
ANALYZING HALSTEAD'S COUNTING RULES IN COBOL

by

MANAHUNG

B. S., National Chengchi University, 1970

A MASTER'S REPORT

submitted in partial fulfillment of the

requirement for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by:

^W
Major Professor



V^ r---

c5W*? , , , ' A11507 BILSMfi

cm5c
\m

„. TABLE OF CONTENTS
Hi Id

c. z '
cr.:

LIST OF TABLES iii

LIST OF FIGURES iv

1. INTRODUCTION 1

1 .1 Software Complexity Measures 1

1 .2 Ttieory of Software Science 2

1 .3 Purpose for the Project 4

1 .4 Review of Current Research 6

1 .5 Outline of Contents 10

2. DESCRIPTION OF THE METHODOLOGY 11

2.1 Counting Strategies 11

2.2 Test Program 14

2.3 Strategies for Implementation 14

3. ANALYSIS 24
3.1 Statistical Procedures Use 24
3.2 Analysis 25

4. CONCLUSIONS 43
4.1 Summary of Finding 43
4.2 Future Works 44

BIBLIOGRAPHY 45

APPENDEX 48



LIST OF TABLES

Table

1

.

Result for Strategy 1 17

2. Result for Strategy 2 18

3. Result for Strategy 3 19

4. Result for Strategy 4 20

5. Result for Strategy 5 21

6. Result for Strategy 6 22

7. Explanation of Column Headings 23

8. Averages and Correlation Coefficient of N vs Ng^,

for Six Counting Strategies 26

9. Correlation Coefficient of n^/ng vs |RE|

for Six Counting Strategies 34

10. Correlation Coefficient of N vs Ng^, for the

Programs with n^/Pj < 1 41

11. Correlation Coefficient of N vs N^g, for the

Programs with n^/nj i 1 41

12. MRE Value of|RE|and Predicted |RE| for

Six Counting Strategies 42

iii



LIST OF FIGURES

Figure

1

.

Scatter Diagram of Estimated Length vs |RE| for Strategy 1 27

2. Scatter Diagram of Estimated Length vs |RE| for Strategy 2 28

3. Scatter Diagram of Estimated Length vs |RE| for Strategy 3 29

4. Scatter Diagram of Estimated Length vs|RE| for Strategy 4 30

5. Scatter Diagram of Estimated Length vs|RE| for Strategy 5 31

6. Scatter Diagram of Estimated Length vs|RE| for Strategy 6 32

7. Scatter Diagram ofn^/njVSlREI for Strategy 1 35

8. Scatter Diagram of n^/nj vs |RE| for Strategy 2 36

9. Scatter Diagram of n^/Hj vs |RE1 for Strategy 3 37

10. Scatter Diagram of n^/nj vs |RE| for Strategy 4 38

1 1

.

Scatter Diagram of n^/ng vs 1RE| for Strategy 5 39

12. Scatter Diagram of n^/ng vs 1RE| for Strategy 6 40

iv



Chapter 1

INTRODUCTION

1 .1 Software Complexity Measures

Significant and increasing costs of software development, testing and

maintenance have provided motivation to study software characteristics which

contribute to improved reliability, increased understanding, and ease of

maintenance. Software measures/metrics have been defined, studied, and

validated both experimentally and theoretically with the purpose of

quantifying such characteristics as number of decisions, level of nesting, and the

number of operators and operands.

Software measures are used to evaluate and predict various aspects of

computer software and its development. One common use of software measures Is

to quantify the notion of complexity. The complexity of a program refers to the

effort required to understand it. Complexity measures are often applied to the

interaction between a program and a programmer working on some

programming task. Measuring the complexity of computer programs can provide

valuable information to aid in detecting potential program difficulties.

Complexity measures can also assess programming techniques and the use of

unstructed constructs. Either of these could compromise the final quality of a

product. Measures can be helpful in avoiding unnecessary complexities and in

achieving high quality software. A good measure should be algorithmic, direct

and automatable. It also should be applicable to software written in a wide

variety of program languages.



In the past years many complexity measures have been developed which

assess different quality characteristics of software [Halstead 77, t^flcCabe 76,

and Henry 81]. Among these measures, one that has received much attention

by researchers and has become a popular area of measures is Maurice

Halstead's "software science." This theory is gaining acceptance in software

engineering. Software science is the most comprehensive theory of the

software development process yet attempted. It is claimed that software science

may be used to compare different programming languages, to estimate the time

required to develop computer program, and to make prediction about the

errors that remain in a delivered computer program. Some of the

attractiveness of software science is due to the simplicity of its

instrumentation. An explanation of software science will be presented in the

next section.

1.2 Theory of Software Science

Software science was developed during the 1970's by the late

Professor l^aurice Halstead at Purdue University. He proposed that as an

experimental science, software science Is concerned initially with those

properties of programs that can be measured and with the relationship among

those properties that remain invariant under translation from one language to

another. He attempted to predict these measures at the most primitive level of

programming when all that is l<nown is the number of operators and operands.

Halstead proposed that complexity is closely related to program size. In

this theory, software consists of an ordered string of operators and operands.

They are mutually exclusive. When a program is translated from one language to

another, e. g., from Pascal to machine language, the actual operators and

2



operands may change but both versions still consist of a combination of operators

and operands.

An operand is defined as a variable or constant. An operator is defined

as any implicit or explicit symbol or group of symbols that can affect the

values of operands or the order in which the values of an operand is changed.

Examples of operands are keywords, delimiters, and arithmetic operators.

From the identification of operators and operands a number of countable and

measurable properties of any program can be defined. All software science

measures are functions of the counts of operators and operands. Software

science begins by defining four basic measures as the following:

n, = number of unique operators

ng = number of unique operands

N.| > total occurrences of operators

Nj = total occurrences of operands,

(actually, the Greek letter 'eta' is used in place of the 'n' symbol presented in

this report.)

Based on these counts, the size of the vocabulary of a given program is the

total number of unique operators and operands in that program. It is a measure of

the repertoire of elements that a programmer must deal with to implement the

program. Vocabulary is defined as:

n - n.| + ng.

The most fundamental and important relationship involves the length of the

program. The length of the program, which is also related to the numbers of

unique operators and unique operands, required for its implementation is

defined as

N = N, + N,.



Following the approach of information theory Halstead hypothesized that the

length of the program can be estimated by the quantity N^g, The estimated

length is a function only of the number of unique operators and operands. The

function, called the length equation, is denoted by Ng^, and is defined by

Ngg, = n^ • logjH, + Hj • logjnj-

He asssumed that the programs are well structured and better agreement

between N and Ngg, should result when impurities are removed before operators

and operands are counted. Halstead identified six classes of impurity. They are 1)

complementary operations -- use of two complementary operators to the same

operand, 2) ambigious operands -- use a given operand name to refer to

different things at different places in the program, 3) synonymous operands --

the opposite of the above impurity, use two operands for the same thing, 4)

common subexpressions -- fail to assign new name to the results of frequently

used calculation, 5) unwarranted assignments -- an operand is assigned a value

and used only once, and 6) unfactored express -- does not factor a factable

expression. In the study of this report all impurities are ignored.

Based on the counts of operators and operands, it is possible to obtain

quantitative measures for many useful properties of program, such as program

volume, program level, program effort, programming time, and error rates.

1.3 Purpose for the Project

By surveying the published literature, one can see that almost every

experiment on software science uses unique counting rules. Counting rules can

change the magnitude of the measures. Hamer and Frewin stated [Hamer 82):

"The only limiting factor to widespread application of the

measure is the unavailability of the basic counts of operators and
operands. When these become accepted as standard output from

compiler we can look forward to the general use of the measurement
as a basic tool of analysts and programmers."

4



Lister also pointed out that since all software science measures are derived

from counts of operators and operands, it is crucial that the counting rules be

clearly defined and consistent across experiments [Lister 82]. At Purdue

University, IBM, and General Motors, some research has been conducted on the

effect of changing the counting rules [Christ 81, Elshoff 78, and Shen 81]. No

universal agreement exists for exactly which tokens in a language are operators

and which are operands. The differences of the counting rules make it difficult

for researchers to compare the results of empirical studies conducted at

different places or times. Researchers raised many questions concerning

with the counting rules and length estimator. They suggest that program size

may be a critical factor when considering the performance of the length

estimator. Programs of different size seem to have different behavior. It is

necessary to address the sensibility of the counting rule. Furthermore, it is

interesting to see to what extent counting rules can be changed and how the

changes affects the length estimator.

Although much research work in applying the methodology of software

science to software measures has been done, most of it has concentrated on

programs written in "scientifically oriented" or "procedure oriented"

languages such as Fortran, PUI, and Algol. With substantially different

characteristics and application area, COBOL has received relatively little

research attention with three notable exceptions [Zweben 79, Shen 81, and

Debnath 84 & 85]. This paper primarily reports the investigation into different

counting rules applied to a set of 45 professsionally produced COBOL

programs.



1.4 Review of Current Research

Software science is a software complexity measure based upon a

manageable number of major factors that affect programming. Experimental

results provided by Halstead and other researchers have been very

encouraging and have received considerable attention from the computer

science community. With the rapidly growing interest in software science rules

and counting tools, some researchers have raised serious questions about the

underlying theory of software science, fuleanwhile experimental evidence

supporting some of the measures continue to be reported.

The original rules established by Halstead excluded the counting of

declaration statements and input/output statements. Statement labels were

considered a part of direct transfers. For example, in his experiment for Algol,

GOTO statements such as GOTO label-1 and GOTO label-2 are considered as two

different operators. Currently, most researchers tend to count the tokens in

declaration and I/O statements. Meanwhile statement labels are mostly counted as

operands whenever they appear. In such case GOTO label-1 and GOTO label-2

contain two occurrences of the one operator GOTO and one occurrence each of

the two operands, label-1 and label-2. The classification of operators and

operands is usually determined at the convenience of the programmer who is

building the counting rules. As mentioned before there seems to be no agreement

among researchers on what is the most meaningful way to classify and count these

tokens.

In his study Elshoff developed 8 different counting rules to study the

effect of variations of operator and operand counting methods on values calculated

for the software science measures [Elshoff 78]. He intentionally perturbed

the counting methods as much as possible in either direction. In one direction

6



he expanded the couni of unique operators as much as possible by splitting

them very finely. On the other hand he reduced the number of unique

operators to the greatest degree possible, combining all slightly similar

operators into one. He then applied these rules to 34 Pl_/I programs, and found

that when different counting methods were used some properties of the

software such as length and volume remained stable, while others such as

effort and level are not at all robust to slight variations of the rules in the

classification of operators and operands. Although no methods was shown to be

the best, the result implied the importance of the counting rule to the overall

measure.

Conte et al. also concluded the same result that length and volume are quite

robust for programs written in Fortran [Conte 82]. They used two analyzers

which only had minor differences on the way the GOTO statement was counted.

The number of unique operator n, decreased with the method which counted the

GOTO statement as one operator and operand for the label, n, dropped

dramatically if the program used a large number of GOTO statements and

remained unchanged when no GOTO was used. In considering n, changes with

program size they found that in a Fortran program of reasonable size, the

number of unique operator n., is quite constant. The increase of n., as a

program size grows is mainly due to the use of subroutine calls and function

references.

