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1. INTRODUCTION

1.1 Current Robot Programming Technology

Current Robot Programming Technology has become more and more sophisticated to satisfy the need for

intelligent factory automation controllers in Computer Integrated Manufacturing. Industrial robots are

essentially positioning devices. However, many robot systems today are better described as computer

controlled manipulators. As more intelligence is required on the factory floor, these robot systems

function as work cell controllers in networks of factory control systems.

A modern robot controller typically has the same basic components as a general purpose computer

(Figure 1-1): A central processing unit (CPU), a memory subsystem, a mass-storage subsystem and a

user interface. The additional components are a manipulator control unit, a control panel and teach

pendant, a process control input/output interface, a network interface and possibly a machine vision

subsystem. The manipulator control unit is usually made up of servo controllers and amplifiers that

allow the CPU to drive the motors in the robot arm. A teach pendant is a hand-held switch and display

box with which the robot arm can be controlled manually. A process control interface is typically made

up of digital input/output lines primarily to synchronize the robot task with other devices such as

conveyor motors, sensors, etc. Robot work cells are often built around a robot by integrating the process

control directly into the robot controllers. Robot controllers communicate with each other and with other

computers via their network interfaces. Vision systems are most commonly used in robot guidance and

inspection. However not all robots have vision capability because vision systems often cost as much as

robots. Therefore, unless it is really necessary, "blind" robots are belter justified.

On the software side, robot control operating systems and high level programming languages provide a

fairly high degree of flexibility. A few robot programming languages are modified versions of BASIC.

Some others, such as VAL-Il'11
are structured and modular. These robot languages are very similar to

other programming languages. Their versatility provides the basic tool to build up factory automation
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Figure 1-1. Block diagram of a modem robot controller

intelligence. In addition, they have a set of special commands and instructions tailored to the motion

control task including a number of mathematical functions.

However, since the most common robot programming technique, "program by showing"'2', is not

adaptive to configuration changes in the environment, better algorithms are needed to build more

autonomous robots. "Program by showing" is the practice in which the robot arm is manually guided

through specific motions and points are recorded for future repetition. This seems to be the most

effective way to program robots used for spray painting or welding since most points on the trajectories

are critical for such applications. In assembly processes, only pick-and-place points are the critical

points, yet all points along the trajectories between them are explicitly "taught" to avoid obstacles in the

work space. When the tasks change or when a work cell is duplicated with modifications, all these

trajectories must be re-programmed. It seems to be unnecessary and wasteful when many non-critical

points have to be specified over and over again.

A solution to this problem is to let the robot choose its own paths based on a knowledge of the work

space. The question is how to inform the robot enough about its surroundings so that we can

subsequently tell it to move from one point to another within its limits while avoiding all obstacles.
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1.2 Algorithmic Motion Planning

Motion Planning is a rich mathematical field whose recent advances may become valuable contributions

to the next generation of robots. Algorithmic motion planning involves the design and analysis of non-

heuristic algorithms that are exact and asymptotically efficient in the worst case. Heuristic motion

planning consists of the AI approaches that favor approximating, rule-based or best-case-tailored

solutions. These approaches have proven to be successful in many situations. In a recent article, Micha

Sharir 131 suggested that since the problem has a rich geometric and combinatorial structure, this structure

should be understood from a mathematically rigorous point of view and algorithmic solutions should be

sought first. Heuristic shortcuts would be helpful in complex cases where exact solutions might be

computationally intractable.

General techniques for solving the motion planning problem have been found. Schwartz and Sharir141

proved that this problem can be solved in time polynomial in the number n of algebraic geometric

constraints defining the free configuration space but doubly exponential in k, the number of degrees of

freedom of the robot. Canny'51
recently extended and improved this result to provide a solution in time

0(n k
log »),

With the general algorithms above, the problem becomes intractable when the number of degrees of

freedom k is large. However, when k is small these algorithms can solve the problem efficiently in time

polynomial in the number of constraints n.

More recent researches have been aimed to improve algorithms for systems with a just a few degrees of

freedom. The projection method is one in which the k -dimensional configuration space FP of the

system B is decomposed into its pathwise connected components and the two positions of B, Pfirr l
and

Pfixu, are to be determined whether they are in the same connected component of FP. This

decomposition is done by projecting FP on to a sub-space A of lower dimension and then partitioning A

into connected regions R.



The projection method has been applied by Schwartz and Sharir in the papers on the "piano movers"

problem. Initial solutions were coarse and not very efficient (running time of 0(n 5
)). Using a modified

projection technique, Leven and Sharir
16

' designed a fairly efficient algorithm which runs in time

0(n 2
log n). This consists of constructing cells and establishing adjacency in FP.

Other techniques subsequent to the projection technique have been considered, among them, the

retraction approach. In the retraction method, the configuration space is further reduced to one-

dimensional. The motion planning problem then becomes the graph searching problem 171
. O'Dunlaing

and Yap18
' have applied this retraction method in the case of a disk moving in 2D polygonal space. This

is made possible by constructing the Vonoroi diagram, which is defined as the subset of the

configuration space FP of B consisting of placements of B simultaneously nearest to two or more

obstacles. The Vonoroi diagram of n line segments in the plane can be computed in time (n log n).

Another general technique, the expanded obstacles approach, has been playing an important role in

many motion planning researches. Details of this technique will be explained later in this paper.

A variant of the motion planning problem deals with optimal paths. This is aimed to calculate the

Euclidean shortest path between initial and final placements avoiding all obstacles. While work done on

the 2D case have been successful, the 3D case is so complex that the problem becomes intractable.

In general, different techniques have been developed for the motion planning problem. However, as

Sharir has indicated, although general algorithms are significant from a theoretical point of view, they

are hopelessly inefficient in the worst case and are completely useless in practice.

1.3 A Practical Application

A step towards applying computational geometry in practical use is to model the physical environment

in the system and to formulate efficient motion planning algorithms to help the robot navigate in its

work envelope in a more autonomous manner.



This kind of improvement could be seen at two levels: Design and Application. At the design level,

these algorithms are built into the programming language as instructions and commands or as part of the

standard robot control system. Commands to describe the environment will be executed to set system

parameters that will define the free configuration space. Innovation at the design level will take a long

time to appear because of the usual long cycle between design conception, new product realization and

marketing.

At the application level, motion planning algorithms can also be applied as part of application programs.

The programmer is to store coordinates of the boundary points of the robot work space and around

obstacles in the system. Based on that information, algorithmic motion planning programs can be written

to make sure obstacles are avoided. Naturally, improvements at the application level are much more

feasible since they do not necessarily require hardware changes.

In the rest of this paper we will limit our attention to algorithms at the application level. Chapter 2

suggests a two-dimensional model of robot work-space. Chapter 3 describes an algorithm that provides

a simple solution to the robot path planning problem at the application level. Chapter 4 describes the

simulation program that allows the integration of different algorithms in an interactive environment

based on the model.

