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IHTBODUCTIOH

The purpose of this paper is to investigate the problem of

solving quadratic congruences. For a given quadratic congruence

this can be accomplished through repeated substitution of integers

into the congruence to find those residue classes which are solutions.

In general, however, this method of trial substitution is of prohib-

itive length. Instead, the given congruence may be reduced to several

congruences which in turn are solved by a more feasible number of

trials, iioreover, determining the number of solutions that exist can

greatly reduce the number of trials needed. Ascertaining that no

solutions exist obviously eliminates the necessity of repeated trials

entirely.

JMs question of the existence of solutions will also be considered

because of its fundamental importance to the theory of quadratic con-

-ruonces. Initially quadratic residues will be defined, followed by

the introduction of the Legendre symbol. Theorems regarding the

Legcndre symbol then culminate in the law of quadratic reciprocity,

fundamental to the theory of quadratic residues. Finally, the genera-

lised symbol of Jacobi will be introduced as a tool in dealing with

Legendre 1 s symbol. This existence theory will then be applied to the

general question of solving quadratic congruences to be illustrated

in a final example.



rSKERAL CONGRUENCES OF DEGREE N

The definitions of congruence and of residue class must be

introduced as a basis for any comments on quadratic congruences, fhe

relation of congruence is merely a statement about the divisibility

of the difference of two numbers. If a-b is divisible by a non-aero

into -or n, then a is con-ruont to b modulo m, written a=b(nod m). If

a-b is not divisible by m, then a is incongruent to b modulo m, written

a£o(mod n). Since a-b is aivisiblo by m if, and only if, a-b is divisible

by -a, discussion will be limited to moduli that are positive integers.

Con -ruence is an equivalence relation with equivalence classes called

rosi lue classes. Thus, for any integer a, the residue class A
&

is the

subset of all integers b such that bsa(mod m). It follows that any two

into crs of the same residue class are congruent to each other and

that each integer belongs to ono and only one distinct residue class

modulo m. The congruence relation modulo m separates the set of all

integers into m residue classes, denoted by Rq, R , . . . , R^-j . with

representatives 0, 1, . . . , ra-1 , respectively.

Derivin ; congruences from the congruence relation follows as the

analo ;uo to deriving equations from the relation of equality. If

f( :: ) = j-r-a,;^"^ . . . +an , n - 1, is a polynomial with integral

coefficients and a
Q

•£ 0(mod m), then f(x) = 0(mod m) is a con 'ruence

of degree n'. If u is an integer such that f(u) s 0(mod m), then u

Throughout this paper "number" or "integer" will be understood
to mean rational integer.



satisfies the congruence f(x) = 0(mod m). However, the nature of a

modulo system dictates that if f (>:) = 0(mod m) is satisfied by u, it

is satisfied by an infinite number of integers—all those congruent

fiodulo r.i to u. This is shown in the theorem that follows.

Theorem. 1 . For any polynomial £(x) with integral coefficients such

n

that f(x) = cn + c,x + . . . + Cj-x" = ^1 c xv (n=0), if a=b(mod in),
u 1 v=0

then f(a) = f(b)(mod m).

Proof . Since two confluences with the same moduli may bo multiplied

member by member and may be added member by member, congruences (1

)

rosult from the given a=b(mod m), where it is understood that

cv
= cv (mod m) for all = v - n.

a
v = bv (mod n), = v = n

(1

)

cy
av = cvb

v (mod m), = v = n

n n
v5~ cva

v
= XI cvb ^mod m ^

v = v =

That is, f(a) = f(b)(mod ra).

It follows from this theorem that the integers which satisfy the

congruence f(x) = 0(mod m) fall into residue classos modulo n. iherc-

fore, the number of solutions of f(x) = 0(mod m) is defined to be the

number of residue classes all of whose members satisfy f(x) = 0(mod m).

Since there are .just m residue classes modulo m, there can never be more

than m solutions of a conr;ruenco modulo m. Furthermore, Lagrange's

theorem states that for a prime modulus the number of solutions is never



2
greater than the decree of the congruence.-

Since Lagrange's theorem and many theorems of specific importance

to the theory of quadratic congruences apply only to congruences with

3
prime moduli, to express any congruence modulo m in terms of con-

gruences modulo p is the initial problem in establishing a general

method for solvin ; congruences. This process of reduction will be

considered for the general congruence of degree n. A quadratic con-

gruence will then be discussed as the specific case in which n equals

two.

The fundamental theorem of arithmetic allows the first step in

reducing the general congruence. Except for associated primes and the

order of the factors, a composite integer can be factored uniquely into

powers of distinct primes; that is m = p ' p
c

. . . p . This form
1 2 r

of the integer m is called its canonical decomposition. Thus a composite

modulus may be replaced by its canonical decomposition, and the following

theorem for the number of solutions of a congruence with composite modu-

lus is developed.

Tneorem 2, If m>1 , and its canonical decomposition is

(2) ra =
Pi

s 1p
2

S2 . . . p^
then the number of solutions of

(3) f(x) B 0(mod m)

^For proof, see Elementary Theory of Ilumbers
f
Harriet Griffin,

PP. 75-77.

3Jk prime modulus will be indicated by the lotter p in contrast
with the use of the letter m to indicate the general composite modulus.



is equal to the product of the numbers of solutions of the r congruences

(i|.) f(x) = 0(mod p
jL

Si
) for i = 1, . . • ,

r.

Proof . Since a composite modulus may bo factored into powers of distinct

crimes and these factors are relatively prime in pairs, a congruence (3)

is oquivalent to the system of simultaneous congruences (^) , where the

canonical decomposition of ra is given by (2). Consequently, any solution

of (3) must be congruent modulo p
Sl to some solution d

1
of f(x) = 0(mod p

1

1
)

,

congruent modulo v>
s?

- to some solution d
2

of f(x) = 0(mod p2
?
), and

similarly congruent modulo p.
1 to some solution d^ of the corresponding

Sj

congruence f(x) = 0(mod p *) for i = 1 , 2, . . . , r. Conversely, if
i

arbitrarily chosen solutions of the congruences (4) are designated by

d , d , . . . , cLi then x may be determined by the simultaneous congruences

(5) x E d^mod p^1
) for i = 1, 2 r.