Various studies of vocabulary relationships from software science have

shown that for highly structured languages, the count of unique operator n, tends

to remain fairly constant while the count of unique operand nj grows as the size

of the program grows [Christ 82, Feuer 79, Fitso 80, and Lister 82]. Fitso has

plotted n, and ng by program size for Assembler and PUS languages. Although

7



x^r-

the fact that n, tends to be flat does not hold for Assembler language, It Is

true for the 490 PL7S programs he used. Because PUS is a subset of PUI, this

may also be true for P17I. Christensen et al. proposed that for structured

languages, line of code, length and volume were linearly related and are equally

valid as measures of program size. Since program size is a function of

vocabulary n, and n, tends to be constant, program size is a function of the

operands nj. Fitso indicated that any one of the following factors will affect the

number of unique operators In a language :

1) User-defined functions and procedures

2) The build-in-functions, procedures and operators

3) Number of branches, i.e. labels that are the target of a control

transfer.

The use of Halstead's length equation to predict program length has been

investigated by many researchers [Cook 82, Harrison 84, and

Waguespack 87 ]. Several empirical studies tending to confirm that

estimated program length Is a good estimator of the actual program length have

been reported [Wood 85 and Debnath 85]. On the other hand, some studies

have raised questions about the accuracy of the estimator. From his experiment

with Fortran, Basil! found that the relationship of observed length with

estimated length seems to be program size dependent; the estimator N^^,

tends to overestimate N for small programs and tend to underestimate N for

large programs [Basil! 83]. These results are essentially the same as those

reported by some other researchers who used several different languages, such

as PUS and Pascal. At IBfvl, they also made the observation that the range of

program sizes for which the length equation works best is 2000 < N < 4000. The

Software Metrics Research Group at Purdue University examined the length

equation for possible modification !n light of these types of results.



The recent survey on software economics tias listed software size

estimation as ttie first major issue needing further research. Several revised

length estimators to predict program size by program vocabulary have been

suggested in the literature [Jensen 85, and Livitin 87]. These new expressions

were found to be much better approximation than Halstead's for the data used in

each specific study. Whether, in general, the revised estimator are more

accurate than the N^j, provided by Halstead remains to be answered by further

studies.

The principal limitation of the length equation as a tool for estimating

program size lies in the fact that Halstead's estimator can be evaluated only

after the program has been written. Early assessment of software quality,

particularly in the design phase of software development, would provide

designers and managers confidence of a quality end product. It is highly

desirable to "use measurement that can lead to the optimization of program

organization while the progrem is being written or while it is being designed.

Measurement is an inherent part of the optimization process in other

engineering disciplines. Software engineering definitely needs this kind of

measurement discipline that each programmer can understand and can relate to

choices made while designing and coding a program" [Christ 81].

Gustafson and White [Gustafson 83] have studied the possibility of

applying Halstead's software science measures to one of the program design

techniques, Warnier-Orr diagrams. In this study Warnier-Orr process

operators as well as logical and arithmetic operators are counted as Halstead's

operators, while numbers and noun phrases are counted as operands. Because

of the small size of the experiment, conclusive results for estimated length

cannot be obtained. It is reasonable and useful to do further research in this

9



area in an effort to test ttie possibility of applying software science measures to

the design phase.

Although most software measures have historically focused on code

quality despite the importance of early and continuous quality evaluation in a

software development effort, Szulewski et al. have applied software science to

assess the quality of software design [Szule 83]. In order to compute software

metrics prior to coding, the operators and operands in the design medium need to

be identified and counted. This application has produced evidence that such

measures can provide designers with useful feedback during system deve-

lopment.

1.5 Outline of Contents

Halstead's software science is based on the number of operators and

operands. Chapter 2 will define the 6 sets of counting rules for COBOL language

and give an overview of the test programs chosen. As the counting rules are

defined they can be used to count the measures of software science. How to

implement the automatic counting tool is then stated. Chapter 3 gives a detailed

description of the way the statistical analysis is carried out from the output of

the counting tools described in Chapter 2. Several statistical methods and

packages were used. Chapter 4 provides the conclusions that have been reached.

Also described are ideas for future work related to this project. The entire

source code of the counting tool is listed in the Appendix A.

10



Chapter 2

DESCRIPTION OF THE METHODOLOGY

2.1 Counting Strategies

Software science measures proposed by Halstead are appealing.

Calculation of tiie measures depends on ttie existence of well-defined counting

strategies. Tiie strategies require precise definitions of ttie components of

a program : operators and operands. Ttiese definitions may influence the

values of the measures.

Intuitively, it seems the tasl< of establishing rules for classifying

operators and operands would be easy. However, COBOL is such a rich and

complex language, we are not surprised to find actually it is not a trivial

work. An attempt was made to maintain as much consistency with procedures

used for obtaining counts in other languages as possible. Our approaches are

not based solely on intuition, but are guided by the language syntax

requirement. Since COBOL is so flexible, we proposed several different ways

to count operators and operands.

For every set of counting rules we Ignored tokens which appear in

Identification and Environment divisions. These two divisions do not affect the

Implementation of a program, consequently they do not require much

programming effort. Only tokens in Data and Procedure divisions are

considered. Traditionally, Halstead's software science measures do not include

declarative statements in the operator and operand count. In most programming

languages declarative statements are a major portion of a program and to

a certain extent they determine the structure and complexity of the program.

11



Since all variables in a COBOL program must be declared in the Data division

it is appropriate to include the Data division as well. Comment is an internal

document; its presence or absence does not affect the function of the

program hence it is ignored.

In our strategies basically we define an operator as any of the

following:

1) an arithmetic operator which includes "+", "-", "*", 7", and

2) a logical operator which include "AND", "NOT", and "OR";

3) a relational operator which includes "<", "=", and ">";

4) a delimiter: ",", ";", ".", "(", ")", and the quote ;

5) a current symbol "$";

6) a reserved word with a few exceptions.

A parenthesis pair ( ) is counted as a single operator, as is a quote pair

" ". When encountering a "picture clause" in the Data division every

character is counted as an operator, except any digit number enclosed by

parenthesis ( ). For example, PICTURE S9(9)V99, every picture character

symbol: S, 9, and V Is counted as one occurrence of the operator, only the 9

inside { ) is counted as an operand. Moreover, the "+", or "-" is counted as an

unique operator no matter if it is a binary or unary sign.

Defining an operand is not as difficult as defining an operator. It is

defined as a numerical literal, nonnumerical literal, figurative constants, or

programmer-supplied word. In COBOL, some reserved words also are figurative

constants, in this case they are classified as operands. These reserved words

are ZERO(S), ZEROES, SPACE(S), QUOTE(S), HIGH-VALUE(S), and

LOW-VALUE(S). There are 17 types of programmer-supplied words, examples

12



of which are: data-name, file-name, record-name, and condition-name.

Although a programmer-supplied word is counted as an operand, one type

of programmer-supplied word, procedure name, commonly referred to as

paragraph name in the Procedure division, is classified in two different

ways : one as an operator and the other as an operand.

COBOL is characterized by great flexibility in the form of options

available to the programmer. Consequently we use a syntax requirement, the

COBOL language statement format [Spence 85] as guidance for determining the

way to count the occurrences of operators and operands in the Data division

and Procedure division. In a COBOL program certain reserved words are

required in a statement while some are optional. The omission of these 'noise'

optional words does not affect the function of the program. Three approaches

are then developed with two extremes. Following is the explanation of the

strategies.

1) Count all - every occurring token is counted either as an operator

or an operand.

2) Minimum count - according to the format of COBOL statement,

words which are underlined or/and which are enclosed in braces

{ } are required in the statement. Words which are not underlined

and used to improve the readability of the program as well as

words which appear inside brackets
[ ] indicate that the words

are optional. Under this approach the count only includes one

of those required words and excludes the optional words.

3) Maximum count - Both required and optional words are

counted except the words that are not underlined.

13



-»? •

For verbs that have different formats, we combined and reformated them

into one new form. Aiso, if in a statement there are several required

words, we chose one appropriate word and counted only that word. These two

rules apply to counting approaches 2 and 3 described earlier.

2.2 Test Programs

After we defined different counting rules, a COBOL program(s) is

needed to study the effect of variations in the counting rules on values of

software measures. Two sets of COBOL programs were obtained from COBOL

programming shops. These two sets contain a total of several hundred

commercial COBOL programs, f^any of these programs are either the same

program with different versions or different program with the same

application. To avoid bias, we kept away from the programs which were

similar or which perform the same kind of function. If a program has

different versions, we picked the latest version. The programs used for

measuring were a set of 45 programs. These programs have been written by

different professional programmers in different circumstances, and modified

by persons other than the original programmer. They range in size from 70

lines of code to 2000 lines of code approximately.

2.3 Strategies for Implementation

A research should have an accurate and efficient tool available to

collect data on product measures. We have devised the counting rules and

selected a set of 45 appropriate programs written in COBOL to be test

objects. In order to investigate Halstead's measures, an automated method of

scanning each of these 45 programs to determine the counts of operator and

14



operand as well as other measures were developed. The counting programs

written in Pascal were used to count paragraph name by both operator and

operand in each of the three ways given in the previous section. For

convenience, when paragraph-name is counted as operand, we referred to the

counting strategy with count all, with minimum count, and with maximum

count as strategy 1, strategy 2, and strategy 3, respectively. Similarly, when

paragraph-name is counted as operator, the strategy with count all, with

minimum count, and with maximum count were referred to as strategy 4,

strategy 5, and strategy 6, respectively. The Pascal language was chosen

because of its string manipulation and dynamic abstract data structure.

The Pascal counting program (Appendix A) scanned the COBOL source

code one token at a time. At a single pass of the source code, different values of

measures were calculated. A table of token with its classification, whether

it is counted, and occurrences in the Data division and Procedure division were

produced. In addition, the number of distinct operators, the number of

distinct operands, total occurrence of operators, and total occurrence of

operands were calculated separately for the Data division, the Procedure

division, and the whole program. The observed length of the program, N (the

total occurrence of operators and operands in the program), and the estimated

length obtained by using Halstead's length equation were also produced.

After having the above results for each of the 45 COBOL programs, a small

C program was written to retrieve the values of n.,, nj , N.,, Nj, N, and

Ngg, from the results and output them into six separate files. For each of the six

Pascal counting programs we repeated the same steps described above. A total of

270 files were created by running these 6 Pascal counting programs and a

total of 36 files were created by running the C program. These 36 files were

15



then copied from Unix^ system to a Macintosh^ PC where the empirical data can

be processed and analyzed. Next these 36 files were combined into 6, one

for each strategy, as shown in Tables 1-6. Table 7 shows the correspondence

between the column heading in these tables and the software science measures.

