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INTRODUCTION

Radiation heat transfer applications in space technology have

generated renewed interest in this field. The absence of convec-

tion in the operating environment of a space vehicle has directed

attention to radiation, as the primary or exclusive mechanism of

heat transfer for disposing of waste heat from power plants, elec-

tronic equipment or other sources in the space vehicle.

The surfaces which are required for this purpose are often

huge, since the Stephan-Boltzman law sets an upper limit to the

heat that can be transferred per unit surface area in unit time.

Knowledge of heat exchangers for radiation heat transfer is,

therefore, a very contemporary problem. Other space-oriented ap-

plications are (1) the capture of solar energy to maintain a

steady or given temperature of the satellite, and (2) the conver-

sion of solar energy into other useful forms.

In order to improve the techniques of radiative heat transfer

for a space vehicle, the use of extended surfaces is an important

consideration.

In the first part of the report, the primary consideration

has been confined to rectangular radiating fins which transfer

waste heat to the atmosphere. For the purpose of analysis the

length of each fin has been divided into three parts. Assuming

steady state (input equals output), temperatures of the three

parts of the fin were calculated. From symmetry, temperature of

the corresponding part s of the two fins will be same.

Fins not only augment the heat transfer by radiation, but
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also provide protection for the base surface against bombardment

by space particles*

depending upon the radiation and conduction properties of the

material and on geometrical parameters and configuration, the use

of radiation fins may result either in an increase or in a de-

crease in heat transfer.

It is evident that there will be a large number of parameters

which will determine the heat transfer performance of radiating

fins, more than usually found in the convective case. Consequent-

ly, analysis of finned radiating surfaces, in many cases must be

carried out with a specific application in mind.

In part two of the report consideration has been given to the

thermal control of a satellite of cylinderical configuration.

The temperature of a satellite must be controlled to satisfy

the requirements of internal instruments. A man cannot survive

more than 5°C. increase above normal body temperature, and most

transistor networks are operable only between about 0°C. and 60°C.

Some batteries will operate efficiently only within a range of

about 40°C.

The control requirements for a vehicle are influenced by its

outer-surface temperature. Surface temperatures, in turn, are de-

termined by thermal radiation characteristics of the surface, the

external environment, vehicle and orbit geometries, internal power

generation, and conduction paths to the shell.

One side of the satellite is acted upon by solar radiation,

and there is also some internal heat generation. The other two

sides of it radiate heat to the space, though there are other



kinds of input to the satellite, such as radiation from the earth

due to its temperature and radiation from clouds, dust particles,

and the earth itself, which is called albedo. For simplicity in

calculation and because their magnitude is small relative to di-

rect solar radiation, both albedo and radiation from earth are

neglected in these calculations.

All the temperatures for the different sides of the satellite

are calculated for steady state by varying the emissivities from

0.1 to the black body conditions.



NOMENCLATURE

A Area

Ai Area of surface i

Ac Crossectional Area

Bi-j Fraction of the energy emitted by surface i and absorbed

by surface j

BTU Unit of heat called British thermal unit

B (x)j Combined radiation flux (emitted and reflected) leaving

B(y)) a position x or y per unit time and unit area

E Emissive power of the surface

Fi-j Configuration factor or shape factor of the surface i

with respect to surface j

g Rate of incident energy per unit area from external source

h Spacing between plates

H( x )
Radiant energy arriving at x per unit time and area

K Conductivity. BTU per hour per feet per degree

L Length of the cylinderical satellite

L Plate length

Q Heat. BTU

q Heat. BTU

R Radius of the cylinderical satellite

r_ _ Distance of sun from earths,p

T Temperature absolute

t Half thickness of the fin

T Ratio of temperature of fin to the base temperature



UK Depth of fin

t

P

i Emissivity of the surface i

i Reflectivity of surface i

' i Transmissivity of surface i

° Stephan Boltzman constant = .1714 x 10

^ Angle with the normal

' Distance between the two surface!

P
Density of the material

x Distance between the two surfaces in the x direction

V Gap spacing ratio h/L

^ Dimensionless combined flux B/fc<T T



SOLAR RADIATION

The major external source of heat to a satellite Is the

thermal radiation from the sun. Since the satellite is at a great

distance from the sun, It can be assumed that the solar flux at

the satellite is essentially parallel waves of electromagnetic

radiation. Thus for a unit area that is perpendicular to a ra-

dius vector from the sun, the radiant flux (outside the earth at-

mosphere) is inversely proportional to the square of the distance

from the sun and is given by reference (17) as:

f= <T * fa « T^
s s-p s

- fi-
£

- o s
r
s 1

T
t

r
s7]

a 11
Assuming £

g
= 1.0, r

s = 2.2336 x 10 ft., r
s ^ p

- 4.90 x 10

ft. and T - 10,360° R (black body), the equation above gives a

flux of 42S BTU/hr ft2 , which agrees with the value in Reference

(10). Many estimates of this flux have been published, and these

estimates vary from 420 to 440 BTU.