Solutions of this system of congruences may be found using the so-called

Chinese method, or Chinese remainder theorem. Then each solution will

be a solution of the congruence (3). To obtain all possible solutions

of (3), one must choose all possible sets of values d
1

, d^, .... d
r ,

and for each corresponding system (5) obtain a value of x which will be

a solution of (3), incongruent modulo m to every other value of x obtained.

Hence, if \l(n) denotes the number of distinct solutions of (3) and the

notation is used similarly for each of the congruences (4-), then

::(m) = :i(
Pl

si);;(p
2
s2) . . . H(p

r
sr).



It is evident that if one of the congruences (*0 fails to have

a solution, there is no solution for (3). Furthermore, through the

following theorem, solving a congruence of the form f(x) = O(mod p
s

)

may be reduced to solving f(x) = 0(mod p
s_1

) , which reduces by induc-

tion to solving f(x) 5 0(mod p).

Theorem 3 . If s>1 , the solutions of

(6) f(x) = 0(mod ps),

where p is a prime, are determined by the solutions of

(7) f(x) = 0(mod p
s' 1 ).

Proof . Every solution of (6) is congruent modulo ps-1 to some solu-

tion b of congruence (7) although there may be more solutions of (6)

than of (7) because integers congruent modulo p
s_1 may be incongruent

modulo ps . Solutions of (6) may be written in the form x = b + p
3" 1 t,

where b has been found to be a solution of (7). Therefore, by Taylor's

oxpansion,

f(x) = f(b) + p
s- 1 tf'(b) + r,

2s~2t2 f ' '( p ) + • • •. All terms begin-
1 »2

ning with the third are divisible by p
s since 2s-2 - s if s>1 and L .^APJ.,,

f"'(b ), •.. are integers. Hence, f(x) = f(b) + p
s_1 tf ' (b)(mod p

s
).

1.2.3

Since f(b) = 0(mod p
s~ 1

) , there exists an integer Q such that

f(b) = .p
s~ 1

. If f(x) = 0(mod p
s

) is written f(b) + tps
- 1 f'(b) = 0(mod pS),

substituting for f (b) givos

(3) Q + tf'(b) 5 0(mod p).



fhe following two cases result.

Case I: If f'(b) is not divisible by p, congruence (8) has a unique

solution modulo p. Hence, a unique solution of (6) will correspond

to each solution of (7).

Case II. If f'(b) is divisible by p, congruence (8) either has p

solutions or is impossible, nonce, (6) has either p solutions or

no solutions corresponding to each solution of (7).

The procedure defined in this theorem consists, then, of the

following steps, first the congruence modulo p must be solved.

Then solutions of f(x) = 0(mod p
2

) corresponding to each solution of

f (x) 5 0(mod p) are obtained. This process is continued through

successive TX>wers of the primo modulus until all solutions have been

found for the congruence modulo ps . This procedure and that of

theorem 2 are outlined in the following example.

example 1 . Find all solutions of the congruence

(9) f(x) = 0(mod 100)

with f(x) = x3 + 3X2 + x + 3. The canonical decomposition of 100 is

100 = 22 « 5
2

. 'Thus (9) is equivalent to the system of simultaneous

congruences

(10) f(x) = 0(mod 22 )

(11) f(x) = 0(mod 5
2
).

Theorem 3 must be used to find the solutions of both congruences (10)

and (11).

Tho solution of f (x) = 0(mod 2) by trial substitution is 1 .

Solving (10) involves the following:



b=i ,

f(b)=3 = O(mod 2), f(b)=Q.2, Of*,

f'(b)=10.

Since 2 divides f'(b), thero will be two solutions of (10) correspond-

in- to b=1 . Congruence (8) becomes ^+10t = 0(mod 2), which holds for

all values of t in the nodulo system. For t=0, x=2t-i-b=1 . For

t=1, x=2t+b=3. Therefore, f(x) = 0(raod ^) has solutions 1 and 3.

In this particular case one could have anticipated the solution x=1

because f(l) is a multiple of k as well as a multiple of 2.

The solutions of f(x) = 0(mod 5) are obtained by trial sub-

stitution; they are 2 and 3. Then, the determination of the solu-

tions of (11) is broken into two parts.

Part I: b=2

f(b)=25 = 0(raod 5), f(b)=Q«5, 0=5.

f*(b)=25.

Since 5 divides f'(b), thero will be five solutions of (11) cor-

responding to b=2. Congruence (3) becomes 5+25t S 0(mod 5)i which

is satisfied by all values of t in the modulo system. For t=0,

x=5t+b=2. For t=1 , x=5t+2=7. For t=2, x=5t+2=12. For t=3,

x=5t+2=17. For t=4, x=5t+2=22. Therefore, f(x) = 0(mod 25) has

solutions 2, 7, 12, 17, and 22 corresponding to b=2.

Part H: b=3,

f(b)=60 = 0(mod 5), f(b)=Q»5. 0=12,

f'(b)=^6.

Since 5 does not divide f'(b), there will be a unique solution of

(11) corresponding to b=3. Congruence (8) becomes 12+4-ot = 0(mod 5),



which is satisfied by t=3. For t=3, x=5t+b=13. Therefore,

f(x) = 0(mod 2.5) has the solution X=18 corresponding to b=3.

Since there are two solutions of (10) and six solutions of

(11), the congruence to bo solved (9) will have twelve solutions,

determined by twelve systems (.5), each of which will be of the form

;r=d., (nod &), :3dp(mod 25) for d
1
and do ranging over all solutions

of (10) and (11) respectively. Using the Chinese method, one obtains

the following congruence to ive all solutions of (9) for the twelve

different sets of d
1

ana d
:

: xs2 d
1
+76d

?
(raod 100). iho final

results are then tabulated as follows:

d
1

1 2 25 + 152 = 177 S 77(mod 100)

1 7 25 + 532 = 557 s 57 (mod 100)

i
1?. 25 + 912 = 937 s 37 (mod 100)

1 17 25 +1292 =1317 1? (mod 100)

1 1b 25 +1363 =1393 3 93(mod 100)

1 22 25 +1672 =1697 S 97 (mod 100)

3 2 75 + 152 = 227 3 27(nod 100)

3 7 75 + 532 = 607 a 7(nod 100)

3 12 75 + 912 = 9b7 5 07(mod 100)

3 17 75 +1292 =1367 5 67(mod 100)

3 13 75 +1363 =1^-3 S ^3(mod 100)

3 22 75 +1o72 =17^7 S ^7(mod 100)

Thorefore, the solutions of f(x) = 0(mod 100) are 7, 17, 27, 37, ^3,

'i-7, 57, 67, 77, 37, 93, 97.