1. Unix is a trademark of Bell Laboratories.

2. Macintosh is a trademark of Apple Computer, Inc.

16



Table 1 . Result for Strategy 1

A B C E F G H 1 J K

1 n1-S1 n2-S1 N1-S1 N2-S1 N-S1 EstN-Sl IREI-S1 n1/n2-S1 n-S1 Est|RE|-S1 IHEIof IREI-Sl

2 67 166 1 111 566 1677 1630,685 0,028 0,404 233 0.230 7 3140

3 53 70 312 199 511 732.630 434 0,757 123 0,375 0,1363

4 56 48 202 117 319 593,290 0,860 1,167 104 0,543 0,3690

9 70 77 440 223 663 911.592 0,375 0,909 147 0,437 0.1653

6 59 46 206 104 310 601.160 0,939 1,283 105 0,590 0.3717

7 55 138 599 349 948 1298.951 0,370 0,399 193 0,228 0.3854

S 43 25 116 59 175 349.426 0,997 1,720 68 0,770 0.2279

9 74 153 983 532 1515 1569,880 0,036 484 227 0,262 6.2450

1 57 272 1933 1502 3435 2532.265 0,263 0,210 329 0,150 0.4292

1 1 53 174 853 620 1473 1598.652 0,085 0,305 227 189 1 2156

1 2 38 164 572 461 1033 1406 060 361 0,232 202 0,159 0.5594

1 3 103 350 2702 1521 4223 3646.633 0,136 0,294 453 0,185 3538

1 4 83 160 792 414 1206 1700.637 0,410 0,519 243 0,277 0.3250

1 5 61 95 431 228 659 985.911 0,496 0,642 156 0,327 0.3399

1 6 87 124 756 400 1156 1422 856 0,231 0,702 211 0,352 0.5242

1 7 34 236 1587 691 2278 2033.277 0,107 0,144 270 0,123 0.1464

1 S 35 90 573 266 339 763.792 0,090 0,389 125 0,224 1.4941

1 9 52 39 197 114 311 502.554 616 1,333 91 0,611 0.0081

20 69 191 903 559 1462 1868.777 0,278 0,361 260 0,212 0.2372

2 1 38 23 119 52 171 303 463 0,775 1,652 61 0,742 0425

2 2 79 337 3026 1761 4787 3327.654 0,305 0,234 416 0,160 0.4744

23 94 716 4723 3121 7844 7406.543 0,056 0,131 810 0,118 1.1143

24 55 267 1519 809 2328 2543.660 0,093 0,243 332 0,164 0.7695

25 73 261 2188 1179 3367 2452.715 272 0,291 324 0,183 3248

29 64 432 1867 1295 3162 4166.111 0,318 0,148 496 0,125 0.6069

27 56 378 1100 891 1991 3561-740 0,789 0,148 434 0,125 0.8418

28 37 124 511 405 916 1055.070 152 0,298 161 0,186 0.2281

29 83 116 650 349 999 1324.654 0,326 0,716 199 0,358 0.0968

3 73 82 431 237 668 973.176 0,457 0,890 155 0,429 0.0605

3 1 58 196 998 591 1589 1832.246 0,153 0,296 254 0,185 0.2114

3 2 42 72 374 188 562 670 712 0,193 0.583 114 0,303 5681

33 33 13 79 31 110 214 571 0.951 2.538 46 1,105 0.1626

34 55 92 510 291 801 918.142 0.146 0.598 147 0,309 1.1148

35 86 345 2266 1296 3562 3461.165 0.028 0.249 431 0,166 4.8749

39 67 184 903 558 1461 1790.763 0.226 0.364 251 0,213 0.0545

3 7 79 252 1560 961 2521 2508.273 0.005 0.313 331 0,193 37 1607

38 93 202 1139 659 1798 2155.100 0.199 0.460 295 0,253 2734

39 44 27 165 73 238 368.597 0.549 1.630 71 0,732 3349

40 97 390 2580 1229 3809 3997.050 0.049 0.249 487 0,166 2.3640

4 1 69 102 641 299 940 1102,076 0.172 0.676 171 0,342 0.9808

4 2 70 100 598 363 961 1093,435 0.138 0.700 170 0,351 1 5483

43 41 89 514 273 787 796,000 0.011 461 130 0,253 21 1251

4 4 85 200 1415 729 2144 2073,569 033 0.425 285 0,238 6.2568

4 5 44 38 179 92 271 439,636 0.622 1.158 32 539 0.1338

49 101 858 4735 3018 7753 9033,547 0.165 0.118 959 0,112 0,3198

47
48 MRE = 0.318 2,2865

17



Table 2. Result for Strategy 2

A B C D E F G H 1 1 J K

1 n1-S2 n2-S2 N1-S2 N2-S2 N-S2 EstN-S2 IREI-S2 n1/n2-S2 n-S2 Est IRE1-S2 IREI ot IREI-S2

2 51 166 932 566 1498 1513.550 0.010 0,307 217 0,2481 22,8983

3 42 70 271 199 470 655.527 0.395 0,600 112 0,3703 0,0620

4 41 48 165 117 282 487.738 0,730 0,854 89 0,4763 0,3471

S 55 77 314 223 537 800.517 0,491 0,714 132 0,4180 0,1483

6 47 46 179 104 233 515.150 820 1,022 93 0,5463 0,3341

7 41 138 511 349 860 1200.636 0,396 0,297 179 0,2438 0,3844

S 34 25 96 59 155 289.070 0,865 1,360 59 0,6874 0.2052

9 52 153 799 532 1331 1406.803 0,057 0,340 205 0,2617 3 5951

1 41 272 1705 1502 3207 2419.450 0,246 0,151 313 0,1828 0.2558

1 1 3S 174 753 620 1373 1494.493 0,088 0,218 212 0,2110 1.3845

1 2 30 164 510 461 971 1353 845 0,394 0,183 194 0,1962 0.5024

1 3 75 350 2138 1521 3659 3425 085 064 0,214 425 0,2093 2.2738

1 4 SO 160 581 414 995 1525.922 534 0,375 220 0,2764 4821

1 5 46 95 353 228 581 878.220 0,512 0,484 141 0,3219 0.3707

1 6 60 124 582 400 982 1216,734 0,239 0,484 184 0,3218 0.3462

1 7 22 236 1354 691 2045 1958.411 0,042 0,093 258 0,1588 2.7495

1 a 23 90 486 266 752 688.309 0,085 0,256 113 0,2265 1.6744

1 9 39 39 160 114 274 412.261 0,505 1,000 78 0,5372 0.0646

20 50 191 697 559 1256 1729,482 0,377 0,262 241 0,2291 3922

2 1 29 23 95 52 147 244,923 666 1.261 52 0,6461 0301

22 58 337 2643 1761 4404 3169.419 280 0.172 395 0,1917 0.3162

23 67 716 3937 3121 7058 7196.840 0,020 0.094 783 0,1589 7.0782

24 48 267 1349 809 2158 2420.284 0,122 0.180 315 0,1949 0.6035

29 55 251 1887 1179 3066 2318.832 0,244 0.219 306 0,2113 0.1329

2t 48 432 1651 1295 2946 4050.190 0,375 0.111 480 0,1662 0.556S

27 38 378 998 891 1889 3435.949 0,819 0.101 416 0,1618 0.8024

28 31 124 464 405 869 1015.900 0,169 0.250 155 0,2242 0.3262

29 62 116 503 349 852 1164.686 0,367 0.534 178 0,3429 0.0656

30 55 82 317 237 554 839.294 0,515 0,671 137 0,3998 0.2237

3 1 45 196 913 591 1504 1739.617 0,157 0,230 241 0,2157 0,3767

3 2 33 72 305 188 493 610.700 0,239 0,458 105 0,3111 0,3032

33 25 13 63 31 94 164.202 747 1,923 38 0,9224 0,2351

34 43 92 421 291 712 833.497 0,171 0,467 135 0,3149 0,8455

3S 64 345 1908 1296 3204 3292.506 0,028 0,186 409 0,1973 6,1416

30 52 184 748 558 1306 1680 758 0,287 0,283 236 0,2378 0,1713

37 61 252 1336 961 2297 2372.050 0,033 0,242 313 0,2209 5,7603

38 65 202 905 659 1564 1938.413 239 0,322 267 0,2541 0616
39 34 27 134 73 207 301.356 456 1,259 61 0,6454 0,4159

4 68 390 2045 1229 3274 3770,806 0,152 0,174 458 0,1926 0,2694

4 1 49 102 467 299 766 955.708 0,248 0,480 151 0,3203 0,2935

42 49 100 491 363 854 939.506 0,100 490 149 0,3244 2 2395

43 32 89 460 273 733 736.340 0,005 0,360 121 0,2599 58,2353

44 59 200 1092 729 1821 1875.847 0,030 295 259 0-2430 7,0670

4 5 35 38 148 92 240 378.946 0,579 0,921 73 0,5043 0,1290

48 70 858 4009 3018 7027 8790.117 0,251 0,082 928 0,1539 0,3866

47
48 MRE = 0-314 2,9231

18



Table 3. Result for Strategy 3

A B C D E F Q H 1 J K

1 nl-S3 n2-S3 N1-S3 N2-S3 N-S3 EstN-S3 iHE|-S3 nl/n2-S3 nS3 Est IREI-S3 IREI ol 1REI-S3

2 61 166 1087 566 1653 1586.032 0.041 0.367 227 0.2200 4.4304

3 49 70 304 199 503 704.171 0.400 0.700 119 0.3550 0.1123

4 51 48 194 117 311 557.372 0.792 1.063 99 0.5025 0.3657

5 65 77 418 223 641 873.996 0.363 0.844 142 0.4136 0.1379

S 53 46 194 104 298 557.664 0.871 1.152 99 0.5387 0.3817

7 48 138 585 349 934 1249.055 0.337 0.348 186 0.2120 0.3716

8 39 25 107 59 166 322.227 0.941 1.560 64 0.7044 0.2515

9 6^ 153 962 532 1494 1516.808 0.438 220 0.2486 15 2825

1 53 272 1923 1502 3425 2503.370 0.269 0.195 325 0.1498 0.4432

1 1 49 174 847 620 1467 1570.193 0.070 0.282 223 0.1851 1.6311

1 2 36 164 569 461 1030 1392.756 0.352 0.220 200 0.1599 0.5461

1 3 94 350 264 7 1521 4168 3574.055 0.143 0.269 444 0.1798 2616

1 4 72 160 749 414 1163 1615.743 0.389 0.450 232 0.2535 0-3488

1 S 54 95 420 228 648 934 900 443 0.568 149 0.3016 0.3188

1 6 78 124 719 400 1119 1352.582 0.209 0.629 202 0.3262 5628

1 7 28 236 1580 691 2271 1994.910 0.122 0.119 264 0.1189 0.0221

1 8 29 90 564 266 830 725.148 0.126 0.322 119 0.2016 0.5957

1 9 46 39 183 114 297 460.215 0.550 1.179 85 0.5498 0.0005

20 65 191 887 559 1446 1838.743 0.272 0.340 256 0.2089 0.2308

21 33 23 107 52 159 270.507 0.701 1.435 56 0.6535 0.0681

22 72 337 3012 1761 4773 3273.890 0.314 0.214 409 0.1575 0.4986

23 34 716 4671 3121 7792 7327.367 0.060 0.117 800 0.1183 0.9846

24 58 26^ 1500 809 2309 2491.969 0.079 0.217 325 0.1589 1.0056

25 66 251 2176 1179 3355 2399.787 0.285 0.263 317 0.1775 0.3766

26 58 432 1854 1295 3149 4121.874 0.309 0.134 490 0.1252 0.5947

27 50 378 1091 891 1982 3518.720 0.775 0.132 428 0.1244 0.8395

28 36 124 509 405 914 1048.438 0.147 0.290 160 0.1886 0.2824

2« 75 116 620 349 969 1262.687 0.303 0.647 191 0.3333 0998

30 67 82 413 237 650 927.747 0.427 0.817 149 0.4026 0.0578

3 1 52 196 986 591 1577 1788.906 0.134 0.265 248 0.1785 0.3281

32 37 72 362 188 550 636.984 0.158 0.514 109 0.2794 0.7669

33 28 13 70 31 101 182.712 0.809 2.154 41 0.9456 0.1689

34 50 92 493 291 784 882.361 0.125 0.543 142 0.2915 1.3231

39 30 345 2244 1296 3540 3414.260 0.036 0.232 425 0.1649 3.6420

38 61 184 891 558 1449 1746.110 0.205 0.332 245 0.2054 0.0015

37 71 252 1526 961 2487 2446.907 0.016 282 323 0.1851 10.4842

3 8 86 202 1113 659 1772 2099.617 0.186 0.426 238 0-2436 0.3178

39 40 27 158 73 231 341.259 0.477 1.481 67 0.6725 0.4089

40 89 390 2528 1229 3757 3933.199 0.047 0.228 4 79 0.1634 2.4838

41 64 102 627 299 926 1064.587 0.150 0.627 166 0.3256 1.1754

42 62 100 581 363 944 1033.546 0.095 0.620 162 0.3225 2.4003

4 3 37 89 507 273 780 769.090 0-014 0.416 126 0.2396 16.1275

44 77 200 1353 729 2082 2011.314 0.034 0.335 277 2271 5.6885

4 5 39 38 168 92 260 405.552 0.560 1-026 77 0.4876 0.1290

46 90 858 4658 3018 7676 8945.334 0.165 105 948 0.1133 0.3149

47
48 MRE- 0.296 1.7081

Vi

'-i



Table 4. Result for Strategy 4

A B C D E F G H 1 J K

1 n1-S4 n2-S4 N1-S4 N2-S4 N-S4 EstN-S4 IREI-S4 n1/n2-S4 n-S4 Est IREI-S4 |RE|of|REhS4

