
/SPECIFICATION AND CONTROL
OF ROOTING AND SYNCHRONIZATION REQUIREMENTS

OF OFFICE FORMS USING PETRI NETS/

by

Charles W. Miller

B.S., University of Texas at Austin, 1979

A Master's Report

submitted in partial fulfillment of the

requirements for the degree

Master Of Science

Department of Computer Science

insas State University
Manhattan, Kansas

1987

Approved by

:

Mk&L
Major Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State...

https://core.ac.uk/display/33364207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A11207 303511

CONTENTS

O^SC CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Scope 3

1.3 Justification 3

1.4 Report Organization 4

CHAPTER 2 REVIEW OF THE LITERATURE 5

2.1 Distributed Systems 5

2.2 Synchronization Requirements 6

2.3 Message Management Systems 8

2.4 Petri Nets 9

2.5 Survey of Related Work 14

2.5.1 Specifying and Controlling Routing
And Synchronization of Office Forms
With Predicate Path Expressions . 14

2.5.2 Execution Mechanisms For Jobs in a

Distributed System 19

2.5.3 Logical Routing Specification in
Office Information Systems 25

2.5.4 Modeling Jobs in a Distributed
System 31

2.5.5 A System For Managing Structured
Messages 35

CHAPTER 3 DESIGN SPECIFICATION 39

3.1 Design Objectives 39

3.2 Structure of the Design Specification. . 39

3.3 The Petri Net Specification for the
Routing and Synchronization of an
Office Form 40

3.4 The Control Net 47

3.4.1 Process Table 47

3.4.2 Transition Input Map 49
3.4.3 Transition Output Map 51

3.5 The Form Definition 52

3.6 The Run Time Design 52
3.6.1 Run Time Data Structures 64

3.6.1.1 Structured Mail Messages . 65
3.6.1.2 Incoming Mailbox 65
3.6.1.3 Sequence Counter 65
3.6.1.4 Form Instance Control Table 65

3.6.2 Run Time Processes 68
3.6.2.1 Form Request Process ... 68
3.6.2.2 UNIX Mail Process ... 69

- i -

3.6.2.3 Form Service Processes . . 69

3.6.2.4 The Controller Process . . 70

3.7 Summary 75

CHAPTER 4 CONCLUSION 76

4.1 Extensions of This Work 76

4.2 Concluding Remarks 77

REFERENCES 78

ii

LIST OF FIGURES

Figure 2-1 Petri Net Structure 11

Figure 2-2(a) Petri Net Before Firing 11

Figure 2-2(b) Petri Net After Firing 11

Figure 3-1 Specification of Predicate Conditions • 44

Figure 3-2 Logical View of Net From Figure 3-1 ... 45

Figure 3-3 Naming Convention For Nodes 45

Figure 3-4(a) Sequential Transitions 48

Figure 3-4(b) Concurrent Transitions 48

Figure 3-4(c) Decision Construct 48

Figure 3-4(d) Synchronizing Predicate 48

Figure 3-4(e) Halting Transition 48

Figure 3-5 Process Table 50

Figure 3-6 Transition Input Map 50

Figure 3-7 Distributed Evaluation Example 55

Figure 3-8 Distributed Evaluation Solution 56

Figure 3-9 A Net Structured To Benefit From A Hybrid

Evaluation Scheme 61

Figure 3-10 Form Instance Control Table 66

Figure 3-11 Firing Table 74

- iii -

To my wife, Doreen

I wish to thank my major professor, Dr. Richard A. McBride,
for his valuable suggestions and guidance of this endeavor.

1 -

CHAPTER 1

INTRODUCTION

1.1 Overview

This paper describes a system for specifying and

cont rolling the routing and synchronization of an automated

office form. An office form can be viewed as a preprinted

document on which white space has been left for the

insertion of requested information, that is, the form's

data values. An office can be thought of as a distributed

system in which work on a form progresses by having it flow

between procedures that operate on its data [McBr85] . These

procedures can operate sequentially or concurrently; they

can be distributed or centralized. By viewing a form as a

set of data values plus a set of operations that can be

performed on these values, we see that a form is very

similar to an abstract data type [Geha82] • In fact, the

electronic form can be represented as an abstract data type

containing both data and control information [McBr 85] . This

control information contains, among other things, the

routing and synchronization requirements of the form.

The routing specification of a form identifies all

procedures that can operate on the form. The routing can be

conditional or unconditional, depending on such things as

the form's current data content or values of globally

available variables such as the system clock. In essence,

the route is determined from conditions generated as the

form progresses through the system. The synchronization

specification of a form identifies the allowable sequences

of procedures which can operate on the form. The goal of

synchronization is to prevent interference among procedures

which share data objects.

The particular approach taken in this paper is that the

routing and synchronization requirements of a form will be

specified via a Petri net. Predicate conditions [Kell7 6]

are allowed to affect the execution of actions in the net.

The implementation of the system is based on the concept of

incorporating both the form content and the routing and

synchronization control information into a structured

message. By using concepts presented in [Maze84] and

[Tsic82], a form routing and synchronization system (based

on structured messages and the Interpretation of the

content of the messages) can be developed and implemented.

Thus, the mail system becomes the primitive communication

mechanism. By allowing a controller process at each site to

interpret the message, the message then becomes an

3 -

"intelligent" entity guiding itself through the system

without explicit user direction.

1.2 Scope

The design presented in this paper addresses the question

of routing and synchronization. The form definition, i.e.,

the data content of the form, and the procedures that

manipulate the form's data are not addressed.

1.3 Justification

The original concept and justification for the automation

of office forms is given in [Geha82].

An implementation of automated forms in an office system

requires two distinct efforts. First, the electronic

versions of the paper forms and the associated procedures

for manipulating the content of the forms must be

developed. This activity would be unique to each system

implementation. Secondly, the routing and synchronization

system must be developed. This activity need not be

repeated each time. The routing and synchronization system,

as developed in this paper, is generic in nature. It could

be utilized in any office system implementation without a

repeated development effort.

- 4

1.4 Report Organ! zat ion

This paper is organized into four chapters. Chapter 1 is an

overview and justification of the paper. Chapter 2

addresses concepts pertinent to the design presented in

this document and also surveys other related articles from

the literature. The detailed design of the proposed forms

system is presented in Chapter 3. Chapter 4 discusses the

value of this work and suggests several possible

extensions .

CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Distributed Systems

A distributed system is a set of loosely or tightly coupled

processing elements working cooperatively and concurrently

on a set of related tasks [Rama80]. Loosely coupled

multiprocessing [Deit83] involves connecting multiple

independent computer systems via a communication link. Each

of the systems has its own operating system and storage.

The systems can function independently. They can also

communicate when necessary to access each other's files or

to share processing tasks. A tightly coupled

multiprocessing system [Deit83] has storage which is shared

by the various processors and a single operating system

that controls all of the processors and system resources.

In a distributed environment, the applications being

performed can be geared towards the parallel execution of

processes rather than the traditional serial execution. The

concurrent processes may be required to synchronize their

operat ions

.

6 -

In general, a distributed system can be characterized

[Fort 85] by the following properties:

dispersion - there exists a physical distribution

of processing resources;

interconnection - the processing resources are

connected via a communication link, and

communication occurs by the passing of

messages
;

resource sharing - resources are spread throughout

the system and can be utilized in some way

by remote devices

;

global control - there is some form of global

control mechanism synchronizing the

operations of the overall system.

Thus, an automated office, consisting of a group of

autonomous work stations interconnected by a communication

link to shared resources, is a distributed system.

2.2 Synchronization Requirements

Parallelism can be successfully introduced into the

solution of a problem only when the processes involved can

cooperate in the sharing of data objects and system

resources. This sharing must be controlled (synchronized)

in such a way as to ensure proper results.

A popular means of sychronizing accesses to shared data

objects is known as mutual exclusion. The idea of mutual

exclusion is that at most one process be allowed to operate

on a common data item at any time. One widely used

technique for implementing mutual exclusion involves

building entry and exit routines around code which operates

on common data. This protected code is called a critical

section. The entry and exit routines allow only one process

at a time to enter the critical section. Thus, at most one

process can access the common data at any time.