1.4 Realistic constraints

Realistic constraints concerning memory use and computation overhead incurred by the additional

computation is worth serious considerations. Although most robot systems contain the basic components

of general purpose computers, their resources such as processing time and especially memory and mass

storage space are usually more limited. Thus, in developing these algorithms two issues are of concern:

First, sophisticated motion planning algorithms added to regular applications will certainly be of value

but they will undoubtedly require additional memory space. If they use too much memory, regular

applications may suffer, or worse yet, may not be able to run at all. Second, these algorithms must be
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efficient to avoid performance degradation of the general task. If the robot is to compute the path from

one point to another in its envelope without collision, it must be able to do it in a reasonably short time

so that there is no apparent delay between command execution and actual robot motions. Otherwise, the

additional overhead is not justified. In short, our goal here is to develop better path planning algorithms,

but they must be simple and efficient in order to be practical.
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2. A TWO-DIMENSIONAL MODEL

The following is a description of an interactive environment to facilitate the investigation and

development of simple and practical algorithms to find collision-free paths between two points among

obstacles in a 2D space. A model representing the work-space and the robot is necessary to serve as the

foundation for all algorithms.

2.1 Basics of robot configurations

A robot arm, or manipulator, is basically a mechanical system of rigid links attached to each other at

certain joints. The number of joints dictates the number of degrees of freedom of the arm. Typically,

robots nave between two and six degrees of freedom. More degrees of freedom can be obtained by

attaching independent systems together. An example is a multi-joint end-effector attached to a

manipulator.

Figure 2-1. Six degrees of freedom of an end-effector

At any instance the placement of a robot with k degrees of freedom can be represented by a k-tuple.

Figure 2-1 depicts the six degrees of freedom of an end-effector. The end-effector in this case can



translate in the 3D space where its instantaneous positions are represented by its cartesian coordinates,

x,y and z. It can also rotate: Its orientation at any point in time is represented by roll, pitch, and yaw,

the rotations about the y,x, and z axes, respectively.

Robot work envelopes, the space bounded by the maximum reach of the manipulators, have different

shapes. Based on the way the links are joined together, robots are grouped in different categories.

Figure 2-2. Common manipulator categories

Figure 2-2 represents three common manipulator categories. Cartesian robots have linear joints aligned

along the cartesian axes. Their work envelope is a rectangular box. Polar robots usually have their

joints represented by the polar coordinate system (r and theta). Their work envelope is hemi-spherical.

The SCARA 1

category represents a combination of polar joints on horizontal planes and linear joints



-9-

vertically oriented. The SCARA work envelope is cylindrical. These terms are commonly used but the

boundaries between these categories are not clear since they are often combined. Although certain

categories are better suited for certain purposes, for example polar robots are better for spray welding,

cartesian and cylindrical robots for assembly, they can often be used interchangeably. In fact most

systems can represent placements in the Cartesian coordinate system even though they are not of the

Cartesian category.

The robot work space is usually three dimensional. For simplicity in certain problems the scope may be

limited to a two dimensional view. An object moving in a 2-D plane may still have three degrees of

freedom: Translation in the x and y directions on the horizontal plane and rotation about its vertical axis.

In the rest of this paper we further limit the motions of the robot to two degrees of freedom by

representing it by a point moving on a planar surface. Translation of a point object in the x-y plane

represents two degrees of freedom. Its rotations and orientation will be meaningless.

2.2 Representation of the robot work space

The robot environment is represented by a model of two-dimensional space containing a finite set of

disjoint polygons points and connected line segments. The space boundary (the horizontal projection of

the work envelope) and obstacles are represented by polygons. Obstacle polygons are disjoint and

completely enclosed in the envelope polygon. Obstacles too close together may have to be merged and

represented by one polygon. An obstacle located at the boundary may be "merged out" to the envelope

polygon. The area outside the envelope and inside the obstacles is the forbidden region. The rest is the

free space of the robot (also called configuration space).

SCARA stands for Selective Compliance Assembly Robot Arm.
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2.3 Expanded-Obstacles approach

Motion of a single object in the presence of obstacles can be considered by shrinking the object to a

point and enlarging the obstacles. We will use this method by Lozano-Perez and Wesley" 1 to use a

point to represent the robot end-effector which in real life can be of any shape.

Figure 2-3. Example of Expanded Obstacles Representation

As a result, the obstacles are represented by enlarged polygons and similarly, the envelope polygon is

shrunk down (Figure 2-3).

Positions of the robot (which is really the end-effector in this case, ignoring the rest of the manipulator)2

are represented by its cartesian coordinates (x,y). Connected line segments represent the robot paths.

Obviously these lines are not allowed to cross the polygons, or collisions will occur.

2.4 Data structure representation

The objects, (points, polygons and segments) can be expressed as structures in the C programming

2. From this point we will use the terms robot and end-effector interchangeably to denote the position of the robot.



language as follows:

2.4.1 Points:

struct coord
{

float x;

float y;

In real life, most robot systems maintain their own data structures representing points in space. They

appear under the form of k-tuples for the k degrees of freedom of the manipulator as mentioned earlier.

The two-member data structure of the points given here is necessary for the purpose of this paper but

may be useless in real application.

2.4.2 Polygons:

struct polygon {

int v_no;

int closed:

struct coord v[MAX_V];

)

In this structure v_no is the number of vertices of the polygon, v [ ] is the array of vertices (v, = (x, >,)).

Closed is the status of the polygon. It can have a value of zero or equal to v_no. V_no starts with a

value of zero and increments by one each time a vertex is entered when the polygon is being

constructed. When the polygon is completed (closed) the last vertex in the array has the same coordinate

values as the first, at which point closed is assigned the value of vno. Thus, a (complete) polygon P of

n vertices is an array of n+\ elements, P = (v
,
V], .... v„) where

and

closed = v no = n+1.
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2.4.3 Segments:

struct segment (

struct coord el, e2;

float a;

float b;

}

Segments are not absolutely necessary to represent paths since they can simply be arrays of points.

However this structure is included in the model for convenience in our following geometric computation.

Wilh the equation of a line, y = ax + b, where a is the slope and b, the y -intercept, we represent a line

segment as a line bounded by two end points e
x
and e 2 .

2.S Some basic analytic geometry relations

At this point we take one step further to define a few formulae required for the path planning algorithms.

2.5.1 Equation of a line through two points

We need to determine a and b in the equation y = ax + b. With two points A and B we have the

equation

y-y* yi-y*

from which we can deduce

x xA xB - xA

Ax

b=yA -axA

where Ay = yB - yA and Ax = xB - xA ,
An exception is when Ax = 0, in which case the equation is

represented by x = yA

2.5.2 Intersection point of two lines

The intersection / = (xA y,) of two crossing lines y, and y2 is the solution of the simultaneous equations



The components Xj and yt are derived as

and
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y, = a
l
x + b

l

y2 = a 2x + b 2 .

yi = a 2x, + b 2

except in the case of a, = a 2 where the lines are parallel and there is no intersection. (If b\ = b2 1

well, the lines are super-imposed. This case will be treated as no intersection in this model.)

2.5.3 Length of a segment

The length of a segment AB which is the distance between point A and B is given by

\ABI=^(x
1
-x 2 )

2 + (y,-y 2 )

2

2.6 Limitations of the model

This model is only an approximation of two-dimensional space and confines the algorithms to the limits

of a system with two degrees of freedom.

Representing natural objects with polygons usually requires approximation. The smaller the number of

vertices (the less memory space) the less accurate the approximation. For obstacles the polygons are

approximately equal to or larger than the real objects. For the outer boundary the approximation

polygon has to fit inside the work envelope. As a result the free configuration space is reduced. If the

work space is crowded with obstacles, the approximation needs to be very accurate. In the extreme case

the model becomes useless because the representation would take too much memory space.



