
Imail: A DBMS for Electronic Mail

by

IV

KATRYN B. INKLEY

B. Phil, Miami University, 1979
Oxford, Ohio

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

Major Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33364233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AllEOfl 201b13

i

CONTENTS

1

.

Introduction 1

2

.

Literature Review 3
2 .

1

Introduction 3
2.2 The development of electronic mail 4
2 .

3

The need for standards 7
2 . 4 The development of standards 14
2.5 Developments based on the standards 16

2.5.1 Connecting two CBMSs 16
2.5.2 Enhancing the UAs 17
2.5.3 Incorporating a database 17

2.5.3.1 Imail 17
2.5.3.2 Archiving service 19
2.5.3.3 Application to the

military 22
2.5.3.4 Computer conferencing 23

3. Implementation of imail 2 6
3 . 1 Introduction 2 6
3.2 Overview 26
3.3 The user's view of imail 27
3 . 4 Why use imail? 31
3.5 The imail environment 31

3.5.1 Cooperation between imail and Unix
mail 34

3 . 6 The design of imail 35
3.6.1 Flow control 35
3.6.2 Contents of the database 3 7

3.6.2.1 Some limitations of
INGRES 37

3.7 Summary 38

4. Conclusions 39
4 . 1 Enhancements to imail 39
4 . 2 Non-textual messages 42
4.3 Directions of development for electronic

mail systems 4 2

LIST OF FIGURES

Figure 2-1. Components of a CBMS on a single
machine 8

Figure 2-2. Components of a CBMS on multiple
machines 9

Figure 2-3. Architecture of a secure mail
system 23

Figure 3-1. Examples using the imail
functions 2 9

Figure 3-2. Relationship of imail and mail
environments 35

LIST OF TABLES

TABLE 2-1. Characteristics of Computer Based
Message Systems 6

Imail: A DBMS for Electronic Mail

1. Introduction

Electronic mail is an area that is advancing rapidly in

the field of computer science. In 1984, the

International Telegraph and Telephone Consultative

Committee (CCITT) published a set of recommendations

that established the standards upon which most new

electronic mail systems have been based. The

recommendations specified a minimum level of uniformity

among systems and serve as a framework upon which

enhancements to a basic mail service have been based.

One of these enhancements is incorporating a database

management system into electronic mail. One such

system, called "imail", was developed to assist a user

in organizing and viewing his mail messages. The main

focus of this paper is on the merits and implementation

of imail. Prior to this, electronic mail is discussed

in general so the reader will be familiar with the work

being done in this area.

This paper is organized into four chapters. The

introduction highlights the main issues. Chapter two

is a review of literature that discusses the standards

of electronic mail and a variety of systems using those

standards. The issues concerning the development of

imail are discussed in chapter three. The final

chapter reviews enhancements to imail, and future work

with databases and electronic mail.

Literature Review

2.1 Introduction

The focus of this project was to integrate a database

management system (DBMS) with electronic mail.

Although the details of the project will be discussed

later, a few items should be noted here. The system

that was developed (called "imail") is an add-on to an

already existing mail system. It aids the user in

processing mail messages on the receiving end by

storing them in a database and allowing queries on

them. The database used is INGRES* and the mail system

is the standard mail facility that is provided with the

Unix+ operating system.

A DBMS, in general, is a set of tools that assists

users in managing different collections of data.

Before DBMSs became popular, all users maintained their

own sets of data and were responsible for keeping them

up to date. This led to much duplicated data as each

user stored all the data that might be needed for a

task. For example, an employee's telephone number may

* INGRES is a product of Relational Technology, Inc.
(RTI)

+ UNIX is a registered trademark of AT&T Bell
Laboratories

have been stored three different places in one

"database". Inconsistencies arose when the telephone

number changed, but was updated in only one or two of

the data files. A good DBMS eliminates this data

duplication while allowing each user to see the full

set of data that is needed to do a specific job. If it

is properly laid out, a database can contain

information for more than one user with more than one

purpose. Each user sees only the data that is needed

for the task at hand, and can be assured that it is up

to date with the rest of the data in the database.

INGRES is one of the many DBMSs that is available

commercially. It is based upon a relational database

model and allows a user to easily conceptualize how to

retrieve or update all the data related to the current

task. Chapter three justifies the use of a DBMS and

the selection of the INGRES DBMS.

The rest of this chapter discusses the concept of

electronic mail, its current standards in the industry,

and some of the research being done to extend its

functionality.

2 .2 The development of electronic mail

This author believes that electronic mail had very

humble origins. It probably began with two people who

5 -

worked on the same project, but had somewhat different

working hours. They found they frequently needed to

leave messages for the other and preferred to do so

on-line rather than with notes taped to the face of the

other's terminal. And so they agreed on a file name

and each would check for messages in the file when

logging in. But it became a nuisance to check the file

when there were no messages, so one of them wrote a

small routine that was automatically invoked when

logging in. All it did was write a message to the

terminal if the file existed. Thus electronic mail was

born.

As the idea spread, more and more people began to do

similar tasks. Each set of people had their own file

names and some of the routines to check the files were

more elaborate than others. But the concept was there,

and it was that the computer could be used as a

mailbox, an electronic mailbox, for its users.

It soon became apparent that if everyone used a common

naming convention for the files, one routine (or a set

of routines) could be written to check and read the

files for each individual user. Another set of

routines could assist the user in writing mail so that

each person did not need to know the naming convention

for the files. These routines themselves became more

and more complex to allow the user greater flexibility

in writing and reading the mail messages.

Suppose now that the members of two different

organizations, or perhaps corporations, wished to send

mail to one another. Each had their own routines and

conventions for sending mail among themselves. But if

they tried to send mail to each other, the receiving

system might not have known how to interpret the

message that was built by the originator. And so there

quickly became a need for standards across the industry

that directed the format, but not the content, of

electronic messages.

ORIGINATING END RECEIVING END

+ Usually people

+ Holds message until
recipient system
is available

+ Aids in developing
messages

+ Usually people

+ Stores message until
recipient chooses to
process it

+ Aids in processing
messages

TABLE 2-1. Characteristics of Computer Based Message
Systems "

Thus, from some humble origins, electronic mail was

continually enhanced until it became almost a separate

field, called either a computer-based message system

- 7

(CBMS) or a message handling system (MHS) . While there

are many different versions of CBMSs, they all must

adhere to several basic concepts to be considered a

CBMS. Each involves an originator and a recipient that

are usually people or may also be processes, but they

may not be specific terminal addresses. If the

recipient system is not available when the message is

sent, the originator's system holds the message until

the recipient's system becomes available or a time-out

occurs. Once the recipient CBMS receives the message,

it stores that message until the recipient chooses to

process it. The CBMS must include aids for the

originator in developing the message and to assist the

recipient in reading it [FIP]. Table 2-1 provides a

summary of the characteristics of a CBMS.

2.3 The need for standards

The effectiveness of any CBMS depends primarily on how

many people use it. This implies that mail systems must

be able to interconnect to one another in order to

maximize the use of each one of the individual systems.

To accomplish this, the interface between any two local

systems must be standardized. This does not imply that

the two systems must process their messages in the same

way. Indeed, their user interfaces, and the complexity

of the options offered to the users may be entirely

different, but when the message is ready to be sent,

all CBMSs must deliver it in the same format. Redell

and White [RDL] addressed this problem of

interconnection when they published a general

architecture for CBMSs.

MESSAGE TRANSFER
SYSTEM

USER
AGENT

USER
AGENT

>|

SUBMISSION DELIVERY

Figure 2-1. Components of a CBMS on a single machine

Figure 2-1 shows the different components of a CBMS

according to the model developed by the International

Federation for Information Processing (IFIP) [RDL] . A

User Agent (UA) provides the interface to the user. It

accesses an editor so the user can prepare a message

and submits that message to the Message Transfer

Service (MTS) . The MTS acts as an "electronic post

office" by transferring the message from the

originating UA to the destination UA which accepts and

stores the message. Here the UA also provides the

interface so the user can read and process the message.

MESSAGE TRANSFER
SYSTEM

ORIGINATOR '

S

AGENT
RECIPIENT'S

AGENT

->l

SUBMISSION RELAYING DELIVERY

Figure 2-2. Components of a CBMS on multiple machines

Figure 2-1 is an example of a CBMS on a single machine.

Figure 2-2 shows the added complexity of crossing over

machine boundaries. The MTS must consist of several

Message Transfer Agents (MTA) , which cooperate to

provide a store-and-forward path between any two UAs.

A UA submits a message to a nearby MTA. This MTA

relays the message to another MTA until the recipient's

MTA is reached, whereupon the message is delivered to

the recipient's UA.

Redell and White point out that for this system to

work, each message must adhere to a standard format.

Because the content of a message can vary so greatly

from message to message, the CBMSs make use of a

concept similar to that of a post office. The body of

each message (the letter) is placed inside an

10 -

"envelope" which contains the recipient's

identification and address. As with the post office,

the MTA needs to look only at the "outside" of the

envelope to see where the message should be sent. The

envelope may change between the different MTAs

depending on what information is needed to complete the

delivery from that point. Because it is clearly

separate from the envelope, the message body itself is

left untouched. The body can be any type of digital

information, intended for either humans or machines.

Despite the simplicity of the envelope architecture,

there are many problems associated with interconnecting

two or more networks. The first is the functional

differences of the local MTAs. One of them, for

example, might provide a confirmation of message

delivery while another does not. The one that does

would always expect to receive this confirmation back

whenever it sends a message. But since this may never

be received from some of the other MTAs, it could

result in the first MTA re-sending the message. A

standard that provides the functionality of the

interface would eliminate these kinds of problems. The

standard must include only those features that are

essential for the functionality and be general enough

to allow for flexibility as systems progress and become

more sophisticated.

11

It was already mentioned that as long as the message

envelope is readable by all the MTAs and UAs, that the

message body could be of any type of data format.

However, problems arise when, for example, numeric data

is being passed from a 32 bit to a 16 bit UA. This

raises the guestion of who should convert the messages

and to what. One approach is to have all UAs convert

all their messages to the "lowest common denominator"

[RDL] . This way, all UAs, no matter how simple, would

be able to interpret the messages. This ensures

consistency, but keeps the more sophisticated UAs from

taking full advantage of the CBMS, even when they

communicate with one another.

A second approach suggested by Redell and White is

called the "universal superset". Here, the standard

format is so general that all the UAs can represent

their data. This sacrifices consistency of service,

but allows sophisticated UAs to use the electronic mail

system to the fullest extent. If there is an

intersystem directory that lists the capabilities of

each UA, then the originator UA can translate the

message before it sends it if the recipient UA does not

recognize the format.

A problem with interconnecting CBMSs that may be more

readily apparent to the user is that of naming

- 12

conventions. Different mail systems identify their

users with a wide variety of naming patterns. It would

be ideal if all mail systems used an international

naming convention. However, since this is not likely

in the near future, a more easily implemented solution

must be found. One suggestion that is being used

frequently now is to use a hierarchy of two-part names:

the high order part contains the domain, and the low

order part can be interpreted only within that domain

[RDL] . Each MTA needs to recognize only the domain

name to send the message on to the next MTA.

A problem that is related to naming conventions is that

of distribution lists. Each MTA must be able to

recognize the names within the distribution list of any

users for which it is responsible. All the recipients

should be handled uniformly and if there are nested

distribution lists, then some mechanism must be

developed to prevent recursive cycles from occurring.

Perhaps the problem with the most potential for

dissatisfaction is that of security. Users must be

confident that their messages go to the intended

recipient and to no one else. They also must feel

secure that no one can forge their name and send a

message in their name. And conversely, recipients must

be confident that the message they receive is actually

- 13

from the person marked as the originator. This is an

area that will need to be addressed continually; as

electronic mail becomes more sophisticated, the

security measures will also become increasingly

complex.

I. Cunningham [CUN] noted several additional factors

that needed to be considered in developing the

standards for a message-handling system.

« the standards had to support a range of messaging

applications of which interpersonal messaging was

the most important;

« the standards should not constrain future

evolution;

* a variety of institutional domains (e.g. public

and private) would be involved;

* regulatory constraints vary between countries;

* internetworking with previously existing message

services (e.g. Telex and Teletex) were needed;

« different types of physical configurations would

be used to implement the CBMS.

- 14 -

2.4 The development of standards

In the late 1970' s and early 1980 's, several different

organizations attempted to address the problems

mentioned above. A considerable amount of groundwork

was laid by the International Federation for

Information Processing (IFIPS) . The International

Telegraph and Telephone Consultative Committee (CCITT)

used the IFIPS results to develop a standard known as

X.400. CCITT' s Study Group VII approved the

recommendations in 1984. All of the conventions and

models mentioned in this paper follow the X.400

Recommendat ions

.

The National Bureau of Standards (NBS) also addressed

the issue of interconnecting mail systems. In addition

to following the IFIPS model, they published standards

for the format of the messages. When these

specifications were being developed, there were three

major design perspectives that helped shape the format

of the messages [FIP]. The first was viability; the

developers of the standards used concepts that were

already working. Thus the final product was something

that could actually be implemented, rather than just a

theoretical idealism. The second was compatibility;

they used concepts from existing CBMSs. Many CBMSs

already had functions and components similar to those

required by the standards and therefore needed to make

15

only a few changes to meet the full specifications.

The third was extensibility. The objective of the

group here was to define a broad range of message

content components, and then to make only an elementary

subset of them actually required. This allows a simple

CBMS to implement the message format specification

while allowing for more sophistication in other and

future CBMSs.

The overall objective of an electronic mail system is

to send messages from an originator to a recipient. A

message is simply one unit of communication that

consists of a series of components called "fields".

Fields can be described according to their meaning

(semantics) or according to the format required for

them in a message (syntax) . The syntax of each field

is best left to a fully detailed description of the

standard, [FIP] however a basic definition of each

field in the NBS specifications is given in Appendix A.

The fields are listed by categories: required, basic,

and optional. Required fields must appear in every

message; basic fields must be recognized and processed

by all CBMSs; and optional fields need not be supported

by a CBMS but, if supported, must be processed

according to the meanings defined by the message format

specification.

16

In order not to limit the usefulness and applicability

of the standards, they do not address:

e functions or services provided to a user

« storage or format of message contents in a CBMS

• message transfer system protocols

« message envelopes (headers used by the transfer

system)

* how originators and recipients are identified.

2.5 Developments based on the standards

2.5.1 Connecting two CBMSs The objective in

developing the X.400 Recommendations was to allow

independent CBMSs to communicate. The ultimate test of

this would be to develop two separate systems, ideally

without any prior knowledge of the other. This is

exactly what happened in 1982-1985. Kawaguchi et. al.

[KAW] reported on the development of a CBMS in Japan

and one in British Columbia, both starting in 1982.

Both development teams were consistent with the CCITT

X.400 Recommendations and accidentally learned of the

other in the Spring of 1984. After several discussions

on the specifications for interconnection, a test was

performed from January to March of 1985 and messages

were successfully sent and received. The success of

this test demonstrates the usefulness of the standards.