Another source of heat is the planetary reflection falling on

the satellite. Though it is not negligible in actual practice, in

this calculation it has been omitted. This input is not constant

and varies from season to season and with the weather.

The third kind of heat input source is the internal heat gen-

eration, which can vary with the kind and amount of internal in-

strument .



CONFIGURATION FACTOR

When heat is transferred by radiation from a completely en-

closed black body to the enclosing black body, the Stefan-Boltzman

equation is used in its usual form:

q • 6" A (Tj - T
2 )

- (1)

In many cases of heat transmission by radiation one body is

not enclosed by another. Thus all of the radiation from one body

is not intercepted by other body, except in the case of infinite

parallel planes*

Therefore, for radiant heat transfer between two black bodies

which do not directly intercept all of the radiation of each other,

another term, F_ * configuration or shape factor must be placed in
c , i

the Stefan-Boltzman equation, which then takes the form:

q = CTAFc>i (t£-l£ ) (2)

If radiation takes place between two infinitesimal surfaces

dA^ and dA
2 which are small in comparison to their distance apart,

the configuration factor can be determined by assuming the Lambert

cosine and the square of the distance laws to hold. The Lambert

cosine law states that the radiation from a given area in a direc-

tion at an angle to the normal to the surface is proportional to

the cosine of the angle; whereas, the square of the distance law

states that the intensity of radiation from a point source de-

creases with the square of the distance from the point source.



GENERAL EQUATIONS OF RADIATIVE HEAT TRANSFER
FROM ONE SURFACE TO ANOTHER

When two surface elements dAg and dA, located upon surfaces a

and b are situated so that they can see one another, each will ra-

diate energy to the other, and a net exchange of energy from the

hotter to the cooler will result. The net amount of energy will

be determined by the surface properties of the two areas, the ab-

solute temperature and the geometry of the two surfaces.

When each of the two surfaces is black, the net radiant ex-

change is given by

d<
»l-2 [\ ' *b2 j

Cos
*i

Co8
J

dA
l

dA
2 ( 3>

The net rate of radiation between two finite surfaces A and

B can be obtained by integrating the equation (3) above over both

areas, which gives

d
*l-2 « \\ '\\ f f Cos + Cos % dk

1
dA

2 - (4)

A
l

A
2

The double integral can be written as A^F, -2 or A
2
Fo i»

where F^„2 * s the shape factor and represents the fraction of the

total radiant energy leaving k
1 and which is intercepted by A2 ,

whereas F
2_^ is the fraction of energy leaving A2 and reaching A,.

According to the reciprocity theorem

A
l Fl-2 =

A
2

F
2-l



Fig. 1

For the case of a cylinderical satellite, the shape factor

between surface 1 and 2 is given by Reference (ll )

.

L.3 -.J|-[fc" • *r2 -JL
2

*• 2r
2

- 4r4

I-

When the surfaces 1 and 3 are a distance L apart,

r

2-3 JL
4rL

L4 + 2L2 x 2r
2

- L
2

(5)

(6)
Ref. (2 )

For the case of two inclined plates

Fig. 2

lfchere L = C/b

N = a/b

F- ife

-1
3

L tan (1) * N tanx
j

(I) IT

- i log
e

-7n2
t L2 tan S— —

H v
N2 f IT

f
a l2 ) ( i 4 y

2
)]rL2 (i l2 «m2

) r
I

x * » 2 V li(TT^Ta7Tl^)J
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[ n
2

(1 j. L
2

+ N
2

) I

I (1 N2 )(L
2

+ N
2
)J

(7)

Ref. (12)

The shape factor for the case of two parallel plates at a

distance C apart and having dimensions of a x b, and vhen

x = b/C and Y = a/C

^1.2 —2-
TTxy

ioge f x2 )(l f y
2

)

~~2 2

I*

1 * x + y

y/l x tan Jl * x4

x /l t y
2 tan / x \

- .
-1 .

-1
y tan y - x tan x (6)

Lim x-*o» 'w •/^ - 1.

