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ANALYSIS OP A HYPERBOLIC

PARABOLOIDAL SHELL

By Melvln L, Burdorf,^ A. M. ASCE

SYNOPSIS

Many articles have been published on hyperbolic parabo-

loidal shells. However to the knowledge of the author, no

complete simplified analysis covering various loading

conditions has been developed to date.

The shell analysis explained is a result of reviewing

several references using the membrane theory solution with

uniform vertical loading. By the membrane theory, no bend-

ing moment is allowed within the shell, therefore the shell

acts mainly by axial forces. Applying this theory, the

basic equations are developed for one quadrant of the hyper-

bolic paraboloid. A consideration of secondary stresses,

which cannot be included in the membrane theory solution,

is given. The basic equations and the consideration of

secondary stresses are then applied to a practical design

of an inverted, single support reinforced concrete hyper-

bolic paraboloid.

Graduate Student, Department of Civil Engineering, Kansas
State University, Manhattan, Kansas,



A brief detailed drawing is presented showing the

dimensions and reinforcing resulting from the design of

the hyperbolic paraboloid.

INTR0DUC7I0M

Increasing interest and acceptance by tho g«neral

public of shell roof construction has led to the wide

usage of reinforced concrete hyperbolic paraboloidal shells.

Through their use the designers can depart from the system

of linear members confined to three perpendicular planes

to a curvilinear system for more imaginative and graceful

structures. Some advantages other than beauty resulting

from the simple hyperbolic paraboloid are economics of

design, economics of construction, and low maintenance cost.

By membrane theory analysis, the hyperbolic paraboloid

carries a uniform load mainly by direct axial compression or

tension, uniformly stressing all material of the cross-

section, thus giving an economical design. Economy of

construction is gained by the straight-line simplicity of

forming the surface and by the repeated use of constructed

forms. Maintenance on reinforced concrete hyperbolic

paraboloid roofs is usually low. By nature of the material.

It is virtually fireproof. Also being constructed as a



single unit reduces maintenance. Other advantages' relating

to settlement, wind and earthquake forces Influence a reduc-

tion In maintenance costs.

Realizing their growing^ usage, the author reviewed

available literature concerning the stress analysis and

design of hyperbolic paraboloids In order to gain a practical

working knowledge of the simpler cases. Therefore this

paper contains a summary of several references which explain

the stress and design analysis. When a section Is developed

mainly from one or two references, proper acknowledgement of

each reference will be given at the beginning of the section.

METHOD OP STRESS ANALYSIS

General Definition

A structure whose thickness has a much smaller magni-

tude than Its other two dimensions (length and width) Is

called a laminar structure. The shell Is a laminar structuire,

Plugge-' cites two examples of shells which structurally

behave very differently. Other references classify the

difference In structural action of shells as either a proper

or an Improper shell.

2
Structural Applications of Hyperbolic Parabololdlcal
Shells, by Pellx Candela, Proceedings, ACI, Vol, 26,
January 1955, p. 397.

o
-» stresses In Shells, by W. Plugge, p. 8.

4
Understanding the Hyperbolic Paraboloid, by Pellx Candela,
Architectural Record, Vol. 121 No, 1, July 1958, p. 192.



The main structural action of the improper shell la

performed by bending and twisting moments combined with

normal and shear forces. An example of such Is a clylndrlcal

shell formed by rolling a sheet of paper into a cylinder and

securing the ends together. It is easily observed that a

•nail lateral force applied to this shell causes considerable

deformation which is resisted mainly by bending and twisting

moments.

The structural action of the proper shell is performed

predominately by direct stress (normal and shearing forces).

An electric light bulb is an example of a proper shell. Even

though its material is very thin and rather fragile, a large

lateral load can be applied without any visible deformation

of this shell. Since the deformation and thickness is very

small, one could assume that the bending and twisting moments

are almost negligible. Plugge mentions that a detailed study

shows this to be true.

Surface Definition

Geometrically, the shell is bounded by a doubly curved

surface. The two curved surfaces are defined as the faces

of the shell. The middle surface of the shell is defined as

the surface passing midway between the two faces. By know-

ing the shape of the middle surface and the thickness, a

shell can be geometrically described.



