
Number

B Base Two Logarithmic
Number

K The Most Significant "1"

Bit Position in A Decimal
Number

p Product of Two Decimal
Numbers

List of Symbols Continued

Symbol Meaning

log P
2

Approximation of Two
Logarithmic Numbers
Product

log Q
z

Maximum Error of Product

Quotient of Two Decimal
Numbers

Approximation of Two
Logarithmic Numbers
Division

Maximum Error of Division

logA (1+X)
2

Piece-Wise Linear
Approximation

Maximum Error

Minimun Error

S

r

J

Sign Bit

Scaling Factor (r > 0)

Finite Precision of
Rounding a Base Two
Logarithmic Number

ftW

Exclusive OR Operation

log (1+2)
2

log (1-2)

2

List of Symbols Continued

Symbol Meaning

Mul Multiplication (Product)

Div Division

Sum Addition (Summation)

Sub Subtraction

2
o Variance of Errors
E

n Register for Storing
Integer Part of N,

before Convertion

Register for Storing
Fraction Part of N,

before Convertion

Register for Storing
Integer Part of N,

after Convertion

Register for Storing
Fraction Part of N,

after Convertion

Bits in Register n and
l

n , before Convertion
2

Bits in Priority Units

Detection Gate W=l When
< N < 1

vii

List of Symbols

Symbol

Continued

Meaning

Bits in Register n and
1

n , after Conversion
2

Bits Output from Decoder

ADC

BLNC

ABLNC

ALU

msb

lsb

Analog to Digital
Converter

Binary Logarithmic Number
Converter

Anti-Binary Logarithmic-
Number Converter

Arithmetic Logic Unit

Most Significant Bit

Least Significant Bit

CHAPTER I

INTRODUCTION

Many number systems have been used to implement computer

arithmetic units. Most of the implementations use binary

fractions and binary integers in either fixed-point or

floating-point arithmetic. These systems have the problem

of slow speed or high circuit complexity. The residue

number system is attractive for its high speed. However,

division, overflow detection, and magnitude comparison have

effectively prevented the widespread use of this number

system in general purpose computers.

This report deals with the logarithmic representation of

numbers, which offers a considerable increase in the dynamic

range of digital computer arithmetic operations. The

arithmetic operations discussed in this report are addition,

subtraction, multiplication, and division. A brief review

of the different number system representations is given

below.

1.1 Fixed-Point and Floating-Point Representation:

An n-bit binary word representing a fixed-point

number T is:

, 2
M

+ a 2
n" 2

+ .

n-l n-2
.+ a 2

2
+ a 2

l
+ a 2° +

2 l o

a 2 + a 2
-l -2

+ a 2
-n

Negative numbers may be represented by assigning the

first bit of the binary word as a sign bit, or

alternatively by using the two's complement algorithm.

s t gn bit
i

Integer

part

F r ac t ton

part

An n-bit binary word can also be represented as a

floating-point number.

T = M * 2
E

Where M is the mantissa and E is the exponent of the

integer number T. M is usually scaled to be a fraction

whose decimal value lies in the range of 1/2 < M < 1.

[12]

The exponent E represents how many places the binary

point should be shifted to the right (E > 0) or the left

(E < 0).

s i. g n b 1

1

sign bit
J. i.

-> <-
Mantissa Exponent '

If T = .1101 * 2
U

binary

= [1/2 + 1/4 + 1/16] * 2
3
decimal

= 6.5 decimal

1.2 Logarithmic Representation:

Fixed-point numbers are simple and easy to use, but

they are limited to the range the number can be

represented, and overflow will cause inaccuracy in the

computation. Floating-point numbers are more flexible

than the fixed-point numbers and are the dominating

choice of system designers when a large dynamic range

and high precision are required simultaneously.

Floating-point multiplication and division require a

complex series of additions, subtractions, shifts, and

iterations, which are time consuming.

If we take a look at the characteristics of the

logarithmic numbers, the multiplication and division

operations are changed to addition and subtraction

operations. The computation time in addition and

3

subtraction operations are much shorter than

multiplication and division operations. Because all

the signals in the digital computer are in the binary

format, the binary logarithmic numbers are best suited

for use in digital computers. The binary logarithms

may be determined approximately from the number itself

by simple shifting and counting. The logarithmic number

system supports high speed and high precision

arithmetic

.

Let N be a nonzero binary number with finite length.