2 y

Lim y->oo W14 1-1
X x

Lim

F
l-2 = 1

y-*o»



11

MATHEMATICAL APPROACH TO RADIATION PROBLEM

Mathematically the difference between the radiation prob-

lem and the conduction and convection problem is that the radia-

tion problem must often be formulated as integral equations,

while the convection and conduction problems are most frequently

formulated as differential equations. The solution of the in-

tegral equation is somewhat difficult

.

Fig. 3

y linn 1 1 1 1 1 n >'i> ii mil m/ti/y

H L
H

In the figure are two parallel plates each of length L and

extends indefinitely in the direction normal to the plane of the

paper. The surfaces of both plates radiate and reflect in a

diffuse manner.

The combined radiation flux per unit time per unit area

leaving an area dAx is designated as B(x). This flux is com-

posed of two parts, i. e., direct emission and reflection.

B(x) = I S"T^ * ?H(x) (9)

where f H(x) is the reflected amount of radiant flux which ar-

rives at x. Since there are two unknowns in equation (9), i.e.,

B and H, the energy that comes to x is related to the energy that

leaves Y from the upper plate.

The energy leaving an area dAy from the Y plate is B(
y
)dA

and of this amount B(y)dAydF
y.x (10)
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arrives at position X on the lower plate where dFy_x is the

shape factor of dAx with respect to Y. By applying the recipro-

city relation dF dA = dF dA , equation (10)
y-x y x-y x' M

B
<7>

dA
* dF

x-jr
<U »

Energy reaching X per unit area is B(y)dF . Since X re-
x—

y

ceives energy from all positions of T on the upper surface, there-

fore, the total is obtained by integrating equation (11).

T = L/2

H(x) =
J

B(y) dFx-y (12)

T s - L
f

but according to Jacob (Ref. & )

<*Fxy -id (Sin* ) (13)

L/2

H
(x) $ B(y) 1 m dy (U)

-h2

' "

f(y-x)2 f h2j3/2

-L/2

Substituting for H(x) into equation (9) we get

L/2

B(x) - £*- T^ £h! f B(y) 1 dy - - (15)Try (iy-x}2
+ h2)y/,

-L/2

In the dimensionless form by substituting h/L = /
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B(x) = B(y) dY (16)

f(y.x)2 . y2j
2372"

Since the net flux at any position is ( q B - H)

Then q 1 - BE

Which gives variation of with X

i

ji/k.
I tf" T^

= 1 - £ I 3 dX

zi

(17)

(IS)

The more detailed solution is given in Ref. (14).

According to most texts the assumption is made that the

energy H is the same for all points of X.

Similarly for the case of a straight fin (see sketch) which

exchanges energy with its base when both fin and base are black.

Fig. k

f—Y-m * Jk-r-M

By applying the principle of conservation of energy for the

steady state condition for a small element dx

(dQ cond) net 4 (dQ rad) net -0 (19)
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- ktw dT
]or (dQ cond) net

- _d_
,

- ktw _dT dx- (20)

Where W is the width normal to the plane, from base energy

transferred to the element is

trT
t V h-x • <«£ V F

2-x "^ »<* (F
X-1 * F

*-2>
- (2i)

By taking into account the external radiation g(x) per unit area

(dQ rad)net = jV T
4

- <Tt£ (fx-1 + Fx_2 ) - g(x)| (Wdx) (22)

- g - .§. T T> - T$ (F
x-1

« F
x.2

)J

- *<Lxl (23)

Substituting in equation (23) Q = T/Tb and X = X/L

d2Q = N f Q4 - (F„ , -f F„ ] - yi (24)

dX'

* "

f^-
(Fx-l* Fx-2 ]

Where Nc = L
2 6~ T;* X = g(x) L

2

TT^ ' ktT
b

For the case when g(x) is zero and the boundary conditions

*(o> "» . g j
•

)x s L

The solution by the digital computer for different values of

N and L is given in Reference (15) •
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HEAT TRANSFER FRCM A RADIATING FIN

In this problem various combinations of fin height, width,

and spacing between the fin have been studied to determine a

suitable fin for the radiation heat transfer from a space vehicle.

The problem is solved by the lump parameter method by di-

viding the fin into a number of small pieces and assuming that

the temperature of each part of the fin is uniform. By mrking

the energy balance, the temperature of each part of the fin is

calculated by trial and error. The problem would have been solved

more accurately with the help of a digital computer allowing the

•s»umption of more lumps. Due to the limitation of time, the

values presented were calculated with a desk calculator.

