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IHTRODUCTIOI

Mixtures of distributions occur when there is an over-

lapping of two or more distributions so that it is difficult

to separate them into their respective components. The main

statistical problem is to estimate as accurately as possible

the true proportions of overlapping contributed by each dis-

tribution and their respective parameters. Mixtures of dis-

tributions may also be considered as a form of contagion.

There are many examples of mixtures of distributions or

oontagious distributions in our environment. Feller (19U3)

has distinguished two types of these distributions: 1) true

contagion and 2) apparent contagion. Student's typing errors,

payroll check errors, or bank statement and ledger errors are

some of the situations in which the occurrence of one "favor-

able" event might affeot the probability of another event

happening. This is true contagion. Heterogeneity of decaying

radioactive material or atmospheric data are examples which

involve apparent contagion.

The purpose of this paper is to describe mixtures of

distributions; to develop their fundamental distributions

and interrelationship; and five examples of estimating the

parameters of mixtures of exponential distributions by the

method of moments and the method of maximum likelihood.



HISTORICAL REVIEW

As early as l89i| Karl Pearson had attacked the com-

plicated problem of mixed frequency distributions (Rider, 1961),

In particul r, he considered dissecting* nonnormal populations

Into normal components* Pearson considered only two distribu-

tions in eaoh of which a certain character is distributed

normally. The statistical problem reduced to that of estima-

ting the two mean values M-y* ^2 8tandard deviations (71, <T

and the proportions of mixture ^ and (1 - £ ) from the observed

frequency distribution. The five parameters were estimated by

the method of moments and a solution to the estimates depended

upon a suitably chosen root of a nonic (ninth degree equation)

constructed from the first five moments of the observed fre-

quency distribution.

In 1920 Greenwood and Yule developed a very general

scheme for contagious events through their studies (diseases

and accidents) concerned with the nature of frequency distribu-

tions representative of multiple happenings* Due to this

generality their formulas beoame too ooraplex for most practical

applications (Feller, 19U3).

About three years later Polya and Eggenberger were con-

sidering a similar problem which later led them to consider a

special model of true contagion which is the simplest case of

the general Oreenwood-Yule scheme. Thus, Feller (191*3) warns

^Dissection" means point estimation of the parameters
in a parametric mixture model.



that "in order to decide whether or not there is true contagion,

it is not sufficient to consider the distribution of events, but

a detailed study of the correlation between various time inter-

vals is necessary.

"

It wasn't until 1939 when J. Neyman applied contsgious

distributions to entomolory and bacteriology that there was a

significant advancement in the study of contagious distributions.

Neyman (1939) considered the distribution of larvae in a field

which had been divided into plots of equal areas. In the experi-

ments described by Neyman "the attempts to fit the Poisson Law...

failed almost invariably with the characteristic feature that,

as compared with the Poisson Law, there were too many empty plots

and too few plots with only one larva." Thus, this is an excel-

lent example of true contagion because the appearance of one

larva in a plot seemed to increase the probability of finding

at least one more larva in the same plot. From the related

distributions that Neyman derived to fit the experimental data

there evolved the generalized Neyman' s distribution.

GENERAL PROBLEM OF MIXSD DISTRIBUTIONS

The problem of mixtures of two distributions is to know

exactly with what proportion each distribution contributes in

the area where overlapping exists so that each distribution

can be reconstructed in that area to learn what effect the

second or first distribution had on the other. For example, it

may sometimes happen that two normally distributed populations



are mixed with nearly the same mean but different standard

deviations. Cassie (1951*) illustrated this case by graphing

the length of 63 fish meshed in the cod-end of a trawl versus

their cumulative frequency and obtained a curve indicating

positive kurtosis. It was desirable to know exactly the pro-

portion each distribution contributed in the area where overlap-

ping occurred. Thus, reconstruction in that area would show how

each distribution affected the other.

CRITERIA OP MIXTURES OP DISTRIBUTIONS

Credit for much of the following is due to Feller (19U3)

and Conover (1962).

Theorem:

If F(x,a) is a distribution function depending on the

parameter a, and H(a) is a distribution function, then

G(x) « / P(x,a) dH(a)

is a distribution function.