The routing and synchronization system described in this

paper allows processes to execute concurrently. However,

some processes may operate on common data in the form

instance. Consequently, the access of these processes to

the form instance must be synchronized. Mutual exclusion of

conflicting processes is used as the means of

synchronization. The Petri net specification is the

mechanism for implementing the mutual exclusion. The Petri

net will be constructed in a manner such that two

conflicting processes cannot execute concurrently.

8 -

It is important to note that the term synchronization, in

the context of this document, refers only to the control of

processes operating on a particular form instance.

2.3 Message Management Systems

Traditionally, the purpose of message systems is to allow

users to send and receive messages. The messages remain

uninterpreted by the system. Today, office systems require

that the computer take a more active role in controlling

and coordinating office procedures. Therefore, an enhanced

message system is required; a message management system

that not only delivers messages but also manages them.

[Tsic82] suggests that in order to enhance their

functionality, message systems have to interpret, at least

partially, the messages which they handle. This capability

can be provided by superimposing some structure on the

messages. This structure can then be defined to the system

and used for the interpretation of messages. Messages can

be structurally typed [Tsic82]. The message type describes

the message structure from which instances of the type are

created. This structure then guides the interpretation of

each message instance.

In a traditional message system, the user explicitly

specifies the destination for every message sent. The

routing is single hop - the user specifies the single most

immediate destination from which the next user must specify

the next destination, and so on. A message management

system supports messages that can effect their own

processing. By associating routing specifications [Maze84]

with message types, the system assumes the responsibility

both for evaluating the current message instance to yield

the next destination and for forwarding the message

instance. The user is no longer required to explicitly

direct each instance of a message type.

The routing and synchronization system described in this

paper uses the concept of att aching routing specifications

to message types. This allows automatic routings of message

instances. The emphasis is on messages as independent,

"intelligent" entities guiding themselves through the

system.

2.4 Petri Nets

A Petri net is an abstract model of information flow. Petri

net models were originally intended [Pet e81] as a means for

a natural rep resent at ion of the interaction, logical

sequence and synchronization among the elementary

activities into which the operation of a system or the

execution of a procedure can be divided. Petri nets are

- 10

frequently used to model systems of events in which it is

possible for some events to occur concurrently but there

are constaints on the concurrence or precedence of other

e vent s

.

A Petri net (Figure 2-1) is represented by a bipartite,

directed graph which consists of two types of nodes:

circles (called places) and bars (called transitions).

Places correspond to conditions and transitions to events

in the system being modeled. These nodes are connected by

directed arcs from places to transitions and from

transitions to places. An arc from a place to a transition

identifies that place as an input place to the transition.

An arc from a transition to a place identifies that place

as an output place of the transition.

The Petri net graph models the static properties of a

system. In addition to these static properties, a Petri net

has dynamic properties that result from its execution. The

execution of a Petri net is controlled by the position of

tokens (markers) in the Petri net. Tokens reside in the

places of the net and are represented by small solid dots

within the circles representing places. A Petri net

containing tokens is called a marked Petri net. The

execution of a Petri net is reflected by the movement of

11

Petri Net Structure

Figure 2—1

Petri Net Before Firing tl

Figure 2-2(o)

/^:

b

6
Petri Net After Firing H

Figure 2-2(b)

12 -

tokens caused by the firing of transitions according to the

following rules

:

- a transition must be enabled in order to fire,

- a transition is enabled when all of its input

places contain a token,

- the transition fires by removing a token from each

of its input places, and placing a new token on

each of its output places.

Figures 2-2(a) and 2-2(b) show the results of firing a

transition. A Petri net marking is defined to be the

distribution of tokens in the net. The state of a Petri net

is defined by its marking. Note that the firing of a Petri

net results in a new marking.

When transitions in a Petri net represent events in a real

system, an additional result of a transition firing is a

change to the program variables which were acted upon by

the process represented by the transition. R. M. Keller

[Kell76] has extended the basic notion of Petri nets to

include predicate conditions. Keller associates a unary

predicate and a function defined on the program variables

with each transition. He then requires that the predicate

be true in order for the transition to fire.

- 13 -

Several terms relating to Petri nets that are relevant to

this paper are defined here.

1) When there is a choice as to which of several

transitions will fire next, and the firing of a

transition disables another, the transistions are said

to be in "conflict" [Pete77], The decision as to which

transition fires is made in some nondeterministic

manner

.

2) Petri nets which are constructed such that no more than

one token can ever reside in any one place of the net at

the same time are called "safe" [Pete77] nets (i.e., a

place is either marked or it is unmarked). This

stucture is sometimes referred to as a Condit ion/ Event

System [Reis85] .

3) A Petri net is properly terminating [Rama 80] if it

always terminates in a well defined manner such that no

tokens are left in the net. Note that this definition is

not universal. [Pete81] refers to a properly terminating

Petri net as one which has one token remaining upon

termination and that token is in a "final" place.

In the design presented in this paper, Petri nets are used

to specify the flow of a form through a distributed office

system, and also to specify the synchronization

requirements of procedures which operate on the form.

14 -

2.5 Survey Of Related Work

Several articles from the literature which are pertinent to

the work presented in this document have been reviewed and

are presented in the following sections.

2.5.1 Specifying and Controlling Routing and

Synchronization Of Office Forms With Predicate Path

Expressions [VanD86].

This paper describes a system designed to manage the

process and synchronization of forms in an automated

office. The concept of the automated form is reviewed with

emphasis on the fact that an office form can be represented

as an abstract data type containing both data and control

information. The control information specifies the

operations that can be performed on the form's data along

with sequencing requirements of the operations. The control

information is utilized to guide the form through the

distributed office environment. It is stated that the

routing and synchronization of an automated form should be

dynamic, depending on conditions existing at the time of

process ing

.

- 15

VanDusen, in this paper, develops a system to specify and

control the routing and synchronization of automated forms

in a distributed office environment. His design includes

three major components. They are :

1) a specification language based on predicate path

expressions

;

2) a controller process which interprets the

specification language and synchronizes the

various processes that act on the form; and

3) the service processes that operate on the form's

data

.

The specification language allows the operations involved

in the processing of a form to be identified using a

predicate path expression. The operations consist of the

name of the service process to be executed. By utilizing a

subset of predicate path operators, the routing and

sychroni zat ion of the service processes can be specified.

The following operators are utilized in VanDusen' s design:

sequencing (specified by " ;

") - used to indicate

serial operations;

selection (specified by "+") - used to demarcate

alternative procedures, exactly one of which is

to be chosen

;

parallel execution (specified by ",") - used to

- 16

indicate parallel operations;

predicates (specified by "[P]") - each procedure can

be associated with a predicate condition.

To allow for parsing, the predicate path expression is

enclosed within the keywords PATH and END. Thus, a valid

routing and synchronization specification might be

expressed as

:

PATH A; (B.C.D) ; (E[passed] + F[failed]) END.

This specifies operation A followed by B, C and D in

parallel, followed by E or F depending on the evaluation of

the predicate. Although the predicate expressions in

VanDusen's prototype are limited to one particular field's

value, he states that it is desirable to expand the

predicate to allow a boolean expression on any combination

of data items in the form, or any global data such as date,

time, node name, etc..

A copy of the controller process resides at each node in

the system. When a form instance is initialized, the

controller process accepts the form with an embedded

predicate path specification and creates two separate

entities, a control table and the form data. The control

table is built through the parsing process and represents

the routing and synchronization requirements as specified

in the predicate path expression. Each controller process

17

has access Co a control table for all instances of all

forms which it is current ly processing. The controller

evaluates the form's control table and data in order to

make routing and synchronization decisions. The controller

creates and destroys temporary form copies as necessary for

processing. For example, if the next operation on the

routing exists on another node, the executing controller

must forward a copy of the form's data and control

information to the remote controller, while at the same

time coordinating the overall process. Temporary form

copies are also used to allow multiple operations to occur

concurrent ly

.

