
THE DESIGN
OF A

DISTRIBUTED DATABASE
AND

A REPLICATED DATA MANAGEMENT ALGORITHM

Steven J. Van Buren

B. S., Michigan Technological University, 1972

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by

Major!Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State...

https://core.ac.uk/display/33364249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2Uoi Aiiaoa i3bDia

C.MSC CONTENTS

It??

chapter 1 rntroduction 1

1.1 The Financial Control System 2

1.2 System Architecture 2

1.3 Autonomy 4

1.4 Related Work 4

1.5 Organization of Paper 7

CHAPTER 2 DESIGN OF THE GLOBAL SCHEMA 9

2.1 Introduction 9

2.2 Analysis of Requirements 10

22.1 The Problem 10

22.2 Output Requirements 11

22.2.1 Timeliness 11

22.22 Accuracy 11

22.23 Presentation of Output 12

22.3 Other Requirements 12

22.3.1 Data Entry 13

22.32 Constraints 13

22.33 Application Maintenance and
Development 14

223.4 Documentation 15

223.5 User Support 15

2.3 The Global Schema 15

23.1 Identifying Data Elements 16

23.2 Normalization 17

23.3 Further Normalization 19

233.1 Employee Table 20

2332 Mord_nos Table 21

23.33 Dept_budg Table 21

23.3.4 Rates Table 22

233J Spafactor Table 22

23.3.6 Tim sheet Table 23

233.7 Tim_detail Table 24

23.3.8 Payperiod Table 24

233.9 ConUime and Cont_detail Tables 24

23.3.10 Voucher Table 25

23.3.11 Purch_ord Table 26

23.3.12 Pettycash Table 26

233.13 GN300 Table 27

2.4 Evaluating the Global Schema 27
2.5 Summary Table 29

CHAPTER 3 DISTRIBUTION DESIGN 30
3.1 Introduction 30
3.2 Fragmentation 30

3.2.1 Horizontal Fragmentation 30
32.2 Vertical Fragmentation 31

3.3 Allocation 32
33.1 Full Replication 32

3.3.2 No Replication 32

3.4 Distribution Design of the Financial Control System 33

CHAPTER 4 ALGORITHMS FOR IMPLEMENTING CONSISTENCY OF
REPLICATED DATA 36

4.1 Introduction 36

4.2 Problems 1 and 2 36

4.2.1 Replicated Data 37

4.2.2 Requirements, Assumptions, and Definitions 37

4.2.3 Supporting Relations Required 39

4.2.4 The Algorithm 40
4.2.5 Algorithm Structure 43

4.2.6 Failure Recovery 46

4.2.6.1 Node Failures 47

42.6.1.1 Failure One 47

42.6.1.2 Failure Two 47

42.6.13 Failure Three 47

42.6.1.4 Failure Four 47

42.6.13 Failure Five 48
42.62 Lost Messages 48

42.62.1 Lost Message One 48

42.622 Lost Message Two 48

42.623 Lost Message Three 48

42.62.4 Lost Message Four 49

43 Problem 3 49
4.4 Problem 4 50
43 Problem 5 50

CHAPTER 5 SUMMARY 52
5.1 Introduction 52
5.2 Simplifications 52

5.3 Overview 53

5.4 Lessons Learned 54

REFERENCES 56

APPENDDC BERN2, GLOBAL SCHEMAS, & ALGORITHM PSEUDO-
CODE 58

LIST OF FIGURES

Figure 1. Ocean Systems Organization 3

Figure 2. Replicated Table Update Transaction 44

Figure 3. Algorithm Structure 45

Figure 4. Financial Control System Structure 46

Figure 5. Global Schema Employee & Mord_nos 70

Figure 6. Global Schema Deptjbudg, Rates, & Spafactor 71

Figure 7. Global Schema Timsheet, Tim_detail, & Payperiod 72

Figure 8. Global Schema Cont_time & ConLdetail 73

Figure 9. Global Schema Voucher & Purch_ord 74

Figure 10. Global Schema Pettycash & GN300 . 75

Figure 11. Global Schema Summary Table 76

LIST OF TABLES

TABLE 1. Incurrence Categories 12

TABLE 2. Distribution Design 34

TABLE 3. Supporting Relations for Algorithm 39

ACKNOWLEDGEMENTS

I wish to express my appreciation to my Department Chief, Mr. G. M. Smith Jr. and

my Assistant Manager, Mr. G. B. Manning for allowing me the time to work on the

design of the Financial Control System. Without their cooperation, the completion

of this project would not have been possible.

I also thank my wife Kim for having faith in me and supporting me during the

development of this report. She managed a full-time job along with caring for our

daughter Rachel; all so Daddy could work on his Master's report.

CHAPTER 1

INTRODUCTION

Databases have proven themselves invaluable in the day to day operation of

corporate America. As databases and their importance has grown, so has database

technology. Database design techniques have made important advances. The

software systems which manage and maintain the data (database management

systems) have been greatly improved. Hardware has been specifically designed to

support database applications (database machines). Most of this effort has been

directed toward centralized databases - those which reside on a single, usually large,

computer.

The advent of improved computer to computer communications, and the work on

distributed systems has been reflected in database technology as distributed

databases. A distributed database is basically a number of centralized databases

connected by communications links, therefore the advances made in centralized

databases are not lost, they are built upon.

The apparent trend in corporate America is merger and takeover. This situation

creates an atmosphere which is ideally suited to the concepts of distributed

databases. Dispersed (geographically or functionally) divisions within a corporation

should have more local control over their own data yet still cooperate, on a higher

level, for the good of the overall corporation. The distributed database concept can

meet these needs.

1

1.1 The Financial Control System

The Ocean Systems Organization of AT&T Technologies' Federal Systems Division

manages the operations of various Federal contracts. The purpose of this report is to

describe the design of a distributed database which will be used to manage and track

the incurrences on these contracts. Some basic algorithms for insuring the

consistency and integrity of replicated data will also be designed. The distributed

database will be built on top of the INFORMIX-SQL central database management

system (DBMS). The project is titled the Financial Control System.

The Ocean Systems Organization is hierarchically structured along functional lines.

(See Figure 1) The Financial Control System will be designed to match the

organization's hierarchical structure. There will be a local database established at

each of the assistant manager nodes of Figure 1. These assistant manager databases

will reside on computers termed the local nodes. Each local node will have a

number of departments under it. The departments will be the source of all the raw

financial data. Figure 1 is a good representation of raw input data flow from

department to local node database. From each local node, summary data will be

generated and will flow up to the central node where it will be aggregated.

1.2 System Architecture

A distributed database is a collection of data that belong logically to the same system,

but are spread over multiple computers connected by a network [CERI84].

Distributed database management systems (DDBMS) are classified as homogeneous

or heterogeneous. Heterogeneous DDBMSs are defined as having at least two

different database management systems installed at two different nodes in the

network. Conversely, a homogeneous DDBMS has the same local DBMS installed at

Figure 1. Ocean Systems Organization

each node. The Financial Control System will be a homogeneous DDBMS since the

DBMS installed at each node will be INFORMIX-SQL.™ INFORMIX-SQL is a

relational DBMS which runs under UNIX™ as well as other operating systems.

Each node in the Financial Control System will be a UNIX based computer tied into

an existing local area network which provides point-to-point communications.

13 Autonomy

One of the most important issues of distributed database administration is the degree

of local autonomy given to each node. There are two extreme solutions, the absence

of any local autonomy and complete local autonomy [CERI84]. The goal of the

Financial Control System is to provide as much local autonomy as possible. It will

not be possible to design the system with complete local autonomy since some of the

data required by the local nodes is not available to them except via the central node.

The local nodes will be required to maintain and populate a core set of data elements

which will be termed the global data elements. They can add other data elements

(attributes) to the core data as they see fit. The local nodes can develop their own

application programs to meet local needs. Each local node will have its own local

database administrator (dba).

1.4 Related Work

This paper is related to two areas of distributed database technology. The first area

is the design process of distributed databases. The design process for the distributed

database in this paper was driven by a specific problem with a specific application in

INFORMIX is a registered trademark of INFORMIX Software, Inc.

UNIX is a trademark of AT&T

mind for solving the problem. The second related area is distributed database

management functions, specifically, the design of distributed database management

algorithms for the management of replicated data. The algorithms in this paper are

designed to be implemented on top of INFORMIX-SQL, a relational DBMS.

The initial phase of distributed database design when using a top-down approach

(see chapter 2) is, for all practical purposes, the same as designing a centralized

database. Centralized database design is normally done with one of four data models

in mind; the network, hierarchical, inverted list, or relational. The relational model

was used for designing the Financial Control System. The relational model was used

because INFORMIX-SQL is a relational DBMS, and the relational model is

inherently suited to distribution due to the ease with which it can be horizontally

and vertically partitioned [HUSE87]. There is abundant literature on the design of

relational databases, the primary sources used by the author were [DATEb86] and

[KENT83]. Fragmentation and fragment allocation are areas particular to

distributed database design. [CERI84] devotes a chapter to these topics in his

textbook on distributed databases. [MOTZ87] presents some algorithms for

distribution design which compute optimal fragmentation and allocation based on

cost computation and space constraints at each node. [CERI87] presents a top-down

distribution design methodology entitled DATAID-D. He also presents a section on

related work which succinctly summarizes the important work which has been

accomplished in the distributed design area. His paper can be consulted to obtain

these sources of related work. The CODASYL Systems Committee Report

[CODASY] summarized much of the early work done on the distribution design

problem. They concluded that the distribution design problem was often a difficult

one and stated: "An additional possibility is to maintain statistics to determine the

-5-

actual pattern of usage. This would be useful in the adaptive reassignment of files

(fragments) in the network" [CODASY]. All of the literature on distribution design

states either explicitly or implicitly that the goal is to place the data in such a way to

maximize local access by applications and minimize communication overhead. The

Financial Control System achieves this goal with respect to the computation of

incurrence summaries (main application program).

The literature on maintenance of replicated data in a distributed database is replete

with schemes and algorithms for managing this data. [GARC86] points out that

although there is no shortage of proposed algorithms for managing replicated data,

these algorithms have seldom been implemented, much less added to commercial

products. [LIND87] in describing R*, a DDBMS, states: 'In particular we have not

implemented support for replicated tables we realized that a major effort

would be required to implement such support." [HERL87] surveys some of the

related work on management of replicated data. He goes on to present an algorithm

which integrates concurrency control and replica management. His algorithm allows

trade-offs between concurrency control and availability (replica management).

Algorithms such as this are designed for high transaction systems to allow maximum

concurrency of transaction processing and increase availability in the face of system

failures. The Financial Control System will have few transactions and replication is

limited, therefore many of the complex algorithms in the literature do not pertain.

[GARC87] states: the simple ideas (algorithms and schemes) are the ones that

usually work best in practice. This is especially true in reliable data management,

where simpler means less prone to errors and hence more reliable. Since the

Financial Control System does not require complex means to manage replicated data,

simple replication management schemes will be employed.

The Financial Control System is designed to be a distributed database built on top of

a commercial central DBMS (INFORMIX-SQL). The source code for INFORMIX-

SQL is not available, therefore certain limitations on application development will be

inherent. I found very little in the literature concerning the development of a

distributed system on top of a proprietary commercial DBMS. [ZHON87] reports

on a system called DdBASE III which is built on top of dBASE III, a commercial

database management system. There was very little detail in this article about the

actual implementation. [HUSE87] reports on the second year of a multi-year

distributed database study. This study is evaluating the applicability of distributed

database technology to military command and control systems. The study is being

conducted using UNIFY as a component of the distributed system. UNIFY is a

commercial DBMS product with proprietary source code. Although this system is

more complex than the Financial Control System, many of the problems faced by

both systems are very similar.

1.5 Organization of Paper

The paper is organized as follows: Chapter 2 presents the problem which the

Financial Control System is being designed to solve. The general requirements for

the system are then stated. From this base, the global schema design is described.