K

N = £2
l

Z (decimal)

i = j

Here i, j, k are integer numbers (K > j) and Z = or

1. Z is the ith order bit of the binary number N. Z

is the most significant bit (msb) and Z is the least
J

significant bit (lsb) of N. If Z is "1".
K

K-l
then N = 2

K
[1 + £

2'""K
Z]

K-l

Let X = £ 2
l"K

Z, < X < 1, K > j,

i = j

N = 2
K
(1 + X)

Assume log (1 + X) ~ X
2

Then log N = K + X
2

sign bit
4.

Charactenst ic Fraction

Logarithmic arithmetic has been used in the

implementation of digital filters [8,9,11,13,26], fast

Fourier transforms [22], and other digital signal

rocessing algorithms. Logarithmic arithmetic algorithms

have accuracy with speed, while floating-point

arithmetic provides accuracy at the expense of speed.

CHAPTER II

ANALYSIS OF THE BASE TWO LOGARITHMIC NUMBER SYSTEM

A number of approximation techniques have been proposed

for the fast computation of the binary logarithmic numbers,

such as "Focus Number System" proposed by Edgar [5], [15 J,

which is similar to the "Sign/Logarithm Number System", and

"Binary Logarithm" proposed by Lo [17] which used the same

simple shifting and counting techniques but added a fixed

number to reduce the transformation errors. Here, we choose

the three representative techniques to analyze the

characteristics of the binary logarithmic numbers.

2.1 Simple Shifting and Counting:

The first proposal of binary logarithmic number

system was made by Mitchell [20]. This approximation Lo

binary logarithmic number is easy to generate just by

simple shifting and counting. To find the binary

logarithm of a binary number, use the most significant

"1" bit position to determine the characteristic, and

interpret the remaining bits as a binary fraction.

For example, consider 13 = 1101 and log 13 =
10 2 2

3.700439718 . The most significant "1" bit is in the
10

3
2 position, and the characteristic is 3. Considering

the bits to the right of the most significant "1" as a

6

binary fraction there results 0.101 which equivalent to

0.625 in decimal. The approximation is log 13 ~ 3.625
2 10

~ 11. 101 .

2

In logarithmic arithmetic the multiplication and

division operations are reduced to simple addition and

subtraction operations respectively. Consider a binary

number N:

K

N = £2
l

Z (decimal)

<• =)

Where N = Z ZZZZ.ZZZ Z (binary)
K 3 2 1 O -1 -2 -3]

If Z is the most significant "1" bit
K

K-l

Then N = 2
K

[1 + £ 2
l ' K

Z]

K-l

Let X = £ 2
L_k

Z , < X < 1,

X is interpreted as a binary fraction

.-. N = 2
K
(1 + X)

log N = K + log (1 + X)
2 2

We assume log (1 + X) ~ X
2

So the error E = log (1 + X)
2

dE 1 -1 =
dX (1 + X)ln2

= > X = -i- 1 = 0.44269
InZ

7

0<E<log(l+X)-X
2

======> o < E < log (1.442691-0.4426
2

======> < E < 0.08639 is the maximun

error in the absolute value.

Multiplication:

Let A = log A = K + log (1 + X)

2 12 1

B = log B = K + log (1 + X)

2 2 2 2

P = AB = 2
A '2 B '= 2

Ki+K2
(l + X)(1 + X)

1 2

log P~K + K +X +X
2 12 12

log (1 + X) ~ X
2

Without carry: log P=K+K +(X +X),X+X <1
2 12 12 12

With carry: log P=(1+K+K)+(X + X -1),
2 12 12

X +X > 1
1 2

Take the antilogarithm:

p' = 2
K1+KZ

(1 + X + X), X +X < 1
1 2 12

P' = 2
K1+K2+1

(X X) , X +X > 112 12

P - P P
The error E = — = 1

m P P

The maximum E = -11.1 X at X =X = 1/2
m 12

Division:

Q = A / B = 2*7 2
B '= 2

K1 -K2
(

1 + Xl
)

1 + X2

8

log Q ~K+X-K-X
2 112 2

Without borrow: log Q=(K -K)+(X -X),
2 12 12

X -X >
1 2

With borrow: log Q =(K - K -1)+(1+X -X),
2 12 12

X -X <

1 2

Take the antilogarithm:

q' = 2
K1 "KZ

(1 + X - X) , X -X >12 12
q' = 2

K1 "KZ"'(2 + X - X), X-X <
1 2 12

Q -
The error E = — — = —-— - 1

d Q Q

The maximum E, = 12.5% at X = 1, X = 1/2 without
d 12

borrow or at X = 0, X a 1/2 with borrow.
1 2

2.2 Piece-Wise Linear Approximation:

The approximation log (1 + X) ~ X is to substitute
2

the ba3e two logarithmic curve by straight lines

connecting the points of the curve where log N has an
2

integral value. The characteristic of log N is equal to
2

the number of bits between the leftmost "1" bit and the

binary point of N.

