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INTRODUCTION

Magnetic cores are widely used in electronic counters.

The magnetic counter described in this report has the advantage

of core economy over the more conventional type. A basic mag-

netic shift register would require ten cores to yield an output

after ten inputs, while the circuit considered here requires

only one core to perform the same function. The savings on

money, space, and weight are thereby obvious.

A section on magnetic theory has been included in this re-

port. Such a discussion was felt to be necessary since the

basic element used in the counter circuit is the magnetic core.

No direct comments on the circuit have been made until the sec-

tion on the magnetically controlled counter.

THEORY OF MAGNETISM

Magnetic Units

The mks units will be used to define the various magnetic

quantities.

The magnetomotive force (abbreviated mmf) is the magnetiz-

ing force necessary to create a magnetic field. This mmf is

defined by the equation

P = NI amperes (1)

Ip is usually written in engineering references as NI and
read as ampere- turns.



where I is the current in the magnetizing conductor in amperes

and N is the number of turns of conductor around the magnetic

circuit.

A magnetic flux is set up by the ramf, this flux having the

units of webers and the symbol 0.

The magnetizing force 11 in a uniform field is

H = F/^ amperes/meter (2)

where P is the mmf in amperes and £ is the mean length of the

magnetic circuit in meters.

Magnetic flux density in a uniform field is

B = 0/A webers/square meter (3)

where is the magnetic flux in webers in the area A, and A is

the area in square meters perpendicular to the direction of B.

Ferromagnetic Theory

A basic idea used in the description of magnetic phenomena

Is that of the magnetic moment of an atom. The magnetic moment

can best be defined by considering a small current-carrying loop

contained in a magnetic field as shown in Fig. 1. A torque T is

exerted on the loop which tends to rotate it until it is perpen-

dicular to the magnetic field. The torque is related to the

various quantities by the equation

T = BIA sin newton-meters (I4.)

where 6 is the angle between the flux density vector B and the

perpendicular to the loop area.

The product lA is defined to be the magnetic moment of the
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loop and is denoted by the symbol p^^.

Pj„ = lA ampere- square meters (5)

The magnetic moment is a vector quantity having a direction

perpendicular to the plane of the loop and a positive sense

determined by the direction that a right-hand screw would ad-

vance should it be turned in a direction corresponding to the

movement of the current I,

The magnetic moment depends only on the product of A with

I and not on the shape of the current path. Magnetic moment is

a vector quantity so the resultant of a set of component mag-

netic moments is their vector sum.

It is to be noted that the torque acting on the loop tends

to align the magnetic moment v;ith the direction of the magnetic

field. If the loop is free to move, the magnetic moment will

indeed rotate into the same direction as the flux density of the

applied field.

The electrons surrounding the nucleus of atoms have mag-

netic moments associated with them. These magnetic moments lead

to an explanation of the effects of materials in magnetic fields.

An electron has two types of magnetic moments, one associated

with the electron in orbit and the other with the electron spin.

Drawing a correspondence between the electron in orbit and a

current existing in a loop enables one to visualize the orbital

magnetic moment. The picture shown in Pig. 2 indicates the

spin magnetic moment. Depicting the electron as a sphere spin-

ning on an axis gives rise to a magnetic moment directed along

the axis of rotation.
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The orbital magnetic moments are oriented symmetric ally-

about the nucleus and have a near zero resultant. The orbital

moment is so small that it is negligible and will not be con-

sidered here.

The free atom of an element consists of a nucleus sur-

rounded by a sufficient number of electrons to maintain the atom

neutral. These electrons are grouped into shells and subahella

and, as indicated earlier, are conceived to be spinning on their

own axis. Figure 3 gives a diagram of the positions of the

shells and the electrons contained in an atom of iron. Some

electrons spin in one direction and others in the opposite.

F. Brailsford (2) gives a table, see Fig. I4., which shows the

distribution of electrons in the various shells of the ferromag-

netic elements of iron, cobalt, and nickel, while the direction

of spin is indicated by a plus or minus sign. The atom of each

element will have a magnetic moment corresponding to the number

of uncompensated spins.

In the metallic state the overage distribution of electrons

in the 3d subahell, and in the outer shell, is different and the

average distribution is given in Fig. B.