2 84 149 1164 523 1677 1612.611 038 0.564 233 0.242 5.309

3 58 65 333 178 511 731.217 0.431 0.892 123 0,358 0.170

4 80 44 212 107 319 594.628 0.864 1.364 104 0.523 394

5 72 75 445 218 653 911.396 0.375 0.960 147 0.381 0.018

6 64 41 220 90 310 603.660 0.947 1.561 105 0.593 0.374

7 62 131 617 331 948 1290.539 0.361 0.473 193 0.210 0.418

S 48 20 126 49 175 354.517 1.026 2.400 68 0.887 0.135

9 87 140 1017 498 1515 1558.636 0.029 0.621 227 0.263 8.114

1 1 1 1 218 2099 1336 3435 2447,644 0.287 0.509 329 0.223 0.224

1 1 80 . 147 925 548 1473 1564.106 0.062 0.544 227 0.235 2.806

1 2 55 147 623 410 1033 1376.327 0.332 0.374 202 0.176 0.472

1 3 139 314 2796 1427 4223 3594.044 0.149 0.443 453 0.200 0.341

1 4 97 146 824 382 1206 1689.906 0.401 0.664 243 0.278 0.308

1 5 69 87 452 207 659 982.024 0.490 0.793 156 0.323 0.341

1 S 93 118 776 380 1156 1420.294 229 0.788 211 0.321 0.404

1 7 36 234 1590 688 2278 2027.783 0,110 0.154 2 70 0,098 0.106

1 8 38 87 579 260 839 759.957 0.094 0.437 125 0.198 1.098

1 9 55 36 201 110 311 504.092 0.621 1.528 91 0.581 0.064

20 71 139 909 553 1462 1865.896 0.276 0.376 260 0.176 0.362

2 1 40 21 124 47 171 305.116 0,784 1.905 61 0.713 0.090

22 108 308 3101 1686 4787 3275.698 0.316 0.351 416 0.167 0.470

23 168 642 4995 2849 7844 7229.477 0.078 0.262 810 0.136 0.737

24 79 253 1564 764 2328 2517.696 0.081 0.312 332 0.154 0.888

29 92 232 2230 1137 3367 2423.219 0.280 0.397 324 0.183 0.345

2S 92 404 1967 1195 3162 4098.085 0.296 0.228 496 0.124 0.581

2 7 82 352 1191 800 1991 3499.039 0.757 0.233 434 0.126 0,834

21 53 108 557 359 916 1033.108 0.128 0.491 161 0.217 0.694

29 92 107 675 324 999 1321.505 0.323 0.860 199 346 0.073

30 77 78 443 225 668 972.804 456 0.987 155 0.391 0.143

3 1 67 187 1022 567 1589 1817.697 0.144 0.358 254 0.170 0.182

3 2 44 70 378 184 562 669.265 0.191 0.629 1 14 0,265 0.389

33 35 1 1 83 27 110 217.579 0.978 3.182 46 1.162 0.188

34 67 80 532 269 801 912.182 0.139 838 147 0.338 1.438

35 116 315 2340 1222 3562 3409.776 0.043 0.368 431 0.174 3.061

3S 76 175 923 538 1461 1778.804 0.218 0.434 151 0,197 0.095

37 106 225 1635 886 2521 2471.260 0.020 0.471 331 0.210 9.628

38 108 187 1169 629 1798 2140.797 0.191 0.578 295 0.247 296

39 46 25 169 69 238 370.180 0.555 1.840 71 0.691 0.244

40 106 381 2600 1209 3809 3979.719 0.045 0.278 487 0.142 2.166

4 1 72 99 646 294 940 1100.541 0.171 727 171 0.300 0,755

42 86 84 631 330 961 1089.613 0.134 1.024 170 0.404 2.018

4 3 55 75 563 224 787 785.136 0.002 0.733 130 0.302 126.439

44 92 193 1440 704 2144 2065.512 0.037 0.477 285 0.212 4.782

4 5 47 35 188 83 271 440 591 0.626 1.343 82 0.516 175

4 a 150 809 4936 2817 7753 8899 259 0.148 0.185 959 0.109 0.261

47
4 8 MRE» 0.317 3.966

f



~.#«-^3^ S*:»^

Table 5. Result for Strategy 5

A B C D E F G H 1 1 J K

1 n1-S5 n2-S5 N1-S5 N2-S5 N-S5 ESIN-S5 |RE|-SS nl/n2-S5 n-S5 Est [REI-S5 IREj ot IREI-S5

2 68 149 975 52: 1498 1489.604 006 0.456 217 0.2554 44.5724

3 47 65 292 178 470 652.520 0.388 0.723 112 0,3484 0.1028

4 45 44 175 107 282 487.348 0.728 1.023 89 0,4529 0.3780

5 57 75 319 218 537 799.636 0.489 0.760 132 0,3613 0.2612

S 52 41 193 9C 283 516.082 0.824 1.268 93 0,5386 0.3461

7 46 131 529 331 860 1189.457 0.383 0.366 179 0,2241 0,4151

8 39 20 106 49 155 292.569 0.888 1.950 59 0,7763 0,1253

9 65 140 833 498 1331 1389.554 0.044 0.464 205 0.2582 4,8688

1 95 218 1871 1336 3207 2317.600 0.277 0.436 313 0.2482 0,1049

1 1 65 r47 825 548 1373 1449.806 0.056 0.442 212 0.2505 3,4775

1 2 47 147 561 410 971 1319.418 0.359 0.320 194 0.2078 0,4210

1 3 111 314 2232 1427 3659 3358.691 0.082 0.354 425 0.2195 1,6750

1 4 74 146 813 382 995 1509.214 0.517 0.507 220 0.2730 0,4717

1 5 54 87 374 207 581 871.300 0.500 0.621 141 0.3127 0,3741

1 6 66 118 602 380 982 1211.082 0.233 0.559 184 0.2913 0.2488

1 7 24 234 1357 688 2045 1951.704 0,046 0,103 258 0.1320 1.8942

1 S 26 87 492 260 752 682.748 0.092 0,299 113 0.2005 1.1771

1 9 42 36 164 1 10 274 412.595 0.506 1.167 78 0.5031 0.0053

20 52 189 703 553 1256 1725.687 0.374 0.275 241 0.1922 0.4860

21 31 21 100 47 147 245.819 0.672 1.476 52 0.6111 0.0910

22 87 308 2718 1686 4404 3106.706 0.295 282 395 0.1948 0.3388

23 141 642 4209 2849 7058 6994.244 0.009 0.220 783 0.1729 18.1363

24 62 253 1394 764 2158 2388.858 0.107 0.245 315 0.1817 0.6988

25 74 232 1929 1137 3066 2282.551 0.256 0.319 306 0.2075 0,1879

26 76 404 1751 1195 2946 3972.760 0.349 0.188 480 0,1619 0,5356

27 64 352 1089 800 1689 3361.720 0.780 0.182 416 0,1597 0,7952

2> 47 108 510 359 869 990.594 0.140 0.435 155 0,2480 0,7726
29 71 107 528 324 852 1157.969 0.359 0.664 178 0.3277 0.0876

30 59 78 329 225 554 837.337 0.511 0.756 137 0.3601 0.2960

3 1 54 187 937 567 1504 1722.033 0.145 0.289 241 0.1970 3567
32 35 70 309 184 493 608.575 0.234 0.500 105 0.2706 0.1544

33 27 1 1 67 27 94 166.436 0.771 2.455 38 0.9523 0.2357

34 55 80 443 269 712 823.729 0.157 0.688 135 0.3360 1.1414

3 5 94 315 1982 1222 3204 3230.382 0.008 0.298 409 0.2003 23.3302

30 61 175 768 538 1306 1665.737 0.275 0.349 236 0.2178 0.2092

37 88 225 1411 886 2297 2326.531 0.013 0,391 313 2327 17.0972

38 80 187 935 629 1564 1917.024 0.226 0.428 267 0.2455 0.0875

39 36 25 138 69 207 302.214 0.460 1.440 61 0.5985 0.3011

40 77 381 2065 1209 3274 3749.102 0.145 0.202 458 0.1667 0.1491

41 52 99 472 294 766 952.729 0.244 0.525 151 0.2794 0.1463

42 65 84 524 330 854 928.409 0.087 0.774 149 0.3661 3.2021

43 46 75 509 224 733 721.245 0.016 0.613 121 0.3102 18.3406

44 66 193 1117 704 1821 1864.274 0.024 0.342 259 2155 8.0695

4 5 38 35 157 83 240 378,946 0.579 1.086 73 0.4749 0.1797
4 6 119 809 4210 2817 7027 8635.420 0.229 0.147 928 0.1476 0.3553
47
48 MHE> 0.308 3.4823

21



Table 6. Result for Strategy 6

A B C E F G H 1 J K

1 n1-S6 n2-S6 N1.S6 N2 S6 N-S6 EslN-Se |RE].S6 nl/n2-S6 n-S6 Est IREI-S6 lREiof|RE|-S6