1

QUADRATIC CONGRUENCES

Prom the preceding consideration of the general congruence of

decree n results have been obtainod which may now bo applied to the
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proposed problem, that of solving the general quadratic con-ruonce

(12) ax2+bx+c = 0(nod m), a ^ 0(mod m).

Congi^ucnco (12) with a=1 and b=0 is defined to be the binomial quad-

ratic congruence, oince {]?,) is clearly the general congruence of

do rec n with ii^., theorems 2 and J imply that solving (12) depends

upon solving congruences of tho form

(13) a^+bx+c = 0(;nod p)."'

The following theorem simplifies the solving the general quadratic

congruence still further.

Theorem !± . If f (x)=ax2 -ibx-i-c and aj£o(mod p) for an odd prime p,

then tho solutions of f(x) = 0(mod p) are determined by the solutions

of the pair of congruonces u?- = b2-4ac (mod p) and 2ax+b = u(mod p).

Proof. Since p is an odd primo and aj£o(mod p) , (^-a,p)=1

.

Multiplying f(x) = 0(mod p) by ^a and adding b -^ac yields

(2ax+b)2 =b -^ac (mod p). Hence, x^ is a solution of f(x) = 0(mod p)

if, and only if, 2axi +b = u(mod p), in which u is a solution of

u = b -*fac (mod p). Furthermore, since (2a,p)=1 , for each solution

u there is one, and only one, x modulo p such that 2ax+b = u(mod p);

and different u modulo p will yield different x modulo p.

Finally then, solving a general quadratic congruence reduces to

solving linear congruences and binomial quadratic congruences in

which the moduli are primes. The number of trial substitutions

4
Since the case for which p=2 may be solved by trial substitution,

p will be restricted to odd primes.
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required to obtain all solutions is thus reduced. Since the solva-

bility of the general quadratic congruence depends on the existence

of solutions of all corresponding binomial quadratic congruences,

determining that any one of them has no solution leads directly to

the conclusion that no solution exists for the given congruence. For

this reason, consideration of quadratic residues is pertinent.

The values of c^O for which the congruence x2 = c(mod p) is

solvable are called quadratic residues of the odd prime p. -Quadratic

non-residues are those values of c for which the congruence has no

solution. This quality of being a quadratic residue or non-residue

modulo o is called the quadratic character of c with respect to p.

Determining the quadratic character of c is, therefore, equivalent

to testing for the existence of solutions of x2 = c(mod p). The

following theorem resolves the question of the number of possible

solutions.

Theorem 5 . If c is a quadratic residue modulo p, then the congruence

(14) x2 = c(mod p)

has two solutions.

Proof , 'fy the definition of quadratic residue, if c is a quadratic

residue, then (14) has at least one solution u(mod p). Since (-u) 2 = u2 ,

the same congruence has a second solution, -u(mod p). This second

solution is different from the first since u=-u(mod p) implies

2u 5 0(mod p) which is impossible because both 2 and u are relatively-

prime to p. By Lagrange's theorem the congruence of degree two has at

most two solutions; hence, those two solutions, u and -u, exhaust all

possible solutions of (14).
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THE LEGENDRE SYH30L

Investigating the quadratic residues of odd primes leads to use

of the following simplifying notation introduced by Legendre. The

Le -endre symbol (c/p), where c is not divisible by the prime p is

defined as follows

:

(c/p) =1 if c is a quadratic residue of p,

(c/p) = -1 if c is a quadratic non-residue of p.

In order to define the symbol for every integer c, the following may

be added: (c/p) = if p divides c. Then a concise expression denoting

the number of solutions existent for any binary quadratic congruence

follows from the extended definition of the Legendre symbol.

Theorem 6 . The number of solutions of the congruence (1^) for any c

and any prime p is 1 + (c/p).

Proof . There are three cases to be considered.

Case I: If c is a quadratic residue of p, 1 + (c/p) =1 +1 = 2. This

was proved in theorem 5 to be the number of solutions of the congruence

(1-0 if c is a quadratic residue of p.

Case II: If p divides c, then c is a multiple of p. Thus, yr must be

a multiple of p which implies that x must be a multiple of p since p

is a prime. .

T

ow all multiples of p belong to the same residue class

modulo p. Hence, all possible values of x are in the same residue

class modulo p; and this residue class will be the only solution of

the congruence (1'>). Then for case II, 1 + (c/p) = 1 +0 = 1, which is

the number of existing solutions of (1^).
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Case III: If c is a quadratic non-rosidtta of p, there are no solutions

of the congruence (1'.0. This is exactly the result, 1 + (c/p) = 1 + (-1 ) = 0.

A fundariontal tool in evaluating Legendre's symbol is Ruler's

criterion, which is stated here without proof. From it, for a given odd

prime modulus, the quadratic character of any number can be determined.

Ruler's criterion . 5 If p is an odd prime and p does not divide c,

then c^P"^' 2 = 1 (mod p) or c^P"^' 2 = -1 (mod p) according as c is a

quadratic residue or non-residue of p.

3y Euler's criterion, Legendre's symbol is uniquely defined by the

congruence

(15) (c/p) = c (P-l)/2 (mod p).

Hence, certain properties which simplify the evaluation of Legendre's

symbol may be proved. Those are ~iven in the following theorem.

Theorem 7 « The Legendro symbol has the following properties:

I. (cb/p)=(c/p)(b/p).

II. If c 5 b(mod p), then (c/p)=(b/p).

III. If p does not divide c, (c2/p)=1

.

IV. If p does not divide b, (cb2/p)=(c/p).

V. (1/p)=1.

vi. (-i/p)=(-0 (p-1)/2
.

Proof. Each of the six properties must be considered seperately.