Figure 2-4. Expanded Obstacles representation of a rod

By representing the moving object with a point we lose control of its orientation. In using the Expanded

Obstacle method the loss of free space is minimal if the object is a disc. For long and thin objects such

as a rod, the waste of space is large (Figure 2-4).

Again, if the work space is too crowded, this loss of free space may be prohibitive. The solution in this

case is to add another dimension to the representation of the moving object: Its orientation.

All models have their shortcomings. They are valuable only in their own context. Our model is

designed to work in most practical cases where the robot has a reasonably large free configuration space.
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3. DEVELOPMENT OF A PRACTICAL PATH-FINDING ALGORITHM

3.1 The REACH & CLEAR Algorithm

This is a fairly simple algorithm that will give a complete solution to the path finding problem. A

thorough analysis will show that this solution is not the optimal solution in all cases but it is guaranteed

to finding a complete path from any two points in the configuration space if such a path exists.

This algorithm involves a sequence of repeated calls to the two functions Reach and Clear which will

give all the intermediate nodes to construct the complete path. Given a starting node, Reach determines

whether the direct path from there to the destination point is clear. If it is, the destination point is

reached. If is is not, Reach returns the coordinates of the first point where the path is blocked and the

identification numbers of the blocking polygon and the correspondent segment. From that point Clear

returns the subsequent vertices of the polygon ending with the vertex from which the current polygon is

no longer an obstacle. Then Reach continues to find the next blockage and so on until the destination is

reached and the path is complete.

3.1.1 Depth-first and Breadth-first searches

Obviously, Clear can return two possible solutions: A path continuing to the "left" and the other to the

"right" of the polygons. Once given a point on a polygon, Clear uses the function Next to find the next

vertex on the polygon. At some instances. Next returns the next higher index in the array of vertices of

the polygon. At others, it returns the current or the next lower index in the array of vertices of the

polygon. A parameter dir is set to "upper" or "lower" before each time Clear is executed. For a depth-

first search dir is given a fixed value to guide Next in selecting the "upper" or the "lower" option

throughout the enure process to find one path. (For one value of dir, a path may turn "left" at one

obstacle and "right" at the next obstacle if the vertices entered in opposite directions, clockwise and



counter-clockwise, when the corresponding polygons were being built Paths constructed in both depth-

first directions will be compared at the end, and the shortest one will be chosen.

This depth-first search method is successful in all cases consisting of convex polygons exclusively. For

a work-space containing non-convex polygons solutions are not always guaranteed: If a polygon

partially surrounds another, it may create region where the search path will become circular (and

endless). Thus, breadth-first searches are required when non-convex polygons are involved. Breadth-

first paths are obtained by constructing a binary tree in which branches consist of nodes found in both

directions at each obstacle. A solution is guaranteed if the breadth-first method is used. However, it

requires a lot more memory space than the depth-first method. One alternative approach is to represent

non-convex polygons by smaller adjacent convex polygons and apply depth-first searches.

3.1.2 A Depth-first search function

Let us consider a depth-first function, Findpath, that constructs a complete path by alternatively calling

Reach and Clear. Given the start and destination points L and L
, , respectively, a path P = N„ is to be

constructed. N. denotes the global array of nodes N, in which the first element, N = L and the last

element Nn £,. A global boolean variable, pathcomplele, is set to FALSE at the beginning of the

process. A local boolean variable, pathclear, is used in Reach. Before the first call to Reach, n is

assigned a value of zero. Each time a new node is determined, n is incremented by one. The variable

pathcomplele is returned as TRUE and N„ = L
X
when L , is reached.
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Findpath can be expressed in pseudo-codes as follows:

Findpath (dir):

Set obstacle < 1

Set pathcomplete «- FALSE

Set pathclear <- TRUE

Repeat

{

pathcomplete <- Reach(obstacle,currentnode:obslacIe, edge, nodeindex)

If pathcomplete = FALSE then

currentnode <r- Clear (obstacle, edge, nodeindex)

} Until pathcomplete
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The functions Reach, Next and Clear arc described in pseudo-codes below:

Reach {obstacle, currentnode : obstacle, edge, nodeindex):

Let n be the next node index, n <— nodeindex+l

Let To be the current node

Set Count <-

For all obstacle P
t
such that ioobslacle

(

For all vertices Vj of polygon Pi (

Find all i, j, Su = (Jot, n V,V, +1 )

where Sy is the intersection of segments T L
t
and VjVj+i,

i is the designation number of the obstacle

j is the designation number of the corresponding edge

If S;y exists increment Count

)

)

If Count > 2 then
(

Find i, j, Ry where

Rij is the intersection closest to the current node

(T Rij
is the shortest of all segments T S

:j .)

SctA/„<-fi,
7

Return: Obstacle P, , edge /, nodeindex n

)

Else(

Set pathcomplete <- TRUE

SelW„ <- L,

)
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Clear (obstacle, edge, nodeindex):

Let k be the next node index for the obstacle, k <- nodeindex+l

Let / be the vertex index,

/ «— edge for lower direction,

/ <— Next(edge) for upper direction

Set pathclear <- FALSE

Set Nk to the next vertex on the obstacle, Nk
<- V,

Repeat (

If the number of intersections of segment NtL ^ with all segments Vj V)+1 ,

is greater than 2 then
{

Sct*<-jt+l

Set/<-/ta<(/)

Set Nk
<- V,

)

Else(

Set pathclear «- 77<(/E

Set nodeindex <— £

}

) Until pathclear.

Return: All nodes Nk nodeindex k
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Next (vertex):

If dir = upper then
(

i

Else]

Return: next

vertex < v_no-\\ vertex + 1

vertex > v no:

vertex > 0: vertex - 1

vertex = 0: v no - 1

3.1.3 Time complexity

Suppose, for the worst case of Findpath execution, n is the number of polygons, m is the largest number

of vertices of any polygon, the time complexity of the above functions is estimated as follows:

Reach: 0(mxn)

Clear: O'm)

Findpath: 0(mx n
3
)

3.2 Possible optimizations

An observation to be made about the Reach and Clear algorithm is that along the paths constructed there

arc situations where short-cuts are possible.

In situations where an obstacle is first "Reached", a node is set at the reach point. Then a subsequent

node is set at the next corner of the obstacle. This corner node may be reached directly from the

launching point if there is no obstacle in the way. If this short-cut is possible, the path will have less

nodes and the total path length will be shorter. Even if there are obstacles between the launching node
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and the comer node, other inlcrmcdiate nodes could be generated to obtain a shorter path. This kind of

improvement may be built into Reach or may be done after a complete path is constructed.

Similar situations exist with Clear when the path surrounds non-convex obstacles. After an obstacle is

reached, Clear generates nodes around the polygon until the path is cleared. If this occurs at a concave

portion of the obstacle, extraneous nodes may be generated. Short-cuts should be sought between these

nodes to optimize the path. Again, this optimization may be incorporated directly in Clear or may be

part of a separate function executed after complete paths are generated.