Referring to the two shell examples given previously,

the middle surface of an improper shell is developable*

This means the middle surface can be formed by an initially

plane flexible sheet without stretching the sheet at any

point. The proper shell has a non-developable middle

surface, which cannot be formed from an initially plane

flexible sheet without stretching at some point.

Conditions of Equilibrium

c
Using the approach of Plugge'^ to define the stresses

in a shell, first an x, y, z coordinate system as shown in

Pig, 1, is set up to describe the position of a point on

the middle surface. The x and y coordinate axis is tangent

to the middle surface with the z axis being normal to the

middle surface. Then an element is cut from the shell by

two pairs of planes which are normal to the middle surface

of the shell.

The forces formed by removing the element are resolved

into three components positively signed as shown in Pig. 1.

Referring to Pig. 2, each of the three forces shown in

Pig, 1 is the resultant of either normal stresses (Cx, (Ty),

shear stresses parallel to the middle surface ('^xy'^yx^*

^ Ibid., pp. 3-9.







and shear stresses normal to it (T" ,1*' ). Therefore the

three forces can be termed stress resultants.

Using the terms Illustrated In Pig. 1 and Pig. 2, the

6
stress resultants are defined as follows:

t/2 r -z
T / (T {'^—)dB,

%/2 r -z
(r„(JL-.) dz.

-t/2 y r^

*t/2 r„-z
T (-i^—)dz.

^1/2 r_-z

y* ^-.t/2 y^ r.

't/2 r -z

* ^-t/2 ^^ r

/t/2

/-t/2

^t/2 r_-z

'^/2 r„-z
M^ -/ (TAJL—)zdz,

-t/2 ^ r„

't/2 r -z
M„ «/ <r (-i—)zdz.
y y-t/2 y r,,

't/2 r„-z
M

^t/2 Tjj-Z

yx -t/2
'f„,(-l-.)zdz.
yx

Ty-z r -z
The factors (,.. ) and ( ) are assumed to be equal to

Theory of Plates and Shells, by S, Timoshenko, and
W. WolnoNsky - Krieger, p, 529.



unity as the thickness of the shell is generally small as

compared with the radii of curvature.

Since the load on the proper shell is carried mainly

by normal and shearing forces, the moments may be assumed

negligible in the stress analysis. This assumption leads

to the membrane theory of shells. Pig;, 1, therefore shows

all the necessary forces acting on the sides of the shell

element. By moment equations concerning the element, it

can be proven^ that Tj^y-Ty^^ and Qx=Qy"=0, With these

assumptions, the ten unknown stress resultants are reduced

to only three unknown stress resultants (Tj^, Ty, T^^y),

Prom the three equations of static equilibrium, the three

unknown stress resultants can be solved.

Using the same coordinate axis and transforming the

actual forces of the element into forces acting on a

projected area as shown in Pig, 3, considerable simplifica-

tion of the analysis can be gained. The following portion

of analysis follows closely that set forth by A, L, Parme,"

The stress resultants Ty, T^^, S (S-Tj^y-Ty^j) represent

the skew forces being tangential to the element's surface.

The stress resultants Ty , T , Sp represent the projected

forces in the xy plane. The skew forces Ty, T , S are

7 Stresses in Shells, by W, Plugge, p. 9.
o

Hyperbolic Paraboloids and Other Shells of Double Curva-
ture, by A. L. Parne, Proceedings, ASCE September 1956,
82 ST5,
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ntasureci in pounds per unit length of lln« •l«M»nit* By

K«eBWtry it lo Be«n that

ap cosl"* dy (1«)

dq co8<J>" dx (lb)

Multiplying the normal forces by the cosine of the aniyle

between force and the xy plane yields the x and y coRponenta

of auch. The x cooponents are

Tjjpdy»TjCoa (J)
dp,

S dx*S cos(|) dq>

which by aubatitution becomea

TAs^tSSJLL dy,
XP *C08 <f

8 dx*S&aSLl. dx,
P con (j)

and the y components are

T dx«^ coal* d<j»
yp y

Spdy-S cos H* dp.

which by substitution becones
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The new stress resultants In terms of the projected

element are

(2a)

(2b)