Property I. From Euler's criterion,

(cb/p)=(cb) (P- 1 >/WP- 1 )/ ?'b^P- 1 )/2 (mod p).

Hence, (cb/p)=(c/p)(b/p)(mod p). Since Legendre's symbol assumes

For proof, see Elementary Number Theory , Edmund Landau, p. 5^.
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only the values of and +1 , the following equality holds:

(cb/n)=(c/p)(b/p). Thus the product of two residues or two non-

residues is a residue; the product of a residue and a non-residue is

a non-residue. If p divides cb, both sides of the quality will obviously

be soro since p will necessarily, then, divide c or b.

Property II. Since c = b(mod p), c and b are members of the same

residue class modulo p. The numbers of a particular residue class

are either all solutions or all not solutions of a particular con-

gruence, rhus c and b are of the same quadratic character; that is,

(c/p) = (b/p).

Property III. From property I, (o2/p) = (c/p)(c/p). Thus, since (c/p)

is equal to +1 , (c-/p) = +1

.

Property IV. From property I, (cb2/p) = (c/p)(b?-/p). From property

III, (c/p)(b
2
/p) = (c/p)(+D - (c/p).

Property V. Because 1 raisod to the power of (p-1 )/Z will always

equal 1, congruence (15) becomes for c = 1, 0/p) = 1.

Property VI. If in (15) c = -1
, (-1/p) = (-1 )

(p" 1 ^2
(mod p). Since

all integral powers of -1 are +1 , the congruence is equivalent to the

equality (-1/p) = <-l)<P-1 >/2,

The following theorem, which gives a method for finding all

quadratic residues of a given odd prime modulus, may be proved using

the properties of Legendre's symbol.

Theorem 8 » The integers

2
(16) is ?/-, r- (Eji)fE=1

aro incongruent quadratic residues of the odd prime p.
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Proof. By property III of theorem 7, oach of the integers in the

sequence (16) is a quadratic residue of p; and because c
2 = (p-c)-(mod p),

only those integers are necessary to determine the quadratic residues

modulo p. iloreover, no two of the integers are congruent modulo p

because c±
2 5 Cj

2
(mod p) implies ( Ci-c

j
)(c

JL
+c •) = 0(mod p), which

implies that p divides at least one of the factors Oj-Oj and o
±
-*Oy

Since both <u and c, are positive and distinct elements not greater than

(o-D/2, neither Oj-Oj nor Cj+Cj is divisible by p. From the integers

of the set (1o) all quadratic residues of p may be found.

Thus far, quadratic residues have been considered only in regard

to the question of the existence of solutions, that is, determining

the quadratic character of a number for a given odd prime modulus,

however, the theory of quadratic residues centered around Legendre's

symbol is of greater scope. The Legendre symbol allows both determining

the quadratic character of an integer modulo p and finding the primes p

of which a particular integer is a quadratic residue.

The latter problem is now considered. Property V of theorem 7

shows +1 to be a quadratic residue for all primes p. The following

theorem gives the odd primes for which -1 is a quadratic residue.

Theorem 9. . The integer -1 is a quadratic residue of all primes of the

form 4n+1 and a quadratic non-residue of all primes of the form ^n+3.

Proof . The proof is divided into two cases.

Case I: Since (p-1 )/z is even for p = 1 (mod 4), from property VI of

theorem 7, (-1/p) = +1 • Hence, -1 is a quadratic residue of p = torM .
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Jasc II: Since (p—

1

)/Z is odd for p = 3(mod ^)» from property VI of

theorem 7 t (-1/p) = -1. Henco, -1 is a quadratic non-residue of

p = toi+3.

The following theorem, attributed to Gauss, gives a method for

finding the primes p of which any integer q, not a multiple of p, is

a quadratic residue.

Theorem 10 . (Jauss's lemma) Lot p be any odd prime such that p does

not divide q. If v is the number of elements of the set

(17) q. 2q ; 3q (p-Dq
2

whose numerically least residues modulo p are negative, then

(q/p) - (-0\

Proof . The integers of the set (17) are prime to p and incongruent

modulo p. Their numerically least residues modulo p are

a.j , &2* • • • » *u representing the positive ones and -b. , -b„, . . . , -b

representing tho negative ones. Since the integers (17) are incongruent

modulo p, no two a^'s are equal and no two b.'s are equal. Since both

a. and -b. are congruent modulo p to integers of (17), they may be
•J

denoted by a
i

= sq(mod p) and -b- = tq(mod p), where s and t are integers

of the sot 1,2,..., (p-1 )/2. Assuming a^ = b.(mod p) for some i and j,

loads to a contradiction because it implies a.-b. = 0(mod p) which •

implies (s+t) = 0(mod p) since q ^ 0(mod p). Since s and t are both

positive integers less than (p-l)/2, the sum cannot be a multiple of p;

hence, the (p-1 )/2 numbers a
1

, a
£

, . . . a
u , b , bg, . . . bv are distinct
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integers between 1 and (p-D/2. They are therefore exactly the numbers

1,2, . . . , (p-O/2 in some ordor. The product of the original set

of integers (1?) is congruent modulo p to the product

(13) (-1 )

V
a-|aoa

5
. . . a^^. • • bv »

llow the product of the sot (17) nay be written q^p" i^~)['

and (16) nay be xwitten (-1)
v(^-)l. Therefore, q

(P" 1 ^2 = (-l)
V
(mod p).

From Ruler's criterion this becomes (q/p) 3 (-1

)

v(mod p). Since both

members of the congruence may assume only values +1 , the equality to

ho proved follovrs; that in, (q/p) = (-1 )
v

.

Hie next theoron to be proved is an extension of dauss's lonmia

giving the quadratic character of primes for all odd primes. However,

a loiima defining the uso of the bracket function must first be proved.

Tho theorem then follows.

Lojma. './hen k and p are positive integers, the division of k by p to

;ive a non-negative remainder, r<p, yields the quotient [k/p] . That

is, -:=p[k/p] 4r, - r<p.

Proof. 2y the division algorithm, given any two positive integers k

and p, there exist integers Q and r such that k = pQ+r, = r<p.

Thus, k/p = Q+r/p, = r/p<i . Hence, Q is the integral part and r/p

is the decimal part of k/p. Since the bracket function [x] is defined

to be the greatest integer loss than or equal to x, Q s(k/pj.