The controller process also acts as the interface to the

service processes which manipulate the form's data. This is

accomplished by making the form's data as well as

appropriate control information available to the service

process. The service process manipulates the form's data

and returns changed data and control information to the

controller process. The changed data might include data

objects associated with the predicate values and hence the

continued processing of the form by the controller process

is dynamically determined. VanDusen's prototype is

restricted to one service process, UNIX mail. In an actual

1 UNIX is a Trademark of AT&T Bell Laboratories

18 -

Implementation, many service processes would be developed

to interact with the controller process. These service

processes would do such things as split a form into sibling

forms, merge multiple copies of a form, and other

specialized processing tasks unique to each form type.

VanDusen's work is similar to the work presented herein.

The basic design components are the same (i.e., a

controller process at each node and form service

processes). The method of implementation is the essential

difference. VanDusen's design is based upon a specification

language which utilizes predicate path expressions. The

design described herein uses Petri nets as the building

block. Also, this paper expands upon VanDusen's work in the

area of predicates. Whereas, VanDusen allows only one field

to determine the predicate value, the design described

herein will allow for an arbitrary number of fields to be

evaluated. This paper will also expand upon the service

processes which are allowed. VanDusen's prototype design is

limited to one service process, UNIX mail. The design

described in this paper will allow for an expanded set of

TMservice processes to be available. UNIX mail will

continue to be used as the transport mechanism for

communications between controller processes. Another

significant difference is the inclusion in this design of a

19 -

single source library for office form definitions. An

Office Systems Administrator will coordinate the creation,

modification and deletion of form definitions. New or

changed form definitions will be provided to each

applicable site as appropriate. In VanDusen's design, the

form's source remained at the node where it was initially

developed and the entire routing specification was included

in each message representing a form instance. The design

presented herein allows for a copy of the form's definition

(which includes the routing specification for the form

type) to reside at each appropriate site. Instead of

passing the entire routing specification as part of the

message, only status information will be passed. The

controller process will use the status information

contained in the message, in conjunction with the copy of

the form's definition which resides at the site, to

evaluate the routing and synchronization requirements for

each form instance.

2.5.2 Execution Mechanisms for Jobs in a Distributed System

[McBr85]

.

This paper addresses the task of modeling the execution of

jobs in a distributed system and the requirements of

implementing the model. The perspective of this paper is

- 20

one of viewing the automated office form as an example of a

job execution in a distributed environment. In particular,

McBride views the office as a distributed system in which

work on a form progresses by having some sequence of

procedures operate on the form's data. He views the

electronic form as an abstract data type containing both

data and control information. This control information must

contain, among other things, the routing and

synchronization requirements of the form.

McBride then describes the use of Petri nets as a modeling

tool. Keller has extended Petri nets to allow predicates to

be attached to transitions [Kell76]. McBride states that

this extended version of Petri nets can be used to model an

automated form in a distributed office. He refers to a

Petri net which is used in such a fashion as a control net.

McBride discusses three possible implementations for his

control net in a distributed environment. In the first

method, the control net would be created and remain at the

site at which the form instance which it is controlling was

created. In this case, the control net would determine the

proper operations to be invoked on the form instance. The

control net would then send the form instance to the node

which provides the first operation. After receiving the

21 -

form instance back from the first operation, the control

net would determine the next operation to be performed and

again send the form off to the appropriate node. This

process would continue until all operations had been

performed. McBride notes that this method is wasteful in

terms of communications processing and bandwidth. The

second implementation method is to embed the control

information for a form type within the procedures that

operate on the form. This means that each procedure would

have knowledge of where to send each processed form (i.e.,

the control net does not exist as a separate entity but the

equivalent control information is embeded within the

procedures themselves to form a pipeline). A disadvantage

to this method is that the procedures are no longer

generalized but instead must be specialized for each form

type. In the third implementation strategy, the control net

would accompany the form instance through the sytem while

acting as its guide. This requires a controller process at

each node to execute the control net. McBride states that

this third implementation method is the most flexible and

efficient, and hence the most desirable.

McBride notes that it is the responsibility of the

controller processes to interpret and update the control

net of a form instance to accurately reflect the processing

22

that has been applied Co the form instance. The controller

processes must cooperate to only update a form's control

net in a manner consistent with the firing rules for

Keller ^s Petri Net Model [Kell7 6] • Mc Bride proposes the

following steps to ensure this coordination:

1) A controller process (referred to as the Executing

Controller) is sent a form instance which is to

have procedures performed on it that are available

at the Executing Cont roller's site. This is

reflected in the form's control net which is

marked as having tokens present in the input

places for the transitions corresponding to the

local procedures.

2) The Executing Controller invokes local procedures

to operate on the form. A possibly modified form

is returned to the Executing Controller when the

local procedures are complete.

3) When the procedures corresponding to a transition

have completed, a token must be removed from each

of the input places. This is accomplished by the

Executing Controller sending an acknowledgement

message to each of the controllers which sent a

form instance used as input to the transition that

just fired .

23

4) After a transition has fired, the Executing

Controller must place a token at each of the

transition's output places. This causes the

Executing Controller to route the form (and its

control net) to distant cont roller (s) where

procedure(s) are available to carry out the next

transitions .

5) When all acknowledgements corresponding to a

transition's output places have been received, the

Executing Controller's locally held copy of a form

is dest royed

.

In addition to the above processing rules, McBride mentions

several other considerations. First he notes that each form

instance must be uniquely identified with a form type and

sequence number. He states that for greater efficiency,

concurrent processing should be allowed. This requires that

each controller process be allowed to make copies (either

full or partial) of a form instance. At some point, the

copies of a form may be merged by a transition. All copies

of the same form instance are required to have identical

form type and sequence numbers. McBride also comments on

the problems of delayed and duplicate messages in a

distributed system. He states that by keeping a copy of the

form until all acknowledgements have arrived, a controller

24

can try an alternate routing if a transition associated

with a timeout occurs. The problem of duplicate messages

can be handled by having each controller record the arrival

time of each form instance.

McBride indicates that an office form can be viewed as an

abstract data type containing both data and the Control

Petri Net which represents both the operations required to

operate on the data and the synchronization requirements of

those operations. One way to implement the abstract data

type's control net is with predicate path expressions

[Andl79]. McBride states that predicate path expressions

can provide the same information as the control net in his

model. The predicate path expression operations required

for this model include :

- sequencing

;

- selection;

- parallel path;

- p redicat e .

These operations are described in Section 2.5.1 of this

document in the review of [VanD86].

McBride has extended the original definition of a predicate

to also include decisions based on data values contained in

the form itself, and the availability of required data

25 -

files. The predicates associated with the operations in the

form's predicate path expression are evaluated by the

controller process as part of the determination of where to

send the form next.

Several of the ideas and concepts presented in McBride's

paper have been utilized in the development of the design

presented herein. In particular, the concept of an

automated form being a job process in a distributed

environment which can be viewed as an abstract data type

containing both data and control information is basic to

the design presented in this paper. Likewise, the concept

of a control net modeled with a Petri net is carried forth.

McBride's recommendation that a controller process reside

at each node to execute the control net as a form instance

travels throughout the system has been followed, as has his

proposed processing steps regarding firing rules. The

primary difference between McBride's work and the work

presented in this paper is the implementation mechanism.

McBride proposed that the control net be implemented with

predicate path expressions. In the design presented here,

the control net is implemented as a Petri net.

2.5.3 Logical Routing Specification in Office Information

Systems [Maze84].

26

This paper introduces both a framework and language for the

specification of logical routing for messages in an office

information system. By associating routing specifications

with message types, the system can evaluate the routing

requirements of each instance of a message type. Thus the

user is freed from explicitly directing the routing of each

message instance.

The authors first discuss the concept of a message

management system which is an integration of computer-based

message systems and database management systems. The

message management system not only delivers messages but

manages them as well. The messages in the system are

structurally typed. A message type describes the basic

message structure from which instances of the type are

created. Users manipulate instances of message types. These

instances are stored in a communication base which is the

medium by which users communicate. This communication base

may be distributed or centralized. A communication base

administrator (analogous to a database administrator) is

responsible for the creation, maintenance, security and

integrity of the communication base.

The structure of message types is used by the system to

enable manipulation of the contents and routing of

27

messages. A message type definition includes message

fields, each of which has a type and properties;

authorizations on access to fields and instances; value and

action constraints on fields; and a specification of the

message type's routing.