17 -

2.5.2 Enhancing the UAs The X.400 Recommendations

established the protocols of the message transfer

service between two systems, without specifying the

exact functionality of the User Agent. A great deal of

effort has been put forth on enhancing both the

originating and recipient user agents. One of the

areas that has received much attention is that of

distribution lists. Because it is easy to send

electronic mail, people tend to send their messages to

"anyone that might be interested". This results in

people receiving messages about which they are only

vaguely interested. One way to resolve this is to set

up distribution lists that filter the list of potential

recipients, searching for those that are specifically

interested in the topic of the message. J. Palme [PL1]

and T. Malone et. al. [MAL] have reported on research

in this area.

2.5.3 Incorporating a database

2.5.3.1 Imail The work being done on the distribution

lists is an example of an enhancement to the

originator's UA. The work for this imail project

focused on the recipient's UA. Both of them strive to

achieve similar results, and that is to aid the user in

filtering and organizing the messages so that those of

importance can be readily recognized. Imail stores the

messages a user receives in a database. The user can

- 18

then perform a set of predefined queries on the

database. This set consists of queries that can be

made about all or part of the fields that are either

"required" or "basic" in the NBS specifications.

(There is one exception to this, and that is the

"reply-to"field. This field, however, is used for

outgoing messages.) The queries that are permitted are:

« retrieve all messages by a particular author

« retrieve all messages with a particular keyword in

the subject

« retrieve all messages with a particular keyword in

the text

« retrieve all messages with a particular person in

the "copy-to" list

« retrieve all messages received relative to a

particular date and time

<B combinations of the above

The messages are retrieved in the standard mail format

so the user can process the messages in the manner

allowed by the Unix mail command. Imail permits the

user to specify a subset of messages to be viewed, and

then does the filtering automatically.

- 19 -

Imail also provides for a great deal of additional

flexibility for a user familiar with INGRES commands.

The messages are stored in an INGRES database so the

user may develop routines to manipulate them in ways

not provided by imail.

2.5.3.2 Archiving service The concept of treating a

mail message as a database record is also used by M.

Tschichholz [TSC] . One of his objectives is to add an

archiving service to the User Agent so it can relate

messages to one another. This can be used on both the

receiving and originating end.

Tschichholz refers to a document as an object that is

being prepared for output. Messages are objects which

have been transmitted and received and a message may be

comprised of more than one document. An object (i.e.

message or document) can be archived for long term

storage into one or more "folders", which may be

thought of as "in-baskets" and "out-baskets". Each

user may access his own archives only, and may organize

his folders himself. Objects that are no longer needed

may be deleted by the user only.

A document contains the text of a message and the

following header fields:

« "message id"

20

<B "author"

* "title"

e "revision of"

« "reference to"

e "in reply to"

The "revision of" field shows the history of a document

by maintaining a pointer to the original document. The

"reference to" field contains a list of other documents

and may be updated by the user. When the user answers

a message, the identity of the message to which he is

referring is indicated in the "in reply to" field of

the header.

In addition to those fields, the user can assign to the

objects:

<B keyword (subject)

« textual remarks

« expiration date

« re-submission date (re-submitted objects will be

entered in the "in-basket" folder again)

a explicit references to other objects

- 21

The archiving system assigns the object length and the

time and date the object is stored. It allows an

object to be archived into several folders and keeps

track of all entries.

The user can ask to "leaf" through a folder and can

view the objects in any of the following orders:

« chronological according to

t> production date (for documents)

« reception time (for messages)

« deposition time

« alphabetical by one of the header attributes.

Any of the sorting orders may be viewed forwards or

backwards and the user may easily alternate between

listing and displaying the objects. The user may also

search in one or more folders for archived objects.

The available search criteria are all the relevant

header and envelope attributes (i.e., author or title)

as well as information produced during the archiving of

the objects (i.e., keyword, filing time). Searches for

arbitrary character strings within the text are allowed

as well.

22 -

Besides search functions, the User Agent provides

functions for comparing objects. The basis for

comparing messages is the list of documents found in

each message. All equivalent messages can be

identified as well as those that are subsets of

another.

The system developed by Tschichholz is more complex

than imail and thus it offers more options to its

users. These options mainly involve the comparison of

objects. But the archiving service and imail are

similar in many ways. Both of them allow the user to

easily switch from listing to displaying messages.

Both allow for searching on header fields and arbitrary

character strings in the message text. Imail does not

make use of folders to organize the messages, but it

does allow the user to set up a default ordering of

messages. Once imail has been invoked, the user can

dynamically select any subset view.

2.5.3.3 Application to the military The concept of

using a database for the recipient's User Agent is

being employed for an entirely different application

than that mentioned above. T. Lunt [LUN] is using a

database to maintain a secure mail system for the

military. The architecture she is using is independent

of any particular database or database architecture.

Instead, there is a layer of "trusted" software that

23

translates requests into database queries and

operations. Figure 2-3 shows the basic architecture.

user interface

untrusted military message system

trusted DBMS interface

untrusted DBMS

Figure 2-3. Architecture of a secure mail system

Her message system is similar to imail in that they

both associate one message with a database record and

have separate fields for the header information.

However, to make the system secure, she must also add a

classification, or military authorization, to each

message. This is based on internal database files that

map user identifiers to a classification. The trusted

DBMS interface then uses the classification to limit

the queries that may be made on the database.

2.5.3.4 Computer conferencing One of the most

widespread uses of a database in conjunction with a

CBMS is with computer conferencing systems. A

"conference" commonly serves one of two purposes. The

first is to provide a group mail service whereby a

self-selected set of people can enter and read public

- 24

messages about a given topic. The other is to build a

conference that will replace the need for the

participants to physically meet together.

Unlike a CBMS, there is no "hard and fast" definition

of the components and functions of a conferencing

system. In general, they allow a user to "subscribe"

to a particular conference (s) , or topic(s). The user,

then, may read all the messages posted to that

conference by any other subscriber and may, in turn,

add his own messages. He may even choose to "whisper"

a message to another participant without being

"overheard" by the other members [TWN] . The messages

are stored in a large, usually centralized, database,

and are not under the individual control of the user

since they are considered to be part of the system

resource.

Normally, when a user logs into a conference, he is

notified of any new messages that have been posted

since he last logged in. At any time, he may request

to see a list of all the entries in the conference. In

this way, new subscribers can be brought up to date

quickly about the events that occurred before he

participated. Entries within a conference are often

structured into sets relating to particular subjects.

The user interface generally allows actions to be

- 25

applied to sets of entries, as well as to individual

entries (e.g. skip all entries in the current set)

[KIL].

Because the messages are stored in a database,

conferencing systems tend to exist only on large

centralized facilities [KIL]. But it is the DBMS that

keeps track of which messages are new to a user, which

messages relate to one another and who the current

subscribers are. It is the database that makes the

conferencing systems possible.

Conferencing is just one of the many ways databases can

be used to enhance electronic mail. Other applications

strive to increase the functionality of the User Agents

for individual users. These, and other advances, have

expanded the concept of electronic mail beyond its

original intent such that it is now a basic tool of the

industry.

26

3 . Implementation of imail

3 .

1

Introduction

The imail project focused on enhancing a recipient's

User Agent for a local mail system. This chapter

describes what that enhancement is, the environment in

which it was developed, and how it was implemented.

3 .

2

Overview

The Unix "mail" command is a powerful electronic mail

tool. The editing capabilities which the originator

can use to build a message are quite impressive, and

the processing that can be done on a message after it

is received are equally varied. Yet mail currently

does not allow a user to "preprocess" messages before

viewing them. The focus of this project is to

integrate a database management system (INGRES) with

the functions of mail in order to allow the user

greater flexibility in processing mail messages.

The set of routines that comprise the enhancement to

mail is called "INGRES-mail" or simply "imail". Imail

allows the user all the functionality of mail in

addition to the ability to query the database for

specific messages. The user can also dictate in

advance the order in which the messages will be

displayed by setting up priorities which are based upon

- 27

the author, a member of the "carbon copy" list, the

date in the message, or a keyword in the subject

heading or text. Those messages with the highest

priority will be displayed first, followed in order by

those of decreasing priority.

In addition to providing increased functionality for

the mail command, imail establishes a platform for the

user to write his own routines to manipulate his mail

messages. The user is thus allowed direct access to

the stored mail messages. This is discussed further in

the section about the imail environment and in chapter

four.

3 . 3 The user's view of imail

When a user wishes to read or process the messages in

his mailbox, he may invoke imail rather than mail.

Imail sorts all the messages according to an order the

user has described, and then executes mail on those

messages. The user may then use the standard mail

commands to respond to, save, delete, etc. any of the

messages. Every command allowed by mail may be

executed within the imail setting. When the user

"quits" the mail command, he is brought back into the

imail environment.

Once in the imail environment, there are many functions

- 28 -

the user may select:

• search for messages from a particular author

* search for messages with a particular keyword in

the subject

« search for messages with a particular keyword in

the text

« search for messages with a particular person in

the "copy-to" list

« search for messages relative to a particular

date/time

• combinations of the above.

The user may select the output from each of the above

functions to be in one of two formats. The first is a

simple listing of the author, subject, and date of each

of the matching messages. The second creates a subset

of all messages that match and then invokes mail on

that subset. As before, the user may perform any

standard mail function and upon quitting is again in

the imail environment.

There are two other functions that imail provides, the

first of which is to reset the default order of the

messages. The messages of all imail users are sorted

- 29

enter: A(ll) , T(emp sort), R(eset sort order),
L(ist current sort order)

,

S(pecial search), K(ill me), or Q(uit for now)
> s
enter A(nd) , o(r), (,),
or one of the following and then the value:
F(rom), C(c), S(ubj), M(sgtext)

,

D(ate) (yy mm dd hh mm), Q(uit)
> subj paper
Enter (h) to see headers only, (m) to invoke mail,
(q) to quit request: h

beth Tue Jun 7 13:45:12 1988 Re: paper

beth Thu Jun 9 07:46:05 1988 Re: paper

vanburen Mon Jun 13 09:27:04 1988 paper

3 messages found.

enter: A(ll) , T(emp sort), R(eset sort order),
L(ist current sort order)

,

S(pecial search), K(ill me), or Q(uit for now)
> r
What do you want to sort on: A(uth), S (ubj) , C(c),
T(ext), or D(ate)? >
What do you want to be shown first?
Use (;) to quit > rich
next? > virg
next? > beth
next? > ;

sorting on 3 values

enter: A(ll) , T(emp sort), R(eset sort order),
L(ist current sort order),
S(pecial search), K(ill me), or Q(uit for now)
> q

Figure 3-1. Examples using the imail functions

by the date of the message until the user specifically

overrides this with a new ordering. This new order

then remains in effect until the user requests to

change it. Once this function is selected, the user is

30

prompted for the sort key. Date of the message,

author, member of the carbon copy list, a keyword in

the subject heading, or a keyword in the text are all

valid sort keys. All of the options, except the date,

require additional prompting for each of the keywords

used for sorting. As an example, assume the user

selected a sort by the authors "wood", "grebe", and

"black". The next time imail is run, all the messages

from "wood" are at the top of the list, followed by

those from "grebe" and then those from "black". The

messages from any other authors appear after those from

"black". The secondary key used for sorting is the

date of the message.

The last function of imail allows the user to request

mail using a different sorting order but without

changing the default order. The messages are sorted

immediately and then mail is invoked with the new

order. As before, any of the mail commands are

permitted, and upon quitting mail, the user is still in

imail. The sorting options for this function are the

same as those of resetting the default order.

Figure 3-1 shows two examples of using imail. The

first example is a compound request for all the

messages that are from "rich" or those that are both

from "beth" and have the word "paper" in the title.

31

The second example shows how to set the default sort

order. Additional examples can be found in the Users'

Manual in Appendix D.

3 .4 Why use imail?

Imail is not a useful tool for those people who keep

only a few messages at one time in their mailbox. It

is, however, appropriate for those people who prefer to

store their messages in their mailbox until the

messages are no longer relevant. Imail allows them a

method to keep track of all their messages and to

easily select those that are of importance at the

moment. Essentially, it allows them to use their

mailbox as a miniature DBMS.

3.5 The imail environment

Imail was designed to run on the Unix operating system

for a very practical reason. The project was developed

at Kansas State University on a VAX* 11/780. This is

the machine that most students and instructors commonly

log into and hence the machine most frequently used for

sending mail messages. To make imail accessible to

many people, it was developed with Berkeley Unix 4.2,

the operating system on the VAX.

* VAX is a trademark of Digital Equipment Corporation

32

One of the reasons imail was developed was to make the

contents of a user's mailbox available to him in many

different ways. This, coupled with the capabilities of

imail listed in Section 3.3, required storing the mail

messages outside the user's mailbox. It did not,

however, necessarily mandate using a database

management system. Another option available was to use

a file processing system.

Imail could have been implemented with a file

processing system by storing the user's mail messages

in one or more files. The access to these files

probably would have been faster than going through a

DBMS. It also would have required less space. But

these advantages fade when compared to the ease of

using a DBMS for this and future work. It is important

that users be able to easily access their stored

messages outside of the imail environment. If a file

processing system were used, each of these users would

need to know the exact layout of the file, including

field names and data types. If, in the future, any

additional fields are added to the stored message, (for

example, a field for the circulate-to list) then any

routine that reads the files would need to be updated

to reflect the new structure definition. Because this

is not backward compatible, a great deal of

coordination would have been needed among the users

33

when an update was made to the structure definition.

On the other hand, by using a DBMS, a new field that is

added has no effect on previously written routines.

They can continue to function exactly as they did

before the database layout was updated. Furthermore, a

DBMS hides the exact structure of the data from the

user, who needs to know only the names of the fields

and their type, but not their relative order. And, the

user needs to access only those fields of interest to

him, rather than the entire record.

INGRES was selected as the DBMS for imail for several

reasons. The first, although important, is perhaps

mundane: INGRES is supported on the VAX. But INGRES

is a good choice also because it has a relatively

simple user interface. Since there may be multiple

users developing their own routines in the future, it

is important that the data be easy to conceptualize and

easy to access. Furthermore, INGRES allows even greater

flexibility for the user in that it can be utilized as

either a stand-alone system or may be accessed within

an application program (this interface is known as

Embedded Query Language, or EQUEL) . For the imail

project, EQUEL was accessed from programs written in

the C programming language.

34

3.5.1 Cooperation between imail and Unix mail When

people are faced with the prospect of using a new

system, there is usually some degree of hesitation.

Two questions frequently asked are: "Is it hard to

learn?" and "Do I have to give up the old way

entirely?" One of the advantages of using imail is

that the answer to both these questions is "no."

Imail is easy to learn because it cooperates with Unix

mail. There are only a few imail commands that must be

learned and then when the user wishes to view his mail

messages, he is put right back into the old comfortable

mail environment. Thus even in the midst of imail, the

user will have a sense of familiarity.

The user may elect to alternate his use of imail with

the mail command. This is permitted with one note of

caution. Once imail retrieves a message from the

user's Unix mailbox, the only way to delete it is

within the imail environment. Assume a user calls

imail and is shown three messages. Then he quits

imail, calls mail, and deletes one of the messages.

The next time he calls imail, he will again see all

three messages because the message had been deleted

from the Unix mailbox only and not from the imail

database.