2 78 149 1130 523 1653 1565,917 0.053 0.523 227 0.2318 3 3997

3 54 65 325 178 503 702.218 0.396 0.831 119 0.3386 1451

4 55 44 204 107 311 558.190 0.795 1.250 99 0.4843 0.3907

5 67 75 423 218 641 873.589 0.363 0.893 142 0.3603 0070

6 58 41 208 90 298 559 423 0.877 1.415 99 0.5415 0.3827

7 55 131 603 331 934 1239.353 0.327 0.420 186 0.1958 0.4012

8 44 20 1 17 49 166 326.654 0.968 2.200 64 0.8144 0.1585

9 80 140 996 498 1494 1503.854 0.0071 0.571 220 0.2484 35.6677

1 107 218 2089 1336 3425 2414.801 0.295 0.491 325 0.2204 2526

1 1 76 147 919 548 1467 1533.194 0.045 0.517 223 0.2295 4.0869

1 2 53 147 620 410 1030 1361.932 0.322 0.361 200 0.1752 0.4565

1 3 130 314 2741 1427 4168 3517.419 0.156 0.414 444 0.1937 0.2412

1 t 36 146 781 382 1163 1602.373 0.378 0.589 232 0.2546 0.3252

1 5 62 87 441 207 648 929.696 0.435 0.713 149 0.2975 3156

1 6 84 118 739 380 1119 1349.107 0.206 0.712 202 0.2973 0.4455

1 7 30 234 1583 688 2271 1988-872 0.124 0.128 264 0.0944 0.2401

1 S 32 87 570 260 830 720.536 0.132 0.368 119 0.1777 0.3473

t 9 49 36 187 1 10 297 461 238 0.553 1.361 85 0.5229 0.0544

20 67 189 893 553 1446 1835.692 0.269 0.354 256 0.1731 3579

21 35 21 112 47 159 271.764 0.709 1.667 56 0.6291 1 130

22 101 308 3087 1686 4773 3218.650 0.326 0.328 409 0.1638 4970

23 158 642 4943 2849 7792 7141.566 0.083 0.246 800 0.1354 0.6218

2 4 72 253 1545 764 2309 2463.932 0.067 0.285 325 0.1488 1.2170

25 85 232 2218 1137 3355 2367.850 0.294 0.366 317 0.1772 3978

26 86 404 1954 1195 3149 4050.576 0.286 0.213 490 0.1238 5675

27 76 352 1182 800 1982 3452.562 0.742 216 428 0.1249 0.8317

28 52 108 555 359 914 1025.951 0.122 0.481 160 0.2172 0.7732

29 84 107 645 324 969 1258.292 0.299 0.785 191 0.3227 0.0809

30 71 78 425 225 650 926 893 0.426 0.910 149 0.3662 0.1403

3 1 61 187 1010 567 1577 1773.044 0.124 0.326 248 0.1632 3130

32 39 70 366 184 550 635.180 0.155 0.557 109 0.2435 5721

33 30 1 1 74 27 101 185.260 0.834 2.727 41 0.9977 1959

34 52 80 515 269 784 874.914 0.116 0.775 142 0.3192 1 7525

3 5 1 10 315 2318 1222 3540 3360.200 0.051 0.349 425 0.1712 2.3710

38 70 175 911 538 1449 1733.012 0.196 0.400 245 0.1889 0364

37 98 225 1601 886 2487 2406.342 0.032 0.436 323 0.2012 5 2045

3 8 101 187 1 143 6 29 1772 2083.749 0.176 0.540 288 0.2376 3503

39 42 25 162 69 231 342.574 0.483 1.680 67 0.6337 0.3120

40 98 381 2548 1209 3757 3914.801 0.042 257 479 0.1392 2.3152

4 1 67 99 632 294 926 1062.734 0.148 0.677 186 0.2851 0.9305

42 78 84 614 330 944 1027.216 0.088 0.929 162 0.3726 3.2264

43 51 75 556 224 780 756.455 0.030 0.680 126 0.2862 8.4805

44 84 193 1378 704 2082 2002.299 0.038 0.435 277 0.2011 4 2536

45 42 35 177 83 260 406.002 0.562 1.200 77 0.4669 1685

4 8 139 809 4859 2817 7676 8804 469 0.147 0.172 948 0.1096 0.2547

47
48 MRE- 0.295 1.8812

22



Table 7

Explanation of Column Headings

Column heading Measured value

n,-S* "1

nj.S' "2

HyS- N,

N2-S* N2

N-S* Actual length N

EstN-S* Estimated length N

IREI-S* Absolute relative value

Note: * stand for strategy number

23



Chapter 3

ANALYSIS

3.1 Statistical Procedure Used

The usefulness of software measures in the management of software

development not only should be justified theoretically, but also should be

supported by empirical results. To investigate the relationship between the

counting strategies with the IHalstead length equation, several statistical

procedures and packages were used to analyze the 6 sets of empirical data

obtained from running 6 versions of the Pascal counting programs.

In order to assess the strength of the relationship between observed length

N and estimated length Nggj Pearson's correlation coefficients were computed

for each set of data. Pearson's correlation coefficient is a measure indicating

the degree of linear relationship between two variables. It may not imply a

cause-effect relationship. The symbol for the correlation coefficient is r.

When there is a perfect linear relationship, positive or negative, between these

two variables, then r = 1 or -1, respectively. When there is little or no linear

relationship between them, r has a value close to 0. The absolute value of the

correlation is always a number between and 1 . Since the correlation

coefficient cannot be a complete test of validity of the length equation,

other methods of analysis are needed.

There are several criteria which have been successfully used in

software metric research [Conte 86]. The most natural and important measure of

the accuracy of an estimator of M is the mean absolute relative error, MRE,

defined as

24



1 1

MRE = - lMRE|
i

i=1

'^(observed) " ^(estimated)

where MREj = |REj| =
| I

'^(observed)

Here, j is the number of M in the data set being investigated, REj is the relative

error of the estimate, f^RE is its absolute value. An estimator which

consistently yields small values of (vIRE Is desirable. The smaller the I^RE, the

more accurate the estimation.

The scatter diagrams of different variables were plotted to see the

relationship between the variables. Regression analysis, ANOVA, and LSD were

also used.

In the analysis, several tools were used. A spreadsheet package. Excel,

and a statistical analysis package, MacSS, both for the l^acintosh were used to

manipulate numerical data, to calculate correlation coefficient, |RE||, MRE,

and to plot the 2-dimensional graph, the scatter diagram.

3.2 Analysis

The correlation coefficient calculated for observed program length N

versus estimated length Ng^,, which were previously obtained by using our six

counting strategies, are shown in Table 8. As seen from the table these

correlation coefficient valued between 0.959 and 0.961, thus indicating that

the relationship between N and Ng^, are strongly correlated as found in previous

studies. These six values of r are very similar and all have the significant level

of 0.00. It seems that there are only minor differences of r between counting

25



strategies.

Table 8

Averages and Correlation Coefficient of N vs Ng^,

for 6 Counting Strategies

Strategy Avg Avg Avg Avg Avg Avg Corr.

"l "2 N, N2 N Nest Coett.

1 63.9 189.0 1112.4 659.4 1771.8 1904.9 0.9606

2 47.2 189.0 930.6 659.4 1590.0 1782.4 0.9602

3 57.8 189.0 1092.4 659.4 1751.8 1859.4 0.9600

4 78.6 174.3 1155.6 616.3 1771.8 1882.5 0.9599

5 61.8 174.3 973.7 616.3 1590.0 1754.6 0.9591

6 72.4 174.3 1135.5 616.3 1751.8 1835.3 0.9592

In order to measure the discrepancy between N and N^g, of the different

counting strategies, |REj| for each of 45 programs in 6 sets of data and IVIRE

were obtained by using the Excel spreadsheet package. Entries in the 7th column

of Tables 1-6 show the values of |RE| and MRE. The MRE values, 0.318, 0.314,

0.296, 0.317, 0.308, and 0.295 show the overall performance of N^g, is not

bad. As with the correlation coefficients, the MRE values were not significantly

different between the six counting strategies. Among them, strategies 3 and 6

both with max count of tokens show to have the best value of UHE. Even though

the MRE Is not large, there may be one or more individual predictions that could

be very bad.

For easier observation, six scatter diagrams of |RE| vs Ng^, were plotted

(Figures 1-6). By looking at the figures it can be seen that most of the points

26



"I ^ Tf • "T.

214.60 1684.50 3154.40 4624.30 6094.20 7564.10 9034.

+ + + + + + + + + + + + +

1.001 *

.931* *

.871 *

.811 *

.751 *

.691

. 62
I

*

.561 *

I
RE

I
-SI .501 *

.441 ** *

.381 * **

.311 * * *

251 * * **

.191 * * *

.131 ** ** *

.071 * * * * *

0.001 * * * *

+ + + + + + + + + + + + +

214.60 1684.50 3154.40 4624.30 6094.20 7564.10 9034.

Estimated Length - SI

Figure 1 . Scatter Diagram of Estimated Length vs |RE| for Strategy 1

27



164.20 1601.85 3039.51 4477.16 5914.81 7352.46 8790.

+ + + + + + + + + + + + +

.871 *

.811 *

.761"

.701 *

.651 *

.601 *

.541 *

.491 * *•

IREI-S2 .431 *

.381 * ** *

.331

.271 * *

.221 * * * *

.171 ** *

.111 * *

.061 * * * *

0.001 * * *

+ + + + + + + + + + + + 4

164.20 1601.85 3039.51 4477.16 5914.81 7352.46 8790.

Estimated Length - S2

Figure 2. Scatter Diagram of Estimated Lengtti vs |RE| for Strategy 2

28



182.71 1643.15 3103.59 4564.02 6024.46 7484.90 8945.

+ + + + + + + + + + + + +

.941 *

.881 *

.831*

.771 * *

.711 *

.651

.591

.541 *

I
RE

I
-S3 .481 *

.421 **

.361 * ** *

.301 * * * *

.251 * *
1 Q

j

* * * *

.131 **** ** *

.071 * * * * *

Q]_
I

* ** * * *

+ + + + + + + + + + + + 4

182.71 1643.15 3103.59 4564.02 6024.46 7484.90 8945.3

Estimated Length - S3

Figure 3. Scatter Diagram of Estimated Lengtti vs |RE| for Strategy 3

29



'^ac?^'

217.58 1664.53 3111.47 4558.42 6005.37 7452.31 8899.

+ + + + + + + + + + + + +

;- 1.031 * ',

.961* *
J

.901 '

.831 *

.771 * *

. 71

1

.641 *

.581 *

I
RE

I
-S4 .511 *

.451 **

.391 * * *

.321 * * *

.261 * *

^g I

* * * *

.131 ***** *

.071 * ** * * * * *

0.001 * * *

+ + + + + + + + + + + + 4

217.58 1664.53 3111.47 4558.42 6005.37 7452.31 8899.

Estimated Length - S4

Figure 4. Scatter Diagram of Estimated Length vs |RE| for Strategy 4

30



166.44 1577.93 2989.43 4400.93 5812.43 7223.92 8635.

+ + + + + + + + + + + + +

.891 *

.831 *

.781* *

.721 *

.671 *

.611

.561 *

.501 * ** *

IREI-S5 .451 *

.391 * * * >

.341 ** *

.281 * * *

.231 * ** * *

.171 * * * '

.121 * * *

.061 * * * *

, 01

1

* * * * * *

+ + + + + + + + + + + + +

166.44 1577.93 2989.43 4400.93 5812.43 7223.92 8635.

Estimated Length - S5

Figure 5. Scatter Diagram of Estimated Length vs |RE| for Strategy 5

31



185.26 1621.79 3058.33 4494.86 5931.40 7367.93 8804.

+ + + + + + + + + + + + 4

.971 *

.911

.851* *

.791 *

.731 * *

.67
1

.611

.551 *

1REI-S6 .491 *

.431 *

.371 ** *

211 ** *• * *

.251 *

.191 * * *

^2\ **** * * * . *

Q-y
I

***** * * *

.011 * * *

+ + + + + + + + + + + + 4

185.26 1621.79 3058.33 4494.86 5931.40 7367.93 8804.4

Estimated Length - S6

Figure 6. Scatter Diagram of Estimated Lengtti vs |RE| for Strategy 6

32



are scattered toward the lower left and seems Ngg, and |RE1 have a negative

relationship. |RE| tends to be high for a small value of Ng^, and tends to be low

for a large value Ngg,. Moreover, In the scatter plot six components with

unusually high |RE| values, termed "outlier," were found. A close look at the

six programs with high |RE| values shows that five of them are among the

smallest in terms of N in the set of 45 COBOL programs, while the other

program although medium in size used a I^OVE TO statement to initialize a large

number of variables. The observation of Zweben and Fungs' study [Zweben 79],

which measured 25 small COBOL programs, showed that the relative error of

N and Ngg, are much higher than in similar comparisons, obtained from

Fortran and PL/I programs. Our results agree with this in that small programs

have a high value of |RE| (greater than 0.5). COBOL language has a large

repertoire of verbs which also are reserved words and are counted as operators.

The high discrepancy between the values of N and N^g, is probably caused by

the existence of a large number of infrequently referenced operators which

come from these verbs. These verbs contributed little to N but largely to n,.

For the outlier which has a large amount of data items Initialized by a single

MOVE statement, the infrequently referenced operands caused ng to be large,

hence also a large value of Ng^,. Therefore, these outliers had high |RE| values.