Figure 1. Logarithmic Curve and Straight-Line
Approximation

.

Using the piece-wise linear approximation, as

proposed by Combet [3], we can have a reduction in the

conversion error. The general form in each interval is

logA (1 + X) = X + af(X) + b.

' X if slope > 1

Where f(x) =
1- X if slope < 1 , we could take

f(X) = X

We can use the four segments for the

logA (1 + X) in each interval:

approximation

10

'logA (1+X) = X + (5/16)X, < X < 1/4
2

logA (1+X) = X + 5/64,
2

1/4 < X < 1/2

logA (1+X) = X + (1/8)X + 3/128,
1/2 < X < 3/4

logA (1+X) = X + (1/4)X, 3/4 < X < 1

2

For example, let's consider the same number 13 =
10

1101 and log 13 = 3.700439718 .

2

,

2 10

13 = 1101
10 2

= 2
3
(1 + 0.101)

For 1/2 < X = 0.101 = 0.625 < 3/4
2 10

.-.logA (1 + X) = 0.625 + (1/8)0.25 + 3/128

= 0.6796875
10

.-. log 13 ~ 3.6796875
2 10

The piece-wise linear approximation involves not

only shifting and counting operations to find the

characteristic and the approximated mantissa as the

straight line approximation but also binary decision for

the determination of the type of correction and addition

of the binary numbers.

The results of errors are E = log (1+X)
2

logA (1+X)

,

2

maximum positive error E = 0.008 at X = 0.44,
max

maximum negative error E -0.006 at X = 0.25, and

error range 0.008 + 0.006 = 0.014.

1 1

In addition to the binary logarithm approximation error,

errors are also introduced by the finite length

registers in which the binary logarithmic numbers are

stored.

2.3 Table Look-Up Method:

In the sign/logarithm number system proposed by

Swartzlander [21] , a number is represented by a sign

bit and the logarithm of the absolute value of the

number (scaled to avoid negative logarithms). Any real

number A is represented by its sign S , and the binary
A

logarithm of its magnitude A

S =1 if A <
A

S =0 if A >
A

S = or 1 if A =
A

A = log (|tA|) , if A > 1/T

A = 0, if A < 1/t

2
A

A = (1 - 2S)(1/T)
A

A is scaled by a constant factor T to ensure that A> 0.

J is the finite precision binary logarithmic number

formed by rounding A .

.-. J
a

= [1/2 + log
2
|TA|2

r,
" 1

]« 2
1_r\ if |A| > 1/t

J
a

= 0, if |A| < 1/t

12

Hhere [Y] denotes the largest integer that is not larger

than Y. The constant 1/2 causes round off to occur in

the formation of J instead of simple truncation, thus
A

unbiasing the error and reducing error accumulation.

Choose T = 2 , where the Jj-1 bits represent the

fractional part of J .

J =(JJ ...J J ...J)= J-J2
A n n-1 Y)° 7J-1 1

. i

1.-T)

sign bit
I

J J . . . J J . . . J
n n-1 n ° 7)- 1 1

For example, let's consider the number 13 = 1011
10 z

again. Now log 13 = 3.700439718 . If we choose eight
2 10

bits in both integer and fraction part of binary

logarithm format.

Then r) = 8 and T = 2
8

= 256

For A = 13
10

A = log (13 * 256) = 11.70043972
z 10

.-. J = [1/2 + log IrA I2
8 " 1

]* 2
1 " 8

A Z I I

= [1/2 + 1497.656284] * 2~ ?

= 1498 * 2" 7
= 11.703125

10

The approximate value of log 13, after scaling back is:
2

log 13 ~ 11.703125 - 8 = 3.703125
2 10

13

Multiplication:

Mul = A+ B = log (tA) + log (tB) = log (rrAB)
2 2 2

.-.J = J + J - J
Mul A B T

Where J = [1/2 + log (t)
2"^] 2

1"

T 2

S s S * S
Mul A U

Division:

Div = A - B = log (tA) - log (tB) = log (AB

)

222
.-.J = J - J + J

Div A T

Where J = [1/2 + log (T) 2
n
' i

] 2
1 "'7

T 2

s = s ® s
Div A B

Addition:

Sum = A + B ====> Sum = A(l + B/A)

or Sum = B(l + A/B)