35 -

3 . 6 The design of imail

3.6.1 Flow control Appendix B shows a high level flow

control diagram of the imail process. Figure 3-2 shows

how the imail and mail environments interact with one

another.

. MAILBOX .

/ \

(A) (D) IMAIL

\ /

->.
• (B)

I
. IMAIL

DB .<
TEMPFILE

1

Figure 3-2. Relationship
environments

of imail and mail

Several things happen when a user invokes imail.

First, imail fetches the default sorting order out of

the database. Then it retrieves all the messages that

were stored for that user in the database. If there is

no entry in the database for this user it must be the

first time he has invoked imail. An empty relation is

created and the sorting order of new messages will be

based upon the date of the message. Processing then

3 6

continues as it does for experienced users in that

imail checks for new messages in the user's mailbox (A

of Figure 3-2). At this point, the user's mailbox is

emptied so that if any new messages arrive during the

imail session, the user can be notified when he exits

imail. Once imail has all the current messages, they

are sorted according to the user's default order, put

in a temporary file, and sent to the standard mail

command (B of Figure 3-2) . Any of the mail commands

may be run, including deleting a message. When the

user quits mail, the messages that were deleted from

the temporary file are deleted from the imail database

(C of Figure 3-2). Any of the imail commands may be

called and with each of them, except for resetting or

viewing the default order, the same steps are executed:

the proper subset of messages is identified and stored

in a temporary file, the temporary file is sent to the

mail command, and the messages deleted from the file

with mail are deleted in the imail database.

When the user quits imail, all the messages remaining

in the database are sorted by date and copied back into

the user's mailbox (D of Figure 3-2). Any new messages

that may have arrived are preserved and the user is

notified of the new mail.

37

3.6.2 Contents of the database The imail database

consists of many different relations. There is one

master relation that contains an entry for each imail

user, his default sorting order, and the last time he

used imail. There is also one relation per user that

stores all the mail messages that have been retrieved

from that user's mailbox. As the messages are

retrieved from the mailbox, they are broken down into

their component parts (subject, author, text, etc) and

these individual fields make up the record in the imail

database.

3.6.2.1 Some limitations of INGRES INGRES places

constraints on the length of a field and the length of

a record. This meant that most mail messages had to be

broken up into several records and linked together.

The effects of this are noted in the user's manual.

INGRES also does not handle variable length fields. To

allow for this, truly variable length fields (e.g. cc-

list) had to be treated in such a way that they could

grow quite large. This was accomplished by allowing

them to fill an entire record, if necessary.

INGRES does not recognize a small subset of special

characters (e.g. "control L") and will not store them

in the database. These characters must be "masked"

before they are stored in the imail database.

38

3.7 Summary

Imail is a useful tool for people who use their mailbox

to store messages. The pre-sorting function allows

them to consistently give a high priority to messages

from particular authors. Then regardless of how long

their mail list grows, the messages from these authors

always appear first. At any time, a user can re-sort

the list or ask for a subset of messages. If these

functions are too limiting, a user may access the

messages in the imail database directly. Imail was

designed to allow the user a great deal of flexibility

in processing his mail messages.

39

Conclusions

4.1 Enhancements to imail

The functions of imail extend the capabilities of Unix

mail. Those functions, while useful in and of

themselves, are not the primary motivation for

developing imail. Its greater usefulness lies in the

basis of imail itself and that is the concept of

storing mail messages in a database. With this

accomplished, it is now possible to use the database to

go beyond simply allowing a user to organize his mail

messages according to the order best suited for him.

One possible enhancement to imail is to allow users to

add comments to the mail messages in his mailbox. This

would enable him to keep any notes about the message

right there with the message so that both could be

viewed at the same time. There are several ways this

could be implemented. One is to keep these comments

separate from the associated Unix mail message and view

them through imail only. A second implementation

technique is to actually append them to the mail

message.

Another enhancement to imail is to allow the user to

link one message with another. Every time one message

is accessed, all the other messages linked to it could

40 -

automatically be available for viewing as well. In

essence, this would permit the user to set up his own

keyword for each message. This keyword could also be

used as one of the options for fields upon which to

base a sort. A keywords option could be developed into

a simplified version of the archiving service by

Tschichholz mentioned in chapter two. His system,

though, was developed for both the receiving and the

originating User Agents; imail was originally intended

for the receiving UA only.

An enhancement that begins to cross the boundary into

the originating UA is that of assisting the user in

developing distribution lists. Imail could be modified

to find messages about a given topic and to prepare a

list of the authors of those messages and any members

in the "copy-to" list. The user could then send

messages about the chosen topic to the people in the

list.

Distribution lists have received quite a bit of

attention in the current literature. Many authors

discuss the problems associated with the actual sending

of the message to multiple recipients, [WOS] [PL1]

while others address the problems of sending "junk

mail" to too many recipients [PL2]. What has been

suggested here is a very simple way to develop a

41 -

distribution list for personal use. A suggestion by D.

Deutsch [DEU] is to allow the user to make

modifications to the lists. This should be one of the

requirements of imail were it to generate distribution

lists.

The enhancements mentioned above may be implemented by

modifying imail itself and extending its database

capabilities. It is also possible, however, for users

to directly access the imail database. A user would

run imail to fetch messages from the Unix mailbox and

properly load the database. But after that, the user

may manipulate the imail database at will. This

feature does jeopardize the integrity of the database

and thus of imail, but it is a risk worth taking

because it allows virtually unlimited possibilities for

the use of the mail messages. It is assumed that a

user interested enough in using the imail database will

be careful enough not to compromise its integrity. It

is also possible to recover from a "disaster" by

requesting to be removed from the imail system

entirely. This removes all references of the user who

can then log back in again as a "new user". One other

form of protection is that a user is allowed to access

only his own messages in the imail database.

42

4 . 2 Non-textual messages

Computer based message services are advancing into the

area of multi-media communications. Among these are

both voice mail systems and video display systems.

Both of these currently require separate systems that

carry and interpret the appropriate type of traffic.

An interface to one of these systems may some day be

able to catalog the current messages. That is, it

would interpret the originator, the date of the

message, and possibly the subject and any of the other

header fields and store them in some on-line database.

The user then would be able to access a listing of all

the messages in his mailbox and could peruse the

headings in a textual fashion. This is generally

faster than doing a sequential scan on the messages

themselves.

4.3 Directions of development for electronic mail

systems

Imail used a database management system in order to

increase the functionality of a recipient's User Agent.

If it is expanded, it can aid an originator in

preparing outgoing mail. The direction of future

computer based message systems is to build tools, such

as a DBMS, to do as much bookkeeping work as possible

for the user. This will free the user from those tasks

and allow him to concentrate on the real purpose of a

43 -

CBMS, and that is to easily correspond with other

users.

44

Bibliography

[CHR] Chirlian, Barbara S., "Simple dBase II".
Dilithium Press, 1984,

[CIT] CCITT Study Group VII, "Data Communication
Networks Message Handling Systems,
Recommendations X. 400-X. 430" . October, 1984.

[CUN] Cunningham, Ian, "Message-Handling Systems and
Protocols". Proceedings of the IEEE, December,
1983, pp. 1425-1429.

[DEU] Deutsch, Debra P., "Implementing Distribution
Lists in Computer-Based Message Systems".
Computer-Based Message Services, Smith, H. T.
(editor) . Elsevier Science Publishers B.V.
(North-Holland). IFIP, 1984.

[FIP] "Announcing the Standard for Message Format for
Computer-Based Message Systems". Federal
Information Processing Standards Publication,
March 1, 198 3.

[GIT] Gitman, Israel, "Voice Mail and Competing
Services". Computer Message Systems - 85, Uhlig,
R. P. (editor) . Elsevier Science Publishers B.V.
(North-Holland) IFIP, 1986.

[HAW] Hawryszkiewycz, I. T., "Database Analysis and
Design". Science Research Associates, Inc.,
1984.

[ING] "An Introduction to INGRES". Relational
Technology Inc., 1983.

[JAB] Jaburek, W. , Sebestyen, I., "Computerized Message
Sending and Teleconferencing on Videotex Through
Intelligent Decoders, Smart Cards, and Optical
Cards". Computer-Based Message Services, Smith,
H. T. (editor) . Elsevier Science Publishers B.V.
(North-Holland). IFIP, 1984.

[KAW] Kawaguchi, K. , Sato, K. , Sample, R. , Demco, J.,
Hilpert, B., "Interconnecting Two X.400 Message
Systems". Computer Message Systems - 85, Uhlig,
R. P. (editor) . Elsevier Science Publishers B.V.
(North-Holland) IFIP, 1986.

[KIL] Kille, Steve, "Integration of Electronic Mail and
Conferencing Systems". Computer-Based Message
Services, Smith, H. T. (editor) . Elsevier
Science Publishers B.V. (North-Holland) . IFIP,

45

1984.

[LUN] Lunt, Teresa F. , "A model for Message System
Security". Computer Message Systems - 85, Uhlig,
R. P. (editor) . Elsevier Science Publishers B.V.
(North-Holland) IFIP, 1986.

[MAL] Malone, T. W. , Grant, K. R. , Turbak, F. A.
Brobst, S. A., Cohen, M. D. , "Intelligent
Information-Sharing Systems". Communications of
the ACM, May, 1987, pp 390-402.

[OHM] Ohmura, H. , Kamiyama, Y., Kobayashi, H.
"Development of a Multi-Media MHS Based on CCITT
X.400 Recommendations". Computer Message Systems
- 85, Uhlig, R. p. (editor). Elsevier Science
Publishers B.V. (North-Holland) IFIP, 1986.

[PL1] Palme, Jacob, "Distribution Agents (Mailing
Lists) in Message Handling Systems". Computer
Message Systems - 85, Uhlig, R. p. (editor).
Elsevier Science Publishers B.V. (North-Holland)
IFIP, 1986. '

[PL2] Palme, Jacob, "You Have 134 Unread Mail! Do YouWant to Read Them Now?". Computer-Based Message
Services, Smith, H. T. (editor). Elsevier
Science Publishers B.V. (North-Holland). IFIP,

[RDL] Redell, David D. , white, James E.
Interconnecting Electronic Mail Systems".

Computer, September 1983, pp. 55-63.

[TWN] Townsend, Carl, "Electronic Mail and Beyond".
Wadsworth Electronic Publishing Company, 1984.

[TSC] Tschichholz, Michael, "Message Handling System:
Requirements to the User Agent". ComputerMessage Systems - 85, Uhlig, R. p. (editor).
?S?2

V1
?£o

Science Publishers B.V. (North-Holland)
Ir IP/ 198 6

.

[WIL] Wilson, Paul, "Structure for Mailbox System
Applications". Computer-Based Message Services
S
m
i?

hV H
- T - (editor). Elsevier Science

Publishers B.V. (North-Holland). IFIP, 1984.

[WOS] Wosnitza, Lothar, "Group Communication in the MHS
Context". Computer Message Systems - 85, Uhlig,
«• P- (editor)

. Elsevier Science Publishers B.V.
(North-Holland) IFIP, 1986.

Appendix A

Fields specified in the NBS specifications

Required fields must appear in a message:

From Identifies originator (s) taking formal
responsibility for this message

Posted-Date Time the message passes through the
posting slot into a message transfer
system

To Primary recipients for a message

Basic fields must be recognized and processed by all
CBMS systems:

Cc Secondary recipients of a message (a
"carbon copies" list)

Reply-To Identifies recipients for replies to
the message

Subject Whatever information the originator
provided to indicate the nature of the
message

Text Primary content of the message

Optional fields need not be supported by a CBMS but, if
supported, must be processed according to the meanings
defined by the message format specification.

Attachments Additional data accompanying a
message; similar in intent to
enclosures in a conventional mail
system

Author Identifies the individual (s) who wrote
the primary contents of the message

Bcc Identifies additional recipients of a
message (a "blind carbon copies" list)

Circulate-Next Identifies all recipients in a
circulation list who have not yet
received the message

A2

Circulate-To

Comments

Date

End-Date

In-Reply-To

Keywords

Message-Class

Message-ID

Obsoletes

Identifies all recipients of a
circulated message

Permits adding comments onto the
message without disturbing the
original contents of the message

Date that the message's originator
wishes to associate with a message

Date on which a message loses effect

Designates previous correspondence to
which this message is a reply

Keywords or phrases
retrieving a message

for

Purpose of a message; i.e. it might
contain values indicating that the
message is a memorandum or a database
entry

Unique identifier for a message;
intended for machine generation and
processing

Identifies one or more messages that
this one replaces

Originator-Serial-Number One or more serial numbers
assigned by the message's originator

Precedence

Received-Date

Received-From

References

Reissue-Type

Sender

Start-Date

The precedence at which the message
was posted

Time the message left the delivery
system and entered the recipient's
message processing domain

A record of a message's path through a
message transfer system

Identifies other correspondence
which this message refers

to

Differentiates between messages being
assigned or redistributed

Identifies the agent who sent the
message

Date on which a message takes effect

A3

Warning-Date Warning of an impending end-date or
other event

Appendix B

Flow Control of Imail

Ingres DB:
user's Unix user messages,
mail file default sort order

/ \ / \

(B)

(G)

\ / \ /

imail (process)

/ \

(A)

(F)

(C)

\ /

tempfile-
(D)

(E)

->mail -f tempfile
(process)

• The user runs imail

.

« (A) The user's default sort order and old messages
are read from the DB.

« (B) New messages are read from the user's Unix
mail file.

« (C) The messages are sorted in default order and
written to the tempfile.

« (D) Mail -f is run on the tempfile. All Unix mail
commands are allowed, including deleting a
message.

e (E) When the user exits or quits mail, he is back
in the imail environment. Messages that were
deleted from within mail are deleted from the
imail database. Any of the imail functions may be
performed. (C) , (D) , and (E) may be repeated
using different selection criteria.

B2

* (F) If the default order is changed, the new
parameters are written to the imail database.

« (G) When the user exits imail, the remaining
messages are sorted by date and stored back in
Unix mail file.

Appendix C

Application Code

Table of Contents

File: main.q Page 1

main 2

all_hdrs 4

app_tf ile 5

getfmsg 7

re_set g

re_sort g
some_to_temp 9

sort_to_temp 11
stretch 13

File : usrman .

c

Page 15
Get_cmd 15
next 19
Prompt_order 20

File: parse.

q

Page 23
Parse_mail 23
add line 26
any 28
copy 28
copychar 29
fillhdr 31
isdate 33
cmatch 33
ishdr 35
nextword 36
strinit 37
write_tup 37

File: mailman.

q

Page 39
Idb_to_mail 39
New_msgs 41

File: temp_idb.q Page 44
Temp_to_idb 44

File: gtime.c Page 46
cnvtime 46
gtime 47
gpair 48

File: util.c Page 49
rmblanks 49
addnull 49

File: makefile Page 50

main.q - CI -

^include <stdio.h>
^include <signal.h>
^include <sys/time.h>
^include "imail.h"

/••A***

ma in
.

q

This is the main driver for imail. Routines found in other
. c ' s

start with a Capital letter. Global variables do too.