Another kind of improvement could be made in Reach. Every time Reach is executed, it checks for

possible intersections of the line segment from the current point to the destination point (r Li) with all

polygon segments. Since the polygons are stored in system memory as arrays, there is no indication that

an obstacle may be "behind" the current point. Thus, the number of check points is not reduced after an

obstacle has been visited. A solution is to "mark" the polygons when they are being checked so that

they will not be checked again in the same process. Although this may improve the response lime, it

will require more memory. The gain in the response time may not be significant enough to justify the

additional memory use.

3.3 Direct applications

This algorithm is based on the proposed two-dimensional model and is primarily a theoretical solution.

However, despite its simplicity it may be applied to certain real life applications without (or with little)

modifications.

The closest applications would be in manufacturing assembly processes using certain types of SCARA

and Cartesian robots. As described earlier, some of these robots have a vertically oriented linear axis

(cylindrical and rectangular work envelope). The cases of interest are when the robot end-effector is

allowed to move on a horizontal surface below the height where the intermediate links of the arm's
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Figure 3-1. A SCARA robot application

components are located (Figure 3-3). Assuming that these intermediate links can move around the upper

horizontal plane without obstruction, the multiple-link clearance question may be ignored. This reduces

the complex motion planning problem to that of a single moving object. Moreover, this allows us to

ignore the height component of the three-dimensional space in most cases. The scope of the motion

problem can be reduced to two-dimensional as the model represents.

The next closest application foreseeable is for AGV's (Automatic Guided Vehicles). This type of

application of the model seems to be even more feasible since these vehicles travel on a two-dimensional

horizontal plane (i.e., the ground). The problem is with today's technology, most of these AGV's are

used with fixed guiding path on the factory floor1101 The AGV's are often allowed to travel (at limited

speed) in the same area where human workers are since their paths are fixed. Applying the

Reach and Clear algorithm for AGV's on the human populated factory floor may cause safely problems
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since moving obstacles (human operators) are not known by the AGV's and their paths would be

unpredictable.



24-

4. SIMULATION PROGRAM

The simulation program is based on [he two-dimensional model described, is implemented in the C

programming language, and runs on the MS-DOS operating system. The program creates an interactive

environment to allow easy creation of different configurations of obstacles in which path finding

algorithms are tested. The user/developer selects options from the command menu via the keyboard and

draws obstacles on the video monitor screen with a mouse. The Reach and Clear algorithm is built in

the simulation and is ready for testing. The program is organized so that other algorithms can be

developed and tested in the same environment. Although this requires part of the program to be

modified and the program to be recompiled, the program modules are organized so that new functions

can be added to the menu conveniently. A program listing is included in the appendix.

4.1 Organization

The program is organized into a menu tree with a user interface consisting of keyboard and mouse input

and graphics display. A high resolution graphics adapter (EGA or VGA)3
and the Microsoft Mouse

device driver are used. At the beginning of the execution, the main program verifies availability of a

video graphics adapter and the mouse device driver and initializes them before setting up the main menu.

The program is organized into a hierarchy of modules making up the branches in the menu tree. The

modules are maintained separately and linked together by a MAKE script. Below is the list and

description of the modules:

— Findp.c: This is the main module. It sets up the main menu and allows calling other modules.

— Obstacles: This module allows the drawing of polygons to represent the obstacles.

3. Enhanced Graphics Adapter and Video Graphics Array, respectively
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— Linesegm.c: This is the "tool box" containing various functions used by the algorithms.

— Setpointx: This module allows the user to set the start and destination points for testing.

— Storage.c: This module takes care of the loading and saving of obstacles configurations from and to

data files.

— Walk.c: This is the collection of "algorithms". It allows testing of these algorithms on different

configurations.

The menu tree (Figure 4-1) consists of commands to describe the configurations (Obstacle, Setpoint), to

load and save different configurations (File) and to test the algorithms (Run, Walk). Command

selections are made by entering the capital letter of the command word (for example "B" in oBstacle).

Menu selections are entered via the keyboard only. Some commands in the main session (in which the

main menu is active) may invoke lower level sessions where corresponding menus will be displayed.

These menus provide an option to go back to the previous level when the session is finished. Program

execution stops when the "Quit" option of the main menu is selected and confirmed.

The display screen is a two-dimensional matrix of 640x350 pixels (640x480, for VGA mode). The

menu occupies the top 20 pixel-lines. The rest of the screen represents a rectangular robot work

envelope. Obstacles, locations and paths are displayed in different colors. The mouse is used to draw

obstacles and to position the start and destination points. The mouse cursor movements are limited

within the display of the work envelope. When the appropriate session is active, points can be entered

with the left mouse button. The right mouse button is used to refresh the screen at most levels.

4.2 Functions

Below is a list of functions in the menu tree along with their brief description.
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oBstacle Setpoint Run

Fresh Save Load Catalog Dos Exit

[Mouse- R: Repaint]

Walk Quit

[Mouse- Ri Ropolnt]

Start Dost. Exit

(Mouse- Li Add point]

[Mouse- R: Repaint]

Reverse Close Status Exit

[Mouse- L Add point]

[Mouse- R= Repaint]

Reach Clear Trace Direction Showdata Exit

[Mouse- R: Repaint]

FILE:

Figure 4-1. Menu tree of the simulation program

Fresh: Clear work-space in memory of all objects to re-start.

Save: Save current configuration (all existing obstacles) in a data file.

Load: Load a saved configuration from a data file. The current configuration will be over-
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— Catalog: Show a list of all saved configuration data files.

— Dos: Execute a system level command.

— Exit Go back to the main menu.

OBSTACLE: Vertices are entered by clicking the Left mouse button. The Right button is to repaint

the screen.

— Reverse: Remove the last vertex entered (and the corresponding edge).

— Close: Close the loop and complete the obstacle.

— Status: List all the vertices entered for the current obstacle.

— Exit Go back to the main menu. A re-confirmation is required.

SETPOINT: Select Start or Destination

— Start: Enter the Start point by clicking the left mouse button. A small white circle indicates the

resulting point.

— Destination: Enter the Destination point by clicking the left mouse button. A small yellow circle

indicates the resulting point.

— Exit: Go back to the main menu.

RUN: Select and execute path-finding programs based on different algorithms.
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• WALK: Step-by-step walk-through the path-finding process.

— Reach: Execute the Reach function from the current node.

— Clear: Execute the Clear function from the current node.

— Trace: Draw a path from the Start point to the current node.

— Direction: Select or de-select the upper direction.

— Showdata: Turn on/off the show-data mode. If it is on, progress data will be displayed. Exit

Go back to the main menu.

Quit: Leave the interactive environment. All configuration data will be lost unless saved in a data

file.

4.3 Usage

The program is menu driven and easy to use. The user simply selects options on the menu with single

keystrokes and follows the brief instructions on the menu line.

To enter the program, the executable program name "findp" must be entered at the operating system

level. An EGA or VGA graphics adapter and a mouse are assumed to be available. The mouse device

driver must be installed before findp can be executed or an error message ("Mouse not installed") will

appear.

To exit the program normally, "Quit" option on the main menu must be selected and confirmed. The

program can also be intemipted anytime with the <Control-C> keystroke combination. However, this is

not recommended since the display screen may be left at an unwanted video mode after the program is

interrupted.
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4.4 Portability note

A special objective of the simulation is to keep the algorithm as system-independent as possible.