Substituting this into tho original expression for k gives the equation

to be proved.

Thoorem_.1l. If p is an odd prime, then for an odd prime a f p,

(q/p) = (-1 r with
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(19) h = [q/p]
+

[
2ci-/p]

+
• • •

+ {W D
J

in which t = (p-D/2; and for q = 2, (q/p) = (-1

)

(p ~ 1 '' 8
.

Proof . If q is any prime not equal to p, the lemma applies to each of

the multiples of q given in (17). If their least residues are denoted

by r
1

, r
2

, . . . , r
t
with = r^p

the numbers in (17) are given by the lemma as follows:

q =
pfjj/p]

+ r
i

(20)
2q

=

?r2q/p]
+ r

2

• • •

tq = pjta/pj + r
t

.

If Li is the sum given in (10) end S is the sum of the first (p-1 )/2

positive integers, addin~ the equations (23) yields

t

(21

)

3ci = ptf + Y. rk«
k=1

Tho nuinericaUy least residues were denoted in theorem 10 by a. and -b.,

i = 1 ,;:,..., u, .1
= 1 , °, .... v. The -b.'s are the negatively

J

least residues. However, since -b . = p-b.(mod p) and = p-b.<p, all
J J J

r,,'s are riven by all a. 's and all (p-b.)'s together. Denoting

u v
> a.=A and 21 b,=3, equation (21) becomes
i=i

X
.1=1 °

(22) Sq = pli+A+vp-E

As was noted in the proof of theorem 10,

(23) S = A+B.
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Subtracting equation (23) from equation (22) yields (q-1 )S = pM+vp-2B,

which is equivalent to

(?J;) (q-1)S h p(M+v)(raod 2).

Since the sun of the first (p-1 )/2 positive integers equals (p
2
-1 )/3,

(2'0 becones

(2.5) (q-1 )(p
2
-1 )/o = p(H-hr)(raod 2).

In conclusion, two cases arise.

Caso I: If q is odd, congruence (2.5) becomes p(m+v) = Q(mod 2).

'therefore, since p is an odd prime, M = -v(mod 2). Since -v = v(nod Z) ,

K = v(mod 2). Then Gauss's lemma for any odd prime q becomes (q/p) = (-1 ) .

Case II: If q=2, each of the bracket functions of M is some [d]
;
but d

is in each case loss than one. Therefore, M = 0. Then congruence (25)

becomes (p
2-l)/3 = pv(mod 2). 3ecauso p is an odd prime pv = v(mod 2),

then (p
2
-l)/3 = v(mod 2). Gauss's lemma for q=2 is then equivalent to

(2/p) = C-1)Cp
2
-1)/3.

The following is an example of the use of the preceding results

and the properties of Legendre's symbol.

Example 2 . Find all odd primes for which -2 is a quadratic residue.

Evaluating (-2/p) yields

C-2/p) = C-1/p)(2/p) = (.,)(P-1)/2(.,)(P
2-')/8,(.l)CP-0/2V-t)/S.

Those odd primes which give an even exponent are of the forms Sn+1 and

8n+3. Those giving an odd exponent are of the forms 8n-1 and 8n-3«

Therefore, of the four distinct classes of odd primes modulo 8, -2 is

a residue of p =
1 (mod 8) and p = 3 (mod 8). Then, -2 is a non-residue

of p = 5 (mod 8) and p = 7 (mod 8).
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THE LAW OF QUADRATIC RECIPROCITY

Finally with the preceding results, one is able to consider the

famous law of quadratic reciprocity. This theorem was discovered at

different times by Euler (17'~>3)» by Legendre (1 7^5) * and finally by

Gauss (1 795) » who found a total of seven different proofs for the

thoorom. The proof given hero is the fifth proof of Gauss, based on

ids lerina, a transformation of Euler 's criterion*

llieorem 12 . (Lav; of Quadratic Reciprocity) For any two distinct odd

primes p and q, (q/p)(p/q) = (-1 Tp '' 2 ' ^ q~ 1 '' 2 which is equivalent to

(Vp)=(-D
(?-,)/2 - (q-,)/2

(p/q).

Proof. 3y Gauss's lemma (q/p)=(-1

)

u and (p/q)=(-1

)

v if u and v are

the numbers of the multiples q, 2q, . . . ,
p~°- and p, 2o, . . . , ^stP

having negative numerically least rosidues modulo p and modulo q

respectively. Since Gauss's lemma gives (q/p) (p/q)=(-1

)

UTV
, it suffices

to show that (u+v) and (p-1 )/z* (q-1 )/z are of the same parity—in

congruence notation, u+v = (p-1 )/2» (q-1 )/2(mod 2).

The least positive residue of any number modulo pq either is

zero or belongs to the series

(26) 1 , 2, 3f • • . . pq-1

.

This series is composed of the two series

(27) 1,2,..., (pq-D/2

(23) (pq+D/2, (pq+3)/2, . . . , pq-1.

Each of the numbers of (27), none of which are divisible by pq, may

J. V. Uspensky and M. A. Heaslet, Elementary Number Theory,
pp. 234-6.
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be characterised by the combination of both. its modulo p and its modulo

q numerically least residues. All eight different possible combinations

are listed although classes 1 , 6, and 8 will not be needed for the proof

of the theorem.

Class 1 contains numbers with numerically least residues positive

modulo p and positive modulo q. Let e of the numbers of (27) be of this

typo.

Class 2 contains numbers with numerically least residues positive

modulo p and negative modulo q. Let f of the numbers of (27) be of

this type.

Class 3 contains numbers with numerically least residues negative

modulo p and positive modulo q. Let g of the numbers of (27) be of

this type.

Class k contains numbers with numerically least residues negative

modulo p and negative modulo q. Let h of the numbers of (27) be of

this type.

Class 5 contains all multiples of q with numerically least residues

negative modulo p. All multiples of q in (27) are q, 2q, . . . , P-1q
,

Consequently, class 5 contains u numbers.

Class 6 contains all multiples of q xfith numerically least residues

positive modulo p. Their number is (p-1 )/2 -u.