In the framework described by Mazer et. al., routings

specify the next destinations for each message type

according to current message and system state. For example,

the routing could be dependent on such criteria as the

value of data fields in the message, system characteristics

such as current load at a site, values of queries to a

database, etc.. Each instance of a message type is routed

according to the specification associated with that type.

The emphasis is on messages as independent, "intelligent"

entities guiding themselves through the system without

explicit user direction. The routing specification for a

message type indicates the logical paths to be taken by the

message instances. The authors describe three types of

routing specifications:

- type routing is specified at message type design

time and applies, in general, to all instances of

the message type;

- instance routing is specified by the user at

message instance creation time and applies only to

- 28

that ins t ance

;

- override routing is used for exceptional situations

to temporarily alter the normal routing

specification.

The authors state that a routing can be unconditional or

conditional depending on various criteria such as data

values in the message instance itself or values of queries

to a database. The authors also allow copies of messages to

be created to support concurrent activities.

Mazer et. al., next present a routing specification

language which allows the users to describe to the system

the routings desired for message types in the system. The

language consists of the following constructs:

- SITE identifies the site and indicates whether or

not it can be the source for creation of a form

instance of the given type;

- TIME-CASE is used for identifying time constraints

on message instance processing;

- CREATION, FIRST, SECOND, etc. identify

subspecif icat ions that apply to the corresponding

visit of the message instance to the site;

- ROUTE-CASE specifies conditions that must hold true

for the instance to be forwarded to the next site;

29

- ERROR allows for exception handling at run time;

- END-SITE delimits the site routing specification.

The authors next discuss an implementation of a prototype

message management system. The prototype system includes a

communication base design system through which message type

definitions are designed, a user interface to the system

and a routing system. The routing system includes

facilities to allow the user to:

- specify routings,

- trace a message instance,

- check an instance* s state in the system,

- override and edit routings.

The question of when and how message type definitions are

distributed throughout the system is addressed. In general,

a routing specification may either be associated with each

Instance as it flows through the system or be associated

with each appropriate site. The first method implies that

the routing specification is associated with the origin

site only and that instances include the routing

specification in addition to the actual message, a

significant use o£ bandwidth. The second method in mp lies

increased storage requirements at each site but smaller

instances flowing through the system. The authors state

that since bandwidth is generally more precious than

30 -

secondary storage, the latter method of binding routing

specifications statically to sites (as part of message type

definitions) is more appealing. Mazer et. al. , also address

the question of routing evaluation. They discuss three

possible methods for the evaluation of routing

specifications for a message instance. Central evaluation

requires a central authority to evaluate the routing after

each site completes its processing of the instance. This

involves much wasted communication to and from the central

station. The advantage is that only one copy of the

evaluation software need be maintained. Origin evaluation

involves the originating site making all routing decisions

at the time of instance creation. This is not feasible if

dynamic routing decisions are desired. Distributed

evaluation requires that each site, after completing its

processing, evaluate the routing specification and send the

instance on to the next site. The authors state that this

type of evaluation is most suitable for the requirements of

a distributed system.

The design presented herein is similar in approach to that

presented by Mazer et. al.. In particular, the concept of a

message as an independent "intelligent" entity guiding

itself through the system without explicit user direction

is the basis of the design presented in this paper. Like

31 -

Mazer et . al., the design developed here associates routing

specifications with message types so that the system can

determine the routing requirements of each individual

Instance of a message type. Likewise, the actual routings

may depend upon current message and system state. The

design developed in this paper incorporates type routing

only. Instance routing and override routing are not

included. The guidelines presented by Mazer et. al. for the

distribution of message type definitions and also the

evaluation of routings have been followed here. In

particular, a copy of the message type definition will

reside at each appropriate site in the system. Also, the

routing evaluation will be distributed with each site

performing an evaluation of the routing specification and

forwarding the instance on to the next site.

2.5.4 Modeling Jobs in a Distributed System [McBr83].

In this paper, McBride and Unger identify five major

components that are necessary to model the processing of a

job in a distributed environment. These include:

- a structural model for each procedure in the

sys t em

,

- a structural model of the control program that

directs the processing of a job,

- 32

- knowledge of the current control and data states of

a job,

- global information available to all jobs and

procedures in the system,

- non-global data files*

The authors then proceed to describe a model which can be

used to depict this control and information flow of a job

in a distributed system. Their model utilizes individual

Petri nets to describe each procedure comprising a job,

along with a control Petri net which oversees the execution

of the job in total. A Petri net is used to model the

static (structural) properties of a job , whereas an entity

called a "token" records dynamic information regarding the

current state of the job. McBride and Unger allow this

token to be split into sibling tokens so that concurrent

activities of a job can be modeled as well.

The authors next discuss the general Petri net model

noting, in particular, the extension by R. M. Keller

[Kell76] to associate a predicate condition with each

transition. A true predicate is a necessary condition for

the transition to fire.

McBride and Unger then expand upon the concept of the token

which represents a job in their model. The token contains

33 -

the following components

:

- "local data" available only to the job itself,

- a control Petri net which describes the manner in

which the local data is to be processed by

procedures available in the system,

- the current position of the token in the control

net (note that this token can also appear in the

marking of a Petri net corresponding to a procedure

which is being carried out on behalf of the token

so that its position in this net must be recorded

too) ,

- the token may carry a capabilities list describing

the token's access and authorization rights to data

files
,

- the token may also carry within it a history of all

transitions which have been executed on behalf of

the token.

In the model presented, each procedure associated with a

transition in a control net is identified by a procedure

name that is global throughout the system. A global network

directory maps each procedure name onto the Petri net

representation for it.

- 34

McBride and Unger also note that the concept of a Petri net

can be expanded so that data files can be used in a fashion

similar to the way that places are used. The data file

access requirements could be graphically represented with

arcs between the data file representation and the

transition utilizing the data file. In this way, the

dependence of transitions on data files is brought into

prominent view.

The authors note two variations that can be made to the

control net. First, they state that it is possible to have

the control net that is associated with a job type globally

available rather than replicating it with each token

instance of that job type. A second variation can be

constructed in which the original control net is split into

siblings, each of which receives only a portion of the

original control net. Each of the siblings can then be

processed independently of each other. Each of the

completed siblings would finally be merged back into a

completed copy of the original control net.

McBride and Unger also present a description of how a

control net can cope with the problem of lost tokens. They

describe the data fields and transitions necessary to allow

the control net to recover from a lost token.

35

The design presented herein utilizes many of the concepts

described by McBride and Unger. However, the design

presented in this paper is limited to the processing of an

office form rather than looking at an office system as a

whole. Consequently, this design is concerned only with the

routing and synchronization control net associated with an

office form and not with all procedures available in the

system. This design does use the concept of a control Petri

net to oversee the execution of a job, where the idea of a

job refers to the routing of an intelligent office form

throughout the system. Likewise, the concept of a "token"

being associated with the control Petri net to record

current status information is utilized. The suggestion by

McBride and Unger that the control net associated with a

job type be globally available rather than being replicated

for each instance of the job type is followed. The control

net for each form type will be defined once and made

globally available throughout the system (where needed).

Thus, only the dynamic information associated with each

individual instance of a form type will be forwarded

through the system as a part of the "token".

2.5.5 A System for Managing Structured Messages [Tsic82J

36

In this paper, Tsichritzis et. al. present a prototype

system which integrates the facilities of message systems

and database management systems. This combination allows

the system to manage structured messages according to their

content. Traditionally, message systems have delivered the

message but have not managed the message. The authors'

intent in this paper is to enhance the functionality of

message sys terns by adding to them the ability to interpret,

at least partially, the messages which they handle. By so

doing, users can query the message system to find messages,

accumu late data contained in the messages, or specify

automatic processing and routing procedures which make use

of the contents of the messages. The authors' system

superimposes a structure on the message types. This

structure is known to the system and is used for the

interpretation of the message.