The unbalance of electron spins within a single atom does

not bring about over-all ferromagnetic effects if adjacent atcriiS

in a metallic state have counterbalancing forces. There must be

a force of interaction acting to hold the magnetic moments of

the atoms in alignment. As the atoms are drawn together, the

interacting forces become strongly positive and do bring about

spin alignir.ent. There exists s critical atomic distance at which
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these forces become zero and ferroma gnatism ceases to exist. To

bring the atoms closer together creates strong negative forces

which produce antiparallel electron spins. It is only in the

solid metals of iron, cobalt, and nickel that the interacting

forces result in alignment of adjacent magnetic moments.

A ferromagnetic material contains microscopic regions in

which the magnetic moments of all the atoms may be found aligned

in the same direction. Such a group of atoms is called a domain.

Each domain will inherently be magnetized to saturation in some

direction. With no external field present the direction the

domains take corresponds to one of the crystallographic direc-

tions of easy magnetization of the single crystal which contains

the domain.

The lattice of an iron crystal is cubic in form. The easy

directions of magnetization are along the three major axes of

the crystal sti^cture. The lattice of a nickel crystal is cubic

in form with an atom located in each cube face. The easy direc-

tions here are along the cube-diagonal. The cobalt crystal has

a hexagonal lattice with the principal axis being the easy di-

rection. A sketch of each unit-cell crystal structure is given

in Pig. 6. ^ ^
, „ . - , , „ ,

B-H Curves

Since each domain is magnetized to saturation, a ferromag-

netic material is in a state of internal magnetic saturation

even with no external field applied. This internal saturation
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is called Intrinsic magnetization. The magnetic moments of the

domains occur in a random fashion and no evidence of this in-

ternal state is detectable externally. Upon the application of

an external field the internal situation changes in such a

manner that at least a part of this intrinsic magnetization

becomes detectable.

The manner in which the internal magnetization is altered

is best shown by plotting magnetic flux density against magnetiz-

ing force, i.e., B against H. Applying an external magnetizing

force to an initially demagnetized ferromagnetic material and

increasing this force from zero to some maximum value gives

rise to the B-H curve of the general form shown in Fig. 7. The

flux density can be divided into that which would be present

even if the material were not ferromagnetic and that which is

attributable to the intrinsic magnetization. The flux density

due to intrinsic magnetization does not increase indefinitely,

but reaches a peak value called the saturation flux density.

The total flux density continues to increase slowly due to that

part of B which does not depend on the material (extrinsic

magnetization) .

As H is decreased from some maximum value the flux density

does not follow the curve for increasing H. As indicated in

Pig. 8, the flux density remains at some value even when H

reaches zero, this value being referred to as the residual mag-

netism. The applied magnetizing force must be reversed and in-

creased to a value called the coercive force in order to remove

the residual magnetism entirely. If H is then increased to a
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maxlmtiin, decreased to zero, reversed once again and increased

back to its original positive maxinmin, the flux density will be

slightly below the previous positive maximum. Upon cycling H

a n\imber of times, the B-H curve will close on itself.

The appearance of the B-H curve depends upon the rate of

changing the magnetizing force, i.e., the frequency of opera-

tion. Eddy-current effects become more pronounced as the fre-

quency increases. Eddy currents are currents induced in the

magnetic material by the changing magnetic field which give

rise to an increased energy requirement as a result of I^R loss.

Figure 9 demonstrates the change in the B-H curve as a result

of this power loss.

Temperature also has a definite effect on the magnetic

characteristics of ferromagnetic material. The change in char-

acteristic depends on the type of material involved.

It is instructive to explain the appearance of the B-H

curve by utilizing the previously described magnetic domains.

Brailsford offers an explanation in which he considers the B-H

curve to consist of four parts. Figure 10 is used to indicate

how magnetization takes place from the demagnetized condition

up to saturation. As mentioned previously, the domains will

initially lie parallel to certain crystal axis. This is indi-

cated by the arrovjs shown in Fig. 10. Initially the magnetic

moments of the domains are such that the resultant magnetiza-

tion is zero. Upon applying a small field the resultant field

in the direction of H is caused to increase by a small movement

of the domain boundaries which move so that domains in which the
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saturation magnetization vector is favorably directed with re-

spect to H, grow in volume at the expense of the remainder.

This is illustrated at A. As the field is further increased a

sudden swing of one domain vector after another takes place from

an unfavorable to a favorable direction. These sudden direction

changes are called Barkhausen JTimps and are indicated at B.