**
*********/

FILE *Tfp: /* file pointer of temp mail file */
FILE *bugfp;
char nameholder [20] ;

//ifchar *Usrname;
##char Imrel[64]; /* ingres msg file */
char Mailfile[64]

;

/* usr's regular mail file */
char Lmailfile[64]

;

/* file linked to usr's regular mail file */
char Callmail[50]

;

/* sets up system call to mail */
char Tempfile [32]

;

/* hold msgs usr is currently viewing */
char Rmtemp[50]; /* sets up system call to remove Tempfile */
int Stretch; /* drop right into stretch functions */
int Tilda; /* translate - to — and control chars to -x
*l
Mint Sort_type, Snum_vals; /* sort on auth, cc . . . ; num
keys */
##char Sort_vals[MAXKEYS] [KEYLEN]; /* holds order of appearance
*/
int nm; /* new message flag */
int Numdk;

/* this struct holds the key to all the msgs the user is
currently

viewing. At the end of the viewing session (the end
of
mail) this list is compared with the messages still
in the
temp file. Any msgs that have been deleted from the
tempfile are deleted from the ingres relation. Thus
at any time (except during "mail") the ingres db
holds
only those messages that have not been deleted.

*/
Instruct delkeep
»#{
lit char iauth[AUTHLEN+l]

;

long idate;
##}Dk[200];

main.q c:

main(argc, argv)
int argc;
char *argv[]

;

{

int cmd, hdr_or_txt;
char qual[QUAL_LEN]

;

extern int errproct);
register int i

char temp[200]
int getfullmsg
msg parts*/
int yy;

/* for cc and msgtext retrievals, rtrv all

signal(SIGINT, SIG_IGN)

;

umask(077)

;

(for debugging) */

Usrname = (char *) getlogin()

;

tfifdef DEBUGNAME /* prompt for input name
printf("enter user name: ");

f f lush(stdout)

;

scanf(H %s" , nameholder)

;

Usrname = nameholder

;

#endif
/* set up the names of all the files needed */
sprint f (Imrel , "im£. 10s" , Usrname)

;

sprintf (Mailfile, "2s/2s", MAILDIR, Usrname);
sprint f (Tempf ile, "/usr/tmp/tm2s " , Usrname)

;

sprintf (Lmail file, "/usr/tmp/lmZs M
, Usrname)

;

sprintf (Callmail, "mail -f Zs", Tempfile);
sprintf (Rmtemp, " rm Xs" , Tempfile);

#ifdef DEBUG
if ((bugfp = fopen("debug" , "w")) == NULL)

printf ("cant open debug\n");
#endif

#ifdef DEBUG5
f printf (bugfp,
fprintf (bugfp,
fprintf (bugfp,
fprintf (bugfp,
fflush(bugfp)

;

#endif

"Mailfile Xs\n", Mailfile);
"Imrel Xs\n", Imrel);
"Callmail Is\n", Callmail);
"Tempfile %s\n", Tempfile);

/* Catch the options to imail */
Stretch = 0;

Tilda = 0;

for (i=l; i<argc; i++)

{

if (strncmp(argv [i] ,
H -s",2) == 0)

Stretch = 1;

if (strncmp(argv[i] ,

H -c",2) == 0)

Tilda = 1;

main.q - C3 -

}

lifdef DEBUG5
fprintf (bugfp, "Stretch - Id, Tilda - %d" , Stretch, Tilda);

ifendif
/* verify the call was correct */
if ((argc == 2 && (Stretch + Tilda != 1)) ||

(argc == 3 && (Stretch + Tilda != 2)))
{

printf("Valid options are : -s to immediately
access "

)

;

printf("stretch functions\n")

;

printf(" -c");
printf(" to translate control characters\n")

;

f f lush(stdout
)

;

exit()

;

}

It ingres imaildb

New_msgs(); /* read new msgs from USRMAIL (if any), put
in idb */

/* invoking "imail -s" means the user wants to use a Stretch
function

before looking at the messages. (or he wants to Skip the
mail part)

*/

if (!Stretch)

C

sort_to_temp(qual)
;
/* use dflt order, put msgs in

temp file */

system(Callmail) ; /* run mail */
Temp_to_idb(Tfp)

; /* put remaining msgs back
in idb */
system(Rmtemp)

; /* don't need Tempfile
anymore */

}

/* loop until the user wants to quit */
while (Get_cmd(S[Cmd, &hdr_or_txt , qual, Sgetfullmsg) =»
GO_ON)

{

stretch(cmd, hdr_or_txt, qual, getfullmsg)

;

/* write all idb msgs into USRMAIL */
if (Idb_to_mail()

)

printf("New mail arrived\n");

/* see if user drops out forever */
if (cmd == KILL)
{

itH destroy Imrel
** range of ilog is logrel
" delete ilog where (ilog.usrname « Usrname)

printf("You have been deleted from the imail
database\n")

;

}

/* remove the link file */
/* if you're debugging, you may want to look here */
sprintf (temp, "rm Xs" , Lmailfile);
system(temp)

;

ijlfdef DEBUG
f close(bugfp)

;

iHendif

tt exit
}

/***

all_hdrs

Show the headers to all the messages.

**
*********/
all_hdrs()
{

ft char iauth[AUTHLEN+l] , isubj [SUBJLEN-H
J

;

tt long idate;
tt int iseqnum;

char *datestr;

tt range of idb is Imrel
tt retrieve(
tt iauth=idb.auth, isubj=idb. subj

,

tt idate=idb.date , iseqnum=idb.seqnum)
tt where idb.seqnum =

tt {

addnull(iauth, AUTHLEN+1);
addnul 1(isubj , SUBJLEN+1);
datestr = (char *)ctime(S.idate) ;

printf("\n Xs" , iauth)

;

if (strlen(iauth) < 5)

printf(" "); /* line things up */
printf(" Z.24s", datestr);
printf (

" Xs" , isubj)

;

f f lush(stdout)

;

tt)

fflush(stdout)

;

}

ma in . q

/A**

app_tf ile

The qualifier was set up by the calling routine. This does
the
retrieval and appends any messages it finds to the tempfile.

^^•A***^^
*********/

app_tf ile(qual)
Mchar *qual; /* qualifier for retrieve stmt */
{

int idbseqnum, idbtuplen;
ft char idbauth[AUTHLEN+l]

;

long idbdate;
ft char idbtext[MAXPARTS] [TEXTLEN+1] , idbtup_ty [2]

;

int i, tpart, tpos, needit

;

ififdef DEBUG2
fprintf (bugfp, "app_tfile "

)

;

fprintf (bugfp, "qual = ?s\n"
,
qual);

fflush(bugfp)

;

#endif
range of idb is Imrel
it retrieve (

tt idbauth'idb.auth, idbdate=idb.date

,

idbtuplen=idb. tuplen, idbtup_ty=idb . tup_ty,
tt idbtext[0]»idb.textO, idbtext [l]-idb. textl,
tt idbtext [2]=idb.text2,
** idbtext[3]-idb.text3, idbtext [4] = idb. text4

,

tt idbseqnum=idb. seqnum)
tt where qual
tt {

tfifdef DEBUG4
fprintf (bugfp, "app_tfile: retrieve \n")

;

for (i=0; i<MAXPARTS; i++)

{

fprintf (bugfp, "\nkkZdkk: Xs" , i,
idbtext [i])

;

}

#endif
/* set up del-keep struct so can later del msgs */
if (idbseqnum ==0) /* only 1 entry per mail msg

{

/* need to get rid of the blanks that ingres put
in and null terminate the string.

*/
addnull(idbauth, AUTHLEN+1);
needit = 1;

/* loop thru all msgs already found */

main.q - C6

fifdef DEBUG8

Jendif

/Ufdef DEBUG7

tfendif

,111

}

for (i=0s i<Numdk; i++)

{

if (Dk[i].idate == idbdate &&
(strcmp(Dk[i] . iauth, idbauth) — 0))

{ /* it's already there */
needit = 0;

break

;

}

}

if (needit) /* add this one to the list */
{

strcpy(Dk[Numdkj . iauth, idbauth)

;

Dk[Numdk] .idate - idbdate;

fprintf (bugfp, "Dk[Zd] Zs ZD
Numdk, Dk[Numdk] .iauth,
Dk[Numdk] .idate)

;

if (NumdkZ2) fprintf (bugfp, "\n");
fflush(bugfp)

;

Numdk++;

if (needit)

{

tpos = idbtuplen Z TEXTLEN;
tpart = (idbtuplen - tpos) /TEXTLEN;

fprintf (bugfp, "app_tfile : idbtuplen = Zd
" , idbtuplen)

;

fprintf (bugfp, "tpart « Zd, tpos - Zd",
tpart, tpos)

;

for (i=0; i<tpart; i++)

{

idbtext[i] [TEXTLEN] - '\0';
fprintf(Tfp, "Zs", idbtext[i]);

if (tpos) /* else nothing to write */

idbtext [tpart] [tpos] - '\0';
fprintf (Tfp, "Zs" , idbtext [tpart])

;

main.q

/***

getfmsg

If the user does a search on something other than auth or
subject, then it's difficult to get all the parts of the
msg.
This routine makes a list of the key (auth, date) to any
msg that matches the request and then goes thru that list
to get all the records that make up that msg.

In other words, if record 2 of the full msg matches the
search
string, you still need to retrieve records 1, 3, 4, ...

***^ 1t+++A ^ itltAAltvt

*********/
getfmsg(quall)
tt char *quall;
{

lit char dbauth(AUTHLEN)
;

lit long dbdate;
int gfnum, i;

struct getfull
{

long gfdate;
char gfauth[AUTHLEN]

;

char gfnull;
}gf[100]i

gfnum = 0;

range of idb is Imrel
lit retrieve (

ft dbauth=idb.auth, dbdate = idb. date)
where quail
tt {

strncpy(gf [gfnum] .gfauth, dbauth, AUTHLEN);
gf [gfnum] .gfdate = dbdate;
gf [gfnum] .gfnull = '\0';

gfnum++;
tt }

I* now you've got all the matching msgs, sort them */
qsort(igf[0] .gfdate, gfnum, sizeof (gf [0]) , strcmp)

;

/* check for duplicates and append the originals to the
tempfile */
for (i=0; i<gfnum; i++)
{

/* set up qual for app_tfile */
sprintf (quail, " idb.auth-\"S;s\ " and idb. date = ZD",

gf [i] .gfauth, gf[i] .gfdate)

;

if (i>0)

ma in . q

/* dont do dups (remember, they're sorted */
if (strcmp(&gf [i] .gfdate, &gf [i-1] .gfdate

)

!=0)

app_tf ile(quall)

;

}

else /* append to the first one */
app_tf ile(quall)

;

/**

The user wants to reset the default sort order. Prompt for
the
order and change the sort keys in the log relation.

**
*********/

re_set(

)

{

register i;

if (Prompt_order()

)

/* loads the Sort_vals */
return;

ft range of ilog is logrel
replace ilog (sorttype = Sort_type, num_svals - Snum_vals," svalO = Sort_vals[0] , svall = Sort_vals [1]

,

'* sval2 = Sort_vals[2] , sval3 = Sort_vals [3]

,

ft sval4 ' Sort_vals[4]

)

it where ilog.usrname = Usrname

/** +

User requests a sort on a different order, but do not change
the
default order.

**
*********/
re_sort (qual)
char *qual;
{

if (Prompt_order()

)

/* prompt for the order */
return; /* invalid user entry */

sort_to_temp(qual)

;

/* sort msgs into temp file
*/

ma in
.

q

- C 9 -

system(Callmail)

;

/* call the mail routine */
Temp_to_idb(Tfp)

;

/* put remaining msgs back
into idb */
system(Rmtemp)

;

/* don't need Tempfile
anymore */

}

/***

some_to_temp

This is called when the stretch function has set up the
qualifier
for a subset of messages. First retrieve the keys so that
duplicates
can be eliminated.

**
*********/

some_to_temp(hdr_or_txt, qual, getfullmsg)
int hdr_or_txt;
char *qual

;

int getfullmsg;
{

register int i, j, num_msgs

;

char *datestr;
struct msghdr
Itlf {

char authfAUTHLEN]

;

long date;
l# char subj [SUBJLEN]

;

f* }mh[100];

int nummh; /* number of message headers */

if (hdr_or_txt == HDR_ONLY) /* the user requested
headers only */

{

printf ("\n")

;

num_msgs =
;

nummh -
;

ti range of idb is Imrel
ti retrievef
9t mh[nummh] .auth=idb.auth,
mh[nummh] . subj = idb. subj

,

#* mh[nummh] .date=idb.date)
where qual
*» {

addnull(mh [nummh] .auth, AUTHLEN+1);
nummh++

;

ft >

for (i»0; i< nummh; i++)
{

main.q - CIO -

for (j-Os j<i; j++)
{

/* already have it? */
if (strncrap(mh[j] ,auth,mh[i] .auth,
AUTHLEN)

»" && mh[j] .date —
mh[i] .date)

break;
}

if (j==i) /* dont have it yet */
{

datestr - (char
*)ctime(&mh[i] .date)

;

printf("\n Is", mh(i] .auth)

;

if (strlen(mh[i] .auth) < 5)
printf(" ");

printf(" 2.24s", datestr);
mh[i] .subj [SUBJLEN] = '\0 -

;

printfc 2s", mh[i] .subj)

;

ff lush(stdout)
;

num_msgs++;

}

printf("\n%d messages found. \n\n", num_msgs);
f f lush(stdout)

;

}

else /* user wants to run mail on matching messages */

if ((Tfp - fopen(Tempfile, "w")) -» NULL)/* creat
temp file */

{

printf ("WARNING: can't open Tempf ile\n")

;

ff lush(stdout)

;

}

if (getfullmsg) /* special retrieve to get all
parts */

getfmsg(qual)

;

else
app_tfile(qual)

; /* put the msgs in the
mail file */

fclose(Tfp)

;

main.q

/***

sort_to_temp

This version of ingres cannot do sorts. And even if it
could, it
wouldn't help a whole lot.

Retrieve all the msgs that match the user's highest priority
sort
key, then all the next, then the next, etc.