First the temperature along a single fin is calculated assum-

ing that there is only one fin, and it exchanges heat by radia-

tion and conduction with the base of the fin, and also radiates

heat to the atmosphere.

Fig. 5

The fin is of length W and width S with the base length of

2C. Fin base and fin are assumed to be black bodies, and there

is no loss of heat by convection. The fin is assumed to be radia-

ting to space. The length of the fin is divided into N pieces,
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and each one of the N pieces is assumed to have uniform temper-

ature along its length. For calculation, the temperature of each

piece is taken at the center point of the respective piece. It

Is also assumed that there is no heat loss from the sides and the

end of the fin.

The energy balance of each of the N pieces has been made by

equating the energy input to energy output for the respective

piece as follows:

2 6-AlTJ
= AlcKl ^ . 2 A

B CT^ x t^ (25)

or

2 6-AlTJ
= A

lc
K
x

T - Tx t 2A
B

6-T^ x f^ (25a)

2 e-A
2T^ = A

2cK2
T
x

- T
2

2AB clj x FB-1
(25b)

AX

4
,42 rVn =*Anc Vl - ^n *2Ab <Tt; FB_n

AX

Vi'here n is the number of the pieces on lumps.

Using the temperatures of the single fin as an approxima-

tion, the input and output for the respective parts of the fin

are equated. The energy input to the fin is by conduction and

radiation from the base and from the fins on both sides. The

output is the heat transfer by radiation. Because of symmetry,

temperatures on the corresponding parts of two fins are assumed

to be equal.
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Using this set of temperatures as approximate temperatures,

the temperatures are solved again, and this procedure is repeated

until the temperatures satisfy the heat balance equations. It

should be noted that all the temperatures are for steady state.

Mild steel is used as the fin material. The dimensions of

the fin are as shown in figure (5). Dividing the fin length

into three equal parts, we get 3hape factors of each part with

respect to the base as follows:
i

FB-3 0.120

FB-2
s 0.050

FB-1 * 0.030

For surface three, equating input equal to output we get

- 2<TA
3

T* = A c K T
Q

- T
3

+ 2Ab <Tt£
x Fg_

3
(26)

Ax/2

All terms are known in the above equation except T3, the temper-

ature of surface at the center point. By trial and error we get

T3 = 5»5.6° R, using K = 26.3-

Similarly for parts 2 and 1.

2 ^ht " A
c2

K T
3 * T

2 * 2AB FB-2^ T
B

(27)

2 <r AlTJ
- Ac I T2

- T3 ¥ 2^ F^rlJ (2d)

AX

Solving for T
2 and T, by trial and error we get

T
2

= 554° R and Tx = 525.6° R

For a pair of fins it is necessary to know the shape factor

Flli F12» F13 ext * From tables in Reference (12),
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we can determine the shape factors for parallel plates directly

opposite each other.

For the configuration shown

Fig. 6

the shape factors are:

Fl-1
= 0,0d

F12-12 0«15

F123-123 = 0,2°

A12 F12-12
s A

l
Fl-12 + A

2
F2-12

a A
l

F
l-1 + A

l
F
12 + A

2
F
2-l * A

2
F
2-2

(29)

(30)

From geometry A^ = A2
= A^ and Fj^ = F2-2 " F3-3

or A
1 ?l¥ml = A2 F2-2

-'• - ( fl )

and Ax F1-2 s A2
F
2-l

^
Substituting a and b in (30) we get

AlFl-2 " A12 F12-12 " 2A
1
P
1-1 (31)

P

l-2
= F12-12 " Fll

(32)
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Similarly

A
123

F
123-123

= A
l

(F
1-1 * F

l-2 + F
l-3 } +

A
2 l»a.l F2-2 4 F2-3 ) + A

3
(F

3-3
+ F3-2 * F3-l } " " (33)

Al Fl-3 " A
123

F123-123 " A
l

(3F
1-1 + 4F

12
)

2

making an energy balance for each of the three surfaces for the

case of a gray surface with diffuse radiation.