The basic structure of the system presented by Tsichritzis

et. al. is composed of a number of logical units called

stations. Stations may be grouped together on physical

units called nodes. A control node performs synchronization

and control activities. The remaining nodes are known as

satellite nodes. Each node supports a number of processes

which are either associated with the node itself or a

particular station on the node.

37

Tsichritzis et. al. assume that each user of the system

operates a single station. A user interface process resides

at each station. A user defines a message type, via the

user interface process, by creating a display template.

Once the message type has been defined, instances of the

message type can be created by filling in the template.

When a message instance is created, the system generates a

globally unique identifier for the new message instance.

This identifier, known as the message key, is permanently

attached to the message instance. As messages are mailed

from station to station, an entry is made to a log file.

This file records the time of the operation as well as the

source and destination stations. Thus, it is possible to

locate a message by examining the message's most recent log

entry. Similarly, it is possible to construct a trace of a

message from the log file. The authors' note that the log

file and counters from which message keys are dispensed are

located at the control node.

Tsichritzis et. al. state that there may be some activites

which require information from messages which are spread

over more than one station. In such cases, queries for

information present in messages are useful. The authors'

have therefore provided for message queries in their

- 38

system. The user specifies both the content and the scope

of the query.

Tsichritzis et. al. also provide for automatic procedures

to operate on messages in the system. The specification of

an automatic procedure indicates to the system that it

should look for certain messages and act on them as

specified .

The design presented herein, utilizes one very important

concept presented by Tsichritzis et. al.. The idea of

imposing a formally defined structure on a message type so

that the system can manipulate the content of the message

is basic to the design presented in this paper. Also, the

design presented here greatly expands the idea of a message

definition to include routing and synchronization

information. Although Tsichritzis et. al. touched on the

idea of message routing being somehow dependent on the

message content, the idea of a message as an "intelligent"

entity guiding itself through the system was not conveyed.

- 39

CHAPTER 3

DESIGN SPECIFICATION

3.1 Design Objectives

The purpose of this specification is to describe a system

which can coordinate the routing and synchronization of an

office form automatically as it flows through an office

system. The design is generic in the sense that it

addresses the question of routing and synchronization of

forms, but it does not address the implementation details

of any specific form. The intent is that this system has

the ability to be used as a high level routing and

synchronization control mechanism for automated forms in

any office system implementation. The individual form

definitions then become a substructure of this overall

control sys t em

.

3.2 Structure of the Design Specification

The design specification which follows is organized into

three parts. The first part describes the external Petri

net representation of the routing and synchronization

requirements of a form. This Petri net is generated by the

form's designer. The second part presents the design of the

40

control net. The control net is an internal data structure

which captures the semantics of the external Petri net

specification. It is used to ensure that a form's

automated processing meets the routing and synchronization

requirements identified by the form's designer. The third

part of the design discusses the data structures and

processes required to support the run time execution of a

form instance

.

3.3 The Petri Net Specification for the Routing and

Synchronization of an Office Form

The Petri net structure as described in this section is the

tool used by the designer of a form to specify the routing

and synchronization requirements of the form. This design

imposes some requirements and restrictions on both the form

definition and the Petri net structure. There are two

general requirements of the form definition. They are:

1) each form instance will have an initial state

which assigns Initial values to all control

variables and data variables;

2) concurrent processes in the Petri net structure

are not allowed to operate (except where all are

read only) on any common data elements.

Additionally, the Petri net structure has the following

41

requi retnent s :

1) the Petri net must be safe;

2) the Petri net must be properly terminating;

3) a predicate condition may be associated with any

transition in the net.

There are two cases of predicate usage [Kell76]. The first

case involves using predicates as decision points in the

net. A decision always involves two alternative

transitions. One or the other may be enabled, but not both.

This design requires both alternatives to be fully

specified in the Petri net. Predicates can also be used as

a synchronizing mechanism. In this situation, the predicate

may prevent a transition from firing even though there is

no alternative to choose from (i.e., waiting on the

availability of a system resource). This design makes the

assumption that transitions dependent on a synchronizing

predicate will eventually either fire or be resolved in

some other manner (e.g., through timeout processing).

The data variables involved in the evaluation of a

predicate can be either local or global. Local variables

are contained in the structured message associated with a

form instance. Local variables can only be changed as a

result of the firing of a transition in the control net of

42

the form instance. This design assumes that a local

variable is potentially modifiable by every transition in

the control net. Consequently, all predicates involving

local variables must be re-evaluated after each transition

fires

.

Global variables can also potentially be changed by a

transition firing. However, in addition, global variables

may be changed by processes external to the control net.

This could cause some inconsistencies in the execution of

the control net

.

For example, first suppose that a predicate evaluation

indicates that a certain global resource is available and

this enables a particular transition to fire. Now suppose

that between the time that the predicate was evaluated and

the process associated with the transition executes, some

other process external to the control net consumes the

resource. The results are not reliable. For this reason,

this design restricts the use of global variables which can

be associated with a predicate to those whose truth is not

dependent on processes active in the system. In particular,

this implementation restricts predicates to the use of only

one global data item - the system clock. Predicates

involving global data must be re-evaluated periodically to

- 43 -

handle situations where a synchronizing predicate is

dependent on a global variable (i.e., Is time > 6:00

P.M.?). They must also be re-evaluated after each

transition fires.

A full implementation of this system would include a user

interface to allow the form designer to define the Petri

net representation to the system via a specification

language. This form definition would then be translated

mechanically into the internal control structures. In the

prototype implementation described here, the translation is

a manual activity. Consequently, in the prototype system,

it is the responsibility of the form designer to enforce

the requirements mentioned above. In a full implementation,

these requirements could be enforced by the system.

It should be noted that an implementation of this system

would require an Office Forms Administrator to administer

the system. There is one central administration site. The

Office Forms Administrator will coordinate the creation,

modification, deletion and distribution of form type

definitions. Additionally, the Office Forms Administrator

will tune the system, control security, and be the

interface to end users of the system.

44

Predicate conditions are specified in the Petri net as

conditional statements contained within brackets as shown

in Figure 3-1. The actual content of the predicate

statement (i.e., x EQ 2) is not of importance to the

discussions in this paper. Therefore, for the sake of

brevity and clarity, predicates hereafter will be

represented only by their truth value (i.e., [T]). Recall

that the predicate must be true in order for the associated

transition to fire.

[x NE 2]

Specification Of Predicate Conditions
Figure 3—1

45

Logical View Of Net From Figure 3—1
Figure 3—2

Naming Convention For Node
Figure -3—3

46

Before proceeding, it seems appropriate to discuss the way

in which predicates are treated internally in the system. A

predicate appears logically to the system as an additional

conditional input place to the transition associated with

the predicate. This "conditional place" will have a token

present whenever the predicate is true. The token will be

removed when the predicate becomes false. As an example,

the systems's logical view of the net from Figure 3-1 is

depicted in Figure 3-2.

An additional note is made concerning the convention to be

followed in determining the internal representation of the

Petri net specification. All places (including conditional

places) and all transitions in the net will be uniquely

named as shown in Figure 3-3. The numbering convention for

the nodes is top-to-bottom, left-to-right.

The final items to be presented relative to the Petri net

specification are the constructs available to be used in

the design of a net. Five constructs are allowed. They are

depicted in Figures 3-4(a) through 3-4(e). As per

Figure 3-4, these constructs are:

(a) sequential - tl occurs sequentially, before t2;

(b) concurrent - tl occurs sequentially, before t2

and t3; t2 and t3 can then occur

- 47 -

concurrently ;

(c) decision - either tl or t2 will fire, but not

both
;

(d) synchronizing predicate - tl cannot fire until

the predicate condition becomes true;

(e) halting transition - tl has no output places;

when tl fires, a token is removed from

each of its input places.

3.4 The Control Net

The control net is an internal data structure which records

the static properties of the external Petri net

specification. There is one control net corresponding to

each form type definition. A copy of the control net will

reside at each site capable of processing the form type. A

control net's structure consists of three data components

as described in the following sections.