Chapter 2 finishes with a short description of each global relation in the schema.

Chapter 3 presents the distributed part of the database design. This consists of

fragmentation and allocation of the global relations. Chapter 4 introduces some

problems which will be encountered in the distributed environment. A solution for

each of the problems is then presented. The solution to the first two problems

incorporates an algorithm which contains a replicated table version control scheme

and a two phase commit protocol. Chapter 5 concludes the paper with a summary

and some observations. The appendix contains a schema for each global relation,

the input/output to/from Bernstein's 2nd algorithm, and pseudo-code for the version

control and two phase commit algorithm of chapter 4.

CHAPTER 2

DESIGN OF THE GLOBAL SCHEMA

2.1 Introduction

The design of a distributed database usually requires one of two general approaches,

the top-down or bottom-up approach. A top-down approach is employed when a

distributed database system is being designed from scratch. Conversely, the bottom-

up approach is used when existing databases are being aggregated to form a

distributed database system [CERI84]. The top-down approach was used for the

design of the Financial Control System.

The primary phases of top-down distributed database design are:

• Global schema design

• Fragmentation design

This phase involves the partitioning of the global schema into logical non-

overlapping fragments [CERI84].

• Fragment allocation

Fragment allocation involves the assignment of the fragments to physical nodes

on the network as well as deciding if fragments are to be replicated and where to

physically place any replicated fragments.

The design of the global schema is virtually identical to the design of the schema for

a centralized database. This chapter will present the design of the global schema for

the Financial Control System.

9-

2.2 Analysis of Requirements

Before presenting the global schema design, it may be helpful to describe the problem

and the needs of the Ocean Systems Organization of AT&T Technologies' Federal

Systems Division. An understanding of the problem and requirements of the

organization's management will make certain design decisions much clearer.

2.2.1 The Problem

The Ocean Systems Organization of AT&T Technologies' Federal Systems Division

manages various Federal contracts. Tracking incurrences on those contracts is a

major function of contract management. Incurrence reports have, in the past, been

obtained from a separate accounting organization within Federal Systems Division.

The accounting organization's primary function is to precisely account for all

incurrences on these contracts to the Government customer. A secondary function

of accounting is to report incurrences to the operating and contract management

organizations. The contract management and operating organizations were receiving

these incurrence reports much too late for them to make any meaningful or timely

management decisions such as altering schedules or shifting assets to avoid over-

running or grossly under-running budgeted tasks. Various reasons have been

attributed to the long lag time involved between submittal of timesheets, vouchers,

purchase orders, etc. and the actual reflection of these incurrences in reports. Two

primary factors were identified as being responsible for the majority of this lag time.

First, the Government imposes certain strict accounting practices on all contractors

with large federal contracts. Satisfying these requirements causes delays in the

system. Second, accounting has to report incurrences "to the penny". This

requirement causes delay in the data entry and reporting of many incurrences.

- 10-

2.2.2 Output Requirements

To effectively manage incurrences on their government contracts, the Ocean Systems

Organization requires three things from a financial control system:

• Timeliness

• Accurate, not necessarily precise, output

• Understandable and meaningful presentation of summary data

2.2.2.1 Timeliness

To effectively manage any type of contract, it is essential to know, in as near real-

time as possible, where the enterprise stands in regard to money incurred versus

money budgeted. Timeliness of data entry is the most important issue but since this

is not something which can be greatly influenced by database design it will not be

discussed further. The timeliness issue which can be influenced by the

database/ application designer is the output of summary reports. Management

requires daily updates to summary data so that any summary report will reflect the

state of the database from the previous day.

2.2.2.2 Accuracy

To manage the operations of a contract effectively it is not necessary to be able to

account precisely for all amounts incurred. The decision on the degree of accuracy

is, like timeliness, a subjective matter. No requirements for a specific degree of

accuracy have been stated for the Financial Control System. The goal though was to

be as close to accounting's figures as possible without overly complicating the

database design.

11

2223 Presentation of Output

The requirements for the output of summary or other data is to make it as clear,

concise, and understandable as possible. Summary data from the total contract level

down to the departmental level should be easily accessed by online users. At each of

the vertical levels (departmental, assistant manager, manager), the data is required to

be horizontally broken out in incurrence categories. See Table 1.

Oct Nov
Labor $

$

$
Contract Labor. . .

.

Purchase Orders . . . $ $

Travel & Living... $ $

Contractor
Travel & Living. .

.

$ $
Labor Hours hrs hrs
Contractor
Labor Hours hrs hrs

Sep
~$~

$

$

$

$

hrs

hrs

TABLE 1. Incurrence Categories

The requirements also call for breaking the data down even further into monthly

increments for all the vertical organizational levels and horizontal incurrence

categories.

2.23 Other Requirements

The previous three requirements are related directly to the output from the database.

There are other requirements related to the input, integrity and maintenance of the

database which are just as, if not more, important. Some of the major requirements

here are:

• Ease of data entry or update

• Semantic and integrity constraints

12-

• Application maintenance and development

• Documentation

• User and data entry support

2 3.3.1 Data Entry

The data entry personnel will not necessarily be experienced in data entry or even

computer usage. The requirements are therefore to make the data entry, update, and

delete functions as straightforward and fool-proof as possible. Custom designed CRT

data entry screens which resemble the actual form being entered are required. Menu

selection of data entry screens and on-line help are also required. It is envisioned

that nearly all data will be entered, updated, and deleted one tuple at a time via a

custom screen form. INFORMIX-SQL has a feature called PERFORM for designing

these customized screens. Although the majority of data inserted, deleted, and

updated will be done one tuple at a time, there is also a requirement for inserting,

updating, and deleting multiple rows of data in any of the database tables.

2.1J.2 Constraints

There are two classes of constraints which should be reflected and hopefully enforced

in a relational database. They are semantic and integrity constraints. An enforced

semantic constraint would reject data from being entered into a database if that data

did not make sense in the databases' real world interpretation. An example from the

Financial Control System is a pettycash voucher. In the real world a pettycash

voucher cannot exceed an amount of $100. The constraint is enforced if the

database rejects the addition or update of a pettycash tuple when the amount is over

$100. Such semantic constraints are required in the Financial Control System.

13-

Integrity constraints can be enforced by applying the integrity rules of relational

databases. There are three types of relational integrity which are considered in this

design:

• Domain

• Entity or key

• Referential

Domain integrity means that the assigned domain of an attribute is enforced. Some

examples of domains are integer, money, or date. Values entered into the database

must match the format of the domains declared for that attribute.

Entity or key integrity requires that primary key values in base relations must not be

null, either in whole or in part [DATEa86].

Referential integrity requires that each foreign key value in a base relation must be

either (a) wholly null or (b) equal to the primary key value somewhere within the

base relation representing the relevant participant entity. A foreign key is an

attribute (or attribute combination) in one relation R2 whose values are required to

match those of the primary key of some relation Rl (Rl and R2 not necessarily

distinct) [DATEa86].

Enforcement of these integrity constraints is required in the Financial Control

System

.

2.233 Application Maintenance and Development

Once the distributed system is implemented, application development and

maintenance will be required. It is expected that the database will evolve and grow

with time. New applications will have to be developed and old applications

- 14 -

modified, if desired, to take advantage of the evolving database. Maintenance and

development of applications which enforce data consistency and integrity will also be

required.

2.2.3.4 Documentation

Documentation on all phases of design and application development are required.

Documentation should be developed concurrently with the design phase of the

database and during application development.

2.23.5 User Support

It is required that users, particularly data entry personnel, be given training for data

entry and use of the system. Data entry personnel should be kept abreast of any

pending modifications to the system which would affect their data entry duties.

Users should be notified of any new system capabilities or any changes which would

affect their view of the database. User or data entry suggestions for system

improvement or requests for other features should be evaluated and acted upon in a

timely manner.

23 The Global Schema

Once the problem was defined and general requirements were determined, the design

of the global schema was possible. The schema design had to support a solution to

the problem while attempting to satisfy the requirements. The design of the global

schema proceeded in three distinct phases. The first phase involved identifying and

grouping the data items needed in the database as well as determining dependencies

within the groupings. The second phase, normalization, took the dependencies from

the first phase and produced a third normal form global schema. The third phase,

further normalization, took the third normal form global schema and analyzed it to

- 15-

see if it required further normalization using a method called decomposition.

2.3.1 Identifying Data Elements

The first step was to identify all of the data elements required in the global schema to

support a solution to the problem. Meetings and interviews with contract

management personnel provided most of the input needed to select those data items

which would be necessary for calculation of incurrences. The remaining data items

were identified in talks with personnel experienced in the actual calculations of

incurrences.

Once the data elements were identified they were logically grouped into relations.

An informal definition of a relation is a table of data items arranged in columns and

rows. Each column is defined by a data type or domain. A row is a set of values,

one from each column of the table. A formal definition of relation is as follows: A

relation on domains Dl, D2,, Dn (not necessarily all distinct) consists of a

heading and a body. The heading consists of a fixed set of attributes (columns) Al,

A2,, An such that each attribute Ai corresponds to exactly one of the underlying

domains Di (i=l, 2,, n). The body consists of a time varying set of tuples (rows),

where each tuple in turn consists of a set of attribute-value pairs (Airvi) (i=l, 2,,

n), one such pair for each attribute Ai in the heading. For any given attribute-value

pair (Airvi), vi is a value from the unique domain Di that is associated with the

attribute Ai [DATEa86]. An example of a relation for the Financial Control System

would be the employee relation made up of the attributes social security number

(Al), department (A2), title (A3), and name (A4). The domain of each of these

attributes is the ascii character set.

The next step was to identify the functional dependencies among the data elements

16-

in each relation. A functional dependency (FD) is defined as follows: Given a

relation R, attribute Y of R is functionally dependent on attribute X of R - in

symbols, RX --> R.Y (read "R.X functionally determines R.Y") - if and only if each

X-value in R has associated with it precisely one Y-value in R (at any one time).

Attributes X and Y may be composite [DATEa86].

After the functional dependencies were determined, they were input to a program

based on Bernstein's 2nd algorithm [BERN76]. Bernstein's 2nd algorithm produces

a relational database schema in third normal form from a set of FDs. The output

from this program is located in the appendix. There were thirteen relations in third

normal form produced by the algorithm. A fourteenth relation which has no FDs

describing the semantics was also added to the global schema. The reason for this

will be discussed later.

23.2 Normalization

The terms normalized and normal form have been used in the preceding paragraphs

without definition. Normalization is the process of converting relations to various

levels of normal form based on certain constraints. There are many normal forms.

The most familiar being first, second, third, Boyce-Codd, fourth, and projection/join

normal form (PJ/NF). Each progressively higher level of normal form is considered

more desirable than its' predecessor. More desirable in this context meaning less

redundancy in the relation thus avoiding certain update problems associated with

redundant data.

An example of an "update problem" associated with a less than optimal normal form

will be shown. The "update problem" refers to data insert and delete as well as the

update operation. The example relation is called employee(ssn, name, title, dept,

-17-

deptjoc). A department can be located in only one city at any one time. The

following are some example tuples from the relation:

ssn name title dept deptjoc

111-11-1111 Doe, John A. SE 1210 LA

222-22-2222 Young, I. M. ISA 1210 LA

333-33-3333 You.I.C. EA 1211 SF

444-44-4444 Law, L. A. ISM 1210 LA

A key of this relation is ssn because it functionally determines the other attributes, in

this case it is the only key. The problem is that the dept attribute also functionally

determines deptjoc. If department 1210 were moved to NY an update operation

would have to access every tuple with dept=1210 and update each deptjoc from LA

to NY. This could lead to data inconsistency if the update failed to update every

tuple involved. A more desirable design would be to split out deptjoc into a new

relation named department.

dept deptjoc

1210 LA

1211 SF

The move to NY would only require the update of one tuple in this case thus

eliminating the risk of "update problems".