Proof :

It is sufficient to show that 0(x) satisfies the follow-

ing three conditions:

(i) 0(x) is monotone non-decreasing, i.e., C(x+b)>G(x) if b> 0.

(ii) G(x) Is right continuous, i.e., a(x+0) = lim 0(x+b) 0(x).

b -*o

(iii) lim G(x) - 1 .lim G(x)

x->oo x-^oo
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Because F(x,a) is a distribution function and therefore mono-

tone non-decreasine, (1) is true. Thus,

G(x+b) « /p(x+b,a) dH(a) > jF(x,a) dH(a) * G(x) ; b > 0.

(ii) is right continuous since

G(x+0) -JF(x+0,a) dH(a) « JF(x,a) dH(a) - G(x)

where P(x,a) must have been right continuous. The last condi-

tion is true because

Urn F(x,a) 1 and lim F(x,a) » ;

x-»-oo x-*-oo

thus,

lim G(x) * li» JP(x,a) dH(a) = /lim F(x,a) dH(a)
x-»oo x-*-oo J x-^-oo

l.dH(a) • 1

because H(a) is also a distribution function. Also,

liw G(x) liw jF(x,a) dH(a) /lim P(x,a) dH(a)
x+-co x-*-oo yx>-oo

* O.dH(a) * 0.

Therefore, both P(x,a) and H(a) determine that G(x) is a dis-

tribution also.

Definition :

A distribution function G(x) is called a "mixture of

distributions" if

(1) G(x) = f P(x,a) dH(a)



where F(x,a) is an arbitrary non-degnerate cumulative distri-

bution function (c.d.f.), depending on a parameter a, and

another c.d.f. H(a). The domain of variation of a determines

the range of integration. If H(a) is a stop function, then we

must define a non-degenerate cumulative distribution F (x,a
1 )

whose parameters are finite numbers a^, ap» ... » a^; let

al € Al» *2 ^ Ap» •'• » a
i
e A

i
wnere A

i»
Ao» ••• » A

i
are

given sets of real numbers that make up the population. Let

P£ be the weight attached to the population A. which are mixed

at random in proportions p^: p~x ... : p^ (p. > and Z p. » 1)

where p. are real constants. Thus, a family of distribution

functions may be obtained by letting the parameters vary over

A^ independently of each other. The function

(2) 0(x) - J p±
F(x t a

1
)

or more simply

(3) 0(x) -Z P^U)

is a cumulative non-degenerate distribution whose components

are F1 (x) and the real values p are weights (Medgyessy,

1961, p. 1).

Teloher (I960, 1961, and 1963) and Robbins (19U8 and 19U9)

give a more rigorous approach to mixtures of distributions.

B(x) is said to be a degenerate distribution function if
B(x)-0 when x i s (constant) and if B(x) « 1 when x > s. Its
graph consists of a single step of height one at x • • A prob-
ability distribution is degenerate if Its members are : one
when x - s (integer) and (otherwise); its graph consists of a
single point of height one at x « s.



DEVELOPMENT OP FUNDAMENTAL DISTRIBUTIONS OP MIXTURES

Feller (191*3) gives the following definitions of contagion:

Definition :

True contagion. Each "favorable" event has a direct effect

of increasing or decreasing the probability of some future event

happening.

Definition:

Apparent contagion. Inhomogeneity in populations where

the events are independent of each other.

Definition :

A simple Poisson distribution function with parameter a

must be of the form

-a n

(k) TT(n;a) C a
, a > 0, n 0,1,2, ... ,

where a gives the expected number of "events."

Definition :

A distribution function ?(x) is a compound Poisson

distribution if it has the form

J e _a_ AH (a)
,

n « 0,1,2, ... ,

where H(a) is the distribution function of a non-negative

random variable and a is distributed according to the cumula-

tive probability law H(a).



Prom ($) one can go to the probability function, first

considered by Greenwood and Yule (1920),

(6) 7T„ - J
e a.

n

'jHca)
n -o

Thus, (6) la called the compound Poisson distribution.