Class 7 contains all multiples of p with numerically least residues

negative modulo a. All multiples of p in (27) are p, 2p, . . . , Sfclp.
2

Consequently, class 7 contains v numbers.

Class 3 contains all multiples of p with numerically least residues

positive modulo q. Their number is (q-1 )/2 -v.
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Classes 2, 1*, and 7 comprise all numbers of the set (27) having

negative numerically least residues modulo q. For a given least

residue r , negative modulo q, the numbers of (27) with least residue

r, , are qyr* , 2q+r. , . . . , —-ti' 1

"
1'-] . Hence, for a particular r^

, the

set (27) is composed of (p-1 )/2 numbers. But r
1

can be any one of

(0-O/2 different values. Therefore, the number of integers of (27)

having negative numerically least residues modulo q is (p-1 )/2»(q-1 )/2.

This is also tho number of intogers in classes 2, 4, and 7, so that

(29) f+h-tv = (p-1)/2'(q-l)/2.

By similar enumeration, interchanging the roles of p and q and con-

sidering classes 3, ^, and 3. one obtains

(30

)

g-Hl+U = (p-D/2«(q-l)/2.

To each number c in (27) with numerically least residue negative

modulo p and positive modulo q there corresponds a number pq-c in (23)

with numerically least residue positive modulo p and negative modulo q.

Since this is a one-to-one correspondence, there are exactly as many

integers in class 3 as there are integers in (28) having numerically

least residues positive modulo p and negative modulo q. Since the

integers in (27) having numerically least residues positive modulo p

and negative modulo q are those of class 2, the number of integers of

(26) with numerically least residues positive modulo p and negative

modulo q is the sum of the number of integers in classes 2 and 3, f + g

Those integers of (26) are of the form k,p+k q for which k.jp is a

negative numerically least rcsiduo modulo q and k q is a positive

numerically least residue modulo p. Since k. p ranges over (q-1 )/2
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distinct values and .:
9 q ranges over (p-1 )/2- distinct values, the number

of integers of (26) \u.th numerically least residues positive modulo p

and negative modulo q is (p-1 )/2« (q-1 )/2. Therefore,

(3D f -i- Z = (p-D/2.(q-D/2.

Equation (31) substracted from the sum of equations (29) and (30)

results in u+v-:-2h = (p-1)/2»(q-1 )/2, Hence u-hr = (p-1 )/2»(q-1 )/2(nod 2),

irhich ".;as to bo proved, yielding

(32) (q/p)(p/q)=:(-l) (P-l) /2-^-l) /2
.

Since (p/q) is +1 or -1, multiplying both sides of equation (32) by

(p/q) 'jives

(33) (q/p) = (-D (P-l) /2-^)/2(p/q).

The foliowin; is an example of an application of the lair of quadratic

reciprocity.

C::ample 3« Find the primes of irhich 3 is a quadratic residue.

Equation (33) with a = 3 is (3/p) = (-1

)

(p" 1 ^2
(p/3). If

p 5 Kmod -<,), (-l)^P- 1 )/2=+1. If p e 3(mod H) , (-1 )
(P"1 } / 2=-1 .

For p 5 Kmod 3), (p/3)=+1 . For p = 2 (nod 3), (p/3) = (-1 )
(9_1 ^=-1 .

Since G/p) equals +1 if and only if (p/3) and (-1)^P~ 1 V2 ^g of the

same sign, 3 is a quadratic residue of primes of the form p =
1 (mod 12)

and p 5 1 1 (mod 12).

THE JAC03I SYHBOL

For composite numbers q the solution of problems of the type in

example 3 requires consideration of cases according to the quadratic

character of the prime factors of q. This is simplified by the use of



a generalisation of Legendre 's symbol, known as the Jacobi symbol. If

P =
Pl p?

. . . pk
and the p±

with i = 1 , 2, . . . , k are positive, odd

primes not necessarily distinct, then for any integer c relatively prime

to P the Jacobi symbol (c/p) is defined as follows:

(c/p) = (c/p
1

)(c/p
2

) . . . (c/p
k ), interpreting the symbols to the right

of tho equality sign as Legendre symbols,

.he following theorom gives properties of the Jacobi symbol similar

to those of the Legendre symbol given in theorem 7. The letters, P and

P 1

, denote products of positive, odd primes relatively prime to the

integers c and b.

Theorem 13 . The Jacobi symbol has the following properties;

I. (c/PP') = (c/P)(c/P»)

II. (cb/P) = (c/P)(b/P)

III. If OS b(mod ?), then (c/P) = fc/P)«

IV. (c
2
/?) = (c/P2 ) = 1

V. (cb
2/?'P2 ) = (c/P')

proof. 3ach of the five properties must be considered separately.

Property I. This property is a direct application of the definition

of the Jacobi symbol.

Property II. If this is written in terms of Legendre' s symbols by

definition, ft (cb/p. ) = jf(c/xi.) Tfib/p.), and if terms to the right

i=1
x

1=1
x

i=1
x

k
of the equality sign are rearranged, 77 (cb/p.) = 77 (c/p. )(b/p ),

i=1
x

i=1
x X

which is verified by property I of theorem 7 for each i=1 , 2, • • . k.
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Property III. Again P may be written p p t . . p • Then c = b(mod p. ).

Hence, (c/p. ) = (b/p. ) by property II of theorem 7. Application of this

k k
r)ronerty for i=1 , 2, . . . , lc and multiplication yields Jf (c/p. ) = 77" (b/p. ),

i=1
1

i=1
x

which is by definition property III as given.

Proporty IV. Ey properties I and II respectively, both (c/p ) and

(c?-/p) are equivalent to (c/p)(c/P). The Jacobi symbol (c/?), product

of Le-endre symbols, has the value +1 or -1 . In either case, (c/p)(c/p)=-r|

.

Property V. The reduction of the left side of this equation to the right

side using properties I, II and IV is as follows:

(cb
2
/? 1 ?2 ) = (cb2/P')(cb

2
/p2) = (cb

2/P') = (c/P')(b2/P<) = (c/P>).

The next two theorems give the value of the Jacobi symbol for c = -1

and for c = 2.

Tneorem 14. For any odd integer P>1 , (-1/P) = (-1 r
P" 1 " 2

.