Therefore in the simulation program design, the use of system specific library functions are limited to

those absolutely necessary to simulate the environment and not to help solve problems in the path

finding algorithm. Specifically, the most library functions used in the simulation arc graphics display

functions: Line drawing, color setting, etc. For instance, a possible means to determine if a line

intersects with a polygon is by using color codes. First the area inside the polygon (all pixels within the

polygon boundary) is given a specific color. This may be done using a "flood fill" graphics library

function. The line is assigned a different color. From this point the intersection point may be

determined by moving along the line until the polygon color is found. Color coding is not impossible in

real applications. However, not all systems have this capability. Therefore this coding scheme is

avoided in the simulation program in order to maintain the fidelity with the real applications.
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5. EXTENSIONS, FURTHER STUDIES

Extensions of this project could include more use of the advances mentioned in the survey if the

overhead/performance trade-off remains practical.

Representation of non-zero radius and oriented moving objects is the most related problem outside the

scope of this project. It would be a direct extension of the 2D model to solve the limitation problem

described in Chapter 2. Essentially, a third degree of freedom of the moving object (the rod in the

Figure 2-4) is required to represent its orientation in addition to its position: (xt yt 6).

Other foreseeable extensions are numerous and may require substantial modifications to the model :

Multilink manipulators, moving obstacles, three-dimensional environment, etc.
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APPENDIX: Program Listing

/* Makefile: findp */

Findp.obj: Findp.c

qcl /c /AM Findp.c

Obstacle.obj: Obstacle.c

qcl /c /AM Obstacle.c

Setpoint.obj: Setpoint.c

qcl /c /AM Setpoint.c

Walk.obj: Walk.c

qcl /c /AM Walk.c

Linesegm.obj: Linesegm.c

qcl /c /AM Linesegm.c

Storage.obj: Storage.c

qcl /c /AM Storage.c

findp.exe: Findp.obj Obstacle.obj SetpoinLobj Walk.obj Linesegm.obj Storage.obj

linkFindp.obj+Obstacle.obj+Setpoint.obj+Walk.obj+Linesegm.obj +Storage.obj;

/* findp.h */

#include <dos.h>

#include <stdio.h>

#include <graph.h>

#include <malh.h>

#include <conio.h>

#define INFTN

#define FALSE
#define TRUE 1

#define MOUSEJO 51

#define INIT_MOUSE
#define SHOW_CURSOR 1

#define HIDE_CURSOR 2
#define READ_MOUSE 3

#define SET_POS 4

#define X_LIMTTS 7

#define YJJMITS 8

#dcfine MAX_OBST 20

#define MAX_VRTX 100
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#defmc BLK
#define BLU 1

#define GRN 2

#define CYA 3

#define RED 4

#dcfme MAG 5

#define BRN 6

#define WHT 7

#define GRY 8

#defineLTBLU 9

#defmeLTGRN 10

#defineLTCYA 11

#defineLTRED 12

#define LTMAG 13

#define YEL 14

#defineLTWHT 15

union REGS inregs, outregs;

struct videoconfig vc;

struct coord
(

float x;

float y;

);

struct polygon
{

int v_no; /* no. of vertices */

int closed; /* =v_no if closed, =0 if not */

struct coord v[MAX_VRTX];
);

struct segment
{

struct coord el;

struct coord e2;

float a; /* slope */

float b; I* y intercept */

);

/* Module: findp.c */

#include "findp.h"

char *cmd_msg;

char main_mnu[]= ("COMMAND: File oBstacle Setpoint Run Walk Quit
[Right button: Repaint]");

char file_mnu[]= ("FILE: Fresh Save Load Catalog Dos Exit");

char setpoint_mnu[]= ("SETPOINT: Start Destination Exit");

char point_mnu[]= ("[Left button: Set Start/Destination point]");

char obstacle^mnu[]= ("OBSTACLE: Reverse Close Status Exit

[BUTTONS - L: Enter vertices - R: Repaint]");

char walk_mnu[]= ("WALK: Reach Clear Trace Direction Showdata Exit
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[Right button: Repaint]");

int w_limit, e_limit, n_limit, s_limit;

int c= ' ', num= 0;

struct polygon obj[MAX_OBST];
struct coord loc[3], tmp[3], node[200];

/***************** ****************************************************,

main()
(

/*********************************************************************,

loc[0].x= 0; Ioc[l].x= 0;

inregs.x.ax= INIT_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);

if (outregs.x.ax = 0)(

printf("Mouse not installedO );

exit(0);

}

if <_setvideomode(_VRES16COLOR) == 0) (

ifCsetvideomodeCERESCOLOR) == 0) (

printf("No EGA/VGA availableO);

exit(0);

Jelse printf("EGA modeO);

} else printf("VGA modeO);

/* Just flash this on the screen */

_getvideoconfig(&vc);

w_limit= 0;

n_limit= 20;

e_limit= vc.numxpixels-1;

s_limit= vc.numypixels-1;

_setcolor(GRN);

_rectangle(_GBORDER, wjimit, njimit, ejimit, s_limit);

inregs.x.cx= w_limit+2; inregs.x.dx= e_Iimit-3;

inregs.x.ax= X_LIMTTS;

int86(MOUSE_IO, &inrcgs, &outregs);

inregs.x.cx= n_limit+2; inregs.x.dx= s_limit-2;

inregs.x.ax= Y_LIMITS;
int86(MOUSE_IO, &inregs, &outregs);

inregs.x.ax= SHOW_CURSOR;
int86(MOUSE_IO, &inregs, &outregs);

cmd_msg= main_mnu;

RepaintO;

for (;;) (

ButtonsQ;
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if(kbhitO)(

c= tolower(getchO);

if (C == T) FileO;

if (c == 'b') Obslacle(&obj[num]);

if (c == Y) SetpointO;

if (c == V) { /* Run */

if ((loc[0].x == 0) II (loc[l].x » 0))

printf("Start/Desunation points unknownO");

else

if (num == 0)

primf("No obstacles enteredO");

else

RunO;

)

if (c == 'w') (
/* Walk */

if ((loc[0].x == 0) II (loc[l].x == 0))

printf("Start/Destination points unknownO");

else

if (num == 0)

printf("No obstacles enteredO");

else

Walk();

)

if(c=='q')(

printf("Are You Sure? [n]");

c= getchO;

if (c == 'y') break;

RepaintfJ;

_clearscreenCGCLEARSCREEN);

_setvideomodeLDEFAULTMODE);

}
/* main */

ButtonsO (

inregs.x.ax= READ_MOUSE;
int86(MOUSEJO, &inregs, &outregs);

if (outregs.x.bx & 0x2) {
/* Right button 7

while (outregs.x.bx & 0x2)
{

inregs.x.ax= READ_MOUSE;
int86(MOUSEJO, &inregs, &outregs);

)

RepaintO;

)

if (outregs.x.bx & 0x1) (
/* Left one not used */
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printf("Keyboard menu selection onlyO");

while (outregs.x.bx & Oxl) {

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);

}

) I* Buttons */

RepaintO;

/* Module: Linesegm.c */

#include "findp.h"

extern int num;

extern struct coord tmpQ;

extern struct polygon objO;

I*********************************************************************/

CrosscountO {

j*********************************************************************,

int i, j;

int hitcount;

struct coord h;

hitcount=0;

for (i= 0; i < num; i++)

for (j= 0; j < obj[i].v_no; j++) {

if (Cross(&h,&tmp[0],&tmp[l],&obj[i].v|j],&obj[i].v[j+1]))
{

hitcount++;