If J > J
A B

S = S
Sum A

J =J +/?(J -J)
Sum A B A

Where /3(X) = log (1 + 2
X

)
2

If J < J
A B

S = S
Sum B

.-.J = J + /?(J - J)Sum B A B

Where ft{X) - log (1 + 2
X

)

2

But ft(X) is rounded off as: /?(X) = 2
1

"°[l/2 +

2
7?
" 1
log (1 + 2

X
)

2

14

Subtraction

:

Sub = A - B ====> Sub = A(l - B/A) or

Sub = B - A ====> Sub = B(l - A/B)

If J > J
A B

S = S
Sub A

j = j + y(j - j)Sub A B A

Where y(X) = log (1 - 2*
)

If J < J
A B

S = S
Sub B

J = J + y(J -J)
Sub B A B

Where y(X) = log (1 - 2*

)

2

But ,.{X) is rounded off as: y(X) = 2
1 "

"[1/2 +

2
1,
" 1

log (1-2
X

) !

The values of ,o(X) and ; (X) are obtained from the

look-up table in the ROM memory. The function ,?(X) or

y(X) introduces an error term which could be expressed

by:

E = (3(3 - J) - log (1 + 2
JB_JA

)

B A 2

If J - J = X
B A

Then E = {Z
i' T}

[1/2 + 2
J)
"'log (1 + 2

X
)])

-
2

log (1 + 2
X

)
2

Since -2
n"T?+1

< X <
2^'

15

2 -2Tl
a = 2 /3 [22]

Table I

Srror Comparison of Binary Logarithmic Number System

1. Simple Shifting

and Counting

2. Piece-Wise Linear

3. A Table Look-Up

0.0866

0.014

,-v •<l

(Where i)-l is the bits
represent the fractional
part of the register, in

the 8 bit example r,-l = 8)

L6

CHAPTER III

HARDWARE IMPLEMENTATION AND DESCRIPTION

3.1 Binary Logarithmic Number Conversion:

In formating the base two logarithm numbers (N >

log N), only positive numbers greater than 1 (N > 1) are

considered. The procedure can be extended to numbers in

the range < N < 1. A non-zero binary number N with

finite length can be written as:

K

N = £2
l

Z

<- = J

K-l

2
K

+ £ 2'Z

= 2
K
(1 + X)

k-l

Where X = [2 Z represents the binary fraction [o]

<• =)

which is that part of the number to the right of the

most significant "1".

For example: (ni and n2 are two registers for

storing N)

When N > 1

ni

I m~1
I \ I

1

N = 01011001.1011000 (binary)

\
' '

h

where h is the number of bits on the left of the

17

significant "1" written in register ni and m , and m is

the number of bits between this "1" and binary part.

m + n2

< 1 n 2
N = 010110011011000. = 2 N

\
l j

h

K- = N 2- = = = = > N =
"' (1 +X)2—

2
nZ

2
nZ

2
ni-h

-'(HX)

log N ~ ni - h - (1 -X) (Assume: log (1+X) ~ X)
2 2

^ m + X where m = ni - h - 1

When < N < 1

ni n2

(1 f 1

N = 00000000.00010110
l_J I I

m x
I I

h

log^N ~ ni - h - (1-X) = ni - (ni+m) - (1-X)

- -m -
(1-X)

Where (1-X) is the two's complement of X (0< X <1)

also log N ~ -(m + X), X is one's complement of" X,

when [n2 - (m + 1)] >', 1.

The direct transfromation from binary numbers to

binary logarithmic numbers is implemented using the

hardware design proposed by Frangakis [6]. This

hardware logic does not require any shifting and

18

counting thus resulting in faster computations.

The binary logarithm conversion procedure is

indicated by the following block diagrams.

19

Data

Binary

logarithmic
Number

Converter

ALU

Anti-Binary
logarithmic
Number

Converter

B L N C

multiplication

Division

Addition

Subtraction
Computations

Error
Correction

A B L N C

Figure 2. Block Diagram of the Binary Logarithmic Number
System.

20

3.2 Binary Logarithmic Number Converter:

In transforming the binary numbers to the binary

logarithm numbers, we choose eight bits for each

register m and register n2 . The BLNC (Binary

Logarithmic Number Converter) can be represented as

shown below:

2\

8 loH

Qo-7

8 br

Q-i-i

execution
pulse

Register n. Register n 2

Priority
Unit I

P 0-7

V \/
Logic

Network I

V
Priority
Unit II

Q _ 7 Q-i-.g P.

Logic

Network II

Q

Logic

Network III

Logic

Network IV

Register n/ Register n a

'

R 0-7 R-i

Figure 3. Block Diagram of the BLNC.