3.4.1 Process Table

A process table, Figure 3-5, is a data structure which:

a) maps the transitions of the Petri net to

executable processes which can carry out the

action needed for that transition;

48

0H

P2

— XI

Sequential Transitions

M
Concurrent Transitions

(b)

©•'

tip]

(•) P 1 (%\ Pi

12[F] •tl[T]

Decision Construct

(c)

Synchronizing

Predicate

(d)

— tf

Halting Transition

Figure 3-4

- 49 -

b) maps processes to their execution sites in the

office system.

Note that the mapping of processes to their execution sites

is by form type. Generally, in other works from the

literature, this mapping has been global across all form

types in the system. The mapping by form type, as presented

here, has some distinct advantages. First, the Office Forms

Administrator has an increased capability to tune the

system. Each individual form type can be specifically

routed not only to a process, but to a particular site as

well. This allows the system load to be tuned in a manner

which is based on the processing requirements and volume of

each individual form type.

Another advantage exists from a security perspective. The

designer of a form type can be restricted to some subset of

the total processes and sites available in the system. In

this way, the access rights of the form type to sensitive

processes or sites can be easily controlled.

3.4.2 Transition Input Map

A transition input map is a data structure (bit map) which

identifies the input places for each transition in the

external Petri net specification.

50 -

t1

T2

tn

Process Name Sites Where Process R esides

process 1 A G F

process 2 B

process n A C

Process Table
Figure 3— 5

t1

t2

t3

p1 p2 p3 p4 p5 p6 p7

1 1 1

o o 1

1

Transition Input Map
Figure -3—6

- 51

Figure 3-6 represents the transition input map for the net

depicted in Figure 3-3. The bit map includes one bit

position for each place in the net. Each bit position,

b(i), corresponds to a unique input place, p(i). If bit

position b(i) is set in row j, then the corresponding place

p(i) is an input place for transition j , This table

identifies the set of input places for each transition in

the net. A mapping also exists from the transition input

map to the process table; the i-th entry of each structure

corresponds to the same transition. The process table is

accessed by the system to retrieve the process information

associated with the transitions in the transition input

map .

3.4.3 Transition Output Map

A transition output map is a data structure which

identifies the output places for each transition in the

external Petri net specification. It is structurally

identical to the transition input map. The difference is

interpretation. The marking of each row in this structure

reflects the set of output places which are to receive

tokens upon completion of the firing of the associated

transition. The transition output map corresponds to the

52

process table in the same manner as the transition input

map .

3.5 The Form Definition

The implementation of a specific office form would require

a definition of the form's data component. This might

include such things as field identifiers and attributes,

editing instructions, initial values, access rights, etc..

The form definition is not addressed here since it lies

outside the scope of this document.

3.6 The Run Time Design

In this design, a form is viewed as a job in which work

progresses by having it flow between procedures that

operate on its data. These procedures can operate

sequentially or concurrently on a form, and the procedures

can be distributed over several machines or local to one.

The design is based on the concept of incorporating both

the form content and the routing and synchronization

control information into a structured message. The mail

system then becomes the mechanism for transporting the form

(contained in the structured message) through the office

system. Defining the structure of a message type to the

system allows a controller process at each site to

- 53

interpret the control and data information contained in the

message. This enables the system to coordinate the routing

and synchronization of each individual form instance of

that type automatically without explicit user direction.

The run time environment is supported by four data

structures and four processes. Briefly described, the four

run time data structures are:

1) structured mail messages which contain both

control information and the form's data;

2) an incoming mailbox used to receive mail messages;

3) a sequence counter which maintains a sequence

number used to identify form instances;

4) a form instance control table which represents the

control and data states of each form instance

active at a site.

Likewise briefly described, the four run time processes

1) a form request process at each site which

introduces new form instances to the system;

TM
2) the UNIX mail process which serves as the

transport mechanism for messages in the system;

3) multiple form service processes at each site, each

o f whi ch provides some sequence of actions

54

necessary to process the form;

4) a controller process at each site which

coordinates the execution of each form instance at

the si t e

•

Before presenting the run time data structures and

processes in detail, it is appropriate to review the run

time design which these data structures and processes must

support. The control net evaluation scheme will be

described first.

Two basic schemes for control net evaluation are discussed

in the literature, centralized and distributed. A central

evaluation approach involves one controller process and a

single copy of the control net at a designated control

site. The central controller process evaluates the control

net and sends the form instance to the appropriate

execution sites to be processed. Once these processes have

acted on the form instance, it is returned to the central

site where the controller process once again evaluates the

control net and continues the cycle. In this approach, all

evaluation of the control net is done at one central site.

In a distributed evaluation scheme, each processing site in

the office system has a copy of the controller process. A

copy of the control net is included as part of the message

55 -

|t1 at site A}

:t2 at site B} —-'-
t2 !!— t3 }t3 at site C|

|t4 at site D^

Distributed Evaluation Example

Figure 3-7

56 -

{t2 at site B}

{{' at site D^

•) P1

tl

p2 O P^

{tl at site A[

t.2

p4

t3 |t3 at site Cf

P5

f
''

t" {t" at site D}

{t4 at site $

Distributed Evaluation Solution

Figure 3-8

57 -

which travels through the system. As each site completes

its processing of a form instance, the controller process

at that site evaluates the control net and forwards the

form instance (and control net) to its next processing

site. An advantage to this approach is a more efficient

utilization of the network.

A problem with using distributed evaluation for concurrent

processes is illustrated with Figure 3-7.

In Figure 3-7, after tl fires at Site A, transitions t2 and

t3 will both be enabled concurrently. In a distributed

evaluation, a copy of the control net and form instance

would be sent to both Sites B and C, where t2 and t3 would

fire respectively. Once fired, the resultant control nets

would be evaluated at each site. Neither evaluation would

identify transition t4 as being enabled. In essence,

deadlock occurs, with each site holding a resource (token)

the other needs. Of course, this situation could be

remedied by making some adjustments to the Petri net

specification as shown in Figure 3-8. Places p4 and p5
t i i

could enable two Intermediate transitions, t and t , at

Site D, which in turn could enable t4.

The approach taken in this document is that an artificial

extension of the Petri net specification, such as in

58 -

Figure 3-8, is unnatural and would be inconvenient for the

user to apply in a form type definition.

Another solution to the problem of distributed evaluation

of concurrent processes, which has been presented in the

literature [McBr83], requires that a subspecif ica t ion

(i.e., some subnet of the original net) travel with a form

instance sibling (copy) along each concurrent path. Each of

the siblings would use its subnet to process independently

of the others. At some point, the control and data

information from each of the siblings would be merged. This

approach, although possible, quickly leads to complexity in

the application software. Therefore, a hybrid approach to

control net evaluation is presented in this document which

is a practical attempt to keep the Petri net specifications

and the processing requirements straightforward.

The hybrid evaluation scheme presented here is neither

centralized nor distributed - it is a combination of the

two. In this approach, the evaluation of sequential

processes is fully distributed. When handling concurrent

processes (unless all of the processes reside at the same

site), the evaluation resembles a central evaluation

scheme

.

- 59

The hybrid evaluation approach requires a form instance

master (hereafter referred to as the master) to be in

overall control of the execution of a form instance. The

master may dispatch form instance siblings to facilitate

concurrent activities, but these siblings must report back

to the master upon completion of each process so that the

current Petri net state can be reflected in the master at

all times. An advantage to having a master always in

control (as opposed to siblings processing independently),

is that timeout processing capabilities are enhanced. The

master has total knowledge of all processes being executed

on behalf of the form instance. Consequently, timeout

conditions can be easily identified and the associated

responses can be coordinated by the master.

This hybrid scheme of control net evaluation would process

the net in Figure 3-7 as follows:

1) t 1 fires at Site A;

2) the controller process at Site A evaluates the

resultant control net and discovers that t2 and t3

are now enabled;

3) the controller process at Site A (now acting as in

a central evaluation scheme) forwards a copy of

the form instance to both Sites B and C;

4) t2 and t3 fire at their respective sites;

- 60

5) the updated form instances from Sites B and C are

returned to the controller process at Site A;

6) the controller process at Site A merges the form

instance copies with the master, updating the

control state appropriately;

7) the controller process at Site A now re-evaluates

the control net and discovers that t4 is now

enabled ;

8) the controller process at Site A (now acting as in

a distributed evaluation scheme) forwards the

master copy of the form instance to Site D where

t4 is fired .