**
*********/
sort_to_temp(qual

)

char *qual;

{

char qual_fnl[QUAL_LEN]
; /* qual for final pass */

int charpos;
register int i;

#ifdef DEBUG4
fprintf (bugfp, "sort_to_temp: \n") ;

#endif
if ((Tfp = fopen(Tempf ile, "w")) == NULL)

printf("WARNING: cant open Tempf ile\n")

;

range of idb is Imrel

if (Sort_type == DATE) /* need just one call to app_tfile*/
{

/* They'll be sorted by date anyway, don't need to
do anything; make qual meaningless

*/
sprintf (qual ,

" idb.seqnum >= 0");
app_tf ile (qual)

;

fclose(Tfp)

;

return;
}

charpos - 0;

for (i=0; i<Snum_vals j i++)

{

If ((Sort_type == CC || Sort_type"TEXT))

{

/* put in a useless qualifier; will have to
eliminate
dups after retrieval for these
*/
if (i—0)

strcpy(qual_fnl, " idb.seqnum >=
0");

main.q - C12

}

else if (i > 0)

{

}

/* the final pass here can be qualified sc

as
not to include any of the msgs that
have already been retrieved

*/
strcpy(&qual_fnl [charpos] ,

" and ");

charpos +=5;

Jifdef DEBUG2

swi ten (Sort_type)

{

case AUTHOR:
sprintf (qual, " idb.auth « \"*2s*\"",
Sort_vals[i])

;

/* prepare string for final pass */
sprintf (&qual_fnl [charpos]

,

" idb.auth != \"*Xs*\"\
Sort_vals [i])

;

charpos = strlen(qual_fnl)

;

break

;

case CC:
sprintf (qual, " (idb.tup_ty \"cc\" and
(idb.textO =

\
n *Xs*\" or idb.textl -

\"*Zs*\" or idb.text2 = \"*Xs*\" or
idb.text3 = \'*Xs*\" or idb.text4 =

\"*Zs**))",
Sort_vals[i] , Sort_vals [i]

,

Sort_vals[i] , Sort_vals [i]

,

Sort_vals [i])

;

/* no qual_fnl needed */
break;

case SUBJECT:
sprintf (qual, " Idb.subj \"*2s*\"",
Sort_vals [i])

;

sprintf (Squal_fnl [charpos] ,

" idb.subj !=

\"*Xs*y ,

Sort_vals [i])

;

charpos = strlen(qual_fnl)

;

break:
case TEXT:

sprintf (qual, " (idb. tup_ty = \"tx\" and
(idb.textO = \"*Zs*\" or idb.textl -

\"*Zs*\" or idb.text2 - \"*Is*\" or
idb.text3 - \"*Xs*\" or idb.text4 -

\"*?s*\-)>",
Sort_vals[i] , Sort_vals [i]

,

Sort_vals[iJ

,

Sort_vals[i] , Sort_vals [i])

;

/* no qual_fnl needed */
break;

}

ifendif

raain.q - C13 -

fprintf (bugfp, "sort_to_temp: qual : ?s\n", qual);
fprintf (bugfp, "sort_to_temp: qual_fnl: %s\n",
qual_fnl)

;

f f lush(bugfp)

;

if (Sort_type — CC
|

| Sort_type =« TEXT)
getfmsg(qual)

;

else
/* do the retrv and build the temp mail file
*/
app_tf ile(qual)

;

} /* end loop thru each sort key */

if (Snum_vals =- 0) /* make the qualifier useless, but
fill it in*/

strcpy{qual_fnl ,
" idb.seqnum >= 0");

app_tfile(qual_fnl)

;

fclose(Tfp)

;

}

stretch

The stretch commands stretch the limits of normal mail.

**^ lHtJt ^ A ^ #+lt ^ 1tAlt+A
*********/
stretch(cmd, hdr_or_txt, qual, getfullmsg)
int cmd, hdr_or_txt;
char *qual

;

•int getfullmsg;
{

Numdk =0; /* init del-keep struct */

switch(cmd)

c

case RE_S0RT: /* user wants a different
sort */

re_sort(qual)

;

break;
case RE_SET: /* reset the default sort
order */

re_set()

;

break;
case ALL: /* retrieve all msgs */

sort_to_temp(qual) ;/* dflt order, put msgs
in temp */
system(Callmail)

;

Temp_to_idb(Tfp)

;

system(Rmtemp)
; /* can remove it now */

break

;

case ALL_HDRS:
all_hdrs()

;

main.q - C14

break;
case INVALID: /* you figure this one out

V
break;

default: /* all others require a subset view
*/

some_to_temp(hdr_or_txt, qual, getfullmsg)

;

/* some_to_temp took care of HDR_ONLY case
*/
if (hdr_or_txt « RUN_MAIL)
{

system(Callmail)

;

Temp_to_idb(Tfp)

;

system(Rmtemp) ; /* can remove it now
*/

}

break;

usrman.c - C15 -

//include <stdio.h>
I include "imail .h"

extern char *next();
extern FILE *bugfp;

/* The routines found in usrman.c are those that interface with
the user
*/

/***

Get_cmd

**
********/

Get_cmd(cmd, hdr_or_txt, qual, getfullmsg)
int *cmd, *hdr_or_txt;
char *qual

;

int *getfullmsg;
{

char temp[80], request [200]

j

char date[20), less_great [3]

;

char linebuf[81], *lptr;
register int charpos, i;

char year[3], month[3], day[3], hour[3], minute[3];
int yy, mm, dd, hh, min;
long dateval;
extern char Sort_vals

(]
[KEYLEN]

:

extern int Snum_vals;

charpos = 0;

printf ("\nenter: A(ll), "
)

;

printf ("Kemp sort), R(eset sort order), ");
printf ("Mist current sort order), \n")j
printf ("S(pecial search), K(ill me), or Q(uit for now)\n>
");

fflush(stdout)

;

scanf

(

"Xs" , temp)

;

*getfullmsg 0;

switch (temp [0]

)

{

case 'q'

:

case 'Q'
:

return (QUIT)

;

case '

a
'

:

case 'A'

:

*cmd = ALL;

usrman.c - C16

case 'h'

case 'H'

*hdr_or_txt = RUN_MAIL;
return(GO_ON)

;

case 't'

case "I"

*cmd - ALL_HDRS;
*hdr_or_txt - HDR_ONLY;
return(GO ON)

;

*cmd = RE_SORT;
*hdr_or_txt = RUN_MAIL;
return(GO_ON)

;

case r 1

case 'R'

*cmd = RE SET;
return (GO_ON)

;

case * s'

case 'S'

*cmd = STRETCH
break;

case •1'

case •L'

printf("sorting order is:\n");
for (i=0; i<Snum_vals; i++)

printf(" Xs" , Sort_vals [i])

;

printf ("\n")

;

*cmd - INVALID;
return(GO_ON)

;

break;
case 'k'

:

case 'K'

:

*cmd = KILL;
return(QUIT)

;

break;
default:

printf ("Invalid command, try again. \n");
ff lush(stdout)

;

*cmd = INVALID;
/* flush out anything else on this line */
getsdinebuf)

;

return(G0_ON)

;

break;

} /* end switch */

getc(stdin); /* get rid of the newline */
strcpy(request, "");

printf ("enter A(nd) , 0(r), (,), or ");
printf ("one of the following and then the value :\n")

•

printf ("F(rom), C(c), S(ubj), ");
printf ("M(sgtext)

, D(ate) (<> yy mm dd hh mm), Q(uit)\n> ");
f flush(stdout)

;

getsdinebuf)

;

lptr = linebuf;

usrman.c - CI 7
-

while (Iptr != NOSTR)

{

lptr = next(lptr, temp);
switch (temp[0])

{

case
case 'A'

case
case

sprintf (&qual [charpos] ,
" and ");

charpos +-=5

;

st re at (request , temp)

;

st re at (request ,
" "

)

;

break

;

sprintf (&qual [charpos] ,
" or ");

charpos +=4;

strcat (request , temp)

;

strcat(request ,
" ");

break;
case '

(
'

i

case '
)

'

:

sprintf (&qual [charpos] ,
" Zs " , temp)

;

charpos +=3;

strcat (request, temp)

;

strcat (request ,
" ");

break;
case * f '

:

case *F*

:

strcat (request , temp)

;

strcat (request ,
" ");

lptr = next(lptr, temp);
sprintf (fcqual [charpos] ,

H idb.auth =

**Xs*\"", temp)

;

charpos = strlen(qual)

;

strcat (request , temp)

;

strcat (request ,
" ");

break;
case
case 'C'

strcat (request , temp)

;

strcat (request, " "
) ;

lptr = next(lptr, temp);
sprintf (&qual [charpos] ,

"
((idb. textO =

\"*2s*\" or idb.textl = \
H *Zs*\" or

idb.text2 = \"*%s*\" or idb.text3 = \"*Xs*\"
or idb.text4 = \"*2:s*\ H

) and idb.tup_ty =

\"cc\") " , temp, temp, temp, temp, temp)

;

charpos = strlen(qual)

;

*getfullmsg = 1;

strcat (request , temp)

;

strcat (request ,
" "

)

;

break;
case ' s *

:

case '

S
'

:

strcat (request, temp)

;

usrman.c - C18

strcat (request ,
" ");

lptr = nextdptr, temp);
sprintf (&qual [charpos] ,

" idb.subj =

\"*Zs*\"", temp);
charpos = strlen(qual)

;

strcatfrequest , temp);
strcat(request ,

" ");

break;
case '

d'

:

case 'D'

:

st rcat (request , temp);
strcat(request ,

" ");

lptr = nextdptr, less_great);
lptr = nextdptr, year);
lptr = nextdptr, month);
lptr = nextdptr, day);
lptr - nextdptr, hour);
lptr • nextdptr, minute);
sprintf (date, "Is Xs Xs Xs Zs",year, month,
day,

hour, minute);
yy = atoi(year)

;

mm = atoi(month)

;

dd = atoi(day)

;

hh - atoi(hour)

;

min = atoi(minute)

;

strcat (request , less_great);
strcat (request ,

" ");

strcat(request , date);
strcat (request ,

" ");
dateval = (long)cnvtime(yy , mm, dd, hh,

min, 0)

;

sprintf (Squal [charpos] ,
" idb.date Xs = Xd"

less_great,
dateval)

;

charpos » strlen(qual)

;

break;
case m
case 'M'

strcat(request, temp);
strcat(request, " ")•

lptr - nextdptr, temp);
sprintf (&qual [charpos] ,

" ((idb.textO =

\"*Zs*\" or idb.textl = \"*Zs*\" or
idb.text2 - \"*Zs*\" or idb.text3 - \"*Zs*\"
or idb.text4 - \"*Zs*\") and idb.tup_ty -

\"tx\")", temp, temp, temp, temp, temp);
charpos = strlen(qual)

;

getfullmsg = 1;
strcat(request, temp);
strcat (request ,

H ");

break;
case q
case 'Q'

:

usrman.c - C19 -

*cmd = INVALID;
return(GO_ON)

;

break

;

default

:

printf("Invalid command, try again\n");
break

;

} /* end switch */
#ifdef DEBUG4

printf("Building request: Zs\n", request);
fprintf (bugfp, "Get_cmd: qual = Zs\n", qual);
fflush(bugfp)

;

ff lush(stdout)

;

#endif
/* ingres puts a limit on how long the 'where' clause
can be */
if (charpos>250)
{

printf("Sorry, the request is too long, try
again\n")

;

f f lush(stdout)

;

*cmd = INVALID;
return(GO_ON)

;

}

} /* end while loop */

printf("Enter (h) to see headers only,");
printf(" (m) to invoke mail,");
printf(" (q) to quit request: ");

f f lush(stdout)

;

scanf ("2s" , temp)

;

if (temp[0] == 'h')
*hdr_or_txt = HDR_0NLY;

if (temp[0] »= 'm')
*hdr_or_txt = RUN_MAIL;

if (temp(O) == 'q')

*cmd = INVALID;
return(GO_ON)

;

)

/************************************** *****************************

Collect a liberal (space, tab delimited) word into the word
buffer
passed. Also, return a pointer to the next word following
that,
or NOSTR if none follow.

** ******************
********/

char *

next(wp, wbuf)
char wp[J, wbuf[]; /* ptr to input str, ptr to word you are
looking for */

usrman.c - C20 -

{

register char *thisline, *newword;

if ((thisline - wp) -» NOSTR) {

copy("
" , wbuf)

;

return(NOSTR)

;

}

newword = wbuf;
if (any(*thisline, "()<>"))

{

*newword++ = *thisline++;
}

else

{

/* it's legal to say (from robin) rather than (from
robin) */

/* copy until get special char */
while (!any(*thisline, " \t()<>") && nhisline != '\0')

if (*thisline = ""
)

{

*newword++ = *thisline++;
while (*thisline !- '\0' &S, *thisline !=
"")

*newword++ = *thisline++;
if <*thisline •- ' •"

)

*newword++ = *thisline++;
} else

*newword++ = *thisline++;
}

}

*newword = ' \0'

;

/* fill in til hit end char */
while (any(*thisline, " \t"))

thisline++;
if (*thisline « '\0'

)

return(NOSTR)

;

return(thisline)

;

/A***,,

Prompt_order

Prompt the user for the sorting order.

•••••••A**^^^^
********/

Prompt_order(

)

{

extern int Sort_type, Snum_valsj
extern char Sort_vals

[]
[KEYLEN]

;

usrman.c - C21 -

char input [KEYLEN]

;

register int i;

printf ("What do you want to sort on: ");

printf CA(uth), S(ubj), C(c), T(ext), D(ate) or Q(uit) ?\n>
");

scanf

(

"%s" .input)

;

if (input[0] «- 'q'
|| input [0] ~ 'Q')

return(-l)

;

if (input[0J ~ 'd' || input [0] — 'D'

)

{

Sort_type = DATE;
/* set this up only so the List option will show
•date' */

}

else

{

strcpy(Sort_vals[0
j , "date");

Snum_vals = 1;

switch (input(OJ)
{

case 'a'

:

case 'A'

;

Sort_type = AUTHOR;
break;

case '

s
' :

case '
S'

:

Sort_type = SUBJECT;
break;

case 'c' :

case 'C :

Sort_type - CC;
break;

case '

t
'

:

case 'T'

:

Sort_type = TEXT;
break;

default:
printf ("Unknown key\n");
return(-l)

;

break;
}

printf ("What do you want to be shown first?\n");
printf ("Use (;) to quit > ");
for (i=0; i<MAXKEYS; i++)
{

scanf ("*s" , Sort_vals[i]
)

;

if (Sort_vals[i] [0] == ';')

{

Sort_vals[i] [0] - ' '

;

break;
}

usrman.c - C22

if (i != MAXKEYS-1)
printf ("next? > ")

}

Snum_vals = i;

printf ("sorting on Zd values\n", i);
f flush(stdout)

;

>

return(O)

;

parse.

q

- C23 -

^include <ctype.h>
^include <stdio.h>
^include "imail.h"

##char Isubj [SUBJLEN+1]

;

////char Iauth[AUTHLEN+l]

;

ttlong Idate;
##int Iseqnum;
##char Itext [MAXPARTS] [TEXTLEN +TEXTLEN+1];

int Idblen; /* length of the input stream, according to ingres

##int Totidblen;

////extern char Imrel[];

extern char Lmailf ile
[]

;

extern FILE *bugfp;
extern char *copy(), *nextword();
extern int Tilda;

Parse_mail

Loop thru each msg in mailfile.
For each new message, extract the useful info such
as author, date, subject, and text.
Store all this in the user's IDB relation.