If H(a) is a step function, then the probability function

of the compound Poisson distribution becomes

oo -a^ n

,
J- £ e a,. ^ .n W? £

By defining Pearson's type III distribution, two special

cases of the Polya-Bggenberger distribution can be developed.

Definition :

The Pearson type III distribution is the distribution of

the probability density function

/ \ d i j

/ax w x
I U_ (

a_c) e a.>c ±>o _L>o
<8) h<1)

*rr?ro '
d

'
J

where a, -y- , and -j— are constants.

To obtain a more condensed form of Pearson's type III

distribution, let k —r and t * —r , then (8) becomes

t t-i -kca.-c)

( 9) hU ,
.JL^-c) e



If C « O t then h(a) in (9) has the origin of its distri-

bution shifted by the amount (- C) and

C t t-\ -K a.

K a e
(10) h(a) H«(a)

, a. 2 o

where a ranges over the desired values, k and t being constants

determined by comparing the resulting compound Poisson distribu-

tion with the actual observed data.

The Polya-Sggenberger distribution may be obtained as a

speoial case of (6). Substitute (10) into (6).

. oo

(11)

(12)

a. y\

Tn=) e A-

7T_.-L -*

t t-l -KeL

K a e
ret)

da

^°° Yi+t-i -a(i+K)

[ciO+K)] e (, + K)d3L
n

Yll V(t) (H-KXH-K)"^'')

which is of the form

r<t) =
J x* e* dX

Therefore, (12) becomes

(13) 77\
K I r(ntt)

r(t) m\ (i + k)
m-

,
K>o >t>0 ^ n±0jl)Zj

which is the Polya-Eggenberger distribution.
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Neyma^s type A distribution can be obtained if a takes

on the values bo only, where c>0 is a constant and b * 0,1,

... , and if a ie distributed according to the Poisson law

(teller, 19i*3)

r
- A ^ \

(Hi) j>. « Prob la - bo | - e A. ,
*» ° >

then (7) becomes

CO

n fee L Wi J b!

or

which is Ueyman' a contagious distribution of type A.

RELATIONSHIPS BETWBKK DISTRIBUTIONS OP MIXT0R18

Wilks (1961) stated that the gamma distribution is a

Pearson type III distribution when the given distribution is

a probability density function (p.d.f.) of the form

*(.> - -a e

where JU is the mean and corresponds to t in equation (10).

According to Feller (1957 )» p. 131» the Polya-Eggenberger

distribution can be linked to the negative binomial distribution

by going through numerous limiting processes on the Polya-

Iggenberger distribution. Also, Conover (1962) showed that the
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negative binomial distribution is a compound Poisson distribu-

tion. Gurland (1957) further related the negative binomial to

other distributions not mentioned in this paper.

It was shown above that Neyman* s contagious distribution

of type A can be obtained by letting the parameter a in the

compound Poisson step function equal bo only where a is distribu-

ted according to the Poisson law. '

APPLICATION TO EXPONENTIAL DISTRIBUTIONS
AND ESTIMATION OP PARAMETERS

BY THE METHOD OP MOMENTS

Rider (1961) has stated that life characteristics of

certain types of electronic components (resistors, capacitors,

vacuum tubes, etc.) and complex systems of highspeed digital

oomputers are very well described by exponential distributions.

In experiments in life testing a probability density function

of the following form may be assumed:

(16) f(t) «-J- e
; e->°> °- ±- <a°

o

where 9 is the mean lifetime between failures.

Suppose two populations of type (16) have been mixed In

unknown proportions p and q *(l-p) with parameters 9 and 9

respectively. Then,

-/ - -t/e,
-*/ft

f (t) mj>e, e + (\-f) e* & z
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At this point, the method of moments can be applied to estimate

the parameters ., 9 , and p.

Let m' be the rth sample moment about zero. In particular,

«1» »£» and m\ are tne aornents of a random sample from (16).