These jumps will be about complete for a relatively low field

strength at some point C. Beyond C the magnetization occurs

more slowly as H ia increased, the process now being one in

which the saturation magnetization of the domains is gradually

pulled into the field direction as H increased. When this pro-

cess is complete, intrinsic saturation is reached as indicated

at E, this having the same value as that in the individual

domains.

Square-loop Material

Upon considering the domain theory it becomes evident that

should the crystals of a magnetic material all be initially par-

allel to the applied force the corners of the B-H curve would

be square as shown in Pig. 11. When the domains swing into a

favorable magnetization direction they will immediately be

aligned with the direction of H. Since no further domain rota-

tion will then be called for, the "knee" of the B-H curve will

be quite sharp.

Square-loop core materials are produced in two different

ways. One obvious method is to orient the crystals in such a
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manner that an axis direction of easy magnetization exists par-

allel to the applied force. This is brought about by a series

of cold reductions and heat treatments. The other method does

not necessarily require the crystals to be aligned. This is

accomplished by cooling certain materials through the Curie point

at a sloiv rate in a magnetic field. The Curie point is that

temperature at which a material ceases to be ferromagnetic. This

procedure affects magnetic properties by orientation of the do-

mains. Here the desirable magnetic properties are developed

without regard to the rolling direction during processing.

A MAGNETICALLY-CONTROLLED COUNTER

General Background

The magnetically-controlled counter described in this re-

port utilizes the integrating property of rectangular hysteresis

loop magnetic material cores. This property can best be seen

upon considering Faraday's law, e = d(Nj2f)/dt, along with the

circuit and B-H curve in Fig. 12.

When a voltage pulse of magnitude e and duration At Is

applied to a core wound with a fixed number of turns, the re-

sultant change in flux is given by Faraday's law to be

Ai2^ = 1/N ; edt (6)
At

To change the core from the negative remanent state to

positive saturation in one step, an applied pulse must have a
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volt-time area equal to N(j^m - j6t) , Assuming an ideal core, a

total of k pulses of area N(0m - ^r)/k would be required to

change the flux from -^r to +^m. This "stepping" process is

pictured in Pig. 13.

If a means were devised for resetting the core to negative

remanence once it reaches positive saturation, a block of k

pulses used in the stepping process could be counted. The reset

mode could then be detected and one pulse outputted after k

input pulses.

A value of 10 for k was chosen only for illustrative pur-

poses here since by controlling the volt-time integral of each

input pulse or the number of turns on the core, this number can

be changed. There is, of course, an upper limit to the number

of pulses for a reliable count. As the count increases and the

flux steps grow smaller, the effect of changes in circuit

parameters, voltage, or temperature on the count becomes more

pronounced.

The utilization of the integration principle in a counter

circuit reduces itself to the construction of two circuits: (1)

a source which delivers pulses of constant volt- time area; (2) a

counter core along with a reset device. A circuit of this sort

was introduced by P. G. Pittman (3) in 19^^. A greatly modi-

fied and more modern version is given here.

Circuitry

The block diagram of Pig. II4. illustrates the two basic
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sections of the circuit. The operation of each section will be

described and selection of parameter values will be discussed.

This circuit was designed to yield an output signal for every

ten input pulses. It is assumed that the input signal is

periodic in nature although this is not necessary. The cores

used are I/I4. mil, I|.-79 supermalloy tape toroids produced by the

Arnold Engineering Co., Marengo, Illinois. All transistors are

Texas Instrument Type 2N718A while the silicon-controlled rec-

tifier is an SA-130i|.

The Pulse Former . Since the input pulse amplitudes and

their duration may be random in nature, we require a buffer to

insure that the counter circuit input pulses be of constant

volt- time area. The pulse former shown in Fig. 15 serves this

purpose.

To observe the circuit operation, assume that the capacitor

CI is initially charged to the nominal supply voltage of 20

volts. A positive voltage pulse applied to Terminal 3 will cause

the silicon-controlled rectifier Q2 to turn on. Capacitor CI

will then have a discharge path through the diode CRl, Q2, and

the primary winding of the square-loop transformer Tl. This

current will cause the core to shift from one remanent state to

the other which results in a pulse of voltage across the sec-

ondary coil. vvhen the capacitor has discharged to a low value

it will be unable to deliver sufficient current to maintain Q2

in a conducting state. The SCR will then open and the capacitor

will begin to charge through the transistor Ql. The charge path

includes the primary coil of Tl. This current switches the
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transformer to the opposite magnetic state, produces a pulse of

voltage across the secondary coil of opposite polarity to that

above, and sets the core in a position ready to deliver a second

output pulse. The core is forced to be initially in its "posi-

tive" remanent state, whereupon the positive input pulse at

Terminal 3 forces it into its negative remanent state, result-

ing in a negative output pulse from the secondary coil. Once

the capacitor has charged to the supply voltage level, Ql will

no longer conduct and the circuit will wait to receive the next

input pulse.