22

Priority Unit I: It is used to detect the most

significant "1" bit written in register ni

.

P =QQQQQ«QQ012345(57
P =QQQQQQQ

1 1234367
P =QQQQQQ
2 2 3 4 5 7

P = Q « « Q «
3 3 4 3 7

P = Q « Q Q
4 4 5 6 7

P = Q « Q
3 3 7

P = Q Q
<5 <S 7

W = QQ«QQQQQO1234507

2 3

>-

LL

1—

I

CL

B

u
a.

-

24

Priority Unit II: It is used to detect the most

significant "1" bit written in register nz , when < N

< 1 and W = 1.

P = Q
-1 -l

P = Q Q
-2 -2 -1

P = Q Q Q
-3 -3 -2 -1

P = Q Q Q Q
-4 -4 -3 -2 -1

P = Q Q Q Q Q
-3 -5 -4 -3 -2 -1

p
-<5

= « q6 -

q
-5

q
-4

q
-3 -

q
-2 --1

P = q q q
<s -

q q
,4 .

q
•3 -

q2 -1

P =QQQQQQQQ
-a -8 -7 -<5 -3 -4 -3 -2 -1

25

h-
I—

I

z

h-
I—

I

(V

i—

i

S

-

2

26

Logic Network I (for N > 1): It is used to determine

which flip-flop (R -* R) in register m to be set to
o 2

1".

p
set

-> n > 0.00 '

p -
39 t

-> R > 1.00 '

1

p
3 el

10.00
2 1

P
set

p p 11.00
3 o l

p .
set

•> R 100.00
4 2

p -
set

K p 101.00
5 O 2

P -

set
-> R . R > 110.00

6 i 2

P -
set

-> R ,R ,R > 111.00
7 1 2

Logic Network III (for < N < 1): It is used to

determine which flip-flop (R -» R) in register ni to
O 7

>e set to " 1 "
.

r
sel

-1
— y R , R , R | •

O l 2
. . ,R

7

P
set

-2
-> R ,R ,R , . ,12 3

,.,R
?

-> 11111111.

-> 11111110.

P —— > R ,R ,R ,...,R > 11111101.
-3 O 2 3 7

P —— > R ,R ,R R > 11111100.
-4 2 3 4 7

P —H—> R ,R ,R ,...,R > 11111011.
-5 O 1 3 7

P ^—> R ,R ,R ,...,R > 11111010.
-<3 13 4 7

P —— > R ,R ,R ,...,R > 11111001.
-7 3 4 7

P —^—> R ,R ,R ,...,R > 11111000.
-B 3 4 5 7

27

<*5 8*
ClT

-

z

M
c
-

s

r-

11

-
3
M

28

Logic

which

" 1 " .

R =
-1

R
-2

R
-3

R =
-4

R =

Network II (for N > 1): It is used to determine

flip-flop (R -> R) in register n2 to be set to

P Q +P Q +P Q +P Q +P Q +P Q +P Q +P Q0-1 10 21 32 43 34 6 5 7 6

P Q tPQ +P Q +P Q +P Q +P Q +P Q +P Q0-2 1-1 20 31 42 53 6 4 75

P Q +P Q +P Q +P Q +P Q +P Q +P Q +P Q0-3 1-2 2-1 30 41 52 6 3 74

P Q +P Q +P Q +P Q +P Q +P Q +P Q +P Q
O -4 1-3 2-2 3-1 4 O 5 1 6 2 7 3

P Q +P Q +P Q +P Q +P Q +P Q +P Q +P Q
O -5 1-4 Z -3 3-2 4-1 5 O 6 1 7 2

P Q +P Q +P Q tPQ +P Q +P Q +P Q +P Q
-6 1-5 2-4 3-3 4-2 5-1 <5 O 7 1

P Q +P q +P Q +P Q +P Q +P Q +P Q +P Q0-7 1-6 2-5 3-4 4-3 5-2 6 - 1 7 O

P Q +P Q +P Q +P Q +P Q +P Q +P Q +P Q
O -8 1-7 2 -6 3-5 4-4 5-3 6-2 7-1

29

UJ

-

-

M
J

«
-c

u
u
s
x

30

Logic Network IV (for < N < 1): It is used to

determine which flip-flop (R -> R) in register m to
-l -8

be set to "1"

.