The estimators of p, 9 ,, and G will be obtained by method

of moments and denoted p», #, and £*. Thus,

(18) p» 0* + (1-p*) 0* « m£

(19) P* of + (1-P*) 0* « -f«2 '

(20) p* 0*3 (1-p*) 0*3

•TS'

•

Prom (18)

(21) p* « ( m[ - 0* )/ (
©* - 0* )

Upon substituting (21) into (19) and (20), the following

equations result:

(22) (mi - 0*
)

(0* + 0* ) * \mf
2

- 0*
.

(23) (^ - 0*
) ( of 0* 0* of ) -f^ - of.

Equation (22) may bo solved for (I * 1 or 2), the solution

being

(2U) 0* - (^-«2 - »i °j*) / («/ - 0*
)

where J 2 or 1 according as 1 * 1 or 2. If equation (2\\) is

substituted Into (23)» upon simplification we obtain 0* .
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(25) 6(2ra^ - Wg )
9* + 2( i»3 - 3®/ «

2
)
0* ^ - ^ »1 "°-

Solving this quadratic aquation gives two roots 0* and 6*.

Which root is designated wf and which 0* is immaterial, p*

can be obtained by substituting 9^ and 9 into (21) and will

refer to the component 0^ ; whereas, 1 - p* will refer to dp*

The roots of (25) nay not always be positive or even real.

If every observation in a sample were equal to some constant

k>0, then it follows that m^ « k t ml » k2 and mi « fc3 and (25)

ia reduced to

(26) k2
J"6(

e-^-k) 2 +T k2 j ° •

whose roots are imaginary. This may occur provided we have

positive probability as seen from continunity considerations.

If % ^ 8_, then our proposed estimators are consistent

and the probability that ©J > 0, 0« > 0, 0^p*£l approaches 1

as n tends to infinity. This happens because the estimators

whloh are thought of as funotions of (m^, n2 i m« ), are con-

tinuous at the point ( JS, , J/z , M3 ), where M ± are the

population moments, and 0* > 0, ^ p* ^ 1 if ( su, ra , «- )

Is sufficiently close to ( M, } /ul,M3 ) .

If 0^ « ©_ * 9, then the behavior of the estimators

change radically. Thus, A- 9, >i* 292 , /^ 6©3; and therefore,

2V^/.^/.'3^/A^V/"MV= o

Thus, the coefficients in the quadratic equation (25), multi-

plied by n*, are normally distributed in the limit as n
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approaches Infinity, with zero means and finite and positive

variances. This implies that 0* and 9* have no constant

limits in probability and their imaginary parts do not become

negligibly small as n increases. In particular, the estimators

are not consistent in this case.

The reliability of the estimators 6, and 6 can be tested

if it is temporarily assumed p is known. Otherwise, the cal-

culation of the variances of the three estimators is difficult.

With p known, only two sample moments are needed to estimate

1 and 9
2

. Using equations (18) and (19),

<27 > 8J. Bi + /_£_) fa--** )

where q «* (1 - p). If ©^ > Op, use the upper sign; otherwise,

use the lower sign if 0. ^ © . One can see the shortcoming of

the methods of moments because it is the knowledge about 8-. and

©P that we desire. Knowing whether 0. is > or < 9« will tell us

which pair of estimators is consistent,

Cramer (1958 )# p. 35U» gives a theorem for the asymptotic

variance of 6? :

(28) Var 0* -^(^/l^tz Mu (».',«!)*£. *-*£ +>*. ^l)(^%\

Here ^2^\} and MA^L) are the variances of mi and m* respec-

tively withy^^ (m* , m_) the covariance of these two moments.

The partial derivatives are to be evaluated at the point



15

Rider (1961) gives formulas for finding the values of

the coefficients of the partial derivatives in (29).

<30) Mi Cm!) * rT
1

[(W-f) o!-W}*!'£+ (W?) el ]

(32) M*»i)^4rf'[(^-t
z
)erZVt 9>l+(i>r%

z
)e?]

If ®^ > ®2» the Partlal derivatives needed are

(33)

(34)

At the point (29), these derivatives have values

(35) 3 g * - -&
. 3-^*'i _

a<9* _ ^
2 ? >*.

a#*

^ (vnx -Zyn, J

»»*' 34. ^, / /»!