^••A**^,^*
********/

Parse_mail(ldate)
long ldate; /* last time the IDB was updated for this usr -

logdate */

{

register int msg_count, i, prev_blank, new_msg;
char linebuf[80], newauth [AUTHLEN]

;

int textpart, linelen, textpos

;

long newdate

;

FILE *lfp;

if ((lfp = fopen(Lmailf ile, "r")) == NULL)
{

printf ("Parse: Lmailfile fopen failed\n");
ff lush(stdout) ;

return(-l)

;

}

textpart = textpos = Idblen = Totidblen » 0;
msg_count = 0;

prev_blank = NO;

parse.

q

- C24 -

new_msg = NO;
while (fgets(linebuf , 80, lfp)) /* get one line */
{

/* if last char is backslash, put it back */
if (linebuf[78] •» '\\')

{

PUtCl'W, lfp);
linebuf [78] = - \0'

;

}

/* is it the header line? */
if (ishdr(linebuf , newauth, &newdate))
{

tfifdef DEBUG7

tfendif

#ifdef DEBUG7

lendif

fprintf (bugfp, "linebuf: %s\n", linebuf);
fflush(bugfp)

;

/* have a new message */
/* write prev msg to IDB if need to process
another*/
/*(if newdate < ldate, msg will be written
at end)*/
if (msg_count && (newdate > ldate))
{

/* write it to idb */

fprintf (bugfp, "PARSE: write prev
msg "

)

;

write_tup(&textpart , Setextpos,
"tx");

}

if (newdate > ldate)

{

/* it's a new message */
new_msg = YES;
msg_count++;
/* init the new msg buffers */
Iseqnum = 0;

strinit(Iauth, ' ', AUTHLEN)
;

strinit(Isubj ,
' ', SUBJLEN)

;

for (i-0j i<MAXPARTS; i++)
strinit(Itext[i]

,

- \0' , TEXTLEN
+TEXTLEN +1) ;

strcpydauth, newauth);
ldate = newdate;

/* if the prev line wasn't blank,
put a

blank line in. A blank line
starts
every new msg.

V
if (!prev_blank)

parse.

q

- C25 -

addline(&textpart , ktextpos,
\n", "hd");

addlinef&textpart, Stextpos,
linebuf, "hd");

fillhdr(lfp, ktextpart, &textpos);
} /* now have hdr fields for idb; get rest
of text*/
else /* reached msgs already have in idb

V
{

new_msg = NO;
continue; /*reached a msg already
have in idb*/

}

}

else /* not part of the header */

{

if (new_msg)
addline(Sitextpart, fctextpos,
linebuf, "tx")

;

/* else already have it in idb */
}

/* each msg must start with a blank line, remember
if got 1*/
if (linebuf [0] -= '\n')

prev_blank = YES;
else

prev_blank = NO;
}

#ifdef DEBUG7
fprintf (bugfp, "read all messages, write last l\n");
fflush(bugfp);

#endif

/*zzz

*/

if (msg_count)
{

}

fclose(lfp)

;

Itext [textpart] [textpos] - '\0';

write_tup(&textpart, itextpos, "tx");

parse.

q

- C26

/A**

addline

Add a line of the message to the idb text fields. Manage
the
part number properly and start a new record if the current
one
is full. The entire message uses at least 2 idb records:
the header
record(s) and the text record(s). The 2 are never found in
the
same record.

**
********/

addline(textpart, textpos, linebuf, tuptyp)
int *textpart, *textpos;
char *tuptyp;
char *linebuf;

c

register int i;

int numcopy, linelen, lpos, numichars, numrchars;

iPifdef DEBUG7
fprintf (bugfp, "addline: a2sa\n", linebuf);
fprintf (bugfp, "type 2s\n", tuptyp);

#endif
linelen strlen(linebuf)

;

lpos = 0;

while (lpos < linelen) /* do each char in linebuf */
{

while (*textpart < MAXPARTS) /* fill a tuple */
{

tfifdef DEBUG?
fprintf (bugfp, "textpart Zd, textpos Zd\n",

*textpart, *textpos);
#endif

while ((Idblen < TEXTLEN) 8,5, (lpos <

linelen)

)

{

copychar(&Itext [* text part] [*textpos]

Sclinebuf [lpos] , Snumichars,
knumrchars)

;

lpos ++;

textpos += numrchars;
Idblen += numichars;
Totidblen +» numichars;

#ifdef DEBUG?

ifendif

#ifdef DEBUG7

#endif

- C27 -

/* end loop to fill a part */

fprintf (bugfp, "aaZsaa\n",
Itext [*textpart])

;

fprintf (bugfp, "lpos » Id, linelen 2d\n",
lpos, linelen)

;

fprintf (bugfp, "textpos » Id, Totidblen =

Zd\n",
*textpos, Totidblen);

f f lush(bugfp)

;

if (lpos >= linelen) /* no more chars in
line */

break;
/* start a new part */
Itext[*textpart] [*textpos] = '\0';
(*textpart)++;
*textpos =

;

if ((Idblen > TEXTLEN) && (*textpart <
MAXPARTS))
{

Itext [*textpart] [0] =

Itext[(*textpart)-1] [Idblen]

(*textpos)++;
Idblen => 1;

Totidblen++;
}

else
Idblen - 0;

} /* end loop to fill a tuple */

if (lpos >= linelen) /* no more chars in line */
break;

/* this msg is too long for 1 red */

fprintf (bugfp, "PARSE: hdr; starting cont msg: ")•

fprintf (bugfp, "PARSE: hdr: write prev part: ");
fprintf (bugfp, "textpart = 2d\n", *textpart);
fflush(bugfp)

;

write_tup(textpart, textpos, tuptyp)

;

*textpart 0;

*textpos = 0;

if (Idblen > TEXTLEN)
{

Itext [*textpart] [0] =

Itext[(*textpart)-1] [Idblen]

;

(*textpos)++;
Idblen - 1;

Totidblen++;
}

else

parse.

q

- C28 -

{

Idblen = 0;

Totidblen = 0;

}

} /* end loop for each char */

/A**

any

Is ch one of the chars in str?

*** *************
********/

any(ch, str)
char *str;

{

register char *f;
register c;

f - str;
c = ch;
while (*f)

if (c •« *f++)
return(l)

;

return(O)

;

/** it * ir iriririr iei,mrit i!iri, 1t

copy

Copy strl to str2, return pointer to null in str2.

*** tictiri,

char *

copy(strl, str2)
char *strl, *str2;

{

register char *sl, *s2;

si strl;
s2 = str2;
while (*sl)

*s2++ > *sl++;
*S2 = 0;

return(s2)

;

)

parse
.

q

C29

/***

copychar

Copy the line from the mail file to the idb buffer (Itext).
Backslash any special characters and do something with
control characters

.

**
********/

copychar(target , src, numichars, numrchars)
char *target, *src;
int *numichars, *numrchars; /* chars according to ingres; real
chars */

{

register int i;

char *tp, *sp;

*numichars = 1;

*numrchars = 1

;

sp = src;
tp = target;

/* the following characters have been tested and found OK:
!(a#$;TM)_-+={}'-|:;\.<>/
backslash, when not in front of a special char, is
not accepted by ingres.
The idb field must be totally filled or it will get
padded with
blanks. Backslashes don't count as chars to Ingres, so
keep
track of the length as Ingres sees it. Do this only for
the
text part of each tuple.

*/
switch(*sp)
{

case '
?

'

case '
[

'

case '
]

'

case '*'

case ' "

'

if (*(sp-l) !- '\\')

{

*tp++ - -\V;
(*numrchars)++

;

}

*tp = *sp;
break;

case ' \n'

:

case ' \f :

/* tabs and newlines are OK */

parse.

q

- C30

*tp = *sp;
break;

case '-'

:

/* if user specified, change - to — */
if (Tilda)

{

*tp++ = *sp;
(*numi chars)++;
(*numrchars)++;

}

*tp = *sp;
break;

case ' \~L '

:

/* Got a CONTROL L */
/* change special ctl chars to -char */
if (Tilda)

{

*tp++ - '-'

;

*tp = -

L'

;

(*numichars)++;
(*numrchars)++

;

}

else
*tp = ' '

;

break;
case ' \0* :

*tp = *sp;
*numichars = 0;
*numrchars = 0;

break;
default;

/* swallow the other control chars */
if (iscntrl(*sp))
{

*tp - ' '
;

}

else

{

*tp - *sp;

}

break;

parse .q

/***

fillhdr

Copy the entire header into Itext. If there's a subject
copy into the appropriate Ivar.

Mail always puts a blank line after the header and before
the text.

**
********/

fillhdrflfp, textpart, textpos)
FILE *lfp; /* fp to user's mail file (the 1 imail
builds)*/
int *textpart, *textpos; /* Itext part num, char pos in Itext */

{

char *cp, *dp;
char linebuf [81]

;

int linelen, i, numichars, numrchars;

/* loop til get the blank line after hdr info, before the
text */
while (fgets(linebuf , 81, Ifp) !*= 0)

{

if (linebuf [0] — '\n')
break;

cp = linebuf;
if (strncmp("Subject : ", cp, 9) == 0)

{

cp += 9;

dp = Isubj

;

i = 0;

while (i<SUBJLEN>
{

copychar(&Isubj [i] , cp++,
Stnumichars,

&numrchars)
;

i += numrchars;
if (Isubj [i-1] -= '\n')

{

Isubj [i] = '\0'

;

break;
>

}

Isubj [SUBJLEN] - '\0'

;

}

if (strncmp("Cc :
"

, cp, 4) == 0)

{

/* CC line gets a tuple(s) of its own.
Write the first part of the header, and
start

parse.

q

- C32 -

a new tuple.
*/

write_tup(textpart , textpos, "hd");
while (1)

{

addline(textpart, textpos, linebuf,
"cc");
if (fgets(linebuf , 81, Ifp) ~ 0)

{

printf("ERROR in reading
messages\n")

;

fflush(stdout)

;

break;

}

if (linebuf [0] — '\n') /* end of header
*/

{

write_tup(textpart, textpos, "cc");
break

;

}

}

break; /* no need for 'addline'; have
EOHeader */

/* add the header info to the idb record */
addline (textpart, textpos, linebuf, "hd");

} /* end while loop; found a blank line */

/* put the blank line in */
linebuf [1] - '\0'

;

addline (textpart, textpos, linebuf, "hd");

/* hdr info is not mixed with text info; write this record
to idb */
write_tup(textpart, textpos, "hd");

/i**,**,*****^.,^

isdate and cmatch

Test to see if the passed string is a ctime(3) generated
date string as documented in the manual. The template
below is used as the criterion of correctness.
Also, we check for a possible trailing time zone using
the auxtype template.

Check the string to see if it is in a valid date format.
Match the given string against the given template.

//define L 1

//define S z

tidef ine D 3

//define 4

//define C 5

//define N 6

//define u 7

parse.

q

- C33 -

Return 1 if they match, if they don't

**
********/

/* A lower case char */
/* A space */

/* A digit */
/* An optional digit or space */
/* A colon */
/* A new line */
/* An upper case char */

extern long cmatch();

char ctypesj] =

{U,L,L,S,U,L,L,S,O,D,S,D,D,C,D,D,C,D,D,S,D,D,D,D,0>;
char tmztypes

[
]

=

{U,L,L,S,u\L,L,S,O,D,S,D,D,C,D,D,C,D,D,S,U,U,U,S,D,D,D,D,0};

isdate(datestr, date)
char datestr

[]

;

long *date;

{

register char *cp;

cp = datestr;
if (*date = cmatch(cp, ctypes))

return(l)

;

if (*date = cmatch(cp, tmztypes))
return(l)

;

return(O)

;

)

char months [] [3] - {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};

extern int gpair();

long
cmatch(str, temp)
char str[] , temp[]

;

{

register char *cp, *tp;
register int c;

int charcount, i;

int year, month, day, hour, minute, second;

charcount = 0;

day =
;

cp str;
tp = temp;
while (*cp != '\0' &S, *tp != 0) {.

c = *cp;
switch (*tp++) {

case L:

- C34 -

if (c < 'a'
|

| c > '
z'

)

return(O)

;

break;

case U:

if (c < 'A'
|

| c > •!•
)

return(0)

;

if (charcount == 4)

{

for (i = 0; i<12; i++)
if ((strncmp(cp, months[i]
3) ==0))

break;
month = ++i;

}

break;

case S:

if (c != ' '

)

return(O)

;

break;

case D:

if (c< '0'
|| c> '9'

)

return(O)

;

switch (charcount)
{

case 9:

day - day + (C-'O')

!

break;
case 11:

hour » gpair(cp)

;

break;
case 14:

minute = gpair(cp)

;

break;
case 17:

second = gpair(cp);
break;

case 22:
case 26:

year = gpair(cp)

;

break;
}

break;

case 0:

if (c !- ' • && <c< '0'
|| c> '9'))

return(O)

;

if (c !- • ')

if (charcount == 8)
day « (c - - 0'

) * 10;
break;

case C:

parse.

q

_ C35 -

if (c != ' :')

return(O)

;

break;

case N:

if (c != '\n')
return(O)

;

break;
}

charcount++;
cp++;

}

if (<*cp != '\0' && *cp l» '\n') || *tp != O)
return(O)

;

return((long) cnvtime(year, month, day, hour, minute,
second))

;

/i**,****,,**^,.,^,

ishdr

Headers always start with "From " and then the date string.
Determine if that's true for the line passed in, if so, fill
in the author and date before returning.

********/

ishdrdinebuf

,

auth, date)
char *linebuf, *auth; /* current input line; ptr to (empty) author
*/

long *date; /* ptr to (empty) date */

char word[80]

;

char irawdate[32]

;

char *cp, *dp;
char t_auth[30]

;

int tl, t2;

cp = linebuf;
if (strncmp ("From ", cp, 5) != 0)

return(O)

;

cp = nextword(cp, word); /*skip over "from", ret ptr to
nxtwrd in cp*/
dp = nextword(cp, auth); /*get auth, put nxtwrd in dp (ttv
or date)*/ '

/* take care of special chars in the author, pass boeus tl
and t2 */

re
/*zzz

*/
copychar(auth, t_auth, &tl, &t2);

if (strncmp(dp, "tty", 3) - 0)

{

parse
.

q

C36

cp = nextword(dp, word);
str */

if (cp != NOSTR)
strcpy(irawdate, cp);

/* get rid of tty

if (dp 1= NOSTR)
strcpy (irawdate, dp);

f (isdate(irawdate, date)) /* it's a header */

return(l)

;

lse

return(O)

;

/•••a**

nextword

Collect a liberal (space, tab delimited) word into the word
buffer
passed. Also, return a pointer to the next word following
that,
or NOSTR if none follow.

A***^^
********/

char *

nextword(wp, wbuf)
char wp[], wbuf[]; /* ptr to input str, ptr to word you are
looking for */

{

register char *cp, *cp2;

if ((cp - wp) == NOSTR) {

copyC", wbuf);
return(NOSTR)

;

}

cp2 - wbuf;
while (!any(*cp, " \t") ii *cp != '\0')

{

if (*cp « • "'

)

{

*cp2++ = *cp++;
while (*cp ! = '\0 -

St& *cp != '"')

*cp2++ » *cp++;
if (*cp « "••)

parse.

q

- C37 -

*cp2++ = *cp++;
} else

*cp2++ = *cp++;
}

*cp2 = '\0'

;

while (any(*cp, " \t"))
cp++;

if (*cp — '\0')

return(NOSTR)

;

return(cp)

;

}

Z**^*^,^

strinit

Fill the string with the char passed in.

******** * ****** ******** **** * *********** * ****** * ****** *** +*** * * +ltitvHn
********/

strinit(str, chr, len)
char *str; /* str to init */
char chr; /* char to use */
int len; /* length of str */

{

char *cp;
int i;

cp = str;
for(i=0; i<len; i++, cp++)

*cp = chr;
}

j

/*«t**tttHM****tH«»t»t tHM H*H*t*t*«»***M*****t***tt»4rt«.

write_tup

Make the call to append to the idb. Init Itext, textpart,
and
textpos; bump the sequence number.