The above observation Implies that N^j, does not work well for small

programs and it appears that ng = 50 or n^/ng = 1 may be a good separator

between where N^g, works and does not work well. As we calculated the

correlation coefficients (Table 9) and plotted the scatter diagrams (Figures

7-12) between n^j/ng and |RE| for six sets of data, the results indicate there

exists a positive linear relationship between n^i/Pg and |RE|. Every one of the

six set data were then separated into two sets: one set of n^/nj < 1 and another set

33



of n^/Hjil. There were 8, 6, 8, 9, 8, and 8 programs in set 2 respectively.

Correlation coefficients of N versus Ng^, and MRE for eacli of these separated sets

were again calculated. As shown in Tables 1 and 1 1 the correlation coefficients

are all above 0.95 and remain very high. Compared with the MRE for all 45

programs, the MRE for the set of n,/n2< 1 decreased little to 0.219, 0.259,

0.206, 0.215, 0.228, and 0.203, respectively. On the other hand, for the

set of n^/ng >1, the MRE are 0.789, 0.676, 0.713, 0.726, 0.678 and 0.723,

respectively, which increased dramatically and are more than double those for the

45 programs. Further, we would lil<e to know if n^/nj can be a possible linear

predictor of |RE|. The slope and intercept obtained from regression analysis of

n.|/n2 and |RE| were used to calculate the estimated |RE| (see Tables 1-6). The

correlation coefficients of |RE| against estimated |RE| for six strategies are

0.7637, 0.681, 0.7263, 0.774, 0.6814, and 0.7407, respectively. From the

high MRE of |RE| and estimated |RE| (Table 12) we can say that n^/nj is not a

good linear prdictor of |RE|.

Table 9

Correlation Coefficient of n^/hj vs |RE|

for 6 Counting Strategies

Strategy Correlation Coefficient

1 0.7636

2 0.6811

3 0.7264

4 0.7740

5 0.6814

6 0.7407

34



.12 .52 .92 1.33 1.73 2.13 2.5

+ + + + + + + + + + + + +

1.001 *

.931 * *

.871 *

.811 *

.751 *

.691

.631 * *

.561 *

IREI-Sl .501 *

.441 * * * .
,

.381 * * *

.311 * * *

. 25 1
* * * *

.191* * * *

.131 * * * *

.071* « * *

0.001 * * ***

+ + + + + + + + + + + + +

.12 .52 .92 1.33 1.73 2.13 2.5

nl/n2 - SI

Figure 7. Scatter Diagram of n-|/n2 vs |RE| for Stralegy 1

35



.08 .39 .70 1.00 1.31 1.62 1.9

+ + + + + + + + + + + + +

.871
*

.811 * *

.761
*

.701 *

.651 *

.601 *

.541 *

.49
1

* * * *

IRE1-S2 .441
*

.381 * * ** * *

.331

.271* * * *

.22! * * * **

.171 * * *

.111 ** *

.061* *** *

0.001* * * *

+ + + + + + + + + + + + +

.08 .39 .70 1.00 1.31 1.62 1.9

nl/n2 - S2

Figure 8. Scatter Diagram of ni/n2 vs |RE| for Strategy 2

36



.10 .45 .79 1.13 1.47 1.81 2.1

+ + + + + + + + + + + + +

.941
*

.881 *

.831
*

.771 * *

.711
*

.651

.591

.541 * *

I
RE

I
-S3 .481

.421

.361 * * * *

.301 * * * *

.251 * *

.191* * * *

.13 1
* ** *• *

.071* *** *

.011 ** ***
+ + + + + + + + + + + + +

.10 .45 .79 1.13 1.47 1.81 2.1

nl/n2 - S3

* *

Figure 9. Scatter Diagram of n^/n2 vs |RE| for Strategy 3

37



.15 .66 1.16 1.67 2.17 2.68 3.1

+ + + + + + + + + + + + +

1.031 *

.961 * *

.dOI

.831 *

.771 * *

.711

.641 * *

.581 *

I
RE

I
-S4 .511 *

.451 * *

.391 * * *

.321 * * *

.261 ** * *

. 19

1

* ** *

.131** * ** * *

. 07
I

*** * *

0.001 * * *

+ + + + + + + + + + + + +

.15 .66 1.16 1.67 2.17 2.68 3.1

nl/n2 -S4

Figure 1 0. Scatter Diagram of n^/n2 vs |RE| for Strategy 4

38



.10 .49 .89 1.28 1.67 2.06 2.4

+__ + + + + + + + + + + + +

.891
*

.831 *

.781 *
*

.721 *

.671
*

.611

.561
*

.501 * * * *

IREI-S5 .451
*

.391 * * *

.341 * *

.281 ** *

.231 *****

.171 * * *

.121 ** *

.061* * * * •

.011 *****
+ + + + + + + + + + + + +

.10 .49 .89 1.28 1.67 2.06 2.4

nl/n2 -S5

Figure 11. Scatter Diagram of ni/n2vs |RE| for Strategy 5

39



.13 .56 .99 1.43 1.86 2.29 2.7

+ + + + + + + + + + + + +

.971
*

. 91

1

.851 * *

.791 *

.731 * *

.671

.611

.551 * *

IREI-S6 .491

.431

.371

.311 * * ** *

.251 *

.191 » * *

.13 1 ** **** * * *

.071 *** * * *

.011 . * .

+ + + + + + + + + + + + +

.13 .56 .99 1.43 1.86 2.29 2.7

nl/n2 - S6

* *

• *

Figure 12. Scatter Diagram of ri^/n2 vs |RE| for Strategy 6

40



Table 10

Correlation Coefficient of N vs N^g, for the

Programs witfi n,/n2<1

Strategy Correlation Coefficient

1 0.9531

2 0.9549

3 0.9523

4 0.9515

5 0.9513

6 0.9513

Table 11

Correlation Coefficient of N vs Nggt 'c the

Programs witti n.|/n2> 1

Strategy Correlation Coefficient

1 0.9545

2 0.9567

3 0.9552

4 0.9667

S 0.9615

6 0.9534

41



Table 12

MRE Values of |RE| and Predicted |RE|

for Six iStrategies

Strategy MRE

1 2.287

2 2.923

3 1.708

4, 3.965

5 3.482

6 1.881

in the previous section of our statistical analysis sfiowed ttiat by applying

6 different counting strategies the differences of correlation coefficients for N

and Ngg, are very small between different strategies for 45 sample

programs. The same phenomenon occurred with the analysis of I^RE differences.

To check the sensitivity of Ngg, to the different counting strategies the

statistical techniques of the ANOVA and f^ultiple Comparison procedure were used.

The ANOVA procedure using significant level of 0.05 was performed on six set of

n,, nj, n, Ngj,, and |RE|. The results showed that for n, there Is a significant

difference In the six strategies. (Multiple comparison of means using LSD (Least

Significant Difference ) were also done to see where the significant differences

between the means of n, existed. We found that for n.| strategies 4 and 6; 6 and

1 ; and 1 , 5, and 3 are not significantly different. The comparisons of means of

"2' "• ^esv ^"'^ I'^^l ''y '^^ '-^'^ showed that there is no significant differences at

all between the six counting strategies.

42



Chapter 4

CONCLUSIONS

4.1 SummatY of Findings

In this report we devised six different counting strategies to count the

operators and operands in programs. Several statistical techniques were used to

analyze 6 sets of empirical data obtained from running the counting program on

45 COBOL sample programs. The high correlation coefficient calculated for N

and Ng3, agreed with the high levels of correlation found in published studies.

Although Ng^, appears to overestimate the observed length N for small programs,

and to underestimate N for large programs, the overall performance of N^g, as a

predictor of the actual length N was good. The relative errors show Ng^, does

not work well for small programs. The value of n^/ng seems a good separator of

when Nq5, works well (n,/n2 < 1) and when it does not work well (n,/n2> 1).

However, n.|/n2 is not a good predictor of |RE|.

The statistically significant differences between several pairs of

correlation coefficient, MRE, and n., are very few. There is no significant

differences between pair of means of nj, n, N^g, and |RE|. In summary, the

length equation is insensitive to the counting strategies and does not favor any

one of the strategies.

43



4<

4.2 Future Work

Software science is much like actuarial studies of populations. The results

make it possible to predict gross properties of the whole. The software science

measures become more accurate when applied to large numbers of programs

then when applied to individual programs. We think more data collection and

technology evaluation efforts are needed to establish a sufficient empirical

basis for the formulation of software development standards. This report

presents a very preliminary exploration of the applicability of software

science measures to languages other than Fortran, Algol, and P\J\. It is worth

trying to expand to other languages such as Ada, concurrent C, etc.

44



BIBLIOGRAPHY

[Baslli 83] Baslli, V. R., Selby, R. W., and Phillips, T. Y., "Metric Analysis

and Data Validation across Fortran Projects," IEEE Trans, on

Software Engineering , SE-9{6), March 1983, pp. 652-663

[Christ 83] Christensen, K., Fitso, G. P., and Smith, C.P., "A Perspective on

Software Science," IBM System Journal, 20(4), 1981, pp.

372-387

[Conte 82] Conte, S. D., Shen, V. Y., and Dickey, K., "On the Effect of

Different Counting Rules for Control Flow Operators on

Software Science Metrics in Fortran," ACM Performance

Evaluation Review, Summer 1982, pp. 118-126

[Conte 86] Conte, S. D., Dunsmore, H. E., and Shen, V. Y., Software

Engineering Metrics and Models. The Benjamin/Cummings

Publishing Co., Menio Park, CA., 1986

[Cook 82] Cook, M. L., "Software Metrics: An Introduction and Annotated

Bibliograph," Software Engineering Notes, 7(2), April

1982, pp. 41-60

[Debnath 84] Debnath, N. C, and Zweben, S. H., "A Study of the Application of

Software Metrics to COBOL," Tech. Rep. OSU-CISRC-TR-84-3,

Computer & Information Science Research Center, Ohio State

University, 1984

[Debnath 85] Debnath, N. C„ "On Halstead's Language Level," Engineering

Software IV, Proceedings of the 4th International Conference,

London, England, June 1985, pp. 2.21-2.29

[Elshoff 78] Elshoff, J. L., "An Investigation into the Effects of the Counting

Methods Used on Software Science Measurement," ACM
SIGPLAN NOTICES, 13(2), February 1978, pp. 30-45

[Feuer 79] Feuer, A. R., and Fowlkes, E. B., "Some Results from

Empirical Study of Computer Software," 4th International

Conference on Software Engineering, September 1979, pp.

351-355.

[Fitsos 80] Fitsos, G. P., "Vocabulary Effects of Software Science,"

Proceedings of COMPSAC 80, October 1980, pp. 751-756

[Fitz 78] Fitzsimmons, A., and Love, T., "A Review and Evaluation of

Software Science," ACM Computing Survey, 10(1), March

1978, pp. 3-18

45



[Gustafson 83] Gustafson, D. A., and White, B., "Application of Halstead's

Complexity Measures to Programs Designed with Wanier-Orr

Diagrams," 1983 Symposium on Application and Assessment of

Automated Tools for Software Development, pp. 147-155.