9 «- -p(9,-0*) 3< 4j,(e,-9x)

If S^^g, ohange the signs of the fractions on the righthand

sides of (33) and (34), and again (35) is obtained.

If one substituted (30), (31), (32), (33) in (27), and

simplified, the variance of the asymptotic distribution of

ef is

(36)

4npz
(9r6z)



16

The variance of the asymptotic distribution of © may be

obtained by replacing p by q and interchanging © and ©- in

(36).

Rider (1961) stated that data should not be assumed to

have come from a mixed exponential distribution until It has

been determined that they have not come from a single expo-

nential distribution-^- e
. That is, of this distribu-

tion should be estimated and a chi-square test made to see

whether the data conforms to this distribution. Should the

hypothesis be rejected, then a mixed exponential population

may be assumed.

It is possible that the chi-square test could give a

wrong conclusion; whereupon, it would be impossible for the

method of moments to estimate © according to Rider (1961).

Should the population be mixed and 9. nearly equal to 0-, it

still may be difficult to obtain valid estimates of them.

Therefore, for practical purposes, estimators are not recom-

mended until further research reveals some way to correct

their shortcomings.

APPLICATION TO EXPONENTIAL DISTRIBUTIONS
AND ESTIMATION OP PARAMETERS

BY THE METHOD OP MAXIMUM LIKELIHOOD ESTIMATORS

Mendenhall and Hader (1958) attacked the problem of

estimating the parameters of a population that was obtained

by mixing two exponential failure time distributions In un-

known proportions, the population model being based upon



17

oenaored sampling. After a predetermined length of time had

elapaed or after a predetermined number of unlta had failed,

the life test was concluded. It was assumed that each unit of

the population conceptually contained a tag Indicating the sub-

r>opulation to which the unit belonged. Of course, this unit

or tag of information is only available after failure has

occurred.

The estimation of population parameters will be by the

BMthod of maximum likelihood estimators. Consider a population

composed of s 2 subpopulations representing failure types,

mixed in proportions p and q » (1 « p), where ^ p £ 1. The

test termination time, T, is in units of size T at which time

r units have failed, r from subpopulation (i) and r * r, r
?

.

The time of failure of the Jth unit from subpopulation (i),

tji is observed. It is assumed that J always ranges from J 1

to r^ when not specified. The (n-r) are the units which have

not failed and yield no information as to the subpopulation

they were drawn from. The cumulative failure probability

distribution from equation (1) assuming 0(x) * constant »

Is

or to be more general

where 1 1 or 2.
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Now lot i t/T and/^= ©j/T, then

(37) Pfx)=l-e
.-%

£. X < co

It p Is the proportion of units belonging to subpopulatlon

i = 1, then the cumulative distribution function for the

population is

(33) F(4)^fW+ ?£fc>

and the density function,

(39)
' f(«= ftA*)*-ft»M

Also let

(uo) HiCt)= 1- FiU)

and

Ml) U(t),±-fC-t)

where H(t) is the probability that a unit will survive to time

t.

The probability of r units failing due to cause (1) and

r
p
units falling due to cause (2), and (n-r) units surviving

at t-l
,

given a random sample of n units, the multinomial

(U2) -V\r
t

r tn-r) n[= —7-77-77;
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The conditional density of obtaining ordered observations,

( xn , x
12 , ... , xlr ^ J

r
4

) and Xj* ^ 1 is

h

From (I4.2 ) and (I4.3 > the likelihood for this sample becomes

(1*7) 3^ = K(ff-f) + r, _ 0-K)(n-r)+ rx

tflMMPt

4>e '

At time t, the subpopulations would be mixed in the

proportions p(t) and 1 - p(t).

us) .-. ^(t)-^~ > +w-f
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Therefore, k * p(l)# the conditional mixture proportion at

the test termination time, x = 1.