********/

write_tup(textpart, textpos, ituptyp)
int *textpart, 'textpos;
##char *ituptyp;
{

int i;

#ifdef DEBUG?
fprintf (bugfp, "Xs ZD\n", lauth, Idate);
fflush(bugfp)

;

fprintf (bugfp, "APPEND (write_tup), ituptyp • *s\n",
ituptyp)

;

parse.

q

C38

lendif

fprintf (bugfp, "Idblen - Zd\n", Idblen)

;

fprintf (bugfp, "Totidblen - Zd\n", Totidblen)

;

fprintf (bugfp, "textpart - Xd\n", *textpart);
for (i-0; i<MAXPARTS; i++)

{

fprintf (bugfp, "wwZsww", Itext[i]);
f f lush(bugfp)

;

}

/*write to idb */
ti append to Imrel

(auth=Iauth, subj=Isubj, tup_ty=ituptyp

,

seqnum=Iseqnum,
tuplen=Tot idblen,
date=Idate, textO=Itext [0]

,

textl=Itext[l] , text2-Itext [2]

,

text3=Itext[3] , text4-Itext[4]

)

*textpart = 0;
*textpos = 0;
Idblen = 0;
Totidblen = 0;

Iseqnum++;
/* init only the text; if the auth and subj need to be
init ' ed,

it's done after the return.
*/
for (i=0; i<MAXPARTS; i++)

strinitdtext [i] , •\0',TEXTLEN +TEXTLEN +1);

mail man.

q

-C39-

/* this is the USRMAIL manager. Routines that need to manipulate
USRMAIL

into another format are in here
*/
//include <stdio.h>
/(include <sys/types .h>
/(include <sys/stat.h>
/(include "imail.h"

ft extern char *Usrname;
extern char Imrel(]; /* ingres msg file */

/* The user's mailfile gets copied to Lmailfile and the orig
mailfile is removed. Lmailfile originally stood for
link-mailf ile
but linking doesn't work, so it's copied instead.

*/

extern char Mailfile[];
extern char Lmailfile[];

extern FILE *bugfp;

/**,,***„**** jut**,,,,*.^

Idb_to_mail

Called at the end of a session, this copies the remaining
mail messages back into the user's regular mail file.

return: 1 - new mail has arrived since start of session
- no new mail

**
********/

Idb_to_mail()
{

tf char itext [MAXPARTSJ [TEXTLEN+1]

;

int i, new_mail;
int tpart, tpos;

int ituplen;
struct stat mailstat;
char link[100]

;

FILE *umfp; /* put reconstructed msgs back in the user's
mailfile*/

if (stat(Mailfile, Smailstat) == 0) /* had mail when
started */

{

if (mailstat. st_size « 0) /* but none came in
*/

new_mail = NO;
else

mailman.

q

- C40 -

new_mail - YES; /* there's new stuff
*/

}

else /* mailfile not there */
new_mail - NO

;

/* so couldn't have new mail
*/

umfp = fopen(Mailf ile, "a");
range of idb is Imrel
retrieve(
ituplen=idb . tuplen,
** itext[0]=idb.textO, itext [l]-idb. textl

,

** itext[2]=idb.text2, itext [3] =idb . text3

,

itext[4]-idb.text4)
m {

I* need to get rid of the blanks that ingres put
in and null terminate the string.

*/
tpos = ituplen X TEXTLEN;
tpart - (ituplen - tpos)/TEXTLEN;

#ifdef DEBUG4

#endif

tt }

f f lush(umfp)

;

return(new_mail
)

;

fprintf (bugfp, "ituplen - Xd ", ituplen);
fprintf (bugfp, "tpart = Zd, tpos = 2d", tpart,
tpos)

;

fflush(bugfp)

;

for (i=0j i<tpart; i++)

{

itextfi] [TEXTLEN] - '\0'

;

fprintf (umfp, "Xs", itext [ij);

if (tpos) /* if == 0, there's nothing to write
*/

{

itext [tpart] [tpos] - '\0';
fprintf (umfp, "Xs" , itext [tpart])

;

mailman.

/***

New_msgs

********/

New_msgs(

)

{

tt extern int Sort_type, Snum_vals;
ft extern char Sort_vals

[]
[KEYLEN]

;

tt char name[AUTHLEN + l] ;

It long ldate, mdate;
struct stat mailstat; /* used to get update time on
mailfile */
char link[200]; /*used to make Lmailfile, where msgs are
read from */
register success, i;

int len;
time_t stattime;
char c, oldc;
FILE *mfp, *lmfp, *umfp;

success = 0;

/* retrieve idb date and default sort order (so can put new
msgs

in with the right key)
*/

it range of ilog is logrel /* open log relation */

tt
ft
ilog. svalO
** Sort_vals[l] = ilog.svall, Sort_vals[2

retrieve (name = ilog.usrname, Sort_type = ilog. sorttype,
ldate = ilog.logdate, Sort_vals[0] =

ilog.sval2,
tt
ilog.svalA,
It

Sort_vals[3J = ilog.sval3, Sort vals[4] =

Snum_vals = ilog .num_svals

)

" where (ilog.usrname = Usrname)
tt {

tt }

if (! success)

len = strlen(name)

;

name [len] = NULL;
for (i=0; i<MAXPARTS; i++)

addnull(Sort_vals[i]
, KEYLEN);

success++

;

mailman.

q

- C42 -

{

printf("Welcome to imail\n");
f f lush(stdout)

;

/* unfortunately, defines cannot be used (for
sorttype) */

append to logrel {

tt logdate=0, usrname=Usrname, logdate»0,
sorttype=4,
num_svals=0)

ldate * 0;

Sort_type = DATE;
Snum_vals = 0;

/* also create the idbfile for this user */
tt create Imrel
*t (auth=c20, subj»c50, tuplen=i2,
t> date=i4, text0=cll0, textl=cllO, text2=cll0,
** text3=cll0, text4-cll0, tup_ty=c2,
seqnum=i2)

/* ingres keeps a file around for a week only;
change the

expiration date to december of 1999 and hope
that's long
enough. There is a bug in Ingres that prevents
sending
a variable as an argument for the year.
Otherwise
the expiration date would have been changed to "a
year
from now" every time the user runs imail.

*/
ft save Imrel until dec 31 1999

}

/* get date on USRMAIL */
if ((stat(Mailfile, &mailstat)) != 0)
{

stattime - 0;

}

else
stattime = mailstat . st_mtime

;

/* compare last_update time with date on USRMAIL */
if (ldate > stattime)

return(NO); /* no new msg; idb is up to
date */

/* copy the mail file to a temp file; rm the contents of
mail file */

sprintfflink, "cp Is Zs", MailfUe, Lmailfile);
system(link)

;

umfp « fopen(Mailf ile, "w")

•

fclose(umfp)

;

mailman.

q

- C43 -

Parse_mail(ldate)

;

ldate • time(O)

;

tt replace ilog (logdate = ldate)
tt where ilog.usrname = Usrname

return(YES)

;

temp_idb.q - C44 -

//include <stdio.h>
((include "imail.h"

//(/extern char Imrel[];
////extern struct delkeep
It {

It char lauth[AUTHLEN+l]

;

10 long idate;
It }Dk[J;
extern int Numdk;

extern FILE *bugfp;

Temp_to_idb

Go from the temporary file to the imail db. Delete from the
idb
those messages that were del'd from within mail.

!.*** j.,,*^,,^
********/

Temp_to_idb(Tfp)
FILE *Tfp; /* fp to Tempfile of remaining msgs */

register int i;

char linebuf [81] , newauth[AUTHLENJ

;

long newdate;
extern char Tempfile[];

It int currdk; /* current del-keep index */

II range of idb is Imrel
currdk = 0;

/* if all the messages were removed from the tempfile, the
open

will fail. If that happens, don't try to do the fgets,
instead
just skip down to the part where all the rest of the
messages
are removed and this will, in effect, remove all the
messages
that had been in the tempfile before they were del'ed by
user.

V
if ((Tfp = fopen(Tempf ile, "r")) != NULL)
{

while (fgets(linebuf , 81, Tfp)) /* get one
line */

{

/* is it the header line? */
if (ishdr(linebuf , newauth, inewdate))

#ifdef DEBUG4

temp_idb.q - C45 -

{

/* the messages and the entries in delkeep are
in

the same order. If there's and entry in
delkeep
that doesn't have a corresponding message,
del it.

*/

while ((Dk[currdk] .idate !- newdate) ||

strncmp(Dk[currdk] .iauth, newauth,
strlen(newauth)) != 0)

C

fprintf (bugfp, "Temp_to_idb: DELETE Xs
2D\n",

Dk[currdk] . iauth, Dk[currdk] . idate)

;

fflush(bugfp)

;

#endif
H delete idb
#* where idb.auth - Dk[currdk] . iauth and
idb. date = Dk [currdk] . idate

/* maybe it's the next one */
currdk++;
if (currdk -» Numdk)
/* del msg from idb */

{

break;
}

}

currdk++;

}

/* else throw it away; need only the headers */
}

fclose(Tfp)

;

}

/* do remainder of messages in delkeep file */
while (currdk < Numdk)
{

/* del msg from idb */
delete idb
** where idb.auth - Dk[currdk] . iauth and idb. date =
Dk[currdk] .idate

currdk++;
}

}

gtime .c C46

ifinclude <sys/time .h>
^include <sys/types .h>
^include <stdio.h>

^define dysize(A) (((A)M)? 365: 366)

static int

{

31,
28,
31,

30,
31,
30,

31,

31,
30,

31,
30,
31

};

dmsize [12]

extern FILE *bugfp;
t ime_t
cnvtime(year, month, day, hour, minute, second)
{

register int i;

extern struct tm *localtime()

;

time_t tim;
struct timeval tp;
struct timezone tzp;

if(month<l
|

| month>12)
return((time_t)-l)

;

if (day<l)
return! <time_t)-l)

;

if (<day>dmsize[month-l] && month !=2) || (month"2 &&
day>29)

)

return((time_t)-l)

;

/* Not a leap year */
if (dysize(year)«365 &S. month= = 2 && day==29)

return) (time_t)-l)

;

if(hour<0
|

| hour>23)
re turn ((time_t)-l)

if(minute<0
|

[minute>59)
return((time_t)-l)

if(second<0
|

| second>59)
ret urn ((time_t)-l)

if (year<70
| |

year>99)
ret urn ((time_t)-l)

tim - 0;
year += 1900;
for(i=1970; i<year; i++)

gtime.c - C47 -

tim += dysize(i)

;

/* Leap year */
if (dysize(year)==366 && month >= 3)

tim += 1;

while(—month)
tim += dmsize(month-l

]

;

tim += (day-1)

;

tim = (tim * 24) + hour;
tim - (tim * 60) + minute;
if (gettimeofday(S.tp, &tzp) == -1)

fprintf (bugfp, "gettimeofday failed\n");
tim += tzp. tz_minuteswest

;

tim *= 60;
tim += second;
/* check for daylight savings time */
if (local time (it im)->tm_isdst)

tim — 60*60;
return(tim)

;

}

t ime_t
gtime(pt)
register char *pt;

{

int year, month, day, hour, minute, second;
extern struct tm *localtime()

;

time_t now ;

month = gpair(pt++);
pt + +;

day = gpair(pt++)

j

pt++;
hour - gpair(pt++);
pt++;
minute - gpair(pt++)

;

pt++;
second = 0;

if (*pt)
year = gpair(pt)

;

else {

time(&now)

;

year = localtime(&now)->tm year;
}

return(cnvtime(year, month, day, hour, minute, second));

gtime .c

int
gpair(pt)
char *pt;

{

register int c, d;

register char *cp;

cp = pt;
if(*cp == 0)

return(-l
)

;

c = (*cp++ - '0'
) * 10;

if (c<0
|

| c>100)
return(-l)

;

if(*cp == 0)
return(-l)

;

if (<d - *cp++ - '0') <
|

| d > 9)
return(-l)

;

return (c+d);

util.c - C49 -

((include <stdich>

extern FILE *bugfp;
rmblanks(cp)
char *cp;

{

char *dp;

dp = cp + strlen(cp) -1;

fprintf (bugfp, "dp = ZD cp = ZD strlen = Zd\n", dp, cp,
strlen(cp))

;

while(*dp =="'&& dp != cp -1)

{

*dp— - '\0'
;

}

fprintf (bugfp, "dp = ZD cp = ZD strlen - Zd\n", dp, cp,
strlen(cp))

;

f f lush(bugfp)

;

return(strlen(cp)
)

;

}

addnull(cp, len)
char *cp;
int len;

{

char *dp;

dp =cp;
while (*dp !=''&& (dp != cp + len))

dp++;
*dp = '\0';

makefile - C50 -

imail: main.o mailman. o parse. o temp_idb.o usrman.o gtime.o util.o
lib/libq.

a

cc -o imail main.o mailman. o parse. o temp_idb.o usrman.o
gtime.o util.o lib/libq. a /usr/lib/libU77 .a
/usr/lib/libI77.a

main.c: main.q imail.h
equel -d main.q

main.o: main.c
cc -c main.c

mailman . c : mailman. q imail .h

equel -d mailman.

q

parse. c: parse. q imail.h
equel -d parse.

q

parse. o: parse.

c

cc -c parse.

c

temp_idb.c: temp_idb.q imail.h
equel -d temp_idb.q

usrman.o: usrman.c
cc -c usrman .

c

Appendix D

User's Manual for Imail

CONTENTS

1. What is Imail? !

2

.

Using Imail 2
2 . 1 How it works

! ! ! ! 2

3. The Details of Each Command 3
3-i A(H) ::::::: 3
3.2 T (emp sort

)

3
3.3 R(eset sort order)

] 4
3.4 L(ist current sort order) 4
3.5 S(pecial search) 5
3.6 K(ill me) |, 6
3.7 Q(uit for now) '

'

7
3 . 8 Examples 7

4

.

Options to the Imail Command 9
4 . 1 Imail -s

. . . 9
4 . 2 Imail -c

! ! !

!

9

5. A Note of Caution 9

6 . Experienced INGRES Users 10
6.1 Introduction to the secrets of imail 10
6.2 Another note of caution 12

7 . Think Big 12

User's Manual for Imail

1. What is Imail?

Imail is an enhancement to the Unix* mail command that
offers a variety of functions designed to help you
select mail messages that are of importance to you. You
may search for messages:

A from a particular author

» with a keyword in the subject

* with a keyword in the text

« with a particular person in the "copy-to" list

» relative to particular date and time

a Combinations of the above.

For each of these options, you may select to view just
the headers for the messages or to run mail on the
matching messages.

You may also choose to sort the mail messages based on
the same criteria listed above for searches. Whenever
you call imail, your messages will automatically be
arranged in the order you have determined.

Imail may be used in place of the Unix mail command or
alternately with it. All of the Unix mail capabilities
are available through imail.