2
«"$V3 *

A
c3

K T° -
,

T
3 *

24
B«*

B
B-3

T
t

+ A
l
PT

t
B
13

e-JL/2

-
«- A

2
T
2
B
i-3 + r A

3
T
3

B
3
-3 •»>

2 <T* k/2
. A

c2
K T,-T

2
t «-[2A

B
B
B_2

T^ + ^ 1* B^

* A2^B2-2 + *3 T
3

B
3„2

]

2 «^ A
x
Tj = A

c.x
K T

2
- T, r[2AB B^ ^ * ^ ^ Bjj
AX L

+ A2 T| B
2_x t A, T* B 1 (36)

For the case of black surfaces it is given by

2 ^ A
3
T
3

s A
c3

K To- h t 2A
B

F
B^ 6-T

4
4 AfdJ F^

£»X

* T^ F
2_3

4 T^ F
3-3 )

2 <TA2t£ = ac-2 K T^ - T2 4 2 A
fi

F
fi.2

<T T^ f A^
AX

<Tt 'l-2
+ T

2
F
2-2 * ^ "3-2'

(35)
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2 <T A, T^ = A . K T, - T, f 2 An Fn . ^ T
4

4 A^11 c-1 2 1 d a-1 o 1

(T
4

F •A F T^ F )|X
1

r
l-3 f ^ *2-3 3 3-3

;

Solving for the temperatures T^, T
2 , and T

g
by trial and

error we get

T
3

= 536.9° R

T
2 = 557.5° R

t
x

= 530.5° R

The net heat transfer to the atmosphere is calculated as

follows:

Heat transfer from surface 1 s 2 *"* T^ A (1 - F1-1
- F1-2

- Fl-3 - Fl-B> ' 2 x »17U x (530.5)
4

x 1/3 (1 - .08 - .07

- .0405 - .09) « 65.0 BTU
hr

Similarly from surface 2 » 69.6 BTU
~h?

Similarly from surface 3 - 56.0 BTU
~h?

Heat transfer from the fin base s A
g c* Tg (1 - 2F

fi 1
- 2F _2

- 2FB_3 ) = 1 x .1714 x 10 x (60O) 4 x (1 - .4) = 133.2 BTU
hr

Total heat transfer per fin = 65 + 69.6 ¥ 56 + 133.2

= 323.8 BTU
"*h7

Heat transfer per foot of fin base * 323.8 x 1 S 294.36 BTU
1.1 hr ft

It has been assumed in the above calculations that the heat

losses from the edges and the tip of the fin are negligible.
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Also all the calculations are based on surface emissivities of

1.0 (Black body conditions).

Heat losses from various fins configurations have been cal-

culated, varying the distance between the fins, the height of the

fins, and the thickness of the fins. The results are tabulated

below and shown plotted in Figure* (g-10).

Table 1. Fins of constant height of 1 foot and constant
depth of 1 foot with .1' thick.

Heat transfer without fin 222.13 BTU
hr ft

Spacing

BTU/ft of fin base
per hour

BTU/lbm of fin

1.0'

294.4

6.605

.5'

317.0

3.3d

0.10' : 5.0'
:

239.55

0.973

244

9.12

Table 2. Constant height of 1 foot and constant depth
of 1 foot with constant spacing of 1 foot.

Thickness : 0.025' 0.050' : 0.10'

BTU/ft of fin
base per hour 258 235 294.4

BTU/lbm of fin 21.60
•

12.35
i

6.605
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Table 3. Constant height of 1 foot and constant
depth of 1 foot with constant spacing

Spacing « .5*

Fin thickness :

feet :

:

BTU per ft of :

fin base :

.025'

BTU/lbm

233

: 10.0

.05'

230.5

6.30

.10»

317

3.33

Table 3a. Spacing = .1*

Fin thickness :

feet : .025'
:

BTU per ft of
fin base

BTU/lbm

231

2.36

.10*

239

0.973

Table 4. Constant height of 3-6" or .3» feet with depth
of 1 foot and constant thickness of .25"

Fin spacing
feet

BTU per ft of
fin base

BTU/lbm hr.

: 0.60'
:

226

45.7

0.30'

273

29.1

0.15 1

139.3

9.5

Example

Fig. 7

ho

I

1 I i
I I I 8

< 1V >l
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In this example a fin of configuration shown in the figure

has been solved. To checK the accuracy, the results are compared

with the results given in Reference (7), which were obtained with

a digital computer.

Surfaces I and B with an included angle of 90 , are radiat-

ing to space. Their common edge is the base surface of the fin

at a constant temperature of 600° ft.

Solving for T^, T
2 , and T- as we did previously, we find

T-l = 544° R

T2 = 475.5° R

T
3

s 428° R

Table 5.

1

Calculated : Exact from
; Reference (6)

: Percentage
error

T
l

0.9067 0.925 1.945

*$
1

0.7910

0.7130 ,

0.850

0.805

6.95

11.40

Average error for the whole fin = 6.765 /
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Fig. 11

PER MURE CF A SATELLITE

Satellite is assumed to be of cylinderical configuration

as shown in the above figure (12), with surface facing normal to

the radiation from sun of intensity 400 BTU per foot per hour.