When (l4.3)i (UU)» a&d (M5) are equated to zero, the esti-

mating equations are

(U9) jt> = jl + K (±rl

(50)
fr

= X, + K (w-r)

1

(51) i s X 2 + Q-KXn-r)
y

*i

where

- 2*.> ; 1« **-*: '

*"

±.,
/«/*-«) '

Now solve (U9), (50), (51) and (52) simultaneously to obtain

estimates of /3 ., ^ , and p. If (U9), (50) and (51) are
A

substituted into (52) and (52) is solved for k, a single equa-

tion is obtained

A A A

where h(k) is a function of k. k can be obtained by plottingAAA A A

h(k) - k versus k and obtaining the solution where h(k) - k * o
A A A

When k 0, h(k) - k will be positive or zero.
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fl
1 \

3.0 .

2.5 -

2.0

1.5 ,

1.0 -

0.5 •

i 2 i 4 S

Figure 1. Maximum likelihood estimator
of & as a function of x based on a sample
from a truncated exponential distribution.
Measurements expressed in units of trun-
cation time T.

Mendenhall and Hader (1958) give a procedure to find a good
A

approximation of k for samples drawn from a single truncated

exponential distribution. Actually, it is obtained by making

a modification of the maximum likelihood estimate. Where the

exponential distribution is assumed to be truncated at time

T, then the maximum likelihood estimate of p . is a solution

of

(53) (A-**Xc
y*-i)' 1
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Thus, solutions of
ft

are obtained graphically from figure 1

A _
whsre jS * is given as a function of Xj. Subpopulation (1)

A

is chosen as the smaller x and /3 1Q is the corresponding value

x obtained from figure 1. Now substitute into (50) and solve

for k0<

(5k) S = X, + K. (±J1
f '°

r,

A A

low the quantity A * g(k ) - k can be solved. Thus, a
o o o

solution to equations (49), ($0), (51) and (52) is possible If
A

A 0. Since g(0) 2- 0, then the value of k which will satisfy
A A

A * 0. must be k<k or k > k . It all depends upon whether
o o

A- is negative or positive*

('A fa)
A

(55) w =

(56) <JK
=

A

1
A

4>

e
•

1 + yrf)* UK

where

(57) dk/ = _w/(tf-r)
A

+ +
/a 2

HA
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(58)

dA « - A

A A

k

A

+ dk

(59)
A

k.

A

k +

Therefore, this iterative process may be repeated until

one achieves the degree of accuracy desired. Then the solution

for k obtained can be substituted into the estimating equations

(U9), (50) and (5D to find the estimates p, j$ , and p .

Should it happen that r. * 0, then there could be no

estimates of ^ obtained from the estimating equations.

Really, this is not a problem in the practical sense because

it can reasonably be concluded that /5 must be very large or
1 A

else p* 0. So, let us adopt the convention that when /S. * oo ,

we shall mean that . is very large when r. « 0. In experi-

mental work it is desired to choose T and n large enough that

the probability that r, » or r. s is very snail. Actually,

one could not expect to get any information on failure para-

meters if he is not willing enough to test until some failures

are observed.

The maximum likelihood procedure appears to give satis-

factory results under the following conditions:

1) when the sample sise is large. Tukey (I960), p. 1*63,

stated that a statistical problem is usually called a
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large sample problem when l/n la so small everything

else ean be neglected.

2) when the test termination time, T, is large relative to

* and 6 because fi , £./T must be very small to

have an efficient estimation K(r ) proportional to fi .

When n and T are small, the estimates are badly biased

and have large variances. Thus, it would seem desirable

to investigate other estimators having better small

sample properties.

Rao (19U8) stated that for higher efficiency the estimates

of the parameters must be found by the method of maximum likeli-

hood because this gives rise to the "best" estimates in large

samples. Thus, in practice one would not use the method of

moments with large samples since it is not as efficient as the

method of maximum likelihood.

The relative magnitudes of 6. and 9_ will be known in

most experimental situations; hence, the estimating procedure

may be modified in a simple way when this is true. This modifi-

cation will reduce the bias and variances of the estimates.

The disadvantage of maximum likelihood estimates is that

the equations leadinc to them are usually non linear and thus

difficult to solve.
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Humerical Example

Sinoe the method of maximum likelihood estimation is more

efficient than the method of moments where the sample size n

is very large, the method of maximum likelihood has been chosen

to illustrate a numerical problem (Mendenhall and Hader, 1958)

to utilize the theory developed in this paper.