R

R

P Q +P Q +P Q +P Q +P Q +P Q +P Q
2 -2 -3 -3 -4 -4 -5 -5 -d -6 -7 -7 -8

R = P
-3

R = P

R = P
-3

R = P
-<5

Q +P Q +P Q +P Q +P Q +P Q
-3 -2 -4 -3 -3 -4 -6 -5 -7 -6 -8

Q +P Q +P Q +P Q +P Q
-4 -2 -5 -3 -<5 -4 -7 -5 -8

Q +P Q +P Q +P Q
-5 -2 -6 -3 -7 -4 -8

Q +P Q +P Q
-<5 -2 -7 -3 -8

« +P Q
-7 -2 -8

31

The number N (N > 1 stored in registers ni and n2

will appear as the logarithmic number log N in registers
z

ni and m after the conversion. If < N < 1, then

logarithmic number in registers ni and nz will be in

one's complement representation.

3.3 Anti-Binary Logarithmic Number Converter:

To transform binary logarithm numbers to binary

numbers, we choose eight bits for each register ni and

register n2 . This is the inverse procedure of taking

the binary logarithmic numbers. The ABLNC (Anti-Binary

Logarithmic Number Converter) can be represented as

shown in Figure 9:

33

8 bit; 8 bits

sign bl"t

nsb

4/ N

Qo-0- 7

Decoder

Ib-£

control
line

Logic
Network V

Register m Register n 2

Q-i-

Logic
Network VI

r

Register n t
' Register n 2

'

R 0-7 R. l- -

Figure 9. The Block Diagram of ABLNC.

34

Control line selects either logic network V or VI

depending on whether the msb in register ni is set to

" 1
" or set to "0"

.

Logic Network V (for N > 0):

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
O 1-1 2-2 3-3 4-4 5-5 d-d 7-7 8-8

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
1 1 2-1 3-2 4-3 5-4 6-5 7 -d 8-7 9-8

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
2 2 3-1 4-2 5-3 d -4 7-5 8 -d 9 -7 lO -8

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
3 3 4-1 5-2 <3 -3 7-4 8-5 p -6 10-7 11-8

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
4 4 3-1 <5 -2 7-3 8-4 9-3 10 -<5 11 -7 12 -9

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 « +1 Q +1 Q
5 3 d -1 7-2 8-3 9-4 10-5 11 -9 12 -7 13 -8

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
ci d 7 -1 8 -2 9 -3 10 -4 11 -5 12 -d 13 -7 14

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
7 7 8 -1 9 -2 10 -3 11 -4 12 -5 13 -d 14 -7 15 -8

R = I Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
-1 -1 1 -2 2 -3 3 -4 4 -5 5 -d d -7 7 -8

R = I Q +1 Q +1 Q tlO IIU +1 Q +1 Q
-2 -2 1 -3 2 -4 3 -5 4 -d 5 -7 d -8

R = I Q +1 Q +1 Q +1 Q +1 Q +1 Q
-3 -3 1 -4 2 -5 3 -d 4 -7 5 -8

R = I Q +1 Q +1 Q +1 Q +1 Q
-4 -4 1 -5 2 -d 3 -7 4 -8

R = I Q +1 Q +1 Q +1 Q
-5 O -5 1 -d 2 -7 3 -8

R = I Q +1 Q +1 Q
-d O -d 1 -7 2 -8

R = I Q +1 Q
-7 0-7 1 -a

R = I Q
-8 -8

3 5

QL <-)

36

QL -.'

37

I

>
M
u

I

so

-

8
-
3

38

Logic Network VI (for N < 0):

R =1
-1 15

E =1 +1 Q
-2 14 13 -1

R = I +1 Q +1 Q
-3 13 15 -2 14 -1

R = I +1 Q +1 Q +1 Q
-4 12 15 -3 14 -2 13 -1

R = I +1 Q +1 « +1 Q +1 Q
-5 11 15 -4 14 -3 13 -2 12 -1

R = I +1 Q +1 Q +1 Q +1 Q +1 Q
-<5 10 15 -3 14 -4 13 -3 12 -2 11 -1

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
-7 P 13 -<5 14 -5 13 -4 12 -3 11 -2 10 -1

R = I +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q +1 Q
-8 8 15 -7 14 -S 13 -5 12 -4 11 -3 10 -2 P -1

39

40

3.4 Decription of the Four Basic Arithmetic Operations:

The four basic arithmetic operations in the base two

logarithmic number system are described as follows.

Multiplication and Division:

Let A = log A

B = log B
2

====> Through BLNC

log AB = log A + log B
2 2 2

A+ B

.-. Multiplication: AB = 2 = = = = > Through ABLNC

log (A/B) = log A - log I
2 2 2

= A - B

.-. Division: A/B = 2 :> Through ABLNC

41

A B

\/
A B L N C

\/
AB DR
A/B

Figure 14. The Block Diagram Diagram of Multiplication
And Division Operations.