Normalization theory is a broad field, for those interested in further detail

[DATEa86] should be consulted. Suffice it to say that normalization is an important

tool to be used in the design of relational database schemas.

18-

233 Further Normalization

The second part of the normalization process that was conducted is termed

decomposition. In decomposition a relation is analyzed to see if certain

dependencies are present. If these dependencies are present the relation is non-loss

decomposed into two or more relations which do not exhibit the problem

dependencies. Non-loss decomposition means that the original relation can be

reconstructed from a join of its parts.

The overall objective of normalization is to reduce redundancy in the database.

Ultimately, each table should consist of the properties of the key, the whole key, and

nothing but the key. Once this stage has been reached the normalization process

should stop [DATEb86]. This guideline for practical database design was adopted

for the Financial Control System.

The decomposition started with relations in third (or higher) normal form obtained

from the Bernstein algorithm. Bernstein's 2nd algorithm produces a database

schema which meets the conditions for third normal form. Many of the relations

may already be in Boyce-Codd, fourth, and PJ normal form. Each higher normal

form is a sub-set of the previous normal form therefore, a relation in PJ/NF is also

in first through fourth normal form. The definition for third normal form is: A

relation R is in third normal form (3NF) if and only if the nonkey attributes of R (if

any) are a) mutually independent, and b) fully dependent on the primary key of R

[DATEa86].

The first step required was to analyze each 3NF relation to see if it required

decomposition to Boyce-Codd normal form (BCNF). A relation is in Boyce-Codd

normal form if and only if every determinant is a candidate key. A determinant is

19-

any attribute on which some other attribute is (fully functionally) dependent

[DATEa86].

Once BCNF was achieved, the decomposition process was halted. At this point, each

table met the conditions at which [DATEb86] said further normalization could be

stopped. Namely, the relations consisted of a primary key and a set of attributes

fully functionally dependent on that key. As it turned out, no decomposition was

necessary. All of the relations from Bernstein's 2nd algorithm were already in at

least Boyce-Codd normal form. Tables that are in 3NF but not in 4NF or 5NF,

though theoretically possible, are very unlikely to occur in practice [DATEb86].

BCNF does not guarantee the removal of all redundancies in the relation but it

reduces possible update problems if a relation in INF is reduced to a non-loss set of

BCNF relations. A counterpoint to the benefits of normalizing to BCNF is that

performance of queries in the database may be slower. The reason for this is that

extra joins will have to be executed to retrieve elements of data from the

decomposed relations. Some balancing of performance against "update problems" will

most likely have to be found in practice.

Following are brief descriptions of each global relation. A real world description is

given first followed by a list of each functional dependency. At the end of each

description is a statement of the relation's normal form.

23.3.1 Employee Table

The employee table schema is shown in the appendix. Both AT&T and sub-

contractor employee records are stored in the employee table. The FDs in employee

are:

ssn —> name

20-

ssn —> title

ssn —> dept

Employee is in BCNF because the only candidate key is ssn and it is the only

determinant.

2332 MoriLnos Table

The schema for the mord_nos table is shown in the appendix. M-order numbers are

charge numbers which Ocean Systems employees put on their timesheets to record

the hours worked on various tasks. Each m-order number is unique, therefore

mor_no is the key of the mord_nos table. M-order numbers from all contracts being

tracked are stored in this table. The FDs in mord_nos are:

mor_no —> mor_title

mor_no —> cont_task

mor_no —> cont

morjio —> mor_type

mor_no —> fnd

Mord_nos is in BCNF because the only candidate key is morjio and it is the only

determinant.

2333 DeptJ>udg Table

The dept_budg table schema is shown in the appendix. Departmental budgets are

currently available only down to the Contract task level. A contract task can be

made up of multiple m-order numbers, therefore direct comparison of incurrences

versus budgets at the m-order number level cannot presently be obtained. Contract

tasks can span departments, therefore the key is composite and composed of both

cont_task and dept. The FDs in dept_budg are:

-21

(dept, conLtask) —> dollar_budg

(dept, conLtask) —> stdhr_budg

(dept, conLtask) —> othr_budg

DepLbudg is in BCNF because the only candidate key is (dept, conLtask) and it is

the only determinant.

23.3.4 Rates Table

The rates table schema is shown in the appendix. The rates table is the best example

of the relaxed requirement for precise accuracy in the output. Individual salaries

would have to be maintained to obtain real accuracy. The rates table contains

average hourly salary rates at the departmental level. For instance, if a department

has three senior engineers in it, the rates table would contain an average senior

engineer hourly rate based on the salaries of those three employees. The rates table

has rate_start and stop attributes which allow adjustment of individual department

rates for any interval of time. The key of the rates table is dept, title, and rate_start.

The FDs of rates are:

(dept, title, rate_start) —> dom_hr

(dept, title, rate_start) —> rotdot

(dept, title, rate_start) —> rate_stop

Rates is in BCNF because the only candidate keys (dept, title, rate_start) and (dept,

title, rate_stop) are also the only determinants.

233.5 Spafactor Table

The schema for the spafactor table is shown in the appendix. Spafactor is a small

table which records certain adjustments to rates for employees working night shift,

overseas locations, or at sea. If an employee's timesheet has a non-zero entry in the

-22-

spa field, the spafactor table is referenced to obtain the proper adjustments to the

calculation of labor dollars. The FDs in spafactor are:

spa_code —> code_def

spa_code —> spa_factr

spa_code —> spa_dollars

Spafactor is in BCNF because the only candidate key is spa_code and it is also the

only determinant.

23.3.6 Timsheet Table

The timsheet table schema is shown in the appendix. The timsheet table holds the

pertinent information from each employee's bi-weekly timesheet. The key is

composite and consists of ssn and enddate. An employee records each m-order

number with associated hours worked on the timesheet. If more than one m-order

number is worked during the two week time period, the primary number used will be

entered in the main_mo field of the timsheet table and the other m-order numbers

will be entered in the next table to be described. Timsheet contains the following

FDs:

(ssn, enddate) —> dept

(ssn, enddate) --> mainjtno

(ssn, enddate) —> ot_total

(ssn, enddate) —> tpnw

(ssn, enddate) --> spa

(ssn, enddate) —> sea_days

Timsheet is in BCNF because the only candidate key (ssn, enddate), is the only

determinant.

23-

23.3.7 Tim_detail Table

The tim_detail schema is shown in the appendix. As mentioned in the previous

section, any m-order numbers worked, other than the main m-order number, are

recorded in the tim_detail table. For any unique timsheet record there may be zero,

one or more corresponding tuples in the tim_detail table. The key of tim_detail is

composed of ssn, enddate, and mor_no. The FDs in tim_detail are:

(ssn, enddate, mor_no) —> stdhrs

(ssn, enddate, morjio) —> othrs

(ssn, enddate, mor_no) —> chrgdept

(ssn, enddate, mor_no) —> spa

(ssn, enddate, mor_no) —> sea_days

The tim_detail relation is in BCNF because the only candidate key is also the only

determinant.

233.8 Payperiod Table

The payperiod table schema is shown in the appendix. The payperiod table is closely

associated with the timsheet table. It contains the number of weekday hours

available in each bi-weekly time period. This table is used to look-up the number of

hours worked on the main m-order number so the data entry people do not have to

calculate it at data entry time. The FD in payperiod is:

enddate —> perjength

Payperiod is in BCNF because the only candidate key (enddate), is also the only

determinant.

233.9 ConLtime and Cont_detail Tables

The schemas for these two tables are shown in the appendix. These two tables are

24

analogous to the timsheet and tim_detail tables. They are designed to record the

timesheets of sub-contractor employees. The major difference between the cont_time

and timsheet tables is that sub-contractor's time reporting periods can be variable.

ConLtime has tstart and tstop attributes to record this. The primary key of

conLtime is ssn and tstart. The FDs of cont_time are:

(ssn, tstart) —> tstop

(ssn, tstart) —> dept

(ssn, tstart) —> main_mo

(ssn, tstart) -> stdhrs

(ssn, tstart) —> othrs

(ssn, tstart) —> tpnw

(ssn, tstart) —> spa

ConLtime is in BCNF because the candidate keys (ssn, tstart) and (ssn, tstop) are

also the only determinants.

The key of cont_detail is composed of ssn, tstart, and mor_no. The FDs in

cont_detail are:

(ssn, tstart, mor_no) —> stdhrs

(ssn, tstart, mor_no) —> othrs

(ssn, tstart, mor_no) —> chrgdept

(ssn, tstart, moijio) —> spa

Cont_detail is in BCNF because the candidate key (ssn, tstart, mor_no) is also the

only determinant.

233.10 Voucher Table

The voucher table schema is shown in the appendix. A voucher is used to record

25-

travel and living expenses on an employee's business trips. The key is composed of

ssn and vouch_no(an employee generated sequence number for his/her vouchers).

The FDs in voucher are:

(ssn, vouch_no) —> mor_no

(ssn, vouch_no) -> amount

(ssn, vouch_no) -> vouch_date

(ssn, vouch_no) —> chrgdept

The voucher table is in BCNF because the only candidate key (ssn, vouch_no), is

also the only determinant.

2JJ.11 Purch_ord Table

The schema for the purch_ord table is shown in the appendix. Purchase order forms

are used by the organization for purchasing materials and services. Purchase orders

are applied on m-order numbers and charged to the department ordering the

materials or services. The purch_ord FDs are:

purch_prd_no -> req_purch

purch_ord_no --> order_date

purch_ord_no —> motjio

purch_ord_no —> dept

purch_ord_no —> amount

The purch_ord relation is in BCNF because the only candidate key, purch_ord_no, is

also the only determinant.

233.12 Pettycash Table

The schema for the pettycash table is shown in the appendix. The pettycash form is

used to account for miscellaneous expenses which do not exceed $100. The key is

-26-

composed of ssn, and a sequence number(emp_seq_no). The FDs in pettycash are:

(ssn, emp_seq_no) —> mor_no

(ssn, emp_seq_no) —> gn250_date

(ssn, emp_seq_no) —> amount

(ssn, emp_seq_no) -> chrgdept

Pettycash is in BCNF since the candidate key (ssn, emp_seq_no), is the only

determinant.

23.3.13 GN300 Table

The GN300 table schema is shown in the appendix. The GN300 form is used to

report the spending of money on items which do not fall under, the categories of

travel and living, purchase of materials or services, or pettycash. The GN300 form

does not have fields on it which could be used as a unique key in a relation. Since

there are very few of these forms generated, it was decided not to generate a fictional

unique attribute to be the key. The effect of this decision is that duplicate tuples can

exist in the table and they can cause update and delete problems. These problems

are recognized and will be monitored. Another effect is that any search of the table

has to be a serial versus an indexed search. Since the number of tuples stored in this

table is small, and expected to stay that way, this should not be a problem.

2.4 Evaluating the Global Schema

The global schema design satisfies some of the requirements stated earlier.

Specifically, it has provided the data elements required to calculate incurrences

accurately. It impacts ease of data entry by having identified only those data

elements pertinent to the solution of the problem. It eases data maintenance

(update, delete) by reducing redundancy. The global schema represents entity

-27-

integrity through the identification of FDs. It supports the development of powerful

queries (applications) across multiple relations through the inclusion of foreign keys.

Finally, the global schema by itself is a form of documentation.

Other requirements such as timeliness of data entry and report generation, output

presentation, custom data entry screens, domain and referential integrity,

documentation, and user support cannot be met by global schema design. These

requirements will have to be satisfied by application programs or other means.

The design process used for each relation in the global schema has attempted to

capture the semantics of the real world with as little redundancy as possible. Many

of the real world semantics such as the pettycash example given earlier cannot be

enforced in schema design but can be addressed via the design of custom data entry

screens or other application programs.

Entity or key integrity has been designed into each base table except for the GN300

table mentioned earlier. Entity integrity is enforced in INFORMIX-SQL by

explicitly creating a unique index for each primary key as well as specifying that no

attribute which is a part of the primary key can receive null values.