Case I

Surfaces 1 and 3 are assumed to be black. Surface 2 is a

reflecting and reradiating wall, such that there is no heat loss

from surface 2. Radiation from sun impinges on surface 1, which

in turn radiates internally to surface 3.

Energy leaving surface 1 and reflected back to one

I {h.2 '2-1 + F 11-2 f2-2 F
2-l * Fl-2 F2- F

2-l -J-- - (37!

E
l Fl-2 F2-l (38)

1 - F
2-2

Energy leaving 3 and falling on 1 by direct radiation and by

reflection from 2

I
{'»

¥ F
3-2

F
2-l

+ F
3-2

F
2-2

F
2-l

+ F
3-2

F
2-2

F
2-l +

-I-
• (39)

=
E
f3-l + * F

3-2
F
2-1

t~tt
2-2
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For s satellite vith

A
x

= ky = ft
2

A
2

= 2 ft
3

Fl-3 = °«°52 from Ref
* ^ 1]L *

F1.2 0.343

F2-3 = »309 from Ref. (2)

F2.2
s -517

tul » .174

Similarly energy leaving 3 and reflected back to 3

S £
3

F3-2
F2-3 (40)

1 - F2-2

Energy leaving 1 and falling on 3 by direct radiation and

by reflection from 2

* BlK-3+ F
l-2

F
2-3

]
"~«UI

L 1 - F2-2
J

For equilibrium, Radiant energy leaving 3 = Radiant energy

coming to 3.

2A
3
E
3

= E
3

F
3-2

F
2-3 f E

l
F
l-3 f F

l-2
F
2-3 (42)

l- F
2-2 ^2-2

For surface 1,

2A E = 400Ai 4 Ej H-2 F2.l ^ E3 F3-l 4 F3-2
F
2-l " " U3)

"**S t!t^
Since E

1
= 6"

tJ and E
3

= 6~T

In these two equations all terms are known except T
1

and T^.

Solving equations (42) and (43) simultaneously we get
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T, = 63$° R To = 510" R

For the case when there is heat generation of 100 watts

inside as point source

Tx = 675° R Pj = 5*5° R

Case 11

Surfaces 1 and 3 are black, while surface 2 is grey with

2 " 2
"

Energy leaving 1 and falling back

and r

2
= *2 = * 5 *

on 1 by reflection from surface 2 «

E F P F A"1 f
l-2 *2 *2-l

A
l (44)

1 - F P
2-2 r 2

Fig. 12

Energy leaving 3 and falling on 1 by direct radiation and

reflections from surface 2 = E, A, F
*> 4 F

3-l ^H^k) - . U5>

Energy leaving 2 and falling on 1

s E
2

A2 F
2-l

1 ~ F2-2 P
2

Energy leaving 2 and falling on 3

* *2 E
2 F2-3 A

2

1 " F
2-2 P2

Energy leaving 1 and falling on 3

" En

[

Fl-3 +
fjU2 2

F
2-3

F
2-2 ?2

(46)

(47)

(43)
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Energy leaving 3 and reflected back to 3

= A
3

E
3

F
3-2 ^2 F2-3 (49)

1 - F2-2 ?2

Energy emitted by 1 and absorbed by 2

= L
l

Fl-2
C
2

A
l (50)

1 " F2-2 ^ 2

Energy emitted by 3 and absorbed by 2

= E
l

A
3 ^-2^2 -- (51)

1 " F2-2 ^ 2

Energy emitted by 2 and absorbed by 2

= E
2 S F2-2 A2 - - - (52)

1 " F2-2 P
2

Setting the incoming energy equal to the outgoing energy for

each of the three surfaces, we obtain three equations in three

unknowns, E-^, E
2 , and E., . These can be solved very easily, and

from E we obtain the temperatures by the relation E • S~ T\

Solving for T-p T
2 , and T^ we obtain

T
x = 620° R

T
2 = 452° R

T
3

= 463° R

For the case when there is heat generation which is assumed

as a point source of 100 watts:

T
x

s 629° R

T
2 = 502° R

o
T
3 = 513 fi
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£r/o

Case III

Surfaces 1 and 3 are black,

and surface 2 has zero emissivity

and zero conductivity, but trans-

missivity and reflectivity equal .5.

Surface 1 is normal to solar radia-

tions of intensity 400 BTU/hr ft
2

.