In this numerical example it was the policy to remove all

ARC-1 VHP communication transmitter-receivers which had operated

for 630 hours from the aircraft. Thus, T - 630 hours was the

fixed time at which the sample was censored. Units which failed

were removed from the aircraft for maintenance. The failure

times for the ith population are assumed to have a cumulative

failure probability distribution defined by

¥± {t)
* 1 - exp -t /© , 5 t < 00.

In some oases the apparent failure of the units were not con-

firmed and upon arrival at the maintenance center were found to

operate satisfactorily. This makes it desirable to estimate

that fraction of unconfirmed failures in the population. Thus,

the sample of failures may be subdivided into two subpopulations,

1) confirmed failures and 2) unconfirmed failures (shown in

tables 1 and 2 respectively).

To identify the two subpopulations let the unconfirmed

failures be called subpopulation (1) and the confirmed failures

as subpopulation (2). Using tables 1 and 2, one obtains the
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Table 1. Confirmed failures. Hours to failure for ARC-1
VHP radio transmitter receivers*

16 22k
576

16 80 128 168 Ikk
38U

176 176 568

392 128 56 112 160 600 W kl6
1+08

30k
208

38k
16

256
72

21+6

8
l8
al

kkO
160

3
10k
168

168
80

U08

19k
216

136 22k 32 50k
1+88

120 320 U8
256 168 18k 1UH 22k

288
30k
256

i*o 160
kW 120 208 32 112 336

IS
296

60 208 kko 10k 528 38k 26k 360 96
360 232

%
112 120 32 56 280 10k

328
168

56 72
280

1+80 152 1*8 56 192
168 168 ilk 128 1+16 392 160 Ikk 208
96 536 k00 80 i+o 112 160 10k

288
22k
21+8

336
616 22k 1+0 32 192 126 392 120
328 461+ 1+1*3 616 168 112 i+i+8 296 328 56
80 72 56 608 11+1* k08 16 560 Ikk 612
80 16 m 26k 256 528 56 256 112 5Ui*

18U552 72 18k
328

2k0
1+80

128 l+o 600 96 1272 152 96 296 592 kOO
576

29o

72 168
168

152 1+88 1+80 1*0 392 552
112 288 352 160 272 320 80 296 2k8

18U18k 26k
208

96 $ 592 176 256 31+1* 360
152 160 72 58k ikk 176 •* **

Table 2. Unconfirmed failures. Hours to failure for ARC-1
VHF radio transmitter receivers*

368 136 512
Ht

1*72 96 Ikk
128

112 xa 101+

31*1*

560
21*6 72 312

x8
30k 320

168 120 616 2k 16
1+56

32 232
32 112 56 18k

288
ko 256 160 1*8

208200 72 168 112 80 58U 368 272
Ikk 208 *% k80 HI* 392 120 1+3 10k

256
272

6U 112
1 360 136 168 176 112

10k 272 320 l*l*o 22k 230 8 56 216
120 256 104 10k 8 30k 2k0 88 21+8 1+72

301+ 88 200 392 168 72
18k

88 176 216
152 18k kOO k2k 88 152 — *" •

*Tables reproduced from Biometrika 1958, 1+5(3 end 1+): 509.



31

following datat

n 369 r
x

107 r
g

= 218 r r
x

« r
g

325

where r, la the number of units failed in each aubpopulation

and n is the random sample size.

n-r . 369 - 325 « kk «x -Tji- * 0.303^862

5c
2

- -£*- . o.36i*i+677

t is the time the unit survived which is a proportional part

of the fixed time T at which the life of a unit is censored.

Now one can form the estimating equations by making

use of equations (1*9 )» (50) and (5D«

(60)
A A

p 0.2900 0.1192 k

(61)

* A

&
1

0.3035 0.1*112 k

(62) £ « 0.5663 - 0.2018 k

One can simplify the process of obtaining an iterative

solution by making use of table 3«

The first step of the procedure is to use x » 0.303 and

enter figure 1. Thus, the corresponding estimate of
ft

is
A A A

ft 10 ** 0,3®°* and the corresponding value of k, k
Q

» 0.186 is

obtained by using the estimating equation (61). Knowing kQ ,

p 20 and P » can De easily obtained. Table 3 shows these

values in row v * 0.