(2c)

Deriving the element's area dA In terras of the projected

element area dxdy gives

.2.,, _._2,vl/2

T
xp Xcos i^

T
yp ycos

(J)

Sp - s.

dA .dx dv * , ^ A (l-sin^fsinl^)-^'^
. "y sinu;« dxdy'' ^ ' .

cos (^ cos H* co3<^ cos «'

Assuming only a vertical distributed load per unit area W^

acting on the shell element dA, the transferred distributed

load per unit area VJ^p acting on the projected element is

Wzp „ ( l-sin^'F sin^(t> )^/^. (3)
vL cos 4< cos <|)

The load W__ can be assumed to be uniform for most hyperbolic
zp

paraboloid shells of moderate rise. The sin^ 4» sin^^f) term

can be neglected since it will become small for the moderate

rise case. Using this assumption Equation (3) becomes

W,„ - W^ } — . (*»)
zp z- COS W COS (p

With the forces acting on the element varying from the

one face to another, equilibrium of forces in the x direction
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expressed In terms of T , T and S gives:

ax ay

Likewise equilibrium In the y direction yields

ay ax

EqullibrluBi In the z direction Involves all of the shell

element& stress resultants as they all contain a vertical

component. The vertical component of the normal force T^ is

Tjj slni dp,

and by substituting for T^ and dp from Equations (2a) and

(la) yields

The vertical component acting per unit of length alon^ the

y axis is

'^xp-54 •

A similar expression for the vertical component of Ty per

unit of length along the x axis is found to be

m 9 Z

yp ay
•

The vertical component of the shear force along the y axis la

S dp sin V



Ik

and by substitution from Equations (2c) and (la) gives

S„ IZ sin f - S„ tan Ui dy = Sr, ^LL dy
P COS f P ^ ^T^

which per unit of length along the y axis is

S .i^ ,
P ay

Similarly, the vertical component of the shear force along

the X axis is

S 9 z
Pax*

Taking into account the differential increments of all

the forces, the equilibrium equation in the z direction yields

A(Txp^x+ A/Typ^Zx ^ ±c^^) +
^(SpSz) +W , (7a)

ax^ ^ax^ 5y^ ay^ ax ay^ ay^ ax

By differentiating the products. Equation (7a) becomes

&E + ^)az . (aim + a5£)2£ - w^p. (7b)
~^dx a y'ax ^ a y a x'ay

Substitution of Equations (5) and (6) into (7b) gives

T,„-^ + 2S a»£z ^ Typ^iz . - w (7c)
*Pax2 ^3^ ^^ay2 "^P-
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The three Equations (5), (6), and (7c) are the basic

membrane theory equations for this case. Using the defined

shell's middle surface, a direct solution of these equations

may be tried. Since we have three "dependent" variables

T , T p, Sp, each depending on two "Independent" vari-

ables X, y, the solution becomes very complicated. By

assuming the stress resultants described by a single stress

function P of x, y. Instead of Tjtp, Typ, Sp, the equations

are reduced to one second order equation. The stress

Q
resultants are derived from the "Airy stress function"^ P by

differentiation, as follows:

(8a)

(8b)

(8c)

By substitution. Equations (5) and (6) are satisfied and

Equation (7c) reduces to

a2pa2z 32p922 5.£fpa^„ y ,
(9)

S^d^ ^b^ ' '^dxayaxdy zp

For most cases, the algebraic solution of this differential

equation Is quite difficult, however for a hyperbolic para-

boloidal shell loaded under uniform loading, the solution

Is fairly simple.

Txp

^yp
dx2

Sp , a^P
axay

9 Advanced Strength of Materials, by J. P. Den Hartog, p. 17^.
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APPLICATION OP STRESS ANALYSIS

Surface Definition

As previously stated, the hyperbolic parabololdal shell

is bounded by a doubly curved surface. This surface nay be

defined in two ways, either as a surface of translation or

as a warped parallelogram. The surface of translation can

be visualized by translating or moving a vertical parabola

of upward curvature over another parabola with downward

curvature. The translating parabola's plane is perpendicular

to the other parabola and is at all times parallel to its

original position, thus giving a saddle-shaped surface.