Fig. 13

Making an energy balance and solving for the temperatures,

we obtain

Tx = 605° R T
3

= 432° R

When there is heat generation of 100 watts inside the sat-

ellite assumed as a point source, we obtain

I

•f-5-

T = 622° R 472° R

Case IV

When all the three surfaces are black with solar radiations

falling on surface 1, the temperatures obtained from the heat

balance equations are:

T
1

= 605° R

T2 = 427° R

= 434 R

With heat generations of 100 watts

T
x = 619° R

T
2

= 470° R

T
3

= 472° R
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Case V

All surfaces are gray. When all three surfaces are non-

black, the radiation analysis becomes very complicated. In this

case Gebhar^s method was used as explained in Reference (6 ),

Writing the equations in terms of Bjj, which is fraction of en-

ergy emitted by i and absorbed by j, we obtain a set of equa-

tions:

B
13 S Fi-3 ^3 + Fi-i ^1 B13 * Fl-2 ^2 B23 + Fl-3 ^3 B

33

B
23 = F2-3 ^3 4 F2-l Pi B

13 4 F2-2 ?2 B
23 * F2-3 h B

33

33 3-3 S-3 3-1 Tl 13 3-2 "2 23 * 3-3 T3 33

These three equations in three unknowns, Bjo* B23» and B33» can

be solved very easily.

In the same way we can solve for Bi,, B 21> B
3l»

B12» B22»

and B
32#

It is assumed that each one of the three surfaces is grey

and diffuses with uniformly incident and emitted radiation. It

is also assumed that there is no emitting and absorbing media.

By keeping r
2 = £

2 = .5 as constant and varying £, and P be-

tween .1 and .7, the values of different B'x is tabulated as

follows:
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Table 6. 2
=

'•> (Constant)

Pj-Pjs 0.1 i Pls p3= 0.3 : fx«f|« 0.5
;

. Px.?3« 0.7

B
13 '

.450 .330 .310 1
.205

B23 .361 .314 .276 .201

B33 .12$ .140 : .1415 1
.1160

Bn l .131 1
.141 .142 .1165

B21
! .3675 ! 5 .331 1 .261 .203

B31 \ .455 1 .379 .299 .205

B12 .486 .471 : .553 !t .633

B22
1

.266 \ .324 1 .433 1
.617

B32
1 .373
1

I .453
1

; .547
•

I .667
1

Using these values of B^s, the input and output to each of

the three surfaces are obtained with surface 1 facing normally

to the solar radiation of intensity 400 BTU per square foot per

hour. All these values are calculated by keeping r2 equal to

0.5 a constant. Solving the heat balance equation, we obtain:

Table 7. Temperatures of the three surfaces of satellite
when surface 2 has constant reflectivity of .5
and varying the reflectivities of surface 1 and 3.

:

e1= e3=o : Pi=?3= 0.1 ! 1 ?i=e3= 0.3 . ^i»^3» 0.5 Sfcfc 0.7

T°R ' 620 613
\ 613 !

611 ; 603

TOR
! 452 : 462 : 432 j 416 390

T° R ; 463 : 460 441 424 333
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Temperature of a Saucer Shaped Satellite

Fig. 15

Part A. All three surfaces are black. Surfaces 1, 2, and

3 are each 1 foot square with an included angle of 135°. The

back or left side of each of the three surfaces is facing the

solar radiation of intensity 40C BTU per foot square per hour.

Surface 2 is normal to the solar radiation, while surfaces 1 and

3 are facing the solar radiations at an angle of 45°.

Fl-2 = F2-3 = F3-2 » F2-l = -0535 From Ref. (12)

Fl-3 = F
3-i = .H65

Since surfaces 1 and 3 are symmetrical, we can therefore assume

their temperatures equal.

The heat balance for surface 1 is

2A
]
T£(r= A

x x 400 x .707 4 0.535^T^ + .1165<TT^

For surface 2 it is

2A2T2<T s 400 x A
2 + 2 x 0.0535 ^^ T^

Solving the two equations simultaneously for T^ and To

Tx = T
3

« 54*° R

T
2 - 5$3° R
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Part B. Surfaces 1, 2, and 3 are grey. Using Gebhart 1

method, the system is solved for B*s for two cases, i.e.,

^1= *2= P3 = «3 and .7.

Table 8.

B
13 ;

B
23 ;

B
33 j

BH
;

B
21

;

B
31 ;

B
12 ;

B
22 ;

B
32

=.3

, .032 \ .0393: .00353: .00353' : .0393 : .082 \ .0387: .00125: .0392

risP2=P3
..7

.0356': .0175; .0036
[
.0036

;

: : :

.Ol85 !