Domain integrity is supported by INFORMIX-SQL through its column type feature.

There are numerous foreign keys designed into the global schema. These foreign

keys allow "navigation" thru the database and provide the common attributes around

which relational operations such as join are constructed. The referential integrity of

these foreign keys is not fully supported by INFORMIX-SQL. Referential integrity

can be enforced via the custom data entry screen but it is not enforced if values are

bulk loaded from an ascii file. Applications will have to be developed to enforce full

referential integrity.

-28-

2.5 Summary Table

The summary table schema is displayed in the appendix. The summary table is not

a base relation in the global schema. It is a derived table which is created and

populated by an application program. The summary table will be the source for

most of the reports and on-line queries in the database. It will require one

additional attribute(month) for incurrences to be broken out by monthly time

periods.

29-

CHAPTER 3

DISTRIBUTION DESIGN

3.1 Introduction

Fragmentation is the process of subdividing a global object (entity or relation) into

several pieces called fragments. Allocation is the process of mapping each fragment

to one or more nodes. The combination of fragmentation and allocation design can

be termed distribution design. A key principle in distribution design is to achieve

maximum locality of data and applications [CERI87].

32 Fragmentation

Fragmentation of a relation can be accomplished by two methods, horizontal or

vertical fragmentation.

3.2.1. Horizontal Fragmentation

Since the Financial Control System is a relational database, I will use some relational

algebra terminology to describe horizontal and vertical fragmentation. Horizontal

fragmentation of a global relation is achieved by applying the selection operation of

the relational algebra. A selection predicate is required to obtain a subset of the

global tuples. The selection predicate contains the value of an attribute, or attributes,

from the relation. An example of a horizontal fragmentation of a relation, say

emp(ssn, name, dept), using SQL is as follows:

select ssn, name, dept from emp

where dept = 1325

This would produce a subset of tuples from the emp relation containing only those

employees in department 1325. The selection predicate in this example is the value

-30-

of the dept attribute (1325). If there are a number of different departments in the

global relation, the selection operation can be repeatedly executed with a new

department to produce a set of disjoint horizontal fragments. The global relation can

be reconstructed by applying the union operation of the relational algebra.

The rationale of horizontal fragmentation is to produce fragments with the

maximum potential locality with respect to operations, i.e., such that each fragment

is located where it is mostly used [CERI87].

3.2.2 Vertical Fragmentation

Vertical fragmentation of a global relation is achieved by applying the projection

operation of the relational algebra. The projection operation requires no selection

predicate. It merely requires a subset of the global relation's attributes as input.

Using the previous relation a projection over that relation in SQL would be:

select ssn, name from emp

This operation would result in a fragment composed of all social security numbers

and corresponding names from the emp relation. All vertical fragments are required

to have as members the key attribute(s) of the global relation so that they can be

reconstructed (without loss) by applying the join operation of the relational algebra.

The rationale of vertical fragmentation is to cluster attributes frequently used

together. An ideal vertical fragmentation exists when each application uses just one

subset of attributes; otherwise, some applications will be harmed, since they will need

to access both fragments. In this general situation, one has to balance potential

benefits (due to the possibility of placing each fragment close to the applications

which mostly use it) against potential disadvantages (due to the same applications

accessing two fragments)[CERI87].

31-

It should be clear from the above discussion that a good understanding of the most

important applications is needed before informed decisions can be made regarding

fragmentation.

3.3 Allocation

Once a fragmentation design has been achieved, the next step is to physically place

those fragments on nodes of the network. At this point, a decision has to be made

on the degree of replication desired in the design. The choices in this phase range

from full replication to no replication.

3.3.1 Full Replication

An allocation design with full replication has no fragmentation. Each node of the

distributed database contains a copy of the global database. The primary advantage

of this situation is the availability obtained. The entire database is available while at

least one node is active. The primary disadvantage of this situation is that any

change to the database has to be propagated reliably to all nodes in order to maintain

data consistency and integrity.

3.3.2 No Replication

The other end of the spectrum is a totally disjoint database, i.e. no replication. The

data from each node would have to be joined via union to obtain a single copy of

the global database. The primary advantage of this design is that there is no

overhead required to maintain consistency and integrity of replicated data. The

main disadvantage is that availability of the system is greatly reduced. The loss of

one node will create gaps in the global data.

The optimal allocation design will normally fall somewhere in between these two

extremes.

-32

3.4 Distribution Design of the Financial Control System

While distributed databases enable more sophisticated communication between sites,

the major motivation for developing a distributed database is to reduce

communication by allocating data as close as possible to the applications which use

them. However, it rarely occurs that data and applications can be cleanly partitioned

and assigned to a particular site [CERI87]. Fortunately, the Financial Control

System is one of those rare cases where the organizational structure of the

corporation and the nature of the main application creates a "natural" distribution.

The bulk of raw data to be stored in the database consists of employee timesheets

and vouchers. Since all employees use the same timesheet and voucher forms, it

allows a natural horizontal fragmentation of timesheets and vouchers at the assistant

manager level. The other relations which contain the department attribute were

likewise fragmented on the department attribute at the assistant manager level. The

fragmentation is done at the assistant manager level to aggregate enough employees

to justify the hardware and software required to support a local node. Using SQL, a

horizontal fragment of the timsheet relation would be denned like this:

select timsheet.* from timsheet

where dept matches "135*"

This statement would select all tuples from the timsheet relation where the

employee's department was 1351 thru 1359. The assistant manager's are designated

as 1350, 1360, 1320, etc., therefore this SQL statement would define a horizontal

fragment at the 1350 assistant manager level.

The allocation of these fragments falls naturally in place after the fragmentation is

decided. Each assistant manager database (local node) will contain the raw data of

-33-

it's own departments.

The remaining question left is the amount of replication needed. The Financial

Control System is not a high transaction system with strict requirements on currency

of the data. The loss of a node for a short period of time would not harm the utility

of the system to any great extent. For these reasons, there is no replication of any

timesheet, voucher, or other employee related raw data. The only relations

replicated are those controlled by the central node. These relations experience

minimal insert, update, and delete activity. Replicating these relations will therefore

require minimal overhead for maintaining consistency of the replications. These

relations were fragmented and allocated to the local nodes primarily to place the data

where the m ain application needs it.

The following table presents the distribution design.

Table Control Fragmentation Replication

Employee Local Node Horizontal None
Tim sheet Local Node Horizontal None
Tim_detail Local Node Horizontal None
Cont_time Local Node Horizontal None
Cont_detail Local Node Horizontal None
Mord_nos Central Node None Full
Dept_budg Central Node Horizontal Partial
Rates Central Node Horizontal Partial
Spafactor Central Node None Full
Voucher Local Node Horizontal None
Purch_ord Central Node Horizontal Partial
Pettycash Local Node Horizontal None
GN300 Local Node Horizontal None
Payperiod Local Node None Full

TABLE 2. Distribution Design

Control means that the node has read/write permission versus read permission only.

Horizontal Fragmentation with Replication of None indicates that there are disjoint

fragments of the relation at each local node, the central node has no copy of this

-34-

data. Horizontal Fragmentation with Replication of Partial indicates that the global

relation resides at the central node and horizontal fragments reside at each local

node. Fragmentation of None and Replication of Full indicates that the global

relation resides at every node.

35-

CHAPTER 4

ALGORITHMS FOR IMPLEMENTING

CONSISTENCY OF REPLICATED DATA

4.1 Introduction

Five problem areas in maintaining consistency of distributed replicated data have

been defined and either an algorithm or some other type of solution has been

designed to solve each problem. The problems are:

1) For the replicated tables controlled by the central node, how will the system

ensure that each local node has the most current version at any one time?

2) It is required that any transactions (update, insert, delete) on the replicated tables

by the central node either all commit or all abort (atomicity). Additionally, any of

these transactions must be correctly completed in the event of communication or

node failures. Therefore the problem is: how will the system ensure the atomicity of

the transactions on the replicated tables?

3) If a local node receives an update to a table controlled by the central node while it

is running a summary report, what action must the local node take?

4) If a local node receives an update to a table controlled by the central node after it

has just completed a summary report but before it has sent the report to the central

node, what action must the local node take?

5) If a local node or the central node discovers that the summary report data sent to

the central node is in error, what action must be taken?

4.2 Problems 1 and 2

Problems 1 and 2 both deal with the management of replicated data. All of the

-36-

replicated data in the Financial Control System is maintained by the central node.

The replicated tables are:

deptjbudg

rates

spafactor

purch_ord

mordjlos

payperiod

Only the central node can add or change data in these tables, the local nodes may only read

the data in these tables. Updates, inserts, and deletes of tuples in these tables is coordinated

from the central node.

4.2.1 Replicated Data

A major reason for replicating data in a distributed system is to increase

performance. This is precisely why data was replicated in the Financial Control

System. Each local node has all of the data it needs to locally execute the summary

report. A price has to be paid for the advantage of having this data available locally.

This price is the cost of updating all replicated tables and ensuring the consistency of

the data in those tables. Maintaining the consistency of this replicated data is very

important for the calculation of accurate incurrence figures. The Ocean Systems

Organization has placed emphasis on maintaining the consistency of replicated data

to ensure the best possible incurrence figures. In the following sections a version

control scheme and a two phase commit protocol will be presented. Both of these

are designed to maintain the consistency of replicated data in the Financial Control

System

.

4.2.2 Requirements, Assumptions, and Definitions

To implement the algorithm, the following are required:

1) Transaction logging is required at all nodes. The transactions must be written to a

• 37-

stable storage device.

2) A remote procedure call (RPC) facility is required at each node.

3) Any concurrency control needed at a local node must be supplied by the local

INFORMIX-SQL DBMS.

When designing an algorithm dealing with complex systems, certain simplifications

are usually made to keep the algorithm from becoming overly complicated. If the

Financial Control System's algorithm was designed to attempt recovery from every

conceivable node or communication failure, it too would become overly complex.

Therefore, the algorithm assumes a model of "well behaved" system failures. Well

behaved means communication failures consist only of lost messages or timeouts and

node failures are clean. Clean meaning a node is either active or failed and a failed

node is easily detected. In addition, all failures are assumed to be hardware related,

the software is assumed to work without error.

The following are definitions for some of the terms found in the algorithm:

PERFORM screen is a feature of INFORMIX-SQL which facilitates the design of

custom screens to be used for database query, insert, update, or delete. PERFORM

allows these actions on one tuple at a time and provides automatic locking of the

tuple when the update option is chosen. It also provides a facility for passing tuple

v alues to an ESQL/C program

.

ESQL/C is embedded SQL for C programs. Standard SQL statements can be

included and compiled in a standard C program

.

Client and server are names given to the calling and called procedures respectively in

the remote procedure call model.

38-

4.2.3 Supporting Relations Required

Some additional relations will be required to support the solutions to problems 1 and

2. These relations will be controlled and maintained by the central node.

At Central Node:

rep_tbls table:
table full_rep

mord nos yes
rates no
dept^budg no
spafactor yes
purch_ord no
payper iod yes

net_addr table

:

local nodid addr

1320
1340
1350
1360
2040
2830

version_tbl table

i

local nodid table

1320
1320
1320

mord_nos
rates
dept_budg

gcuxh
gcsql
gcato
port
gclue
buhost

version

6

2 7

52

db__name

results
finance
results
incurred
mabel
money

1340
1340
1340

1350
1350

At Local Nodes

i

rates
dept_budg
spafactor

spaf actor
purch_ord

payper iod

version_tbl table

:

local_nodid table

1320 mord nos
1320 rates
1320 dept_budg

29

98
75

75
92

vers ion

6

27

52

1320 payperiod 1

TABLE 3. Supporting Relations for Algorithm

Table 3 shows only the 1320 fragment at the 1320 node. The fragments at the other local

39-

nodes would differ only on the values of the locaLnodid and version attribute.