Resistor R2 serves as a base current path for transistor

Ql. With a supply as low as 10 volts, a value of ^IK for R2

will yield a turn on base current of 197 microamperes X'jhich will

put Ql well into saturation. When Q2 is conducting and the

supply voltage is ij.0 volts, a current of [j.0/5lK 0.8 milli-

arapere will be insufficient to hold Q2 on. The SCR should, of

course, be held conducting only by the capacitor CI.

The period of the input signal for which the circuit was

designed is one millisecond. The capacitor CI should therefore

charge to full voltage in less than one millisecond. The time

constant will be effectively Rl x CI since R3 will be shunted by

a very low impedance during most of the charge cycle. With the

values for Rl and 01 chosen as 1.5^ and 0.1 microfarads re-

spectively, the capacitor will be virtually fully charged in

five time constants, or (5) (1-5) (103) (0.1) (10-^) = 0.75

millisecond.

The resistor Rlj. was determined to be 330 ohms from the
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manufacturer's date on the SCR. This resistor tends to reduce

the voltage difference betxveen the gate and cathode due to

capacitive coupling between the anode and gate which would lead

to erratic firing of the SCR.

During part of the discharge cycle of CI the impedance of

the primary winding of Tl is relatively high. Should this im-

pedance become sufficiently large, the current through Q2 could

drop below that required to maintain conduction. The TSO-ohm

resistor in parallel with the primary coil insures that this

will not happen.

The number of turns on the primary of Tl was set at 100 to

satisfy the requirements of available current and existing core

dimensions. It is desirable that the pulse former circuit have

a low output impedance in order that the output voltage will

not vary significantly with changes in load. In keeping with

this idea the secondary coil was allowed 30 turns. This was

changed to 3^ turns as determined experimentally and is dis-

cussed later.

A desirable feature of using a magnetic core in the pulse

former is that the volt- time area of the output pulses will re-

main relatively constant with changes in power supply voltage.

For higher voltages the pulse amplitude will increase but pulse

width will decrease due to faster switching time. For lower

voltages, the reverse is true.

The Counter Stage . The circuit diagram for the counter

stage is given in Fig. l6. The operation of this circuit pro-

ceeds as follows. Each negative input pulse turns the coupling
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transistor Q3 on and steps the counter core one-tenth of the way

from negative remanence to positive saturation as indicated by

moving from a to b on Fig. 13. Any positive input pulse will be

blocked by Q3.

The change in flux ^0i will produce a small positive volt-

age pulse on the output winding N6. As the input goes to zero

the flux will fall from b to c. The change in flux A 02 Q'x-peri-

enced here will yield a very small negative output pulse. This

flux change will also result in a positive voltage from the base

to emitter of transistor Qij-. This voltage, however, is below

that required to turn Qij. on. After the ninth input pulse has

passed the flux will have been driven to point d. At some time

during the tenth input the flux will rise to e. At that point

positive saturation is reached, the load on the pulse former

increases considerably, and the core is driven far into satura-

tion out to point f. As the tenth input pulse disappears, the

flux decreases to g. The flux change A0^ is much larger than

that obtained when moving, typically, from b to c and will pro-

duce a positive voltage across Nlj. (base to emitter on Qij.) which

is sufficiently large to turn Qi; on. As Qi| begins to conduct

the current through N5 produces a voltage which is magnetically

coupled to Nl^.. This further increases conduction so the process

is regenerative. The current in N5 drives the core flux to

point h. It is this large flux change that yields the output

counting pulse. The negative saturation state results in the

base voltage of Qi| being reduced to a value insufficient to hold

the transistor on. Vv'ith Qi|. in the nonconducting state the flux
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will shift from h back to point a and be ready to go through

the 10-count cycle once again.

The most critical phase in the design of this circuit is

the choice of turns for N3, Nlf., and N5. The total turns

N = N3 + NI4. + N5 must be such that one input pulse increases

the flux a little more than one-tenth of the total from negative

remanence to positive saturation. For the core being used the

flux change from -0r to +0m is about 120 x 10"^ weber. This

yields an input pulse with a volt- time area of ^2^0 =

(30) (120) (10-8) = 36 X 10-6 volt-seconds. Due to temperature

considerations to be discussed later, it is desirable that the

ninth step almost reach positive saturation.