Proof . For odd integers p and p , (p. -1 ) (p -1 ) = 0{mod 4). Then

p. p?
-p^ -p2

"
i- 1 = 0(mod 4), which is equivalent to

P
1
P2

-1 2 (prD+(p
?
-l)(mod 4) or (p^-O/2 = (p^l )/2+(p

2
-1 )/2(mod 2).

If this is extended to odd integers p.,, p_, . . . p, , then

k k

(34) H (p±
-1)/2 = (TTPi-D/2 (mod 2).

i=1 i=1

3/ definition (-1/P) = TT (-1/p- )» which by property VI of theorem 7 is
i=1

_1

(-1/P) = "tt(-l)^pi"
1 ^' 2

. The law of exponents for multiplication then
i=1
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k k

Z(Pi-iy2 (TT.pi-o/2
gives (-1/P)=(.1)i-1

, which by (34) is (-l/p)=(_1

)

i~ 1

Hence, (-1 /P)=(-1 )
(P" 1 )/2 .'

Theorem 15 . For any odd integer P>1 , (2/P)=(-1 r P "* 1 ^' 8
.

Proof . For odd integers p. and p , (p. -l)(p
?

-1 ) = 0(mod 16).

Then P<
2
p

2
-1 S (p

2
-1 )+(p9

2
-1 )(mod 16), or

( Pl
2
p
2

2
-1)/3 = (Pl

2
-l)/8+(p

?

2
-l)/8(raod 2). For odd integers

Pj» P
2

Pk »

(35) (TT Pi
2-l)/8= jt (Pi

2-D/3 (mod 2).
i=1 i=1

§y reasoning similar to that of the proof of theorem 14, using case II

of theorem 11 and equation (35), (2/P) = 7T (2/p. ) = 77- (-1 T Pi '

i=1
1

i=1

(-1) (-1)
1" 1

. Hence, ( 2/P) = (-1)^"1)/

TiiS GENERALIZED LA'i OF QUADRATIC RECIPROCITY

The following theorem is a generalization of the law of quadratic

reciprocity to deal with the Jacobi symbol.

Theorem 16 . For odd integers P,Q>1, (P/ci)(Q/P) = (-1 )
^ P_1 )/2*(w,-1 )/2

which is equivalent to (Q/P) = (-1 )^
P" 1 ^2^ Q_1 ^/2 (p/Q).

g
Proof . If P and Q can be decomposed into prime factors, P =

"JT P.

i*1
i



27

t

and = TT o ., then by properties I and II of theorem 13.

(?/«) = (TTPi/ Tr^i) = fr^J TTq.) = IT TT(p./q,). Similarly,

i=1
x

j=1 J 1=1 x
j=1 J 1=1 j=1 1 J

t 2 t

U/P) = 7T 7T( a -/p. )• Tnerefore, (P/Q)(Q/P) = 77 77 (p. /q.)(q./p. ).

0=1 1=1 J x 1=1 0=1
x J 3 x

which by the quadratic reciprocity law is equivalent to

"fj 77"(-1)^Pi
'' 2 *(qj~1 '' 2

. Then using an argument similar to that

i=1 i=1

of theorem 14, one obtains

(TTp.-D/a-CJr^-15 /2

(P/Q)(Q/P) = (-1)
1=1 x J_1

. Hence,

(P/Q)(Q/P) = (_1)^
P~1 ^2#

^ Q-1 ^2
. Since (P/Q) is +1 or -1, multiplying

both sides of the preceding equation by (P/Q) yields

(Vp) = (-D
(P-1)/2,(^1)/2

(p/Q).

According to the definition of the Jacobi symbol, (c/p) is +1

when all (c/p. ) = +1 or when an even number are -1 . In the first case

each of the congruences

(36) x
2 = c(mod p. ) for i = 1 , 2, . . . , k

has a solution; hence, there is a solution of

(37) x
2 = c(raod P).

In the second case, however, some of the congruences (36) fail to have

a solution; therefore, congruence (37) has no solution. The Jacobi

symbol does not have the direct connection with quadratic residues

that the Legendre symbol has; that is, (c/P) = +1 is a necessary but
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not a sufficient condition that c be a quadratic residue of P. How-

ever, (c/P) = -1 is obviously a sufficient condition that c be a

quadratic non-residue of P.

Jacobi symbols can be used in evaluating Legendre symbols and

shorten considerably the computations required. The reciprocity law

for the Legendre symbol requires that the two integers both be odd

primes. Thus it is necessary in evaluating the symbol (c/p) to factor

o into prime factors and to consider the product of Legendre symbols

involving only primes, using the quadratic reciprocity law to evaluate

each. On the other hand, if the symbol (c/p) is interpreted as a

Jacobi symbol, the only factorization necessary is of the form

(38) (c/p) = (-l/p)
s
(?7p)

t
(b/p) with s, t = 0,

to obtain b odd and positive, but not necessarily prime. The values

of (-1/p) and (2/p) are computed directly and the value of (b/p) is

obtained using the law of quadratic reciprocity for Jacobi symbols.

The following example illustrates in part I the use of only

Legendre symbols; for comparison, part II illustrates the use of the

Jacobi symbol to solve the same problem.

Example 4 . Determine whether or not the following congruence has a

solution:

(39) x
2

= -35 (mod 71).

Since 71 is a prime, (-35/71) may be interpreted as either Legendre'

s

symbol or Jacobi 1 s symbol.

Part I: In order to use the reciprocity law for Legendre symbols,

the symbol must involve two distinct odd primes. Hence,
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(-35/71) = (-1/7D (5/71) (7/71). 3y property VI of theorem 7,

(-1/71 ) = (-1 )( 71
" 1 )/2 = (-1)^ = -1. Using the law of quadratic

reciprocity since both 5 and 71 are odd primes, (5/71 ) (71 15) = (-1 )
' ' = +1

;

and (71/5) = (1/5) = +1. Therefore, (5/71) = +1. Since both 7 and 71 are

odd primes, the law of quadratic reciprocity is used, yielding

(7/70(71/7) = (-D 3 * 35 = -1. Then, since (71/7) = 0/7) = +1, (7/71) = -1.