It should be noted that form definitions in the system can

be designed to exploit this hybrid evaluation approach. For

example, groups of related processes could reside together

at one site, with the routing and synchronization

specification structured accordingly as in Figure 3-9.

In Figure 3-9, transitions t2 through t5 might all be

purchasing processes which act on a requisition in the

purchasing department at Site B. Transitions t6 through tlO

might all be accounting processes which act on the

requisition in the accounting department at Site C. The

61 -

A Net Structured To Benefit From

A Hybrid Evaluation Scheme

Figure 3-9

62

evaluation of the net in Figure 3-9 would be totally

distributed .

Now that the hybrid control net evaluation scheme has been

examined, the question of form instance copies can be

addressed. Form instance copies will be created under two

condi t ions

•

1) The current site has completed its processing of a form

instance and must now forward the form instance to the

controller process at a new site where the next

process(es) reside(s). In this case the current

controller process relinquishes control of the form

instance and the master is forwarded to the new

controller process. In order to avoid the possible loss

of a form instance, a copy of the master is retained at

the sending site pending an acknowledgement from the

receiving site. Only one controller process can be in

control (i.e., possess the master) of a form instance at

any given time. Note that for a controller process to

relinquish control of a form instance, under the hybrid

evaluation scheme, implies that all of the "next" (i.e.,

currently enabled) processes reside at the same (but

new) si t e

.

2) If all of the "next" processes do not reside at the same

site, a form instance copy will be created for each

63 -

enabled transition, and forwarded either to a local form

service process or the controller process supporting a

remote transition. This case implies that concurrent

transitions are enabled. In this situation, the current

controller process retains control (i.e., keeps the

master) of the form instance.

The purpose for making copies of a form instance is

twofold. First, temporary copies of a form instance allow

concurrent activities to take place. Secondly, copies

reflect the state of the form instance at the point in time

that a message was generated and can therefore be used to

retransmit messages should timeouts occur. The master has

potentially been updated by one or more processes which

have completed in the interim, and thus the master cannot

be used for retransmission. For the prototype

implementation of this system, the network is assumed to be

perfectly reliable and that all messages arrive without

error and in the order that they are sent.

Form instance copies are retained until they are

acknowledged (with an ACK) . ACK's are generated under two

condi t ions

.

1) When a master is being forwarded to a new controller

process, the new controller process responds with an

- 64

ACK. When the ACK is received, the former master (which

is now a copy) is deleted.

2) When a form service process completes, it returns an ACK

to its site's controller process in the shape of a copy

of the form instance for the given process. The form

instance copy at this executing site can fall into one

of two cas es

:

(a) the copy was created at this executing site

(i.e., the master resides at this site);

(b) the copy was created at some remote site and

forwarded to this site for execution (i.e.,

the master resides at some remote site).

In case (a), the (potentially) updated form instance

copy is merged with the master and the copy is deleted.

In case (b), the (potentially) updated form instance

copy is returned (as an ACK) to the remote cont roller

process which Initiated the copy. When the ACK is

received by the remote controller process, the form

instance copy is merged with the master and the copy is

deleted .

3.6.1 Run time Data Structures

The run time data structures will now be presented in

detail.

- 65

3.6.1.1 Structured Mail Messages

A structured mail message is a data structure which

contains the routing and synchronization control

information for a form instance along with the form's data.

The structure of the message varies by form type. The

structure is specified in the form type definition which is

generated by the form's designer.

3.6*1.2 Incoming Mailbox

An incoming mailbox is used to receive the structured mail

messages generated by controller processes and form service

processes. This is the same mailbox as implemented in the

UNIX
M

mail system.

3.6.1.3 Sequence Counter

A sequence counter is maintained at each site to store the

last sequential number which has been assigned to a form

instance. This sequential number is a sub-part of a unique

identifier which is assigned to every form instance in the

system. The identifier has the following format:

site: :form type :: sequence number.

3.6.1.4 Form Instance Control Table

- 66 -

A form instance control table, Figure 3-10, is a data

structure which represents the current control and data

states of each form instance active at a site. There is one

form instance control table per site.

form

instance

1

form

instance

2

form

instance

k

form Instance

identifier

W

source

site

(b)

dest

site

(c)

time

stamp

process

name

(«)

globa

flag

(f)

Petri net

marking

(g)

form's

data

00

Form Instance Control Tabie

Figure 3-10

67 -

The structure can be thought of as a table of individual

form instance states. The information fields contained in

the form instance control table are defined as follows.

(a) The form instance identifier uniquely identifies the

particular form instance. This identifier is assigned

when the form instance is initialized.

(b) The source site identifies the site sending a message.

This field is populated whenever a message is forwarded

to a local form service process or another controller

process .

(c) The destination site identifies the site receiving a

message. This field is populated under the same

conditions as (b).

(d) The time stamp records the time at which a message is

initiated. The time stamp is used to identify time out

situations. This field is populated under the same

conditions as (b).

(e) The process name field identifies the process for which

a message is destined. This field is populated under

the same conditions as (b).

(f) The global data flag is set when a form instance is

initialized. This flag indicates whether any of the

predicates associated with the form type are dependent

68

on global variables (i.e., the system clock). This flag

facilitates a periodic re-evaluation of predicates

involving global variables,

(g) The Petri net marking is a bit map (one bit per place)

which reflects the current state of the Petri net

execution (i.e., identifies all places which contain a

token)

.

(h) The form's data fields reflect the current data state

of the form instance.

3.6.2 Run Time Processes

The run time processes are presented in the following

sections .

3.6.2.1 Form Request Proces

The form request process provides a user interface which

allows new form instances to be introduced to the system.

The process basically allows the user to send a form

request message to the controller process at a site. The

request message contains the message type (form request)

and the form type. Upon receipt of this message, the

controller process will:

- create a master entry in the form instance control

table ;

69 -

- assign a unique identifier Co Che master;

- set the global data flag in the master;

- set inicial control and data values in the master;

- evaluate the control net based on the initial

values .

A copy of this process will reside at each site.

TM
3.6.2.2 UNIX 1 " Mail Process

TMThe UNIX mail process will serve as the transport

mechanism for the structured mail messages communicated

between

:

1) form service processes and controller processes

residing at the same site;

2) controller processes at different sites.

3.6.2.3 Form Service Processes

A form service process will be invoked when required as a

background job from a controller process. A structured

message which represents a form instance will be passed as

an input parameter. Each form service process will provide

some sequence of operations necessary to process the form

instance. These processes will be capable of operating on

both local (contained within the message) and / or global

data elements. Once the form service process has completed

70

its work on the form instance, it formats an ACK. and mails

the updated message back to the controller process which

invoked it. There can be multiple form service processes at

each site.

3,6.2.4 The Controller Process

The controller process is the hub of activity at a site.

Each controller process has two primary tasks:

- as a traffic controller, determining which traffic

can flow (both when and where to) and which traffic

must wait for conditions to change;

- as a data handler with the function of merging both

the control and data portions of form instance

copies with the master.

The development of the first task, the traffic controller,

is the primary focus of this paper. In order to accomplish

this task, the controller process must perform the

activities as specified in the following pseudocode.

cycle
if there is mail then

process the next mail message
endif
if it is time to re-evaluate global variables and

timeout conditions then (done periodically)
begin
evaluate all predicates associated with global

variables and mark the associated
conditional places;

evaluate and process all control nets whose
markings change as a result of this

71 -

activity ;

check all form instances for timeout conditions
and take appropriate actions

end
endif
if there is no mail then

sleep 60 (60 is arbitrary)
endif
endcycle

Note that the above pseudocode really represents a daemon

process which is triggered periodically by a timing event

or by the arrival of mail.

It seems appropriate at this point to elaborate on the

handling of messages received by the controller process.

There are four types of messages which must be handled.

They are:

1

)

a form reques t

;

2) receipt of a master forwarded from some remote

controller process;

3) receipt of a form instance copy forwarded for

processing from some remote controller process;

4) ACK messages from either a local form service

process or a remote controller process.