This, along with the fact that the flux falls off a little

upon the removal of each input pulse, would call for an incre-

mental flux change ^0i ^^ *^® neighborhood of 1$ x 10-° to

16 X 10-S weber. Therefore the turns required for N would be

{l^2^0) Q (36) (10-6) (10^)
lOO -

)-6)(io8)
N = —^—— X 10^ = = 232 (7)

15.5 15.5

The nominal value of N was set at 230 turns. The combination

of N5 and N6 goes to make up the output transformer of the

counter circuit. Should the counter stage be used to drive a

second identical counting circuit, an output pulse would neces-

sarily have to look like an input pulse. Because of this, N5

and N6 were set equal to Nl and W2 respectively. The number of

turns for Ni4. is fairly restricted. If too many turns are used

the intermediate positive pulses on the base of QJ4. might be suf-

ficient to turn the transistor on. This would result in a
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premature reset. On the other hand, if Ni|. Is too small, the

larger positive pulse obtained when the flux returns from posi-

tive saturation could be insufficient to cause 0)4. to conduct,

the result being that the circuit would not reset.

It was estimated that the flux returns to points c and g of

Fig. 13 in a period of time equal to the fall time of the input

voltage. This fall time was experimentally determined to be one

microsecond. Prom the B-H curve for the core it was estimated

that A02 = 3 X 10"^ weber and A0-^ = 10 x 10"^ weber. For the

transistor used a voltage of 0.I|.5 volt or below is too small to

turn Qi4. on. A maximum number of turns would therefore be

At (io-^)(o.ii.5)(ioS)
N4 = ——- Ebase = = 15 turns (8)

A02 3

The flux change A0^, with Ilk equal to l5 turns, would result

in a base voltage of

A0^ (15) (10) (10-8)
e^ = 1% = ^ = 1.5 volts (9)

At 10-^

This is sufficiently large to turn Ql; on. With Nl^. fixed at 1$

and N5 at 100, which leaves 11^ turns for N3.

It is necessary to place a resistor in the base lead of

transistor Q3 to protect the transistor and to avoid loading

the pulse transformer to the point where the input voltage will

fall off. Even for the smallest negative input pulse and for

any load Q3 should act as a closed switch. This requires the

base current to be sufficiently large to drive the transistor

into saturation. This in turn limits the maximum value which '

can be chosen for R5. With R5 set at 82 ohms and the input as
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low as 2 volts, the base current will be

Vin - Vbe 2 - 1.3
I, = J± ^ = = 8.5 ma (10)

R5 82

This la more than enough to keep the transistor saturated even

when the core saturates, i.e., ivhen the load impedance is quite

low. Resistor R? is used in a manner identical to R^ so the

resistance values were chosen equally. R^ was subsequently

changed to 500 ohms as will be seen in the section on count

trimming.

The purpose of R6, is to protect transistor Qii during that

pert of the reset cycle when the core la saturated. The coil

impedance is then quite low so with no resistance in the col-

lector lead all the supply voltage would be dropped across QJI4..

Even with l+O volts supply the peak pulse current drawn by Qi4.

will be less than one ampere with r6 set at J+7 ohms.

The flux change ^02 3hown in Fig. 13 induces a small posi-

tive voltage across Nif.. Although not large enough to turn CUj.

fully on, this voltage does cause slight conduction. This small

current is large enough to cause sufficient drop across N5 to

bring about regeneration and the consequential full conduction

of Qi4.. Resistor R8 was placed in parallel with N5 to provide a

relatively low impedance path for this current and thus avoid

reset after the first input pulse. A value of 5^0 ohms for R8

was found to be sufficiently small to eliminate the premature

reset, yet large enough to allow normal reset to take place at

the end of the tenth input pulse.
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The Complete Circuit . The complete circuit is shown in

Pig. 17. Some additions and modifications which will be ex-

plained presently have been made to the circuit.