/•DIAGNOSTICS*/

_moveto(h.x, h.y);

_setcolor(LTMAG);

_setpixel(h.x, h.y);

_ellipse( _GBORDER, h.x -3, h.y -3, h.x +3, h.y +3);
/•DIAGNOSTICS*/

return(hitcount);

) /* Crosscount */

/*****************************************************************+*++

int Cross(junction, pi, p2, wl, w2)
/******************************************************************+++

struct coord function, *pl, *p2, *wl, *w2-

{

struct segment pline, wlinc;

float xi, yi;

int xonw, xonp, yonw, yonp;

Line_eq(&pline, pl->x, pl->y, p2->x, p2->y);
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Line_eq(&wline, wl->x, wl->y, w2->x, w2->y);

if (pline.a == wline.a) return(FALSE); /* Parallel */

if ((pline.a = INF1N) && (pl->x == p2->x)) { /* Vertical */

xi= (pl->x);

yi= (wline.a * xi + wline.b);

} else

if ((wline.a == INFTN) && (wl->x == w2->x)) { /* Vertical */

xi= (wl->x);

yi= (pline.a * xi + pline.b);

) else (

xi= ((wline.b - pline.b) / (pline.a - wline.a));

yi= (wline.a * xi + wline.b);

if (wl->x < w2->x)
{

xonw= ( ((wl->x -.3 <= xi) && (xi <= w2->x +.3)) ? 1 : 0);

} else
{

xonw= ( ((w2->x -.3 <= xi) && (xi <= wl->x +.3)) ? 1 : 0);

if (pl->x < p2->x) (

xonp= ( ((pl->x -.3 <= xi) && (xi <= p2->x +.3)) ? 1 : 0);

) else (

xonp= ( ((p2->x -.3 <= xi) && (xi <= pl->x +.3)) ? 1 : 0);

J

if (wl->y < w2->y)
(

yonw= ( ((wl->y -.3 <= yi) && (yi <= w2->y +.3)) ? 1 : 0);

} else
(

yonw= ( ((w2->y -.3 <= yi) && (yi <= wl->y +.3)) ? 1 : 0);

if (pl->y < p2->y) (

yonp= ( ((pl->y -.3 <= yi) && (yi <= p2->y +.3)) ? 1 : 0);

) else {

yonp= ( ((p2->y -.3 <= yi) && (yi <= pl->y +.3)) ? 1 : 0);

if (xonw && xonp && yonw && yonp)

junction->x= xi;

junction->y= yi;

return (TRUE);

) else return (FALSE);

I I* Cross */
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Round (fval)

float fval;

(

return ( ((fmodffval, 1.0)) >= .5) ? ceil(fval) : floor(fval) );

)

Line_eq(line, xl.yl, x2,y2)

struct segment *line;

float xl,yl,x2,y2;

t

float deltax, deltay;

/•DIAGNOSTICS
printf("Line_eq: xl=%f yl=%f, x2=%f y2=%f0, xl.yl, x2,y2);

DIAGNOSTICS*/
deltax= x2 -xl;

if (deltax= 0) (

line->a= rNFTN; /* Infinity : Vertical*/

) else (

deltay= y2 - yl;

line->a= deltay/deltax;

line->b= yl - (dellay/deltax) * xl;

)

)
/* Line_eq */

/* Module: Obstacle.c */

#include "findp.h"

extern int num;

extern char *cmd_msg;
extern char obstacle_mnu[], main_mnu[J;

extern struct coord loc[], tmp[];

Obstacle(W)

struct polygon *W;

(

int c= ' ',j;

int count;

W->v_no= 0; W->closed= 0;

cmd_msg= obstacle_mnu;

RepaintO;

_setcolor(LTRED);

forCOf

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);
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if (outregs.x.bx & Oxl) {

tmp[0].x= outregs.x.cx;

tmp[0].y= outregs.x.dx;

tmp[l].x=0;

tmp[l].y=0;

if(W->v_no= 0){ /* New polygon */

if ((CrosscountO % 2) == 0) (

_moveto(tmp[0].x, tmp[0].y);

_sctpixel(tmp[0].x, lmp[0].y);

W->v[W->v_no].x= tmp[0].x;

W->v[W->v_no].y= tmp[0].y;

W->v_no++;

) else
|

)

printf("Illegal point inside obstacleO);

I
else

(
/* Same polygon */

tmp[l].x= W->v[W->v_no-l].x;

tmp[l].y= W->v[W->v_no-l].y;

if ((tmp[0].x != tmp[l].x) II (tmp[0].y != tmp[l].y))
|

if (CrosscountO == 0) (

_lineto(tmp[0].x, tmp[0].y);

W->v[W->v_no].x= tmp[0].x;

W->v[W->v_no].y= tmp[0].y;

W->v_no++;

) else (

printf("Non disjoint ohstaclesO);

while (outregs.x.bx & 0x1) (

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);

) /* Button released */

)

if (outregs.x.bx & 0x2) {
/* Repaint */

while (outregs.x.bx & 0x2) (

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);

)

RepaintO;

}

if(kbhit0){

c= tolower(getch0);

if (c == 'e') ( /* Exit - Abort 7
printf("Abort? [n]");

c= getchO;

if(c==V)(
W->v_no= 0;
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cmd_msg= main_mnu;

RepaintO;

break;

]

RepaintO;

)

if ((c == Y) && (W->v_no > 0)) {
/* Reverse */

_setcolor(BLK);

(W->closed > 0) ? W->closed= : W->v_no--;

_lineto(W->v[W->v_no-l].x, W->v[W->v_no-l].y);

_setcolor(LTRED);

if (W->v_no= 1) _setpixel(W->v[0].x, W->v[0].y);

}

if ((c == 'c') && (W->v_no > 2)) {

tmp[0).x=W->v[0].x;

tmp[0).y=W->v[0].y;

tmp[l].x= W->v[W->v_no-l].x;

tmp[l].y= W->v[W->v_no-l].y;

if (CrosscountO == 0) (

W->v[W->v_no].x= W->v[0].x;

W->v[W->v_no].y= W->v[0].y;

_lineto(W->v[0].x, W->v[0].y);

W->closed= W->v_no;

num++;

tmp[0].x= loc[0].x;

tmp[0].y= loc[0].y;

tmp[l].x=loc[l].x;

tmp[l].y= loc[l].y;

if((CrosscountO%2)!=0)
{

printf("No setpoints allowed in obslaclcO);

printf(" [Repaint and continue]0);

num~;

W->closed= 0;

) else (

cmd_msg= mainmnu;
RepaintO;

break; /* Polygon completed */

]

else
I

printf("No overlapped obstacles allowedO);

if (c == V) ( I* Status */

printf("Object #%d: %3d points entcrcdO,

num+1, W->v_no);

for(j= 0; j < W->v_no; j++)
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prinlf("j=%2dx=%.2f y=%.2t0,

j, W->v[j].x, W->v[j].y);

)

}

) I* Obstacle */

/* Module: SctpoinLc */

#include "findp.h"

extern char *cmd_msg;

extern char setpoim_mnu[], point_mnu[], main_mnu[];

extern struct coord tmp[], loc[];

SetpointO !