* UNIX is a registered trademark of AT&T Bell
Laboratories

D2

2. Using Imail

2 . 1 How it works

Imail may be called in much the same way that Unix mail
is called, that is, simply enter "imail". Figure 2-1
shows the relationship between imail and mail. All of
your mail messages are read out of your mailbox and
entered into the imail database (A of Figure 2-1)
Regular Unix mail is then run automatically for you on
all your messages (B of Figure 2-1). You may execute
any mail command you wish, including responding to
messages and deleting them. When you are finished
processing your messages, quit mail and you will be back
in the imail environment (C of Figure 2-1). Here, youmay perform any of the imail functions that are listed
and explained below. When you quit imail, all of your
undeleted messages will be copied back to your Unix
mailbox (D of Figure 2-1). You will be notified if you
have received new mail.

MAILBOX

(A) (D) IMAIL

. IMAIL

. DB .<-

(B)

(C)

MAIL

->. TEMPFILE .

Figure 2-1. Relationship of Imail and Mail Environments

- D3 -

3. The Details of Each Command

When you first enter imail, all the new messages in your
mailbox are retrieved and stored in the imail database
along with the old messages already there. Imail then
sorts the messages according to the order that you set
up in advance (more on this later) and automatically
proceeds to run mail on these messages. When you have
finished processing the messages and quit mail, you are
back in the imail environment and are prompted with:

enter: A(ll), T(emp sort), R(eset sort order), L(ist
current sort order), S(pecial search), K(ill me), or
Q(uit for now)

Any of the options may be selected by entering all or
part of the word in either upper or lower case letters.
Each of the options is explained below.

3.1 A(ll)

Using the current sorting order, all of the messages
will be retrieved from the imail database and passed to
the Unix mail command.

3.2 T(emp sort)

Once in the imail environment, you may wish to view your
messages in an order other than your default sorting
order. This option prompts you for the new sorting
order and then passes the messages, in the new order, to
Unix mail. This temporary sort order remains in effect
until you end the imail session.

When you select this option, you are prompted with:

What do you want to sort on: A(uth), S(ubi), C(c)
T(ext), D(ate) orQ(uit)? v J> ["

If you select "date", there are no more prompts and the
messages will be sorted in chronological order. Any of
the other choices will result in the prompt:

What do you want to be shown first? Use
(;) to quit >

Enter the character string that identifies your first
selection criteria. For example, if you had selected to
sort on author, you might wish to enter "henry" here.

D4

You need not enter the entire character string, for
instance "enry" would also be accepted, but you must
match the upper and lower case letters (a search for
"Henry" would constitute a search for a different author
from "henry"). After you enter the first value, you
will be prompted with

next?

You may enter up to five different search strings, each
on a new line. If you choose to sort on fewer than five
values, simply enter " ;

" as an entry and the prompting
will stop. The messages will then be sorted and passed
to the Unix mail command. The key field you requested
(author, subject, cc-list, or message text) will be
searched for each message to see if the character string
you requested as your first key is present. Any
messages that are found will be shown first by the mail
command. A search is made again for the second key you
requested and so forth until there are no more keys.
Any remaining messages will appear in chronological
order.

3.3 R(eset sort order)

When you first use imail, your mail messages will be
sorted by the date of the message. You may choose to
override this so that your messages will automatically
be sorted according to an order that you specify once.
This new order will remain in effect until you
specifically override it with another order.

The prompts for the sort order are exactly the same as
those listed above for the temporary sort order. Mail
will not be automatically invoked on the messages after
setting the default sort order. A request to see all
the messages will show them in the new order as it will
the next time imail is called.

3.4 L(ist current sort order)

This command will list the current values of the sort
keys

.

D5 -

3.5 Sfpecial search)

It may be useful for you to select just a subset of
messages and view the subset independently of the other
messages. The special search option allows you to do
this. Once you select it, you are given a secondary
prompt

:

enter A(nd), 0(r), (,), or one of the following and
then the value: F(rom), C(c), S(ubj), M(sgtext), D(ate)
(<> yy mm dd hh mm), Q(uit)

Using the options listed above, you may build a request
to select messages from the database. Before going any
further, let's take a look at a few sample requests
which could be handled:

from robin
from robin and subj schedule
(from robin or from virg) and subj schedule
date > 88 06 15 07 00
subj schedule or msgtext schedule

The first example requests all the messages from robin.
The second is more specific in that it requests only
those messages from robin that have the word "schedule"
in the subject. The third request still is concerned
about only those messages with the word "schedule" in
the subject, but these may be from either robin or virg.
The fourth example puts no restrictions on the author or
subject, but requests those messages that are dated
after 7:00 on June 15, 1988. The last example searches
for any message that has the word "schedule" in either
its subject or in the text of the message itself.

Using the symbols and keywords listed in the prompt, you
may construct an unlimited number of requests. Each
request must be made on one line, followed by a carriage
return. The symbols from the first set in the prompt
are used to logically group requests together. The
words from the second set form the request and must be
followed by a value (for example "from robin"). The
date is very specific, it must be followed by a less-
than or greater-than sign and by a date in the format
[year, month, date, hour, minute] with each of these
represented by a two digit string. You need not spell
out an entire keyword, just the first letter in either
upper or lower case is sufficient. The request format

D6 -

follows the standard rules of logic and you may use
parentheses to logically group restrictions together.
Nested parentheses are also permitted.

There are a few limitations on the makeup of a request.
The first is that you must exactly match the case of the
letters in the mail message. The database request is
not capable of mapping lower case letters to upper case,
or vice versa. However, it can do partial matches in
the same manner discussed in the section on setting up
the sort order.

Another limitation is that the actual request to the
database may not exceed a certain length. Due to the
nature of the request, a search for a string in the
message text once it has been translated to the actual
database call requires over half of the allowed number
of characters. Therefore two restrictions on the
message text in the same request are not permitted,
although a message text search may be combined with any
of the other searches. If you do exceed the limit you
will get the error message:

Sorry, the request is too long, try again

and the request will not be sent to the database.

After you enter the restrictions for your database
request you will be prompted:

Enter (h) to see headers only, (m) to invoke mail, (q)
to quit request:

If you select "m", the messages that match your request
will be sent to the Unix mail command and you will be in
the mail environment. If you wish to see just the
headers and not run mail, select "h" . "Q" cancels the
request and returns the imail prompt.

3.6 K(ill me)

The kill-me command deletes the imail database relation
that contains your mail messages. It also removes any
reference to you from the imail database. It does not
destroy any messages in your Unix mailbox. If you wish,
you may start using imail again at any time.

D7

3.7 Q(uit for now)

When you are finished with a session of imail, use the
quit command to exit imail. This restores your Unix
mailbox and maintains all of your current messages in
the imail database. If you received new mail messages
during an imail session, you will be notified when you
quit imail.

3 .

8

Examples

This section contains several examples of using imail to
help familiarize you with the kinds of queries that can
be made with imail.

enter: A(ll), T(emp sort), R(eset sort order),
L(ist current sort order),
SJpecial search), K(ill me), or Q(uit for now)
> s
enter A(nd), 0(r), (,),
or one of the following and then the value:
F(rom), C(c), S(ubj), M(sgtext),
D(ate) (<> yy mm dd hh mm), Q(uit)
> subj paper
Enter (h) to see headers only, (m) to invoke mail,
(q) to quit request: h

beth Tue Jun 7 13:45:12 1988 Re: paper

beth Thu Jun 9 07:46:05 1988 Re: paper

vanburen Mon Jun 13 09:27:04 1988 paper

3 messages found.

enter: A(ll), T(emp sort), R(eset sort order),
L(ist current sort order),
S(pecial search), K(ill me), or Qfuit for now)
> r
What do you want to sort on: A(uth), S(ubi), C(c),
T(ext), or D(ate)? > auth
What do you want to be shown first?
Use

(;) to quit > rich
next? > virg
next? > beth
next? >

;

I-'

a

sorting on 3 values

enter: A(ll), T(erap sort), R(eset sort order),
L(ist current sort order),
Sfpecial search), K(ill me), or Q(uit for now)

> s
enter A(nd) , 0(r) , (,) ,

or one of the following and then the value:
F(rom), C(c), S(ubj), M(sgtext),
D(ate) (<> yy mm dd hh mm), Q(uit)
> (s paper and f beth) or from rich
Enter (h) to see headers only, (m) to invoke mail,
(q) to quit request: h

beth Tue Jun 7 13:45:12 1988 Re: paper

beth Thu Jun 9 07:46:05 1988 Re: paper

rich Thu Jun 9 09:18:14 1988 New methods

3 messages found.

enter: A(ll), T(emp sort), R(eset sort order),
L(ist current sort order),
S(pecial search), K(ill me), or Q(uit for now)

> s
enter A(nd), 0(r), (,),
or one of the following and then the value:
F(rom), C(c), S(ubj), M(sgtext),
D(ate) (<> yy mm dd hh mm), Q(uit)
> m database and date > 88 06 05 00 00
Enter (h) to see headers only, (m) to invoke mail,
(q) to quit request: m
Mail version 5.2 6/21/85. Type ? for help,
"/usr/tmp/tminkley": 2 messages
> 1 rich Thu Jun 9 16:44 20/635 "New methods"

2 maxwell Fri Jun 10 10:06 43/2001 "bern2"
& q

enter: A(ll), T(emp sort), R(eset sort order),
L(ist current sort order),
S(pecial search), K(ill me), or Q(uit for now)
> q

- D9

4. Options to the Imail Command

There are two options to the imail command that may be
selected either together or independently of one
another.

4.1 Imail -s

When you invoke imail, it normally sorts all your
messages and passes them to Unix mail. Sometimes you
may wish to skip this step and go right to the imail
functions. "Imail -s" still reads all your new messages
out of your mailbox and stores them in the imail
database but it does not call mail unless you
specifically request it.

4.2 Imail -c

Some mail messages may contain the control character" "L" to start a new page when printing. The imail
database cannot store this character so it is converted
to a blank character. But you may wish to keep track of
where the "~L" occurs, so imail gives you the option of
converting every occurrence of ""L" to "~L". At the
same time, any "~" in the message will be converted to"""'' Thus if you used the "-c" option and the string
"hello ~L~L world" were in your mail message, it would
be converted to "hello ~~L~L world".

5. A Note of Caution

You may wish to intermix your use of imail and Unix
mail. If you choose to do this, it is important that
you understand the relationship between the two
functions. When imail is called, it stores the new
messages in the imail database and empties the Unix
mailbox. When you quit imail, all of your undeleted
messages are written back to your Unix mailbox. If you
now call mail and delete a message, that message is
still stored in the imail database. The next time you
call imail you will see it as one of your messages and
when you quit imail it will be written along with the
other messages back into your Unix mailbox. You must
delete a message through imail in order to remove it
from the imail database.

- D10

6. Experienced INGRES Users

Imail uses an INGRES* database to store all mail
messages. You may wish to access this database yourself
if the queries provided by imail are not sufficient for
your needs. For instance, suppose you wanted to create a
distribution list for people interested in databases.
You could construct your own query to retrieve the
author and copy-to list of any message that had the word
"database" in it. Using the names you just retrieved,
you could make up your distribution list.

There are two ways to access the imail database. The
first is directly from the shell using INGRES' s Query
Language (QUEL), the other is from within a program
using Embedded Quel (EQUEL). There are numerous INGRES
manuals available to assist you in making a query; this
document does not address the syntax or semantics of
INGRES queries.

6.1 Introduction to the secrets of imail

The imail database consists of two different kinds of
relations. The first contains each mail message for a
particular user; there is one relation per user. The
format of this relation is given in Table 6-1. Notice
that the text portion of each message is divided into
five fields. INGRES places a restriction on the length
of a field and on the length of a record. The text is
broken up into multiple fields and written across
several records to compensate for these limitations.
The records are kept in order by the sequence number.

The second relation is shown in Table 6-2. This is
known as the master relation because it keeps track of
the default sort orders for all users and also the Unix
time that each user last ran imail. This time is
compared with the messages in a user's mailbox in
determining if there are any new entries.

INGRES is a product of Relational Technology, Inc.
(RTI) *"

- Dll

Relation name: im 1'userlD

field name type length
auth char 20
sub j char 5 (J

date int 4
textO char 110
textl char 110
text2 char 110
text3 char 110
text4 char 110
tuplen int 2
tup_type char 2

seqnum int 2

definition
author of the message
subject of the message
date of message in Unix time
first part of message text
second part of message text
third part of message text
fourth part of message text
fifth part of message text
number of chars in text 0-4
header, CC record, or text
valid options: "hd", "cc", "tx"
for multiple part messages

TABLE 6-1. Layout of Relation for Mail Messages for
each User

Relation name: logrel

field name
usrname
sorttype

type
char
int

length
20
2

definition
user's login ID
field default sort is based upon
option value
date
author 1

subject 2

cc 3
text 4

first key for default sorting
second key for default sorting
third key for default sorting
fourth key for default sorting
fifth key for default sorting
number of sort keys given
Unix time imail was last run

TABLE 6-2. Layout of Master Relation for Imail

svalO char 20
svall char 20
sval2 char 20
sval3 char 20
sval4 char 2

num svals int 2
logSate int 4

D12

Before you can access the imail database, you need to
know the names of the relations. The database itself is
called "imaildb" and the master relation is "logrel".
The relations that contain the mail messages are given
unique names based on a user's login ID. The name of a
relation is "im" immediately followed by the ID. Thus
if your ID is "henry", your mail messages would be found
in the relation called "imhenry".

6.2 Another note of caution

You are given read and write permissions on the relation
that contains your own mail messages. It is recommended
that you make queries only on this relation to avoid the
possibility of damaging it. If you do corrupt this
relation, it may also affect the messages in your Unix
mailbox the next time you run imail.

Let's take another look at what imail does. The first
thing it does is move the contents of your Unix mailbox
to "/usr/tmp/lmID" where "ID" is your login name. Then
it updates the imail database with any new messages from
the lmID file. When you quit imail, it retrieves the
messages in the imail database and puts them into your
Unix mailbox. Then it removes the lmID file. Note that
if the messages in the database were corrupted, your
mailbox may also be damaged.

If you recognize this may be a problem, the best thing
to do is copy or move your maibox to another file. Then
run imail and request the "kill me" command. Move your
saved mail file back to your mailbox and it will again
be safe to run imail.

7. Think Big

Imail was designed to help you make better use of your
mailbox. The queries that it provides can help you
organize your messages and search for ones that are of
importance at the moment. If there are other queries
that would be helpful to you, don't hesitate to
construct your own INGRES queries.

The imail database is there for you to query.

Imail: A DBMS for Electronic Mail

by

KATRYN B. INKLE

Y

B. Phil, Miami University, 1979

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

An Abstract of the Master's Report

In 1984, CCITT published a set of recommendations that

established a framework upon which enhancements to

electronic mail services have been based. One of these

enhancements is incorporating a database management

system with electronic mail. One such system, called

"imail", was developed to assist a user in organizing

and viewing his mail messages. The main focus of this

paper is on the merits and implementation of imail.

Imail is built upon the UNIX(TM) mail system. It

allows the user to determine in advance how incoming

mail will be sorted and delivered. It allows the user

all the functionality of mail as well as the ability to

prioritize and sort the messages based upon the author,

a member of the "carbon copy" list, a keyword in the

subject heading, or the date in the message.

In addition, imail establishes a platform for the user

to write his own routines to manipulate his mail

messages. This is in keeping with the goal of

increasing the flexibility of incorporating a DBMS with

electronic mail.