4.2.4 The Algorithm

The version scheme and the two phase commit protocol are incorporated into one

algorithm. This is done to ensure that any update, insert, or delete to any replicated

table is done on the latest version of that table. The version control scheme was an

original development for the Financial Control System. Theoretically, with the two

phase commit protocol used here, the versions of a replicated table should never

disagree. The version control scheme adds assurance that, should a failure of some

type leave a disagreement in table version numbers, the discrepancy will be

corrected. The two phase commit protocol is described in numerous books and

papers. I adapted the protocols found in [CERI84], [GARC87], and [MAEK87] to

fit the Financial Control System. The two phase commit protocol used here is

designed to install it's transaction at all nodes or none at all. In the following

algorithm I will describe an update transaction; an insert or delete requires essentially

the same actions.

Central Node's Actions:

1) A PERFORM screen is activated and the tuple to be updated is brought up on the

screen.

2) The update option is chosen and the attribute to be updated is changed on the

screen.

3) The above action calls an ESQL/C program (the client) which will be responsible

for propagating the update to the local node(s).

4) The ESQL/C program is passed the old and new value of the updated attribute(s),

the key attribute's value, the dept attribute's value (if applicable), and the table

40-

5) Using the table name and the dept, the network address(es) and database name(s)

are obtained from rep_tbl and net_addr tables.

6) With the table name and network address(es), the version table is queried to

obtain the current version number of the table at that address. Since updates are

infrequent the version number will be a number between 1-99 and will recycle when

it reaches 99.

7) The transaction is started (BEGIN WORK), pertinent information is written to

the transaction log - old and new update value, network address, version number,

table name, database name, update attribute name.

Phase I:

8) With the local node's address, a remote procedure call (RFC) is made to the local

node(s) passing the local database name, the table name, the key attribute and value,

the update attribute and values (old and new), and the current version number.

9) A timeout is activated and the procedure blocks while waiting for a response from

the local node(s).

10) If any node sends back an abort, a globaLabort is written to the transaction log

and an abort message is sent to the local node(s). Next, wait for ack_abort from local

node(s), and when they are received, ROLLBACK WORK. The transaction is

restarted a second time.

a) If an abort with an old version number i.e. (abort_had_ver 26) is received

from a local node, a global_abort is written to the transaction log and an abort

message is sent to the local node(s). Again, wait for ack^abort from local

node(s), and ROLLBACK WORK. Call version update procedure.

b) The version update routine will propagate the missing transaction(s). At this

-41-

point write message to PERFORM screen - "Updating Old Version" so that the

person doing the update will realize a short delay will be experienced. The

version update procedure is passed the addr, the table and dbname, as well as

the most recent table version number and the old version number from the local

node. The transaction log at the central node is accessed and all missing

transactions for the table are extracted. These transactions are installed at the

local node using a one phase commit protocol. The local node acks the

installation of the transaction(s) and the version update procedure restarts the

original transaction.

c) If all nodes report Ready, start Phase II.

Phase II:

11) Increment version table's version value by 1.

12) Write globaLcommit to log, send a COMMIT message to the local node(s).

13) Wait for ack_commit from local node(s). On receipt of them COMMIT WORK.

End of 2 phase commit protocol for central node. Return to PERFORM screen and

report "Record Updated."

Local Node's Actions:

1) The server process is activated on receipt of the remote procedure call from the

client process (central node).

2) The database is selected.

3) Get table name and version number from central node's RPC data. Query local

version table to see if version numbers match. If so, start Phase I.

a) If version numbers do not match send abort_bad_ver and local version

number to central node. Wait for globaLabort. Send ack_abort to central node

and exit.

-42-

b) Note: The central node will now activate a version update procedure which

will install the missing transaction(s) and then restart the original transaction.

Phase I:

4) The transaction is started (BEGIN WORK). The transaction log is written with

the pertinent update information. The update is executed. Increment version value of

version table by 1.

5) If any errors detected, send abort to central node.

6) If update was successful, write Ready in log and send Ready to central node.

Phase II:

7) If an abort is received, ROLLBACK WORK and send ack_abort to the central

node.

8) If COMMIT message is received, execute COMMIT WORK and send an

ack_commit to the central node. End of 2 phase commit protocol for local node.

9) If transaction was aborted by us, send msg to local dba of that fact.

Note:

A transaction will be attempted two times before the central node will abort and quit

trying. The ESQL/C program will return a message to the PERFORM screen saying

"Update Aborted by Node(s): xxxx xxxx

A pseudo-code program listing for the above algorithm is contained in the appendix.

4.2.5 Algorithm Structure

Figure 2 shows the activities of the central and local nodes during a successful

version control and two phase commit for an update transaction.

Figure 3 shows the structure of the algorithm in relation to the activities at the

central and local nodes. The numbers in the figure correspond to the numbered

-43-

actions at the central and local nodes described in the previous section.

Central Node Local Node

BEGIN WORK
Log update data

O
w
A

I

T

<

When all READY
Increment versions

Log Global-commit

O
w
A

I

T

When all ack-commit

COMMIT WORK

Data sent

READY

COMMIT

Ack-commit

Check version number

BEGIN WORK
Log update data

Execute update

Increment version

Log READY

W
A
I

T

COMMIT WORK
Ack-commit

Figure 2. Replicated Table Update Transaction

-O

-o

-44-

Central Node:

Database

PERFOHM
Screen

2

3.4

Client Procedure
ESQL/C
Program

s 9 ^
B, 10, 12

Transaction
Log

Local Node:

5, B, 7. B

Server Procedure
ESQL/C
Program

1 y

4, B

7,8

Transaction
Log

2,3,4

Local
Database

Figure 3. Algorithm Structure

45-

Central Node

:

I I

|
Database

|

I l

INFORMIX DBMS S

PERFORM

Client
ESQL/C
Program

RPC Program

UNIX
Operating
System

Communication
Access

Local Node :

i i

|
Database

|

l I

INFORMIX DBMS

Server
ESQL/C
Program

RPC Program

UNIX
Operating
System

Communication
Access

I
l

*************************** ********************
* *

(Local Area Network
)

* *

Figure 4. Financial Control System Structure

Figure 4 shows an overview of the entire Financial Control System. It graphically

depicts the components involved in a distributed insert, update, or delete to the

replicated tables.

4.2.6 Failure Recovery

To preserve consistency a commit protocol must have a recovery algorithm to ensure

a transaction is completed properly after a failure has been experienced.

46-

4.2.6.1 Node Failures

A node failure can include any of the local nodes as well as the central node.

4.2.6.1.1 Failure One

A local node fails before having written Ready in the log. In this case, the central

node's timeout expires, and it takes the abort decision. All active local nodes abort

their transactions. When the failed local node recovers, the recovery procedure

aborts the transaction.

4.2.6.1.2 Failure Two

A local node fails after having written Ready in the log and sending Ready to the

central node. In this case the active local nodes correctly terminate the transaction

(commit or abort). When the failed node recovers, the recovery procedure has to

ask the central node what the outcome of the transaction was. The transaction is

then correctly completed by the local node.

4.2.6.1J Failure Three

The central node fails after having written the update data to the log and sending this

data to the local nodes. In this case all local nodes which have answered Ready must

wait for the recovery of the central node. The recovery procedure of the central

node resumes the commitment protocol from the beginning, reading the identity of

the local nodes from the transaction log. Each ready local node must recognize that

the new data is a repetition of the previous data.

4.2.6.1.4 Failure Four

The central node fails after having written a global_commit or global_abort record in

the log, but before having written COMMIT WORK in the log. In this case, the

central node at restart must send to all local nodes the decision again. All local

-47-

nodes which have not received the commit or abort commands must wait for

recovery of the central node. Again, local nodes should not be affected by receiving

the command message twice.

4.2.6.1.5 Failure Five

The central node fails after having written the COMMIT WORK record in the log.

In this case, the transaction has been concluded and no action is required at

recovery.

4.2.63. Lost Messages

Lost messages mean completely lost. No provisions for receipt of garbled messages

are provided in this algorithm design.

4.2.6.2.1 Lost Message One

A reply message (Ready or abort) from a local node is lost. In this case the central

node's timeout expires, and the transaction is aborted. This failure is observed only

by the central node, and from the central node's viewpoint it is exactly like the

failure of a local node. From the local node's viewpoint the situation is different; the

local node does not consider itself failed and does not execute a recovery procedure.

4.2.6.2.2 Lost Message Two

The initial transaction data to the local node is lost. In this case the local node's

server process is not activated. The global result is the same as in the previous case,

because the central node does not receive a reply.

4.2.6.2.3 Lost Message Three

A command message from the central node (commit or abort) is lost. The local node

remains uncertain about the decision. A timeout in the local node would solve this

problem. If no decision has been received after the timeout interval, the local node

-48-

requests a repeat of the transaction decision.

4.2.6.2.4 Lost Message Four

The final ack (ack_abort or ack_commit) message is lost. The central node is

uncertain whether or not the local node has received the command message. This

problem can be eliminated by introducing another timeout in the central node. If no

ack message is received after the timeout interval from sending the command

message, the central node sends the command again. The best action at the local

node is to send the ack message again, even if the transaction was completed and is

no longer active.

The above recovery procedures were all adapted from procedures found in [CERI84].

43 Problem 3

The solution to problem 3 is based on the following assumption.

Assumption: Ocean System's management has decided that an update from the

central node takes precedence over the compilation of a summary report.

Working under this assumption, any transaction initiated by the central node at any

local node will terminate an active summary report compilation. This can be

accomplished quite easily by adding a couple of steps to the previous algorithm. In

the local node's actions add two new steps:

1) A check is made to see if a summary report is currently executing. If so it is killed.

The summary report will trap the kill signal and die gracefully.

This step is added between the present step 1 and step 2.

2) If the summary report was killed, restart the summary report and send a message

to the local dba notifying him/her that the summary was killed and restarted.

This step is added at the end of the present algorithm for the local node.

-49-

After any active summary report is killed at a local node, the central node continues

on with it's version control and two phase commit protocol.

4.4 Problem 4

Problem 4 rephrased: A local node has just completed a summary report. An

update, insert, or delete is successfully transacted on one of the replicated tables.

The summary report has not been sent to the central node. What action should be

taken?

A solution to this problem is based to some extent on the assumption for problem 3.

It is desired to run summary reports with the most up to date input data. If the

above situation is encountered, it can be handled in the following manner. Summary

reports are sent via uucp to the central node. When a summary report successfully

completes, it automatically sends the summary data. The uucp job number can be

stored in a file. After a change to a replicated file has been installed, a utility

program can be called which will read the last line in this summary report uucp file.

A comparison of this data with the output of the uustat (status of uucp jobs)

command will tell if the summary report is still in the uucp queue. If the job is in

the queue, it can be cancelled and the summary report called and executed again.

4.5 Problem 5

Problem 5 requires that there be some mechanism to identify and remove a local

node's summary report data from the central node's aggregated summary data. This

would be neccessary in the event that bad summary data was sent from a local node

and aggregated at the central node with the data from the other local nodes.

The present design does not have an efficient method to do this. Once the local

-50-

node's summary data is aggregated by the central node there is no way to identify a

tuple as having been originated from any particular node. To back out the incorrect

data would require each node to re-calculate and re-submit the summary data.

A solution to this is to add an attribute to the summary table which would contain

the value of the local node's identification i.e. 1320, 1350, 2040, etc. Now every

tuple in the summary table has it's source incorporated. When the dba of a local

node discovers that incorrect summary data has been generated, he/she can notify

the central node's dba of this fact and the affected tuples can be deleted from the

summary table.

The solutions to problems 3, 4, and 5 are all original. They are designed to solve

specific problems expected in the Financial Control System. There were no similar

problems or solutions found in any of the literature I read.