<

,0356 : .0175 : .0013 : .0175
: : : :

:

Surfaces 1, 2, and 3 are assumed to be £" thick and made of

aluminum. In calculating the temperatures, conduction is also

taken into consideration. To simplify the calculations, the

average temperature of surfaces 1 and 3 is taken at the mid-

point (at point a and a1 ), while for surface 2 it is taken at

point b and b , which is equal by symmetry.

Heat flow by conduction * - KA dt
dx

Assuming /^T = 5° E, i.e., between (b-a). Surfaces are

painted black and having conduction equal to 118 BTU per hour

per degree per foot.

2E-L - 400 x .707 + 1^ x tt| x 5 + .0535E
2 * .1165 E

?

2E2 - 400 2 x 1 x 118 x 5 2 x .0535 x E,

81 .75 1

Solving for E± and E2 and T-^ and T2 we get I* T
2 , which is

impossible, because T2 is supposed to have higher temperature
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than T1#

By assuming ^ T (b-a) s *

2E-, = 400 x .707 - 113 x _3_ t .1165E, t .0535E„
"51 .75 3 2

or £x - ,0284E
2 = 164 A

2E
2 5 400 + 2 x li| x i + 2 x ,0535E

1

or E
x - 1S.7E

2
= 325O B

Solving k and B simultaneously for E^ and E2 and then T^

and T2 , we get

T2 = 570° R

T
3

= Tx = 562° R

Our assumption of ^ T = 3° is true.

Similarly by solving for T^, T2 , and T3, when the surfaces

are grey and diffuse, we get

Table 9.

j

8
1=^=S= 1 '°

j ^= 2= ^= 0.7
[ \z\zS' 0.3

' ^1=^2=^0 1
f
>

i=P2=P3= 0.3 1 <Wk*fj*0.7

tlm 1y R : 562 : 56O : 556
t :

T°R 570 1 566.5 1 559
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CONCLUSION

It can be seen from Figures (S-10) that for a fixed fin

thickness and length, there is an optimum fin spacing at which

the heat transfer is maximum. For the case of a one ft. long

fin and 0.1 ft. thick fin, the optimum fin spacing comes out to

be 0.5 ft. If it becomes necessary to get maximum heat transfer

per pound of fin, as well as the overall maximum output, then

the most optimum size is at one ft. spacing.

For the case of 0.3 ft. long fin with a thickness of k inches

and one ft. wide, the maximum heat transfer per pound of fin base

is when the fin spacing is at 0.3 ft., while the maximum output

per pound of fin is when the fin spacing is 0.6 ft. So the most

optimum spacing at which both heat transfer per ft. of fin base

as well as per pound of fin, comes out to be at a fin spacing of

0.47 ft.

Similarly, by varying the fin thickness as well as the fin

spacing, the most optimum size and spacing at which to get max-

imum yield for least weight is when the fin spacing is one ft.

and the fin thickness is 0.1 ft.

For the case of a cylinderical satellite, the curves show

that there is very little change in the temperature of surface,

with the increase in the reflectivity from zero to a maximum of

0.7. For the case of surface 2, the temperature is maximum when

the reflectivity is 0.1, and it decreases very sharply with the

increase in reflectivity. Whereas, for the case of surface 3»

the temperature decreases as the reflectivity increases, and

vice versa.
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In Part One of this report, various combinations of fin

height, width, and spacing between the fin have been studied to

determine an optimum fin for the radiation heat transfer to space.

The problem is solved by the lump parameter method. Temperatures

at various points of the fin are calculated by trial and error

until the temperatures satisfy the heat balance equations.

Fins are compared with each other on the basis of heat

transfer per foot of fin base and also on the basis of heat

transfer per pound of fin material.

For the case when the fins are one foot high and 0.1 ft.

thick, the maximum heat transfer per foot of fin base is when

the fin spacing is 0.5 ft. On BTU per pound basis, the maximum

heat transfer is when fin spacings are one foot apart.

For 0.3 ft. high fins and | inch thick, the maximum heat

transfer is for 0.3 ft. spacing, and on BTU per pound basis, the

maximum occurs with a spacing of 0.6 ft.

In Part Two of the report, temperatures of a cylinderical

satellite have been calculated for various surface emissivities,

when the input is only solar radiations and when there is heat

generation as well as solar radiations.

It has been determined that as the reflectivity of the

surfaces of the satellite increases, the temperatures of the

surfaces decrease very sharply.