42

Addition and Subtraction:

Let A = log A
2

B = log B
2

--> Through BLNC

A + B = A(l + B/A)

log (A + B) = log A + log (1 + B/A)
2 2 2

Addition: A + B = 2
A + ft(B - A)

Where fl(B- A) = log (1 + B/A) = log (1 + 2° *
)

2 2

.-. fj'(X) = log (1 + 2
X

) =- = = > in ROM
2

Subtraction: A - B = A(l - B/A)

log (A - B) = log A + log (1 - B/A)
2 2 2

Where J-(B- A) = log (1 - B/A)
2

.-. f(X) = log (1 - 2
X

) = = = = > in ROM
2

4:s

A B

B L N C B L N C

B' - A'

PCX) DR
r(X) <r

^K

RDM

p(X)=log(l+2
x

)

r(X)=log(l-2
x

)

A'+pCX) DR
A'+r(X)

\/
A B L N C

A + B DR
A-B

Figure 15. The Block Diagram of Addition and Subtraction
Operations.

44

CHAPTER IV

SUMMARY AND CONCLUSIONS

The three ways of formating the binary logarithmic

numbers, simple shifting and counting, piece-wise linear

approximation, and table look-up method are discussed in

Chapter II

.

Comparing the errors in these three methods, as shown

in Table I, the table look-up method has the least error,

but it requires more processing time and large ROM memory.

The simple shifting and counting has the largest error, but

it is the fastest processing method.

In the hardware implementation discussed in Chpater

III, we use direct logic gates to approximate the binary

logarithmic numbers which is even more faster than t.;ie

simple shifting and counting method. In the addition and

subtraction operations we use the look-up table ROM to

X Xapproximate log (1 + 2) and log (1 - 2)

.

2 2

The error produced by the hardware implementation

discussed in this report is the same as that produced by

simple shifting and counting technique. Other methods could

be used to reduce the error but at the expense of speed. A

logarithmic A/D converter may be useful for the direct

processing of analog signals in the real world. Hardware

45

implementation of floating-point to binary logarithmic-

number transformation needs further study.

46

REFERENCES

1. Brubaker, T. A. and Becker, J. C, "Multiplication Using

Logarithms Implemented with Read-Only Memory", [EEE

Trans on Computers , Vol. C-24, pp. 761-7G5, Aug. 1975.

2. Chandra, D. V. S., "Accumulation of Coefficient Round off

Error in Fast Fourier Transform Implemented with

Logarithmic Number System" , IEEE Trans . on Acoustics

,

Speech, and Signal Processing , Vol. ASSP-35, pp.

1633-1636, Nov. 1987.

3. Combet, M., Zonneveld, H. Van, and Verbeck , L.,

"Computation of the Base Two Logarithm of Binary

Numbers", IEEE Trans . on Electronic Computers , Vol. EC-14,

pp. 863-867, Dec. 1965.

4. Dean, K. J. and Sc
. , M., "Design of Binary Logarithm

Generators", IEEE Proceeding Instrumentation Electrical

Engineering , Vol. 115, No. 8, pp. 1118-1120, 1968.

5. Edger, A. D. and Lee, S. C, "Focus Microcomputer Number

Systems", Communications of the ACM , Vol. 22, pp.

166-177, Mar. 1979.

6. Frangakis, G. P. and Sc . , M., "A New Binary

Logarithm-Based Computing System", IEEE Proceedings . Vol.

130, Pt. E, No. 5, pp. 169-173, Sept. 1983.

7. Frangakis, G. P., "Fast Binary Logarithm Computing

47

Circuit for Binary Number Less than One", Electroinics

Letters , Vol. 16, No. 15, pp. 574-575, July 1980.

8. Frey, M. L. and Taylor, F. J., "Table Reduction Technique

for Logarithmically Architected Digital Filters", IEEE

Trans, on Acoustics . Speech . and Signal Processing Vol.

ASSP-33, pp. 718-719, June 1985.

9. Hall, E. L., Lynch, D. D., and Dwyer , S. A. Ill,

"Generation of Products and Quotients Using Approximate

Binary Logarithms for Digital Filtering Applications",

IEEE Trans on Computers , Vol. C-19, pp. 97-105, Feb.

1970.

10. Kan, E. P. F. and Aggarival , J. K., "Error Analysis of

Digital Filter Employing Floating-Point Arithmetic", IEEE

Trans, on Circuit Theory , Vol. CT-18, No. 16, pp.