intc;

cmd_msg= setpoint_mnu;

RepaintO;

for(;;){

ButtonsO;

if (kbhitO) {

c= tolower(getchO);

if(c— V){
Point(&loc[0]);

break; /* for */

)

if(c=='d')(

Point(&loc[l]);

break; /* for */

)

if (c=V) break;/* for*/

)

cmd_msg= main_mnu;

RepaintO;

} f* Setpoint */

Point(spot)

struct coord *spot;

{

int count;

cmd_msg= point_mnu;
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RepaintO;

for(;;)(

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, &outregs);

if (outregs.x.bx & Oxl){

while (outregs.x.bx & Oxl)
{

inregs.x.ax= READ_MOUSE;
int86(MOUSE_IO, &inregs, Aoutregs);

}

tmp[0].x= oulregs.x.cx;

tmp[0].y= outregs.x.dx;

tmp[l].x= 0;

tmp[l].y= 0;

count= CrosscouniO;

if ((count % 2) = 0) {

spot->x= tmp[0].x;

spot->y= tmp[0].y;

_setcolor(LTWHT);

_moveto(spot->x, spot->y);

_setpixel(spot->x, spot->y);

_ellipse( _GBORDER, spot->x -5, spot->y -5,

spot->x +5, spot->y +5);

break;

) else (

printf("Illcgal point inside obstacleO);

}

I I* Point */

/* Module: Storage.c */

#include "flndp.h"

extern int w_limit, njimit, e_limit, s_limit, num;
extern char *cmd_msg;
extern char file_mnuD, rnain_mnu[];

extern struct coord Ioc[];

extern struct polygon obj[];

/*********************************************************************

,

File
!

char cmd[100];

intc;

cmd_msg= file_mnu;

RcpaintO;

for (;;)

if (kbhitO) (
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_setvideomode(_TEXTC80);

c= tolower(getchO);

if (C == T) ( /» Fresh */

printf("Clear work-space? [n]");

c= tolower(getchO);

if(c— 'y')(

num= 0;

loc[0].x= 0;

loc[l].x=0;

obj[0].v_no=0;

obj[0].closed= 0;

)

break;

)

if (c ==T){ /*Load*/

LoadO;

break;

}

if(c=='s'){ /*Save*/

if (num > 0) (

SaveO;

break;

) else printf("No Obstacles to saveO);

)

if (c == 'c') { /* Catalog •/

system("dir *.dat");

printf("Hit a key to resume");

c= getchO;

break;

}

if(c=='d')( /*Dos*/
printf("DOS command; ");

gets(cmd);

system (cmd);

printf("Hit a key to resume");

c= getch();

break;

)

if (c == 'e') break; /* Exit */

)

if Csetvideomode(_VRES16COLOR) == 0)

_setvideomodeCERESCOLOR);
cmd_msg= mainmnu;
RepaintO;

inregs.x.ax= SHOW_CURSOR;
int86(MOUSE_IO, &inregs, &outregs);

I I* File */



LoadO t

FILE *stream;

char fname[20];

inti, j;

float number;

system("dir *.dat");

printf("Oata file to read (no extension) [! to abort]: ");

gets(fname);

if (strcmp(fname,"!
M
) == 0) {

RepaintO;

return;

)

strcat(fname,".dat");

if ((stream= fopen(fname,"r")) == NULL)
printf("Could not open %s for loadingO,fname);

else (

num= 0; /* Clear work-space */

loc[0].x= 0;

loc[l].x= 0;

obj[0].v_no= 0;

obj[0].closed= 0;

fscanf(stream, "%d", &num);
printf("Num= %d0,num);

for (i= 0; i < num; i++) (

fscanf(stream, "%d", &obj[i].v_no);

printf("V_no= %d0,obj[i].v_no);

obj[i].closed= obj[i].v_no;

for (j=0; j <= obj[i].v_no; j++) {

fscanf(stream, "%f", &obj[i].v[j].x);

fscanf(stream, "%f", &obj[i].v[j].y);

obj[i].v_no=0;

fcloseallQ;

1
1* Load */

SaveO (

FILE *stream;

char fname[20];

int i, j;

system("dir *.dat");

printf("10ave to (file name with no extension) [! to abort]: ");
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gets(fname);

if (strcmp(fname,"!") == 0) {

RepaintO;

return;

)

strcat(fname,".dat");

if ((stream= fopen(fname,"w")) == NULL)
printf("Cou!d not open %s0,fname);

else {

fprintf(stream, "%d0, nutn);

printf("Num= %d0,num);

for (i= 0; i < num; i++)
{

fprintf(stream, "%d0, obj[i].v_no);

for (j=0; j <= obj[i].v_no; j++) {

fprintf(stream, "%.lf", obj[i].v[j].x);

fprintf(stream, "%.lf0, obj[i].vfj].y);

fcloseallO;

)

printf("Saved to %s, %d obstaclesO, fname, num);

] I* Save */

/*********************************************************************

/

RepaintO (

I*********************************************************************/

int i, j;

inregs.x.ax= HIDE_CURSOR;
int86(MOUSE_IO, &inregs, &outregs);

_clearscreenCGCLEARSCREEN);
_setcolor(GRN);

_rectangIe(_GBORDER, wjimit, njimit, ejimit, s_limit);

printf("%s0, cmdjnsg);

if(loc[0].x!=0)
(

_setcolor(LTWHT);

_moveto(loc[0].x, loc[0].y);

_setpixel(loc[0].x, loc[0].y);

_ellipse( _GBORDER, loc[0].x -5, loc[0].y -5,

loc[0].x +5, loc[0].y +5);

}

if(loc[l].x!=0)
(

_setcolor(YEL);

_moveto(loc[l].x, loc[l].y);

_setpixel(Ioc[l].x, loc[l].y);

_ellipse( _GBORDER, loc[l].x -5, Ioc[l].y -5,

Ioc[l].x+5, loc[l].y+5);

)
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_setcolor(LTRED);

for (i= 0; i <= num; i++){

_moveto(obj[i].v[0].x, obj[i].v[0].y);

for(j= 1; j < obj[i].v_no; j++)

Jineto(obj[i].v[j].x, obj[i].v[j].y);

if (obj[i] .closed > 0) _lirieto(obj[i].v[0].x, obj[i].v[0].y);

if (obj[i].v_no== 1) _setpixel(obj[i].v[0].x, obj[i].v[0].y);

inregs.x.ax= SHOW_CURSOR;
int86(MOUSE_IO, &inregs, &oulregs);

)
/* Repaint */

/* Module: Walk.c */

#include "findp.h"

extern int num;

extern struct coord loc[], nodeD;

extern struct polygon obj[];

extern char *cmd_msg;

extern char walk_mnu[], main_mnu[];

struct crosspoint
{

int oid, lid;

struct coord p;

float dist;

);

struct crosspoint spot[50];

int n, obst, edge;

int pathclear, pathcomplete, show, upper, /* Boolcans */

RunOt

intc;

cmd_msg= main_mnu;