When a form request is received, the controller process

will create a master entry in the form instance control

table and assign a unique identifier to the master. A

subroutine unique to the form type will be invoked to set

72 -

the Initial control and data values. The controller proces

will then evaluate the control net based on the initial

values *

Receipt of a master is straightforward. A master entry is

created in the form instance control table and the

corresponding control net is evaluated. An ACK is also

generated and returned to the sending controller process.

Receipt of a form instance copy is likewise

straightforward. An entry for the copy is created in the

form instance control table and the process identified in

the "process name" field will be invoked as a background

job. Notice that no control net evaluation Is required

here .

Three cases exist for handling ACK's. The first case is

when the ACK is confirming recipt of a master which was

forwarded to another controller process. Here, the

controller process simply deletes its copy of the master

from the form instance control table. The second case

occurs when the form instance copy associated with the ACK

was created at this site. In this situation, the controller

process will

:

a) delete the copy's entry in the form instance

cont rol table

:

73

b) merge the form instance copy with the master;

c) mark the output places associated with the process

which originated the ACK as now containing tokens;

d) evaluate the control net and fire any transitions

which are now enabled.

The third case occurs when the form instance copy

associated with the ACK was not created at this site. In

this situation, the controller process will delete the

copy's entry in the form instance control table and forward

the ACK to the originating controller process. Notice that

when the originating controller process receives the ACK,

it will be treated as in the second case above.

The control net execution will now be described more fully.

The first step in executing the control net is to re-

evaluate all predicate conditions in the net. This is

necessary in order to mark the conditional places in the

master to reflect the current environment. A subroutine

unique to each form type will be called by the controller

process to perform this activity.

The second step of the control net execution involves a

comparison of the Petri net marking recorded in the master

with the transition input map. The master is compared

sequentially with each entry of the transition input map.

74

When an entry is discovered in which all of the input

conditions are satisfied, the process name and destination

site are retrieved from the process table and stored by the

controller process in an internal firing table as depicted

in Figure 3-11. A token is removed from each input place

"used up" as a result of firing the transition. The

procedure then continues in the same fashion through the

rest of the transition input map.

Once the processing of the transition input map is

complete, the third step of the control net execution is to

evaluate the internal firing table. If all of the enabled

Enabled Processes Destination Site

process x A

process y A

process z C

Firing Table
Figure 3—11

75 -

processes reside at Che same (but new) site, the controller

process will relinquish control of the form instance and

forward the master to the controller process at the

destination site. In this case, the original marking of the

master is first restored. If multiple sites are involved,

the controller process will invoke local form service

processes (as background jobs) for those processes residing

at the local site, and forward form instance copies to the

controller process at each remote site In order to initiate

remote processes.

3.7 Summary

The design presented in this chapter utilizes various

concepts discussed in the literature. However, the idea of

a hybrid control net evaluation scheme is unique to this

paper. The hybrid approach combines the best features of

centralized and distributed evaluation schemes to provide

an effective and efficient practical solution to control

net execution.

This design supports a functional prototype implementation.

The intent is that the prototype can then be used as a

basis for an expanded implementation.

- 76

CHAPTER A

CONCLUSION

4.1 Extensions of This Work

The design presented in this document is a prototype. A

full implementation could potentially support some

additional enhancements. For instance, a user interface to

allow the form designer to translate the external Petri net

specification into an intermediate specification language

would be helpful. This intermediate specification could

then be mechanically converted into the internal data

s t ructures .

Another possible enhancement is to expand the information

contained in the process table to include such things as

timeout limits for processes and standard default actions

to take if timeouts or run time errors are encountered

(e.g., notify the Office Forms Administrator).

Timeout considerations would have to be addressed in

greater detail in a full implementation. The prototype

design assumes that the network and form service processes

are perfectly reliable.

77 -

Network management could also be enhanced in the areas of

revision control and status reporting. Procedures are

needed to allow the introduction of revised form

definitions to the system while permitting old versions of

form instances to finish execution. Status reporting could

be provided by maintaining a central log of all activity in

the system. Potentially, the Petri net for a form instance,

with its current marking, could be graphically displayed on

the screen.

4.2 Concluding Remarks

A system for specifying and controlling the routing and

synchronization of office forms has been proposed. The

design is generic in that it can be applied to any office

system implementation. Thus, the implementors of an office

system are able to concentrate their efforts on the actual

form definitions at hand.

A unique feature of this design is the use of a hybrid

control net evaluation scheme. This hybrid approach offers

an effective and efficient method of implementing an office

sys t em

.

78

REFERENCES

[Andl79] Andler, S. "Predicate Path Expressions",
"Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming
Languages", pages 226-236. ACM, San Antonio,
Texas, January, 1979.

[Deit83] Deitel, H. M. "An Introduction to Operating
Systems", Add is on-We s le y , Inc., 1983.

[Fort85] Fortier, P. J. "Design and Analysis of
Distributed Real-Time Systems", McGraw-Hill,
Inc., 1985.

[Geha82] Gehani , N. H. "The Potential of Forms in Office
Automation", "IEEE Transactions on
Communications", Vol. COM-30, No. 1, pages 120-
125, January, 1982.

[Kell76] Keller, R. M. "Formal Verification of Parallel
Programs", "Communications of the ACM", Vol. 19,
No. 7, pages 371-384, July, 1976.

[Maze84] Mazer, M. S. and Lochovsky, F. H. "Logical
Routing Specification in Office Information
Systems", "ACM Transactions on Office
Information Systems", Vol. 2, No. 4, pages 303-
330, October, 1984.

[McBr83] McBride, R. A. and Unger, E. A. "Modeling Jobs
in a Distributed System",
ACM 0-89791-123-7/83/012/0032, 1983.

[McBr85] McBride, R. A. "Execution Mechanisms for Jobs in
a Distributed System", Draft Working Paper,
Department of Computer Science, Kansas State
University, March, 1985.

[Pete77] Peterson, J. L. "Petri Nets", "ACM Computing
Surveys", Vol. 9, No. 3, pages 223-252,
September, 1977.

[Pete81] Peterson, J. L. "Petri Net Theory and the
Modeling of Systems", Prentice-Hall, Inc., 1981.

79 -

[Rama80] Ramamoorthy, C. V., Ho, G. S. "Performance
Evaluation of Asynchronous Concurrent Systems
Using Petri Nets", "IEEE Transactions on
Software Engineering", Vol. SE-6, No. 5, pages
440-449, September, 1980.

[Reis85] Reisig, W. "Petri Nets, An Introduction",
Springer-Verlag, 1985.

[Tsic82] Tsichritzis, D. , Rabitti, F. A., Gibbs, S.,
Nierstrasz, 0. and Hogg, J. "A System for
Managing Structured Messages", "IEEE
Transactions on Communications", Vol. COM-30,
No. 1, pages 66-73, January, 1982.

[VanD86] VanDusen, D. "Specifying and Controlling Routing
and Sychronization of Office Forms With
Predicate Path Expressions", Master's Report,
Department of Computer Science, Kansas State
University, 1986.

SPECIFICATION AND CONTROL
OF ROUTING AND SYNCHRONIZATION REQUIREMENTS

OF OFFICE FORMS USING PETRI NETS

by

Charles W. Miller

B.S., University of Texas at Austin, 1979

An Abstract Of A Master's Report

submitted in partial fulfillment of the

requirements for the degree

Master Of Science

Department of Computer Science

Kansas State University
Manhattan, Kansas

1987

This paper describes a system for specifying and

controlling the routing and synchronization requirements of

an office form. An office is viewed as an instance of a

distributed system. An office form is viewed as a job in

which work, progresses by having it flow between procedures

that operate on its data. These procedures can operate

sequentially or concurrently; they can be distributed or

local

.

The design of the system is premised on the idea that the

external representation of the routing and synchronization

requirements are specified via a Petri net. Predicate

conditions are allowed. The external Petri net

representation is translated into internal control

structures which support run time activities.

The implementation of the system is based on the concept of

incorporating both the form content and the routing and

synchronization control information into a structured

message. The mail system then becomes the primitive

communication mechanism. By allowing a controller process

at each site to interpret the message, the message becomes

an "intelligent" entity guiding itself through the system

without explicit user direction.