-51-

CHAPTER 5

SUMMARY

5.1 Introduction

A design for a distributed database and a distributed application for that database

has been presented. This system is different from most in the literature by virtue of

being built on top of a commercial centralized database management system. Other

distributed database management systems have been designed and implemented as

extensions to centralized DBMSs (Distributed Ingres and R* being two of the most

well known [LIND87]).

5.2 Simplifications

There are limitations to the DDBMS functions that can be implemented when a

system is being built on top of a commercial product without source code available.

Certain simplifications have to be made under these circumstances. The first

simplification for the Financial Control System was to design only those distributed

management functions required by the main application. These functions included a

centrally coordinated global update, insert, and delete feature with a two phase

commit protocol. A simple consistency scheme (version control) was also designed.

The sharing of global data is provided through the propagation of summary

incurrence reports. Some of the important distributed database management features

not offered in this design are:

1) Global queries

2) Global concurrency mechanisms

Local node concurrency (using a locking mechanism) is available through

-52-

INFORMIX-SQL.

3) Distributed database administration functions

Local database administration functions will be provided at each node by

INFORMIX-SQL.

53 Overview

The evolution of the Financial Control System has gone from the recognition of a

contract management problem to the present design of a distributed system to solve

that problem. During this process the following actions have been performed:

1) The problem was defined.

2) The requirements for a solution were defined.

3) The data elements required to support a solution were identified.

4) The data elements were grouped into entities.

5) The relationships between entities were analyzed.

6) The functional dependencies within entities were determined.

7) The functional dependencies were input to Bernstein's 2nd algorithm and a

synthesized set of relations in 3NF were output.

8) The relations and FDs were analyzed to see if any relation was not in BCNF.

9) The global database schema was composed.

10) The fragmentation design of each global relation was decided.

11) Fragments were allocated to database nodes.

12) Some application dependent problems were identified.

13) Solutions to these problems were designed.

There were a number of constraints kept in mind at each step in the design process.

The most important of these were:

53-

1) integrity

2) local node autonomy

3) summary report requirements

4) consistency

5) keep it simple (therefore reliable)

5.4 Lessons Learned

More time should have been devoted to researching and selecting the data items for

the global schema. There were some relations and attributes added late in the design

stage which had been overlooked. The pettycash and gn300 relations are two

examples. Iteration of design is to be expected but the importance of careful and

meticulous research at the global schema design stage cannot be over-emphasized.

Relational databases are quite forgiving in this regard since most applications will

still work properly after a new relation or an attribute is added to the database. An

application would only have to be modified to incorporate this new data. Given this

forgiveness, it is still very important to capture the best possible representation of the

real world semantics as early as possible. This was difficult in the design of the

Financial Control System due to the lack of an expert with a broad understanding of

contract incurrence computations.

The two phase commit protocol presented in this report is known as the centrally

coordinated two phase commit. The algorithm for this protocol allows concurrent

processing of a transaction at the local nodes. If another protocol were to be

evaluated, it would be worthwhile to take a serious look at the linear (nested) two

phase commit protocol. The communication topology for this protocol is a linear

chain. The coordinator (central node) sends the data to the first local node in the

54-

chain, this node then decides ready or abort. If the decision is abort, the central

node is notified of the abort. If the decision is ready, then the next local node in the

chain is passed the data and it then decides ready or abort. This continues, while the

decision is ready, until the last node in the chain is reached. If the transaction

reaches the last node, this means that all the previous nodes are ready to commit. At

this stage, the last node becomes the coordinator and, based on its decision, it passes

either commit or abort back through the chain of local nodes to the central node.

This protocol forfeits the concurrency of the centrally coordinated protocol for lower

communication overhead. A successfully committed transaction requires 4n

messages (where n is the number of nodes) with the centrally coordinated protocol.

The linear protocol requires 2n messages for a successfully committed transaction.

The linear protocol is appropriate for a system with the following characteristics:

1) There is a high cost with message passing and a broadcast facility is not available.

2) The demand for concurrency is low.

3) The cohort (local node ESQL/C program) structure is static or universally known

[MAEK87].

55-

REFERENCES

BERN76

CERI84

CERI87

CODASY

DATEa86

DATEb86

GARC86

GARC87

HERL87

HUSE87

KENT83

LIND87

MAEK87

MOTZ87

NORM83

TANE87

Synthesizing third normal form relations from functional dependencies.
Bernstein, P. ACM Trans. Database Syst. 1, 4, (Dec. 1976) 277 - 298.

Ceri, S. Distributed databases. [McGraw-Hill computer science series]

McGraw-Hill Inc., New York, NY, 1984, 393 pp.

Distributed database design methodologies. Ceri, S.; Pernici, B.; and
Wiederhold, G. Proceedings of the IEEE. 75, 5, (May 1987) 533 - 546.

A framework for distributed database systems: distribution alternatives

and generic architectures. A report by the CODASYL systems
committee. ACM 100+ pp.

Date, C. An introduction to database systems: Vol I (4th ed.). [The
systems programming series] Addison-Wesley Publ. Co., Inc., Reading,
MA, 1986, 639 pp.

Date, C. Relational database: selected writings. Addison-Wesley Publ.
Co., Inc., Reading, MA, 1986, 497 pp.

The future of data replication. Garcia-Molina, H. IEEE 5th symposium
on reliability in distrib. software and database systems. (1986) 13 - 19.

Reliable distributed database management. Garcia-Molina, H.; and
Abbott, R. Proceedings of the IEEE. 75, 5, (May 1987) 601 - 620.

Concurrency versus availability: Atomicity mechanisms for replicated

data. Herlihy, M. ACM Trans, on Computer Syst. 5, 3, (Aug 1987) 249
-274.

Distributed database study: second year report (Oct 85 - Dec 86).
Huseyin, A; Kirstein, P.; and Leung, C. Tech. Report 127. Dept. of
Computer Science, Univ. College London, (May 1987) 40 pp.

A simple guide to five normal forms in relational database theory. Kent,
W. ACM Communications 26, 2, (Feb 1983) 120 - 125.

A retrospective of R*: A distributed database management system.
Lindsay, B. Proceedings of the IEEE. 75, 5, (May 1987) 668 - 673.

Maekawa, M.; Oldehoeft, A.; and Oldehoeft, R. Operating systems:
Advanced concepts. Benjamin/Cummings Publ. Co., Inc., Menlo Park,
CA, 1987, 497 pp.

The design of distributed databases with cost optimization and
integration of space constraints. Motzkin, D.; and Ivey, E. 1987
National Computer Conference. (1987) 563 - 572.

EMPACT: A distributed database application. Norman, A.; and
Anderton, M. 1983 National Computer Conference. (1983) 203 - 217.

Reliability issues in distributed operating systems. Tanenbaum, A.; and
van Renesse, R. IEEE 6th symposium on reliability in distrib. software
and database systems. (1987) 3-11.

56-

ZHON87 ZGL2: A distributed data processing system based on different LANS.
Zhongxiu, S.; Li, X.; Peigen, Y.; Xing, X.; and Jingqiang, Z. IEEE
CH2433-1/87. (1987)6-8.

57-

APPENDIX

* * * * * Bernstein's 2nd Algorithm Input/Output *****

MORDNOS.MORNO
MORDNOS.MORNO
MORDNOS.MORNO

THE INPUT TO THE PROGRAM IS :

EMPLOYEE. SSN > EMPLOYEE . NAME;
EMPLOYEE. SSN > EMPLOYEE . TITLE

;

EMPLOYEE. SSN > EMPLOYEE . DEPT

;

MORDNOS.MORNO > MORDNOS . MORTITLE;
MORDNOS.MORNO > MORDNOS . CONTTASK

;

> MORDNOS . CONT;
> MORDNOS. MORTYPE;
> MORDNOS. FND;

DEPTBUDG.DEPT, DEPTBUDG . CONTTASK >

DEPTBUDG.DEPT, DEPTBUDG . CONTTASK >

DEPTBUDG.DEPT, DEPTBUDG . CONTTASK >

RATES. DEPT, RATES. TITLE, RATES . RATESTART
RATES. DEPT, RATES. TITLE, RATES . RATESTART
RATES. DEPT, RATES. TITLE, RATES . RATESTART

> SPAFACTOR. CODEDEF;
> SPAFACTOR. SPAFACTR;
> SPAFACTOR. SPADOLLARS

>

>

>

>

>

>

DEPTBUDG . DOLLARBUDG;
DEPTBUDG . STDHRBUDG

;

DEPTBUDG . OTHRBUDG

;

> RATES. DOMHR;
> RATES .ROTDOT;
> RATES .RATESTOP;

SPAFACTOR. SPACODE
SPAFACTOR. SPACODE
SPAFACTOR. SPACODE
TIMSHEET.SSN
TIMSHEET.SSN
TIMSHEET . SSN
TIMSHEET . SSN,
TIMSHEET . SSN,
TIMSHEET . SSN,

TIMSHEET. ENDDATE
TIMSHEET. ENDDATE
TIMSHEET . ENDDATE
TIMSHEET . ENDDATE
TIMSHEET . ENDDATE
TIMSHEET . ENDDATE

TIMDETAIL. SSN, TIMDETAIL . ENDDATE

,

TIMDETAIL . STDHRS;
TIMDETAIL. SSN, TIMDETAIL . ENDDATE,

TIMDETAIL . OTHRS;
TIMDETAIL. SSN, TIMDETAIL . ENDDATE,

TIMDETAIL . CHRGDEPT

;

TIMDETAIL. SSN, TIMDETAIL . ENDDATE,
TIMDETAIL . SPA;

TIMDETAIL. SSN, TIMDETAIL . ENDDATE,
TIMDETAIL . SEADAYS

;

CONTTIME. SSN, CONTTIME . TSTART
CONTTIME.TSTART
CONTTIME . TSTART
CONTTIME . TSTART
CONTTIME. TSTART
CONTTIME. TSTART
CONTTIME. TSTART

TIMSHEET . DEPT;
TIMSHEET . MAINMO

;

TIMSHEET. OTTOTAL;
TIMSHEET. TPNW;
TIMSHEET. SPA;
TIMSHEET . SEADAYS;
TIMDETAIL . MORNO :

TIMDETAIL . MORNO >

TIMDETAIL. MORNO >

TIMDETAIL .MORNO >

TIMDETAIL .MORNO >

CONTTIME. SSN,
CONTTIME. SSN,
CONTTIME. SSN,
CONTTIME. SSN,
CONTTIME. SSN,
CONTTIME . SSN,
CONTDETAIL . SSN, CONTDETAIL . TSTART , CONTDETAIL . MORNO

CONTDETAIL. STDHRS;

> CONTTIME. TSTOP;
> CONTTIME. DEPT;
> CONTTIME. MAINMO;
> CONTTIME . STDHRS;
> CONTTIME. OTHRS;
> CONTTIME . TPNW;
> CONTTIME. SPA;

58-

CONTDETAIL
CONT

CONTDETAIL
CONT

CONTDETAIL
CONT

VOUCHER. SS
VOUCHER. SS
VOUCHER. SS
VOUCHER. SS
PETTYCASH

.

PETTYCASH.
PETTYCASH.
PETTYCASH.
PURCHORD.P
PURCHORD.
PURCHORD.
PURCHORD.
PURCHORD.
PAYPERIOD
END.