678-685, Nov. 1971.

11. Kingsbury, N. G. and Rayner , F. J. W. , "Digital

Filtering Using Logarithm Arithmetic", Electronics

Letters . Vol. 7, pp. 56-58, Feb. 1971.

12. Kuo, Benjamin C, Digital Control System . Holt, Rinehart

and Winston Inc., pp. 12-19, 1980.

13. Kurokawa, T., Payne, J. A., and Lee, S. C, "Error

Analysis of Recursive Digital Filters Implemented with

Logarithmic Number Systems", IEEE Trans . on Acoustics.

48

Speech, and Signal Processing . Vol. ASSP-28, pp.

706-715, Dec. 1980.

14. Lang, J. H., Zukowski , C. A., Lamaire, R. O., and An,

C. H., "Integrated Circuit Logic Arithmetic Units",

IEEE Trans, on Computers , Vol. C-34, pp. 475-482, May

1985.

15. Lee, S. C. and Edgar, A. D., "The Focus Number System",

IEEE Trans . on Computers . Vol. C-26, No. 11, pp.

1167-1170, Nov. 1977.

16. Lo, Hao-Yung, "Binary Logarithms for Computing Integral

and Non-Integral Roots and Powers", International Jounal

of Electronics . Vol. 40, No. 4, pp. 357-364, April 1976.

17. Lo, Hao-Yung and Aoki , Yoshinao, "Generation of a

Precise Binary Logarithm with Differential Grouping

Programming Logic", IEEE Trans, on Computers . Vol. C-34,

pp. 681-691, Aug. 1985.

18. Majithia, J. C. and Levan, D., "A Note on Base-2

Logarithm Computations", Proceedings IEEE (Lett.

)

. Vol.

61, pp. 1519-1520, Oct. 1973.

19. Marino, D. , "New Algorithms for the Approximation

Evaluation in Hardware of Binary Logarithm and

Elementary Functions", IEEE Trans. on Computers . Vol.

C-19, pp. 1416-1421, Dec. 1972.

49

20. Mitchel, J. N. Jr., "Computer Multiplication and

Division Unsing Binary Logarithm", IRE Trans. on

Electroinc Computers . Vol. EC-11, pp. 512-517, Aug.

1962.

21. Swartzlnader
, E. E. Jr. and Alexopoulos, A. G., "Sign/

Logarithm Number System", IEEE Trans, on Computers , Vol.

C-29, pp. 1238-1242, Dec. 1975.

22. Swartzlander, E. E. Jr., Chandra, D. V. S., Nagle, H. T.

Jr., and Starks, S. A., "Sign/Logarithm Arithmetic for

FFT Implementation", IEEE Trans. on Computers . Vol.

C-32, pp. 526-534, June 1983.

23. Taylor, F. J., Grill, R., Joseph, J., and Radke , J., "A

20 Bit Logarithmic Number System Processor", IEEE Trans

on Computers . Vol. 37, No. 2, pp. 190-200, Feb. 1988.

24. Taylor, F. J., "An Extended Precision Lograithmic

Number System" , IEEE Trans . on Acoustics, Speech, and

Signal Processing . Vol. ASSP-31, No. 1, Feb. 1983.

25. Tzafestas, S. G. and Frangakis, G. P., "Binary

Logarithm-Based Computing Systems: Application to

Digital Filter", Digital Techniques, in Simulation and

Control . S. G. Tzafestas (Ed.), Elsevier Science

Publishers B. V. (North-Holland), 1985.

26. Vainio, 0. and Neuvo, Y., "Logarithmic Arithmetic in

50

FIR Filters", [EEE Trans. Circui ts and Systems , Vol

CAS-33, pp. 826-828, Aug. 1986.

51

ACKNOWLEDGEMENTS

The author wishes to express his appreciation and thanks

to Dr. Satish D. V. Chandra, major advisor, for his guidance

and helpful suggestions and encouragement. The counsel,

patience, and direction have been invaluable.

Thanks are due to author's committee members, Dr. Gary

L. Johnson and Dr. Chi-Lung Huang for their constructive

criticism

.

Thanks are also due to author's parents and Elaine Song

for thier moral support and encouragement during the

prepartation of this report.

52

HARDWARE IMPLEMENTATION OF THE RASE TWO

LOGARITHMIC NUMBER SYSTEM

by

Steve Chih Hsiung

B.Ed., National Kaohsiung Teachers' College (Taiwan), 198 [

M.S., University of North Dakota, 1986

AN ABSTRACT OF A MASTER' S REPORT

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and

Computer Engineering

•KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