Hence, (-35/71) = (-1)(+1)(-1) = +1; therefore, -35 is a quadratic residue

of 71. Congruence (39) does have a solution.

Part H: The reciprocity law for Jacobi symbols requires the factor-

ization (38). Hence, (-35/71 ) = (-1/71 ) (35/71 ). As it was obtained in

part I, (-1/71) = -1. Using the law of quadratic reciprocity for Jacobi

symbols, (35/70(71/35) = (-1 )^2 *70/2 = (.1)1705 = mU Now ,

(71/35) = (1/35) = +1; therefore, (35/71) = -1« Since 71 is a prime,

there are nolfactors (c/p. ) to consider. Hence, (-35/71) = (-1)(-1) = +1.

This indicates that -35 is a quadratic residue of 71

•

CONCLUSION

Finally, the problem of solving quadratic congruences is considered

in light of the results of this investigation of the theory of quadratic

residues. A final example to illustrate the use of these results is

given.

Example 5 . Solve the quadratic congruences f (x) S 0(mod 35) in which

(40) f(x) = 4-x
2 + 2x + 1.

Because the modulus of the congruence is a composite integer the first
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step in the problem is to factor 35 = 7»5» .
Then the solutions of

both f(x) = 0(raod 7) and f (x) = 0(mod 5) ar© needed to use the Chinese

method to find all solutions of f(x) = 0(mod 35) • Thus the problem

separates into two parts.

Part I. Since for f(x) = 0(mod 7) the modulus is an odd prime, theorem

4 applies to the problem giving the following two congruences to solve:

(41

)

8x + 2 = u(mod 7)

(42) u2 = -12 (mod 7).

Congruence (42) reduces to

(43) u2 = 2(mod 7);

then the quadratic character of 2 with respect to 7 is needed to

ascertain the existence of solutions of (43). Theorem 11 for q = 2

yields (2/7) = (_i)^9-D/8 _ ^6 u +u HenCQ 2 is a quadratic residue

of 7; by theorem 5i (43) has two solutions. By trial of integers modulo

7, 3=9= 2(mod 7). Hence, the two solutions are u = +3(mod 7), that

is, 3 or 4 (mod 7). Congruence (41) is then used to find values of x

satisfying f(x) =. 0(mod 7). For u s 3(mod 7). 8x + 2 = 3(mod 7);

x = 1 (mod 7). For u = 4(mod 7), 8x + 2 = 4(mod 7); x = 2(mod 7).

Therefore, the two solutions of f(x) = 0(mod 7) are 1 and 2.

Part II. Since for f(x) = 0(mod 5) the modulus is an odd prime,

theorem 4 applies, giving the congruences

(44) 8x + 2 = u(mod 5)

(45) u2 = -l2(mod 5).

Congruence (45) reduces to

(46) u
2 = 3 (mod 5);
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then the quadratic character of 3 with respect to 5 is needed. Since

3 and 5 are both odd primes, the law of quadratic reciprocity applies

to the problem of evaluating the Legendre symbol as follows:

(3/5)(5/3)=(-1)
(5"1)/2,(3"1)/2=(-D

2 =+1. Now (5/3)=(2/3)=(-D
(9~1)/8=-1

Therefore, (3/5) = -1 • Then 3 is a quadratic non-residue of 5, and (^6)

has no solution. Furthermore, f(x) = 0(mod 5) has no solution; hence,

f(x) = 0(mod 35) fails to have a solution.

This example illustrates the dependence of a quadratic congruence

with composite modulus upon congruences with prime moduli which in turn

depend upon the respective binomial congruences. It indicates the value

of the theory of quadratic residues, which allows one to determine the

number of solutions. The greatest advantage is in determining that no

solution exists without the trial substitution of all integers of the

modulo system to find that none satisfy the congruence. On the other

hand, if solutions of (^6) had been found, the corresponding solutions

of (^) would have been determined as was done in part I. These would

have been the solutions of f(x) = 0(mod 5)» Then the Chinese method, as

in example 1, would have given all solutions of f(x) S 0(mod 35) from

the two congruences modulo 5 and modulo 7«
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A given quadratic congruence , f(x) = 0(mod m) can be solved by-

trial substitution of one integer from each of the m equivalence

classes to find all solutions of the congruence. For m = 2 the two

representatives and 1 way readily be tried. Obviously, there can

be at most two solutions. By Lagrange's theorem there are also at

most two solutions of the quadratic congruence if m is an odd prime.

If m is an odd prime, the solutions of the quadratic congruence are

equivalent to the solutions of a corresponding pair of congruences—

a

linear and a binomial quadratic congruence. Solutions of the binomial

quadratic congruence are substituted into the linear congruence to

give solutions of the original quadratic congruence of odd prime

modulus. If m is some positive power s of a prime p, the quadratic

congruence modulo p is first solved. Each of these solutions—at

most two—determines either 0, 1 , or p solutions of the congruence

modulo p^; and to each thus obtained there will correspond 0, 1, or

p solutions of the congruence modulo p->. The process is continued

through successive powers of p to the congruence modulo p
s

. The

existence of solutions modulo p is a necessary but not a sufficient

condition for the existence of solutions modulo p
s

. If m is a product

of positive powers of primes, that is m = p. 1p
?

2 ... p r
, the

Chinese method is used to solve the system of congruences obtained

from all solutions of the r different quadratic congruences modulo

p.
si for i =

1 , 2, . . . , r. The number of these solutions is the

s •

product of the numbers of solutions of each congruence modulo p. x with

l — 1 , > . i . . . , r.



Hence, solving quadratic congruences reduces to solving first

the corresponding binomial quadratic congruence. The question of

the existence of solutions of the binomial quadratic congruence is

basic to the theory of quadratic residues. Legendre's symbol is the

fundamental tool by which existence of such solutions may be determined.

The law of quadratic reciprocity allows evaluation of the Legendre

symbol, (q/p), for odd primes q and p. The generalized quadratic

reciprocity law, for the Jacobi symbol, allows computations without

the restriction on q and p. However, the theory of quadratic residues

gives only the number of solutions that exist for a binomial quadratic

congruence with odd prime modulus. Solutions are found by trial

substitution. The practical valuo of the existence theory lies in

being able to ascertain that no solutions exist without making m trial

substitutions.