Table 3. Record of Iterations
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It fi 2v
A

P. g<V

0.186 0.380 0.529 0.312 U.622
1 .166 .3718 .5323 .3098 5.02U
? .167 .3721 .5326 .3099 5.002
3 .165 .3713 .5330 .3097 5.0U6

0.1779 -0.0081
.1660 .0000
.1666 - .0001*

.165U .ooou

Next we compute

(63) e(*o>

1 + /t

1

eXP
20

and A. g(k ) • k -0.0081 follows (Mendenhall and Hader,
o ** o o

A

1958). The value of k will be obtained whenever there exists

a solution to the maximum likelihood equations, i.e., A * 0.
A

Since A can be either positive or zero when k * and negative
A a A

when k 0.186, then there exists a solution for k when < k <

A
0.186. Therefore the value k has when 1*1 must be less than

0.186. By use of equation (56) we can calculate the change
A A

in k, dk .
o

(61;)

A

dk (-0.0081)

1 g(k y
o

dw.

dk\
1 + (0.1779)

2
(-19. 0U)

* -0.02.

Thus, k
x

= k
Q

+ dk
Q

* 0.186 - 0.02 0.166 ,

p-11 = °-37l8, /* 21
a 0.5328, Pl - 0.3098.
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Since the values of these estimating parameters make

A^ » 0.0000, then essentially these estimates are the maximum

likelihood estimates of the parameters. If a bound is desired

on the iteration error, then it can be obtained by calculating

A A A

A for k2
* 0.167 and k. * 0.16$. If the solution for k is

taken to be 0.166 and since A
g

* -0.000U i8 negative and A-

0.000U is positive, then the absolute value of the Iterative

A

error for k is less than 0.001.
A

The estimate of the unconfirmed failures is p 0.3098

and one can find their estimated average life to be

A A

Q m fi^£ (0.3718K630) 23U-2 hours.

The estimate of the average life for the confirmed failures is

A A

G
2
m £

2
T « (0.5328X630) » 335.7 hours.

Although the accuracy above was good for the estimation

equations when only one iteration was used, it may be that one

or two iterations on the maximum likelihood equations may not

be sufficient. Therefore, one should put bounds on the

Iterative error as was done in this numerical example.

It oan be seen that the estimates of the average life of

units from two subpopulations, 6. and 9 , can be quite useful

In maintaining excellent service in the communications field

as one can anticipate maintenance requirements before any

actual break down In service results. Thus, one can see the

importance and use of estimation theory.
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Mixtures of distributions occur when there is overlapping

of two or more distributions so that it is difficult to sepa-

rate them into their respective components. Feller has dis-

tinguished two types of these distributions, true contagion

and apparent contagion.

Karl Pearson attacked the problem of mixed frequency

distributions in the early 20th century. About 25 years later

Greenwood and Yule developed a very general soherae for contagious

events but this proved to be too complex for most practical

applications. Several years later Polya and Eggenberger con-

sidered a special model of true contagion which was the

simplest case of the general Greenwood-Yule scheme. The next

significant advancement in the study of contagious distribu-

tions was in 1939 when Heyman applied them to entomology and

bacteriology. Since that time Neyman 1 s distributions have been

generalized by several workers among whom were Feller and

Gurland.

Several definitions of distributions have been cited and

developed. Some of these were the compound Poisson, Neyman'

s

contagious distribution of type A, Polya-Eggenberger, and

Pearson's type III distributions. Also, a theorem of mixtures

of distributions was stated and proved.

Applications to exponential distributions and estimation

of parameters were done by methods of moments and methods of

maximum likelihood. Since the method of maximum likelihood

estimation is more efficient than the method of moments where



the sample size n is very large, a numerical example illustra-

ting the use of the method of maximum likelihood was applied

to an exponential distribution.