[Halstead 77]

[Harrison 74]

[Hamer 82]

[Henry 81]

[Ivan 87]

[Jensen 85]

[Lassez 81]

[Levltin 85]

[Levitin 86]

[Levitin 87]

[Lister 82]

[McCabe 76]

Halstead, M. H., Elements of

North-Holland, NY., 1977
Software Science, Elsevier

Harrison, W., "Bibliography on Software Complexity I^etrics"

ACM SIGPLAN NOTICES. 19(2), February 1984, pp. 17-27

Hamer, P. G., and Frewin, G. D., "M. H. Halstead's Software

Science - A Critical Examination," Proceedings of the 6th

International Conference on Software Engineering, Tokyo,

September 1982, pp. 197-206

Henry, S., and Kafura, D., "Software Structure Metrics Based on

Information Flow," Trans, on Software Engineering, SE-7(5),

September 1981, pp. 510-518

Ivan, I., Arhire, R., and Macesanu, M., "Program Complexity

Comparative Analysis, Hierarchy, Classification," ACM
SIGPLAN NOTICES, 22(4), April 1987, pp. 94-102

Jensen, H. A., and Vairavan, K., "An Experimental Study of

Software Metrics for Real-Time Software," IEEE Trans, on

Software Engineering, SE-11(2), February 1985, pp.

231-234

Lassez, J., at. al., "A Critical Examination of Software

Science. " Journal of Systems and Software, 2(2), December

1981, pp. 105-112

Levitin, A. v., "On Predicting Program Size by Program

Vocabulary," Proceedings of COMPSAC 85, October 1985, pp.

98-103

Levitin, A. V., "How to Measure Software Size and How Not to,"

Proceedings of COMPSAC 86, October 1986, pp. 314-318

Levitin, A. v., "Investigating Predictability of Program Size,"

Proceedings of COMPSAC 87, October1987, pp. 231-235

Lister, A. M., "Software Science - the Emperor's New Clothes?"

The Australian Computer Journal, 14(2), May 1982, pp.

66-70

McCabe, T. J., "A Complexity Measure," IEEE Trans, on

Software Engineering, SE-2(4), December 1976, pp. 308-

320

46



[Salt 82]

[Shen 81]

[Shen 83]

[Smith 80]

[Spence 85]

[Wague 87]

[Wang 85]

[Wood 85]

[Zweben 79]

Salt, N. F., "Defining Software Science Counting Strategies,"

ACM SIGPI-AN NOTICES, 17(3), March 1982, pp. 58-67

Shen, V. Y., and Dunsmore, H. E., "Analyzing COBOL
Programs via Software Science," Tech. Report CSD-TR-348,

Department of Computer Science, Purdue University,

September 1981

Shen, V. Y., Conte, S. D., and Dunsmore, H. E., "Software

Science Revisited : A Critical Analysis of the Theory and its

Empirical Support," IEEE Trans, on Software Engineering,

SE-9(2), March 1983. pp. 156-165

Smith, C. P., "A Software Science Analyses of Programming

Size," Proceedings ACM Annual Conference, October 1980,

pp. 179-185

Spence, J. M.,

1985
COBOL for the 80's, West Publishing Co.,

Waguespack, L. J., and Badlani, $., "Software Complexity

Assessment : An Introduction and Annotated Bibliography,"

ACM SIGSOFT Software Engineering Notes, 12(4), October

1987, pp. 52-71

Wang, A. S., and Dunsmore, H. E., "Early Software Size

Estimation : A Critical Analysis of the Software Science Length

Equation and a Data-Structure-Oriented Size Estimation

Approach," Proceedings of the 3rd Symposium Empirical

Foundations of Information and Software Science, Denmark,

October 1985, pp. 211-222

Wood, D. E., and Konstan, A. H., "Software Science Applied to

APL," IEEE Trans, on Software Engineering, SE-II(IO),

October 1985, pp. 994-1000

Zweben, S. H., and Fung, K., "Exploring Software Science

Relations in COBOL and APL," Proceedings of the 3rd

International Conference on Software Engineering, Chicago, IL,

1979, pp. 702-707

47



Appendix A

Source Code of Counting Program

program countingi (f1, fchange, input, output);

const

maxchar = 30;

type

alfa = packed array[1 ..maxchar] of char;

ptr = "noderecord;

noderecord =

record

token ; alfa; (* value of the token read In *)

CntOrNot:char; C Y = counted, N = not counted *)

category, (* t = operator, 2 = operand ')

(* 3 = paragraph name, = undecide ')

FirstlnData, (* token # where first used in data division *)

FirstlnProc, (* token # where first used in procedure div *)

UselnData, (* token occurrence in data division ")

UselnProc : integer; (' token occurrence in procedure division *)

left, right ; ptr; (" point to left/right subtree *)

end;

fchange, (* external file contains figurative constant ')

f1 , : text; (* external file contains reserved words & most of character set
•

word : alfa; {* the read in token *)

flag, ( indicates whether to start counting *)

(• number of tokens in data division *)

( number of tokens in procedure division *)

(• is operator, operand or paragraph name *)

{' number of distinct operators in data division *)

{ number of distinct operators in procedure division *)

(* numt>er of distinct operators in the program ')

(* number of distinct operands in data division •)

(* number of distinct operands in procedure division *)

(• number of distinct operands in the program ')

(* operator occurrences in data division *)

{* operator occurrences in procedure division *)

(* operator occurrences in the program ')

{* operand occurrences in data division ')

(• operand occurrences in procedure division ")

(* operand occurrences in the program *)

(• actual length of a program *)

(* estimated length of a program ')

Dent,

Pent,

belongs,

nIData,

ntProc,

n1,

n2Data,

nZProc,

n2,

NIData,

NIProc,

N1,

N2Data,

N2Proc,

N2,

N :intager;

EstLen: real;

head : ptr;

ch, division, WhetherCnt

comment, paragraph,

pic ; boolean

: char;

(* indicates whether token is in comment, *)

( paragraph name or picture clause *)

48



(• Initialize variables used in the program ')

procedure Initialization;

var

I : integer;

begin

flag := 0;

Dent := 0;

Pent := 0;

belongs := 1

;

head ;= nil;

division := 'I';

for i := 1 to maxchar do

virord[i] := '

';

comment := false;

paragraph ;= false;

pic := false;

ntData:=0;

nIProc ;= 0;

n1:=0;

n2Data := 0;

n2Proc := 0;

n2 := 0;

N1Data:=0;

NIProc :=0;

N2Data := 0;

N2Proc :=

end;

(• Every COBOL reserved word and character set except 26 alphabets * )

{* is first buiit into a binary tree. For every tol<en read if not in the '
)

(• tree inserted it otherwise occurrence count and category are updated *)

procedure searoh{word : alfa; var head ; ptr; WhetherCnt ; char; var belongs : integer);

var

p : ptr;

begin

p := head;

if p = nil then (' Insert token into the tree *)

begin

new(p);

with p" do

begin

tol<en ii word;

if flag = then (* not start counting yet *)

begin

CntOrNot := WhetherCnt;

category := belongs;

49



UselnData := 0;

UselnProc ;= 0;

FirstlnData := 0;
'

,

FirstlnProo :=

end

else {' flag = 1 . start counting *)

begin

CntOrNot := T;
if belongs = then

category := 2

else

category := belongs;

If division = 'D' then

begin

FirstlnData := Dent;

UselnData := 1

end

else (• token occurs 1 st time in procedure division *)

begin

FirstlnProo := Pent;

UselnProe := 1

end;

end;

left := nil;

right ;= nil;

end; (' with *)

head := p
end (• If*)

else ( current token is already In the tree *)

if word < p".token then

search(word, p^.left, WhetherCnt, belongs)

else

If word > p'.token then

search(word, p*.right. WhetherCnt, belongs)

else ( firTd the token *)

with p* do

begin

If flag > then

if category <> belongs then (* reserved word as operand *)

category := belongs

else

else

begin

If {{category = 1 ) and {belongs = 2)) or

{{category = 2) and {belongs = 1 )) then

search{word, p".left, WhetherCnt, belongs)

else

begin

If paragraph then {' is a paragraph name ')

category := 3;

if division = 'D' then

begin

50



UselnData := UselnData + 1

;

if FirstlnData = then

FirstlnData := Dent

end

else

if division = 'P' then

begin

UselnProc := UselnProc + 1

;

if FirstlnProc = then

FirstlnProc ;= Pent

end

end

end

end ("with *)

end; (' of procedure seareh •)

(• Read in the external file whieh eontains all reserved words; *)

(* operators whieh include arithmetic, relational, and logic ')

( operators; punctuation and dollar sign $, and insert into ')

(* the binary tree
*)

procedure readdata(var F1 : text; WhetherCnt : char);

var

i,
j

: integer;

chars : alfa;

bk1, bk2:char;

begin

reset(F1);

while noteof(F1)do

begin

if noteoln(F1)then

begin

i:=0;

read(F1, WhetherCnt);

read{F1,bk1,bk2);

while noteoln(F1)do

begin

i:-i + 1;

read{F1,chars[i])

end;

if i < maxchar then

for j :» i + 1 to maxchar do

charsOl :-
'

'

end; (* ofnoteoln ')

readln(F1);

search(chars, head, WhetherCnt, belongs)

end { of while *)

end; (* of procedure readdata *)

51



(• Change the category of reserved words which are *)

(* figurative constants from operator to operand *)

procedure readchange(var F2 : text);

var

i, j ; integer;

chars : alfa;

begin

reset(F2);

while not eof(F2) do

begin

i:=0;

while not eoln(F2) do

begin

i ;= i + 1

;

read(F2, chars[i])

end;

if i < maxchar then

for j
:= i + 1 to maxchar do

chars[j]:=
'

';

readln(F2);

belongs := 2;

search(chars, head, WhelherCnt, belongs)

end;

belongs :=

end; (* of procedure readchange ')

(• Ignore comment in the counting of operators and operands )

procedure Comment(var col: integer);

begin

comment := true;

repeat

write(ch);

read(ch);

col :- col + 1

until eoln or (col - 72);

write(ch)

end; (' of procedure comment *)

(* Read in a '*'
to see if this is in a comment line, if ')

(• not then check whether it is an operator "' or )

procedure asterisk(var col. Pent, belongs : integer; word; alfa; var head : ptr);

var

i : integer;

52



begin

if col = 7 then (' this is comment, ignore it *)

Comment(col)

else

begin

write(ch);

i;=1;

word[il := oh;

read(ch);

col := col + 1

:

if ch = "' then

begin

write{ch);

i:=i + 1;

word[il := ch;

read(ch);

col := col + 1

end;

if division = 'P' then

begin

Pent := Pent + 1

;

search(word, head, WhetherCnt, belongs)

end;

for i := 1 to maxchar do

word[i] := '

'

end;

belongs :=

end; (* of procedure asterisk ')

(' The token is in picture clause. Every picture character symbol *)

(• is counted as an operator unless it is enclosed by parentheses *)

procedure picture(var col. Dent, belongs ; integer; var head : ptr);

var

i
, j : integer;

begin

repeat

write(ch);

word[1] :ich;

Dent :=• Dent +1

;

belongs := 1;

search(word, head, WhetherCnt, belongs);

for j := 1 to maxchar do

wordy] :=
'

';

if eh = '(' then

begin

read(ch);

col :. col + 1

;

i:>0;
53



while (ch <> ')') do

begin

write(ch);

i:=i + 1;

word[i] := ch;

read(ch);

col := col + 1

end;

belongs := 2;

Dent := Dent +1

;

search(word, head, WhetherCnt, belongs);

for j := 1 to maxchar do

wordO] := '

';

end (• ofifch = '(' *)

else

begin

read(ch);

col := col * 1

end;

until (ch = ") or (eoln) or (col = 72);

belongs := 0;

pic := false

end; (* procedure picture *)