.SSN, CONTDETAIL. TSTART, CONTDETAIL . MORNO
DETAIL . OTHRS;
SSN, CONTDETAIL . TSTART, CONTDETAIL . MORNO

DETAIL . CHRGDEPT

(

SSN, CONTDETAIL. TSTART, CONTDETAIL . MORNO
DETAIL. SPA;
N, VOUCHER. VOUCHNO
N, VOUCHER. VOUCHNO
N, VOUCHER. VOUCHNO
N, VOUCHER . VOUCHNO
SSN
SSN

> VOUCHER .MORNO;
> VOUCHER .AMOUNT;
> VOUCHER. VOUCHDATE;
> VOUCHER. CHRGDEPT;

PETTYCASH. EMPSEQNO > PETTYCASH . MORNO

;

PETTYCASH . EMPSEQNO > PETTYCASH . GN250DATE

;

SSN,
SSN,

PETTYCASH . EMPSEQNO
PETTYCASH . EMPSEQNO

PETTYCASH . AMOUNT

;

PETTYCASH . CHRGDEPT;
URCHORDNO
URCHORDNO
URCHORDNO
URCHORDNO
URCHORDNO
ENDDATE >

> PURCHORD. REQPURCH;
> PURCHORD. ORDERDATE;
> PURCHORD. MORNO;
> PURCHORD. DEPT;
> PURCHORD. AMOUNT;
PAYPERIOD . PERLENGTH

;

THIS IS THE LIST OF ATTRIBUTES WITH THEIR ABBREVIATIONS.

E00 EMPLOYEE. SSN
E01 EMPLOYEE. NAME
E02 EMPLOYEE . TITLE
E03 EMPLOYEE. DEPT
MOO MORDNOS. MORNO
M01 MORDNOS. MORTITLE
M02 MORDNOS. CONTTASK
MO 3 MORDNOS. CONT
M04 MORDNOS . MORTYPE
MO 5 MORDNOS. FND
D00 DEPTBUDG. DEPT
D01 DEPTBUDG . CONTTASK
D02 DEPTBUDG . DOLLARBUDG
D03 DEPTBUDG . STDHRBUDG
D04 DEPTBUDG . OTHRBUDG
R00 RATES. DEPT
R01 RATES. TITLE
R02 RATES .RATESTART
R03 RATES. DOMHR
R04 RATES. ROTDOT
R05 RATES . RATESTOP
500 SPAFACTOR. SPACODE
501 SPAFACTOR. CODEDEF
502 SPAFACTOR . SPAFACTR
503 SPAFACTOR. SPADOLLARS

59

TOO TIMSHEET . SSN
T01 TIMSHEET . ENDDATE
T02 TIMSHEET . DEPT
T03 TIMSHEET .MAINMO
T04 TIMSHEET . OTTOTAL
T05 TIMSHEET. TPNW
T06 TIMSHEET. SPA
T07 TIMSHEET . SEADAYS
T08 TIMDETAIL. SSN
T09 TIMDETAIL . ENDDATE
T10 TIMDETAIL. MORNO
Til TIMDETAIL . STDHRS
T12 TIMDETAIL . OTHRS
T13 TIMDETAIL. CHRGDEPT
T14 TIMDETAIL. SPA
T15 TIMDETAIL. SEADAYS
COO CONTTIME.SSN
C01 CONTTIME.TSTART
C02 CONTTIME.TSTOP
C03 CONTTIME.DEPT
C04 CONTTIME .MAINMO
C05 CONTTIME. STDHRS
C06 CONTTIME. OTHRS
C07 CONTTIME. TPNW
C08 CONTTIME. SPA
C09 CONTDETAIL . SSN
CIO CONTDETAIL. TSTART
Cll CONTDETAIL .MORNO
C12 CONTDETAIL . STDHRS
C13 CONTDETAIL . OTHRS
C14 CONTDETAIL. CHRGDEPT
C15 CONTDETAIL . SPA
V00 VOUCHER. SSN
V01 VOUCHER. VOUCHNO
V02 VOUCHER. MORNO
V03 VOUCHER . AMOUNT
V04 VOUCHER . VOUCHDATE
V05 VOUCHER. CHRGDEPT
POO PETTYCASH. SSN
P01 PETTYCASH . EMPSEQNO
P02 PETTYCASH. MORNO
P03 PETTYCASH. GN250DATE
P04 PETTYCASH . AMOUNT
P05 PETTYCASH . CHRGDEPT
P06 PURCHORD. PURCHORDNO
P07 PURCHORD . REQPURCH
P08 PURCHORD . ORDERDATE
P09 PURCHORD .MORNO
P10 PURCHORD . DEPT

60-

Pll PURCHORD .AMOUNT
P12 PAYPERIOD. ENDDATE
P13 PAYPERIOD. PERLENGTH

THE TOKENS MARKED *TRUE* ARE EXTRANEOUS IN THE FDS
FD NUMBER :001 TOKEN: E00

F

FD NUMBER :002 TOKEN: E00
F

FD NUMBER :003 TOKEN: E00
F

FD NUMBER :004 TOKEN: MOO
F

FD NUMBER :005 TOKEN: MOO
F

FD NUMBER :006 TOKEN: MOO
F

FD NUMBER :007 TOKEN: MOO
F

FD NUMBER :008 TOKEN: MOO
F

FD NUMBER :009 TOKEN: D01
F

FD NUMBER :009 TOKEN: D00
F

FD NUMBER :010 TOKEN: D01
F

FD NUMBER :010 TOKEN: D00
F

FD NUMBER :011 TOKEN: D01
F

FD NUMBER : 1 1 TOKEN: D00
F

FD NUMBER :012 TOKEN: R02
F

FD NUMBER :012 TOKEN: R01
F

FD NUMBER :012 TOKEN: R00
F

FD NUMBER : 013 TOKEN: R02
F

FD NUMBER :013 TOKEN: R01
F

FD NUMBER :013 TOKEN: R00
F

FD NUMBER :014 TOKEN: R02
F

FD NUMBER :014 TOKEN: R01
F

61

FD NUMBER : 1 4 TOKEN: R00
F

FD NUMBER :015 TOKEN: S00
F

FD NUMBER :016 TOKEN: S00
F

FD NUMBER : 017 TOKEN: S00
F

FD NUMBER :018 TOKEN: T01
F

FD NUMBER :018 TOKEN: TOO
F

FD NUMBER :019 TOKEN: T01
F

FD NUMBER :019 TOKEN: TOO
F

FD NUMBER :020 TOKEN: T01
F

FD NUMBER :020 TOKEN: TOO
F

FD NUMBER :021 TOKEN: T01
F

FD NUMBER :021 TOKEN: TOO
F

FD NUMBER :022 TOKEN: T01
F

FD NUMBER :022 TOKEN: TOO
F

FD NUMBER :023 TOKEN: T01
F

FD NUMBER :023 TOKEN: TOO
F

FD NUMBER :024 TOKEN: T10
F

FD NUMBER :024 TOKEN: T09
F

FD NUMBER :024 TOKEN: T08
F

FD NUMBER :025 TOKEN: T10
F

FD NUMBER :025 TOKEN: T09
F

FD NUMBER :025 TOKEN: T08
F

FD NUMBER :026 TOKEN: T10
F

FD NUMBER :026 TOKEN: T09
F

FD NUMBER :026 TOKEN: T08

-62-

F

FD NUMBER :027 TOKEN: T10
F

FD NUMBER :027 TOKEN: T09
F

FD NUMBER :027 TOKEN: T08
F

FD NUMBER :028 TOKEN: T10
F

FD NUMBER :028 TOKEN: T09
F

FD NUMBER :028 TOKEN: T08
F

FD NUMBER :029 TOKEN: C01
F

FD NUMBER :029 TOKEN: COO
F

FD NUMBER :030 TOKEN: C01
F

FD NUMBER :030 TOKEN: COO
F

FD NUMBER :031 TOKEN: C01
F

FD NUMBER :031 TOKEN: COO
F

FD NUMBER :032 TOKEN: C01
F

FD NUMBER :032 TOKEN: COO
F

FD NUMBER :033 TOKEN: C01
F

FD NUMBER :033 TOKEN: COO
F

FD NUMBER :034 TOKEN: C01
F

FD NUMBER :034 TOKEN: COO
F

FD NUMBER :035 TOKEN: C01
F

FD NUMBER :035 TOKEN: COO
F

FD NUMBER :036 TOKEN: Cll
F

FD NUMBER :036 TOKEN: CIO
F

FD NUMBER :036 TOKEN: C09
F

FD NUMBER :037 TOKEN: Cll
F

63-

FD NUMBER :037 TOKEN: CIO
F

FD NUMBER :037 TOKEN: C09
F

FD NUMBER :038 TOKEN: Cll
F

FD NUMBER :038 TOKEN: CIO
F

FD NUMBER :038 TOKEN: C09
F

FD NUMBER :039 TOKEN: Cll
F

FD NUMBER :039 TOKEN: CIO
F

FD NUMBER :039 TOKEN: C09
F

FD NUMBER :040 TOKEN: V01
F

FD NUMBER :040 TOKEN: VOO
F

FD NUMBER :041 TOKEN: V01
F

FD NUMBER :041 TOKEN: VOO
F

FD NUMBER :042 TOKEN: V01
F

FD NUMBER :042 TOKEN: VOO
F

FD NUMBER :043 TOKEN: V01
F

FD NUMBER :043 TOKEN: VOO
F

FD NUMBER :044 TOKEN: P01
F

FD NUMBER :044 TOKEN: POO
F

FD NUMBER :045 TOKEN: P01
F

FD NUMBER :045 TOKEN: POO
F

FD NUMBER :046 TOKEN: P01
F

FD NUMBER :046 TOKEN: POO
F

FD NUMBER :047 TOKEN: P01
F

FD NUMBER :047 TOKEN: POO
F

FD NUMBER :048 TOKEN: P06

64-

F

FD NUMBER :049 TOKEN: P06
F

FD NUMBER :050 TOKEN: P06
F

FD NUMBER :051 TOKEN: P06
F

FD NUMBER :052 TOKEN: P06
F

FD NUMBER :053 TOKEN: P12
F

THE REDUNDANT FDS ARE MARKED *TRUE*
FD NUMBR001
F

FD NUMBR002
F

FD NUMBR003
F

FD NUMBR004
F

FD NUMBR005
F

FD NUMBR006
F

FD NUMBR007
F

FD NUMBR008
F

FD NUMBR009
F

FD NUMBR010
F

FD NUMBR011
F

FD NUMBR012
F

FD NUMBR013
F

FD NUMBR014
F

FD NUMBR015
F

FD NUMBR016
F

FD NUMBR017
F

FD NUMBR018
F

FD NUMBR019

-65-

F

FD NUMBR020
F

FD NUMBR021
F

FD NUMBR022
F

FD NUMBR023
F

FD NUMBR0 2 4

F

FD NUMBR025
F

FD NUMBR026
F

FD NUMBR027
F

FD NUMBR028
F

FD NUMBR029
F

FD NUMBR030
F

FD NUMBR031
F

FD NUMBR032
F

FD NUMBR033
F

FD NUMBR034
F

FD NUMBR035
F

FD NUMBR0 3 6

F

FD NUMBR0 3 7

F

FD NUMBR038
F

FD NUMBR039
F

FD NUMBR040
F

FD NUMBR041
F

FD NUMBR042
F

FD NUMBR043
F

66-

FD NUMBR044
F

FD NUMBR04 5

F

FD NUMBR046
F

FD NUMBR047
F

FD NUMBR048
F

FD NUMBR04 9

F

FD NUMBR050
F

FD NUMBR051
F

FD NUMBR052
F

FD NUMBR053
F

THE FOLLOWING FDS HAVE THE SAME LHS AND ARE THEREFORE GROUPED
TOGETHER INTO PARTTnON CLASSES:

PARTITION CLASS NUMBER 001:053
PARTITION CLASS NUMBER 002:0 4 804 9 050 51052
PARTITION CLASS NUMBER 3:047046045044
PARTITION CLASS NUMBER 4:043042041040
PARTITION CLASS NUMBER 005:03 6037 03 8 3 9

PARTITION CLASS NUMBER 00 6:03 5034 033 3203103 00 29

PARTITION CLASS NUMBER 007:024 025 026 27 02 8

PARTITION CLASS NUMBER 008:023 0220210 20019 018
PARTITION CLASS NUMBER 009:015016017
PARTITION CLASS NUMBER 010:012013014
PARTITION CLASS NUMBER 011:011010009
PARTITION CLASS NUMBER 012:004005006007008
PARTITION CLASS NUMBER 013:001002003