RepaintO;

node[0].x=loc[0].x;

nodc[0].y=loc[0].y;

n= 0; /* first node */

obst=-l;/*init*/

pathcomplete= FALSE;
pathclear= TRUE;
show= FALSE;
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printf("10elect algorithm^);

printf("[l]Upper Depth-first Reach&ClearO);

printf("[2]Lower Depth-first Reach&ClearO);

printf("[ ]Breadth-first Reach&ClearO);

printf("[ lOptimizing Breadth-first Reach&ClearO);

printf("[ lOptimizing Breadth-first Reach&ClearO);

c= (getchO);

if(c=T){
RepaintO;

printf("Upper Reach&ClearO);

upper= TRUE;
do(

Reach();

ClearO;

) while (Ipathcomplete);

)

if(c=='2')(

RepaintO;

printf("Lower Reach&ClearO);

upper= FALSE;
do(

Reach();

Clear();

) while (Ipathcomplete);

)

if (c == ' ') RepaintO;

J
/* Run */

WalkO (

int c;

cmd_msg= walk_mnu;

RepaintO;

pathcomplete= FALSE;
pathclear= TRUE;
node[0].x=loc[0].x;

node[0).y=loc[0].y;

n= 0; /* first node */

obst= -1; I* init */

for(;;){

ButtonsO;

if (kbhitO) (

c= tolower(getch0);

if(c=='d')(

printf("Select Upper direction? [n]");
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if (tolower(getch()) == 'y')
{

uppers TRUE;
printf("Opper direction sclectcdO);

) else (

upper= FALSE;
printf("7920ower direction sclectedO);

if(c— V){
printf("Select Showdala mode? [n]");

if (tolower(getchO) == 'y')
(

show= TRUE;
printf("48rocess data will be shownO);

) else {

show= FALSE;
printf("48rocess data will NOT be shownO);

if(c==Y)
if (Ipalhcomplete)

ReachO;

else

printf("PATH COMPLETEO);
if (c == V)

if (Ipalhcomplete)

ClearO;

else

printf("PATH COMPLETEO);
if(c==T)Trace();

if(c= 'z')ZipO;

if (c == 'e') ( /* Exit */

cmd_msg= main_mnu;

RepaintO;

break;

)

)

)
/* for */

) I* Walk */

Reach () (

/*********************************************************************

/

struct coord tmp;

int i, j;

int count, hit;

float temp;

struct coord h;
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if (pathcomplete) return;

if (Ipalhclear)
(

printf("Reach done. Try ClearO);

return;

)

tmp.x= node[n].x;

tmp.y= node[n].y;

if ((n = 0) II ((node[n].x != node[n-l].x)ll(node[n].y != node[n-l].y))

) n++;

if (show) (

printf("0each: Finding node#%d0,n);

printf(upper?"Upper directionO:"Lower directionO);

/*RepaintO;*/

count= 0;

for (i= 0; i < num; i++)

if (i != obst)

for (j= 0; j < obj[i].v_no; j++)

if (Cross(&h, &tmp, &loc[l],

&obj[i].v[j], &obj[i].v[j+l])) {

spot[counl].oid= i;

spot[count].lid= j;

spot[count].p.x=h.x;

spot[count].p.y= h.y;

spot[count].dist= sqrt( pow(h.x - tmp.x, 2) -

pow(h.y - tmp.y, 2) );

count++;

)

if (show) printf("Cross: %d, ".count);

if (count >= 2) {

/*ll ((count == 2 )&&(spot[0].p.x != spot[l].p.x))) */

temp= spot[0].dist;

hit= 0;

for (i= 1 ; i < count; i++)

if (temp > spot[i].dist) {

temp= spot[i].dist;

hit= i;

)

node[n].x= spot[hit].p.x;

node[n].y= spot[hit].p.y;

obst= spot[hit].oid;

edge= spot[hit].lid;

if (show) printf("obst#%d, edge#%d, node#%d0, obst.edge.n);

pathclear= FALSE;
Drawnode(n);

) else
(
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pathcomplete= TRUE;
printf("PATH COMPLETE0);
node[n].x= loc[l].x;

node[n].y= loc[l].y;

Trace(n);

) I* Reach */

Clear
(

int 1, j, count;

struct coord h, t[50];

if (pathcomplete) return;

if (pathclear)
{

printf("Clear done. Try ReachO);

return;

i

1= upper? Next(edge) : edge;

n++;

if (show) {

RepaintO;

printf(upper?"Upper directionO:"Lower directionO);

prinlf("01ear; obst#%d, edge#%d, node#%d, ", obst.edge.n);

printf("vcrtices: %d0, obj[obst].v_no);

printf("First edge:%d, ", 1);

)

pafhclear= FALSE;
node[n].x= obj[obst].v[l].x;

node[n].y= obj[obsl].v[l].y;

while (ipathclear) {

count= 0;

for (j= 0; j < obj[obst].v_no; j++)

if (Cross(&h,&node[n],&loc[l],

&obj[obst].v[j],&obj[obst].v[j+l])){

t[count].x= h.x;

t[count].y= h.y;

count++;

)

if (show) printf("Cross: %d0, count);

for (j= 0; j < count; j++)

if (sqrt(pow(node[n].x - t[j].x, 2) +
pow(nodc[n].y - t[j].y, 2) ) > 1.0) count= 3;

if (show) printf("Adjusted to: %d0, count);

if (count > 2) {
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1= Next(l);

if (show) prinlf("Next edge:%d, ", 1);

node[n].x= obj[obst].v[l].x;

nodc[n].y= obj[obst].v[l].y;

if (show) prinlf("node#%d, ", n);

Drawnode(n);

} else {

pathclear= TRUE;
if (show) printf("Path clear @ nodc#%dO,n);

)

)

Drawnode(n);

} /* Clear */

Nexl(vertex)

int vertex;

t

if (upper)

return (vertex < (obj[obst].v_no -1))? vcrtex+1 : 0;

else

return (vertex > 0)? vertex-I : obj[obst].v_no - 1;

) I* Next */

/*********************************************************************

,

Trace () {

int i;

RepaintO;

Drawnode(O);

for (i= 0; i < n; i++)
(

_lineto(node[i+l].x, node[i+l].y);

)

printf("Number of nodes:%dO, n+1);

printf(upper? "Upper directionO:"Lower dircctionO);

Drawnode(n);

}
/* Trace */

Drawnode (afew)

int afew;
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i ni 1;

struct coord h;

for (i=0; i <= afew; i++) ( /*generic-for Reach and Clear */

h.x= node[i].x;

h.y= node[i].y;

_moveto(h.x, h.y);

_setcolor(LTCYA);

_setpixel(h.x, h.y);

_ellipse( J3BORDER, h.x -3, h.y -3, h.x +3, h.y +3);

}

}
/* Drawnode */

ZipOl
/************************** ************************* ********** ********)

int i, j;

int hitcount;

struct coord h;

hitcount= 0;

_setcolor(LTBLU);

_moveto(node[n].x, node[n].y);

_lineto(loc[l].x, loc[l].y);

for (i= 0; i < num; i++)

for (j= 0; j < obj[i].v_no; j++) (

if (Cross(&h,&node[n],&Ioc[l],&obj[i].v[j],&obj[i].v[j+l]))(

hitcount++;

_moveto(h.x, h.y);

_setcolor(LTMAG);

_setpixel(h.x, h.y);

_ellipse( _GBORDER, h.x -3, h.y -3, h.x +3, h.y +3);

)

if ((hitcount % 2) != 0)

printf(" No solution: Different regionsO);

pruitf("(%d intersections)0, hitcount);

I

/* Zip */
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