(• Character read in is a relational operator, arithmetic operator or a delimiter ')

procedure mark(var col, Dent, Pent, belongs : integer; word : alfa; var head : ptr);

var

i : integer;

begin

if (eh = '/) and (col = 7) then

Comment(eol) {' program continues on next page *)

else

if pic then

pieture(col. Dent, belongs, head)

else

begin

word[1] :- ch;

write(ch);

if (division = 'D') or (division = 'P') then

begin

if division = 'D' then

Dent := Dent +

1

else

Pent ;= Pent + 1

;

belongs := 1;

seareh(word, head, WhetherCnt, belongs)

end;

54



read(ch);

col := col + 1

end;

for i > 1 to maxchar do

wordfi] ;= '

';

belongs >
end; (* of procedure mark *)

(* Character read is an alphabetic, it can be part of an operator *)

(* or an operand. If is not a paragraph name or picture clause ')

( then it is an operand ')

procedure alphat5et(var col, Dent, Pent, belongs : integer; word: alfa; var head : ptr);

var

i : integer;

begin

if pic then

picture(col, Dent, belongs, head)

else

begin

i:=0;

if (division = 'P') and (col = 8) then

begin

paragraph := true;

belongs := 3

end;

repeat

write{ch);

i:=i + 1;

word[i] := ch;

read(ch);

col := col + t

;

until (ch in (('
',

'., (', ')'. V. '.'])) or (eoln) or (col = 72);

if ((eoln) or (col = 72)) and (ch in (['A'./Z', •0'..'91)) then

begin

write(ch);

wordp+1]:'Ch;

end;

if (word . 'DATA ') and (col - 1 2) then

begin

division ;- 'D';

flag := 1

end

else

if (word = 'PROCEDURE ') and (col. 17) then

division := 'P';

if(word='PIC ') or (word-'PICTURE ')then

pic := true;

55



if ((division = 'D') or (division = 'P')) then

begin

if division = 'D' then

Dent :« Dent + 1

else

Pent := Pent + 1

;

(* same as the symbol in picture clause ')

if (word = 'A ')or(word='B ') or

(word = 'P ') or (word = 'S ') or

(word = V •) or (word = 'X ') then

belongs := 2;

search(word, head, WhetherCnt, belongs)

end;

paragraph := false;

if (eoln or (col = 72)) and (ch in [A'JZ, •0'..'91) then

begin

readin;

writein;

col := 0;

if not eof then

begin

read(ch);

col := col + 1

end

end

end;

for i := 1 to maxehar do

word[il := '

';

belongs :=

end; (* of procedure alphabet*)

(• Read in a digit number *)

procedure digit(var col, Dent, Pent, belongs : integer; word : alfa; var head ; ptr);

var

I : integer;

tem : char;

begin

if pic then

picture(col, Dent, belongs,head)

else

begin

tem :» '

';

If (eol • 8) and (division = 'P') then (* paragraph name *)

begin

paragraph := true;

belongs > 3

end

56



else

belongs := 2;

i>0;
repeat

if col < 7 then (* skip the sequence number *)

writeC ')

else

write(ch);

i:=i + 1;

word[i] := ch;

read(ch);

cot := col + 1

;

until (ch in (['
', 'C.

')'. '.'. "\) °' (so'") °' <^°^ = ^2);

if (ch = '

') and (word[i] = '.') then

begin

tern := word[i];

word(il := '

'

end;

if ((eoln) or (col = 72)) and (ch in ['A'..'Z', 0'..'91) then

begin

if col > 7 then

write(ch);

word[i+1 1 := ch

end;

if (col>7) and ((division='D') or (division='P')) then

begin

if division = 'D' then

Dent := Dent + 1

else

Pent := Pent + 1

;

seareh(word, head, WhetherCnt, belongs);

if not (tem =
'

') then

begin

paragraph := false;

for i :- 1 to maxchar do

word[i] := '

';

word[11:=tem; (' this is a period *)

belongs ;> 1;

search(word, head, WhetherCnt belongs);

if division « 'D' then Dent :» Dent + 1

else Pent :« Pent + 1;

tem :» '

'

end (* not tem '
' *)

end; C col > 7 )

paragraph := false;

if (eoln or (col - 72)) and (eh in ['A'./?, '0'..'91) then

begin

readin;

writein;

col :- 0;

57



srcf-

if not eof then

begin

read{ch);

col := col + 1

end

end (* ofeoln ')

end; (* of not pic *)

for i := 1 to maxchar do

word[i] := '

';

belongs :=

end; (' of procedure digit *)

(• Read in the delimiter of a literal '.
' is an operator *)

(• and the literal is an operand *)

procedure string{var col, Dent, Pent, belong s: integer; word : alfa; var head : ptr);

var

i, j : integer;

begin

write(ch);

word[1]:=eh;

if (division - 'D') or (division = 'P') then

begin

if division = 'D' then

Dent := Dent + 3

else

Pent := Pent + 3;

belongs := 1

;

search(word, head, WhetherCnt, tielongs)

end;

for j := 1 to maxchar do

word[j] :» ";

read(eh);

col :> col + 1

;

i;=.0:

while not (ch - "') do

begin

write(ch);

i:-i + 1;

word[i] :s ch;

read(ch);

col :- col + 1

end;

if (division « 'D') or (division - 'P') then

begin

belongs -.^ 2;

search(word, head, WhetherCnt, belongs)

end;

58



for j := 1 to maxchar do

wordy] := '

';

if (not eoln) and (col -: 73) then

begin

write(ch);

word[1] :=cii;

if (division = 'D') or (division = 'P') then

begin

belongs := 1

;

search(word, head, WhetherCnt, belongs)

end;

for j := 1 to maxchar do

word[j] := '

';

belongs > 0;

read(ch);

col := col + 1

end

end; (" of procedure string *)

(* Read in the COBOL program *)

procedure readinput(var word : alfa; var belongs : integer; var head ; ptr);

var

i, col : integer;

begin

col := 0;

read(ch);

col :» col + 1

;

while not eof do

begin

if eoln or (col = 72) then

begin

if ((ch =. ") or (ch = '/•)) and (col = 7) then

comment := true;

if (not comment) and (not(ch in [l\'..T. '0'..'9']) or

((word-' ) and (ch in ['A' ..T, '0'..'9TO) then

begin

if (col >6) and (col < 73) then

write(ch);

if (ch <> '

') and ((division = 'D') or (division • 'P')) then

begin

word[1] :-ch;

if (ch in [•A::Z. '0'..'91) then

belongs :- 2

else

belongs :- 1

;

search(word, head, WhetherCnt, belongs);

59



if division = 'D' then Dent := Dent + 1

else Pent := Pent + 1

;

for i := 1 to maxchar do

word[i] := '

'

end

end;

eomment := false;

belongs := 0;

readin;

writein;

col := 0;

if not eof then

begin

read(ch);

eol := col + 1

end

end ( of eoln ')

else

begin

if eh = "' then

asterisk(col, Pent, belongs, word, head)

else

if eh in ([V, •-, /•, ='. <, • >', • ,', .', ;',
'

(',
')!) then

mark(col, Dent, Pent, belongs, word, head)

else

itch In {rA^./Z^.'Sl) then

alphabet(col. Dent, Pent, belongs, word, head)

else

if eh in (['0'..'91) then

digit(eol. Dent, Pent, belongs, word, head)

else

if ch - '" then

string{eol. Dent, Pent, belongs, word, head)

else

begin

write(eh);

read(eh);

col := eol + 1

end

end

end {* of not eof ')

end; (* of procedure readinput *)

(* Call library function, logorithm base 2, to calculate *)

(• eatimated length of a program *)

function log{x:real):real;

external;

60



(* Print the token with its information in ascending order ')

procedure print(head : ptr);

begin

with head* do

if head <> nil then

begin

print(left);

if CntOrNot = 'Y' then

if category = 1 then (* is operator *)

begin

if UselnData > then

begin

n1Data:=n1Data + 1;

if token = '"
' then

UselnData := UselnData div 2;

N1 Data := N1 Data + UselnData:

n1 :=n1 + 1

end;

if UselnProc > then

l3egin

nIProc :=n1Proc + 1;

if token = '"
' then

UselnProc := UselnProc div 2;

NIProc := NIProc + UselnProc;

if UselnData = then

n1 := n1 + 1

end

end

else (' is operand *)

begin

if UselnData > then

begin

n2Data := n2Data + 1

;

N2Data := N20ata + UselnData;

n2 := n2 + 1

end;

if UselnProc > then

begin

nZProc :=. n2Proc + 1

;

NZProc := N2Proc + UselnProc;

if UselnData = then

n2 := n2 + 1

end

end; (* of else *)

writeln(token, category:3,' ', CntOrNot, UselnData:9, UsolnProe:9);

print(head*. right)

end

end; (* of procedure print ")

61



''i r

( Procedure to calculate numbers of distinct operators and ')

(* operands, total numbers of operator and operand *)

(* occurrence, and the estimated length of a program *)

procedure calculate:

begin

N1 :=NlData + N1Proc;

N2 := N2Data + N2Proc;

N >N1 +N2;

EstLen := n1 . {log(n1)/log(2)) + n2 . (log(n2)/log(2));

end; {' of precedure calculate ')

(* Print out the result of calculation *)

procedure printresult;

begin

writein;

writeln{'Number of distinct operators in data division is', n1 Data:1 5);

writeln('Number of distinct operators in procedure division is', n1 Proo;1 0);

writeln('Number of distinct operators in the program is', n1 :1 7); writein;

writeln('Number of distinct operands in data division is', n2Data;1 6);

writeln('Number of distinct operands in procedure division is', n2Proc:1 1 );

writeln('Number of distinct operands in the program is', n2:18); writein;

writeln(Total operator occurrence in data division is',N1 Data:1 3);

writeln(Tolal operator occurrence in procedure division is',N1Proc:8);

writeln(Total operator occurrence in the program is', N1 :15); writein;

write('Total operand occurrence in data division is', N2Data:14);

write('Total operand occurrence in procedure division is', N2Proe:9);

write('Total operand occurrence in the program is' , N2;1 6); writein;

writeln(Total operator & operand occurrence in the program is',N:5); writein;

writeln(The estimated length of the program is', EstLen:10:3)

end; (' of procedure printresult ')

begin (* main program *)

initialization;

readdata(f1 , WhetherCnt);

readchange(fchange);

readinput(word, belongs, head); writein;

writeInC Number of tokens in data div is', Dcnt:9);

writelnC Number of tokens in procedure div is', Pcnt:5); writein;

writeInC ',' Count ','Use in ','Use in');

wrileInC ',
' Category ','or not ', 'Data ', 'Proc')

print(head);

calculate;

printresult

end. (* of main program ')

oz



ANALYZING HALSTEAD'S COUNTING RULES IN COBOL

by

MANAHUNG

B. S., National ChengchI University, 1970

AN ABSTRACT OF A MASTERS REPORT

submitted In partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

•x 1988
V

v;-AO



Software complexity measures are measures of how difficult it is to

comprefiend, modify, and generally maintain a program. The objective is to

have a measure that will identify the complexity of a program and will aid in

detecting program difficulties; assessing programming techniques; and

achieving cost-effective, timely, reliable and high-quality software. The

measures of Halstead's software science which is one of the popular

software complexity measures, are based on static lexical analyses of the

vocabulary of operators and operands as well as the number of occurrences of

each class in a computer program. From these measures other quantitative

measures for many useful properties of programs can be obtained, such as

program length, estimated length, program volume, programming time, and

language level.
•'

-

In this paper, a set of six counting strategies of operators and operands

was developed and used to count 45 commercial COBOL programs by the counting

program written in Pascal. Several statistical techniques were then used to

analyze the outputs of the counting program to see the accuracy of the

estimated length derived from the length equation of the software science. The

counting strategy sensitivity of the estimated length was also investigated.

The results show that Ngg, as a predictor of N is Insensitive to the

counting strategy.