001 002
007 008
013

003
009

004
010

005
011

006
012

THE FOLLOWING FDS ARE REDUNDANT AFTER ADDING THE BUECTIONS TO
THE FD STRUCTURE :

NONE

67

THIS IS THE SCHEMA IN 3NF I

(PAYPERIOD. ENDDATE) > PAYPERIOD . PERLENGTH

(PURCHORD. PURCHORDNO) > PURCHORD . REQPURCH
PURCHORD. ORDERDATE PURCHORD . MORNO PURCHORD . DEPT
PURCHORD. AMOUNT

(PETTYCASH . EMPSEQNO PETTYCASH . SSN) > PETTYCASH . CHRGDEPT
PETTYCASH . AMOUNT PETTYCASH . GN25 ODATE PETTYCASH . MORNO

(VOUCHER. VOUCHNO VOUCHER. SSN) > VOUCHER . CHRGDEPT
VOUCHER . VOUCHDATE VOUCHER . AMOUNT VOUCHER . MORNO

(CONTDETAIL .MORNO CONTDETAIL . TSTART CONTDETAIL . SSN) >

CONTDETAIL. STDHRS CONTDETAIL . OTHRS CONTDETAIL . CHRGDEPT
CONTDETAIL. SPA

(CONTTIME. TSTART CONTTIME.SSN) > CONTTIME.SPA
CONTTIME.TPNW CONTTIME . OTHRS CONTTIME . STDHRS
CONTTIME. MAINMO CONTTIME . DEPT CONTTIME . TSTOP

(TIMDETAIL. MORNO TIMDETAIL . ENDDATE TIMDETAIL . SSN) >

TIMDETAIL. STDHRS TIMDETAIL . OTHRS TIMDETAIL . CHRGDEPT
TIMDETAIL. SPA TIMDETAIL . SEADAYS

(TIMSHEET . ENDDATE TIMSHEET.SSN) > TIMSHEET . SEADAYS
TIMSHEET.SPA TIMSHEET . TPNW T IMSHEET . OTTOTAL
TIMSHEET .MAINMO TIMSHEET . DEPT

(SPAFACTOR. SPACODE) > SPAFACTOR . CODEDEF
SPAFACTOR. SPAFACTR SPAFACTOR . SPADOLLARS

(RATES . RATESTART RATES. TITLE RATES . DEPT) > RATES. DOMHR
RATES. ROTDOT RATES . RATESTOP

(DEPTBUDG . CONTTASK DEPTBUDG . DEPT) > DEPTBUDG . OTHRBUDG
DEPTBUDG . STDHRBUDG DEPTBUDG . DOLLARBUDG

-68-

(MORDNOS .MORNO) > MORDNOS . MORTITLE MORDNOS . CONITASK
MORDNOS.CONT MORDNOS . MORTYPE MORDNOS . FND

(EMPLOYEE. SSN) > EMPLOYEE , NAME EMPLOYEE . TITLE
EMPLOYEE. DEPT

69-

EMPLOYEE TABLE

Column name Type

name char(25)
ssn char(ll)
title char(6)
dept char(4)

Primary key = ssn

MORD_NOS TABLE

Column name Type

mor_no char (6)

mor_title char (60)
conttask char (8)

cont char(4)
mor_type char(6)
fnd char(3)

Primary key = mor_no

Figure 5. Global Schema Employee & Mord_nos

70-

DEPT_BUDG TABLE

Column name Type

cont_task char(8)
dept char(4)
dollar_bdg money (10 , 2

)

stdhr_bdg integer
othr_bdg integer

Primary key = cont_task
dept

RATES TABLE

Column name TYPe

dept char (4

)

title char(6)

dom_hr money (6,2)
rotdot money (6 , 2

)

rate_start date
rate_stop date

Primary key = dept
title
rate start

SPAFACTOR TABLE

Column name Type

spa_code small in

t

code_def char(40)
spa_f actr decimal (4,3)
spa_dollars money { 5 , 2

)

Figure 6. Global Schema Deptjbudg, Rates, & Spafactor

71

TIMSHEET TABLE

Column name Type

ssn char (11)
enddate date
dept char (4

)

main_mo char (6

)

ot_total small int
tpnw smallint
spa small int
sea days smallint

Primary key = ssn
enddate

TIM_DETAIL TABLE

Column name Type

ssn char(ll)
enddate date
mor_no char (6

)

stdhrs smallint
othrs smallint
chrgdept char(4)
spa smallint
sea_days smallint

Primary key = ssn
enddate
mor no

PAYPERIOD TABLE

Column name Type

per_length smallint
enddate date

Primary key = enddate

Figure 7. Global Schema Timsheet, Tim_detail, & Payperiod

72-

CONT_TIME TABLE

Column name Type

ssn
tstart
tstop
dept
main_mo
std_total
ot_total
tpnw
spa

char{ll)
date
date
char(4)
char (6

)

smallint
smallint
smallint
smallint

ssn
tstart

Primary key

CONT_DETAIL TABLE

Column name TYP e

ssn char(11)
tstart date
mor_no char (6

)

stdhrs smallint
othrs smallint
chrgdept char (4)

spa smallint

Primary key = ssn
tstart
mor no

Figure 8. Global Schema Cont_time & Cont_detail

73-

VOUCHER TABLE

Column name Type

ssn char(ll)
vouch_date date
raor_no char (6

)

amount money(8,2)
vouch_no char{9)
chrgdept char (4

)

Primary key = ssn
vouch no

PURCH_ORD TABLE

Column name Type

purch_ord_no char (12)
req_purch char {1

)

order_date date
mor_no char (6

)

dept char(4)
amount money (9, 2)

Primary key = purch_ord_no

Figure 9. Global Schema Voucher & Purch__ord

74-

PETTYCASH TABLE

Column name Type

ssn char (11)
gn250_date date
mor_no char (6

)

amount money(5,2)
chrgdept char(4)
emp_seq_no char (4

)

[

Primary key = ssn
emp_seq_no

GN300 TABLE

Column name Type

mor_no char (6

)

gn300_date date
amount money(7,2)
chrgdept char (4

)

Figure 10. Global Schema Pettycash & GN300

-75-

SUMMARY TABLE

Column name Type

mor_no char (6)
dept char (4

)

cont_task char(8)
cont char (4

)

fnd char(3)
lab money(10,2)
clab money (8,2)
mps money { 9,2)
vouch money(8,2)
cvouch money(8,2)
labstdhr integer
labothrs smallint
clabstdhr integer
clabothr smallint

Primary key = mor_no
dept

Figure 11. Global Schema Summary Table

76-

******* version Control and 2 Phase Commit Algorithm ******

/* This algorithm will demonstrate the steps required by
both the central node (coordinator) and the local node
when an update procedure is called. For this example
we will assume that we are updating the mord_nos table

.

This table is fully replicated at all nodes. */

************** Central Node ***************

/* First obtain network addres s, database name, table,
and table version number from the database.
A "$" at the beginning of any line indicates that
this is an SQL statement. A " $" in front of a

variable indicates that this variable was passed in
from the PERFORM screen. */

$ database results;
$ select full_rep from rep_tbls

where table = $mord_nos;
if (full_rep = yes) /* table is fully replicated at

each node */
then {

S select addr, db_name , table, version
from net_addr , version_tbl
where version_tbl . table = $mord_nos
and net_addr . local_nodid =

version_tbl . local_nodid
into list_of_node_inf o

;

/* The above query will return a tuple for
each local node */

else /* The table is not fully replicated, we will
be updating at just one local node. */

$ select addr, db name , table, version
from net_addr, version_tbl
where net_addr . local_nodid =

$ a s s t_m a n a g er

and ver sion_tbl . local_nodid =

$asst_manager
and table = $mord_nos
into list_of_node_inf o

;

}

/* The above query will return a single tuple
for the local_nodid stored in $asst_manager . */

BEGIN WORK
write update information to transaction log
for (all tuple(s) in list_of_node_info

)

call Procedure update_local_node (update_attrib

-77-

[old_value, new_value] , network_address

,

table_name, version_no. , db_name,
key_attrib [value]

)

/* This procedure now makes remote procedure calls to
local nodes and passes all of the variables it
received minus network_address */

wait { reply

)

*************** Local Node ****************

Procedure update_replicated_table (update_attrib
[old_value, new_value] , table_name, version_no.,
db_name, key_attrib [value]

)

$ select db_name

;

$ select version from version_tbl
where table = $mord_nos

;

if (version [= version_no .) /* local table version number
does not match master table
version number at central
node */

then /* version will have to be brought up to date */

[return (abort_bad_ver xx)
wait (command

)

command (global_abort)
return (ack_abort

)

exit /* Central node will now start another
procedure to update the table with the bad
version number and will then restart the
transaction. */

else /* versions matched */
BEGIN WORK
write update information to transaction log
$ update $mord_nos

set update_attrib = new_value
where key_attrib = value;

$ update version_tbl
set version = version + 1

where table = $mord_nos

/

}

if (update was not successful)
then

[return (abort

)

wait (command

)

command of(globalabort)
return (ack_abort

)

exit
else /* update was successful */

•78-

write ready to transaction log
return(ready)
wait (command

)

**************** Central Node ****************

case (reply of

)

abort_bad_ver xx /* from any node */

write global_abort to transaction log
send command { abort

)

wait { reply)
reply of (ack_abort) /* assuming no lost

messages */

ROLLBACK WORK /* undoes transaction */

call Procedure version_update (network_address

,

db__name, table_name

,

master_version_no
.

,

local_version_no
.

)

/* Access transaction log at central node
and locate missing transaction(s) . */

read transaction log /* extract missing
transactions */

/* Make remote procedure call to procedure
bad_version (1 phase commit) at local
node. Pass the missing transactions. */

wait (reply

)

reply of (ack_transact)
/* 1 phase commit

was successful */

return (ack_ver_updated) /* to procedure
update_local_node */

exit
write "Updating Old Version" /* to PERFORM

screen */
wait(reply) /* from version_update procedure */

reply of (ack_ver_updated)
restart transaction ;

;

abort /* from any node */

write global_abort to transaction log
send command (abort

)

wait (reply)
reply of (ack_abort) /* assuming no lost

messages */
ROLLBACK WORK /* undoes transaction */

/* If this was first attempt to update,
restart transaction, else write
" Update Aborted by Node (s) xxxx"
to PERFORM screen. */

79-

no reply /* timeout expired: from any node */
write global_abort to transaction log
send command (abort

)

wait (reply)
reply of{ ack_abort

)

ROLLBACK WORK
/* If this was first attempt to update, restart

transaction, else write "Update Aborted by
Node (s) xxxx" to PERFORM screen. */

ready /* from all nodes */

$ update version_tbl
set version = version + 1

where table = $mord_nos;
/* The above increments mord_nos ' version

number by 1 for each node including the
central node's tuple */

write global_commit to transaction log
send command (commit)
wait (reply)
reply of (ack_commit

)

COMMIT WORK
exit

***************** Local Node *****************

if (command = abort

)

then
{ ROLLBACK WORK
return (ack_abort

)

exit
else /* command was commit */

COMMIT WORK
return (ack_commit

)

}

exit

END of Version control and 2 phase commit algorithn

-80-

THE DESIGN
OF A

DISTRIBUTED DATABASE
AND

A REPLICATED DATA MANAGEMENT ALGORITHM

by

Steven J. Van Buren

B. S., Michigan Technological University, 1972

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

A design for a distributed database titled the Financial Control System is described.

The purpose of the Financial Control System is to track incurrences on Federal

contracts managed by the Ocean Systems Organization of AT&T Technologies'

Federal Systems Division. The distributed database is designed to be implemented

using a commercial centralized database management system (DBMS) as a

component of the distributed system. An algorithm designed to manage replicated

data within the distributed database is presented. The algorithm integrates a version

control scheme with a two phase commit protocol.