Count Triirjming

Experience has shown that the magnetic properties of cores

cannot be assumed to be uniform from one core to another. Such

an assumption would be erroneous even among cores from a given

manufacturer which have been produced during the same production

run. The variation can be high as a result of the cores being

constructed during different production runs and by different

manufacturers. These core differences make it necessary to

"trim" the count, i.e., to experimentally adjust the appropriate

circuit parameters to bring about a count of 10. The most' ob-

vious v/ay to change the count is to vary the number of turns on

N3 of Pig. 17. This method is quite accurate but undesirable

from a production point of view.

A more desirable trimming method is to fix the number of

turns for N3 and vary the volt-time area of the input pulse to

the count circuit. This can be done by an appropriate choice of

the resistor R9. Resistor R9 was allowed s range of to I60

ohms in 5-olrim steps. Resistor R5 was Increased to 500 ohms to

enhance the fine trimming characteristics of R9. If R$ were

left at 82 oima up to roughly two-thirds of the input voltage

could be dropped across R9. This would bring about a drastic

change in count. With R$ set at 500 ohms, no more than one-
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fourth of the input can be dropped across R9. It was found that

100 turns for N3 allowed correct triraming of most cores. The

presence of R9 in series with the core windings could possibly

limit the peak current which drives the core into positive

saturation. This in turn could reduce C^^-^ of Fig. 13 to a

value below that required to turn the reset transistor on. The

maximum value of l60 ohms was found to cause no reset problem.

The trimming procedure settled on proceeds as follows. The

supply voltage is set at i|.0 volts and R9 is chosen so that the

count is at the 10 to 9 changeover point, as shown in Fig. l8.

The value for R9 is determined with the bios winding N8

connected to the supply. It was experimentally determined that

the temperature range over which a ten count could be achieved

was increased by including the bias current. Tem.perature con-

siderations force one to trim this 10 to 9 changeover. As tem-

perature increases or decreases, the core saturates at a higher

flux value than it does around 25 degrees C. The change of the

incremental steps is negligible. With the core trimmed as in-

dicated in Fig. 7, the saturation flux must increase by an

amount equal to b-^ before the count changes to 11. Forty volts

was chosen as the supply level to allow for the inherent de-

crease in volt-time area of the input pulses as the supply

voltage decreases. Over ten input pulses this volt-time change

would have to result in a total flux decrease ot l^<^ before the

count goes to 11. This trimming procedure has yielded a re-

liable count for a range of 10 to 1|0 volts supply over the

required temperature range.
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Experimental Data

Five count-by-ten circuits were constructed and subjected

to temperature tests. The 10-count supply voltage range for

each circuit is listed in Pig. 19. All units vjere count trimmed

for a 9 to 10 changeover at i|0 volts supply at room temperature.

The output voltage was photographed with the oscilloscope

sweep set to time scales of five microseconds per centimeter

and two milliseconds per centimeter. Sketches of these pic-

tures are shown in Pig. 20.

Extensions and Additions

In timing applications it would be necessary to insure that

the count started from the negative remanent point. The coil

N7 of Pig. 17 is included for this purpose. By applying a 28-

volt pulse to N7, with positive polarity on the dotted terminal,

the core is driven into negative saturation. This "zero sets"

the core and readies it for the count cycle. The zero set

winding can also be used to externally pre-set a given number

of steps into the core before the count starts.

A count-by-1000 circuit can be easily constructed by cas-

cading three count-by- ten stages. The pulse foircer need only

be used on the input while no modification need be made to the

10-count circuit described here. The trimming resistor will,

of course, vary from one stage to another to account for core

differences.
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If a count of much below 10 is desired, the number of turns

required on the counter core falls belo^v Ni^ + N5 = 115- For a

count of three, the total turns called for is around 83'. It

would be necessary to change the reset and pulse former circuits

should the sum of Hk and N5 be reduced below 115 turns. This

can be avoided by simply grounding one end of N3, as shown in

Fig. 21.

The circuit which has been described in this report can be

used in many applications which require the measurement of long

time intervals. The accuracy of this measurement depends for

the most part on the accuracy of the oscillator producing the

input pulses. Time was not available to determine the effect

of shock and vibration on the circuit operation. As indicated

previously, the circuit was found to operate reliably under

extreme temperature and supply voltage variations.
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This report deals with a multi-state device incorporating

a magnetic core of rectangular hysteresis loop material as a

counter. Provisions are made to adjust the nximber of counts

from one to ten with automatic reset after each complete

count cycle. Test data indicating the operation of the circuit

over extreme temperature and supply voltage variations is in-

cluded. Since the basic element used in the circuit is the

magnetic core, a section on the theory of ferromngnetism is

also included.