The second method of description is described as a

warped parallelogram and is shown in Pig. 4, The remaining

portion of this report, including application and design

will be based on this method of description. This surface

is constructed by moving a straight line along the x axis,

remaining parallel to the yz plane at all times, but rotating

about the x axis as the outer end of the line slides along

the straight line ABC, A similar generating line can be

established along the y axis. The resulting surface formed

by the grid of straight lines may be described at a point by

the intersection of two such lines contained in the surface.
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The "warped parallelogram" connotation for the surface can

be visualized as the horizontal plane A*C*E*G» is warped by

vertically depressing corners A* and E* to new positions A

and E, and allowing corners G» and C to rise vertically

to new positions G and C.

Stress Conditions

A basic quadrant ABOH of the "warped parallelogram"

surface taken from Pig, 4 is shown in Pig. 5. Continuing

as A, L. Parnie^^ has done in his paper, any point on the

surface can be described as a function of x, y and z.

Referring to Pig, 5

c « y or c a hy , (10a)
E F b

Likewise,

z X (10b)
c " a •

Substituting into Equation (10b), the value of c found in

Equation (10a) gives

a ^ b^a ^'^^ (Fa^ •

Letting k = ii^ ,ab

z - kxy, (11)

Hyperbolic Paraboloids and Other Shells of Double Curvature,
by A, L, Parme, Proceedings, ASCE September 1956, 82 ST5,
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Upon substituting Equation (11) Into Equation (9), the

second differential of Equation (11) equals zero and the

remainder yields

„ ? " r If ts ». u
axdy zp

which by Equation (8c) reduces to

S„ - lizix . (12)
^ 2k

Using the above value for S , it is easily seen that

I P s

and

«-E » 0.

Substituting these values into Equations (5) and (6) yields

"^XP
- Typ - 0. (13)

By Equations (12) and (13), it can be observed that the

edges of a hyperbolic paraboloid shell resist only a uniform

tangential shear, since the normal forces equal zero.

Using Mohr's circle, this pure shear resolves into

principal stresses of equal and opposite magnitude acting

on sections at 45 degrees to the shear plane (see Pig« 6),

Identical parabolic arches are formed by the sections taken

45 degrees to the coordinate axis as shown in Pig. 6, The

parabolic arches or parabolas parallel to OB curve downward

while those at right angles to OB curve upward.
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X

^dgc, marnbar

Rnornk^^ Rtfitt

(B)

FIG. 6. FWRABOUC ARCHES
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Assuming the uniform load Is equally divided between

the two sets of perpendicular arches as shown In Pig. 6,

the arches parallel to OB exert an outward thrust R on

the edge members by the nature of their curvature, while

those perpendicular to OB exert an inward thrust R,

Since the arches have curvature, they exert both

vertical and horizontal forces at their ends on the edge

members. The net effect as shown in Pig. 6-b is that

the normal force components to the edge member cancel out

and the vertical force components cancel out leaving only

the pure shear acting along the edge member. Pig. 7 shows

the net result of the pure shear acting on the edge members,

or in this case, the edge beams, for two quadrants forming

a portion of a complete structure.

Secondary Stresses

In using the membrane theory of analysis, only the

equilibrium of forces has been considered, neglecting the

compatibility between stresses and strains. The following

discussion on secondary stresses is based mainly on P,C.A.*s

publication of "Elementary Analysis of Hyperbolic Paraboloid

Shells", ^^

Elementary Analysis of Hyperbolic Paraboloid Shells,
Portland Cement Association, I960,
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As the shell becomes flatter (less rise to span ratio)

axial strain within the perpendicular parabolic arches

becomes important. This axial strain will set up secondary

bending moments within the arches. For the usual rise, h/a

1/5 or h/b 1/5, the effect of axial strains is relatively

small and can be safely neglected. When the shell flattens

out, i.e. h/a decreases, the effect of axial strain must be

Investigated, Using a two-hinged parabolic arch subjected

to uniform load as a comparison to the parabolic arches in

the shell, the horizontal component of the reaction for a

given span decreases as the ratio of rise to span decreases.

This decrease in the horizontal component is coupled with a

subsequent Increase of axial strain, thus resulting in

secondary bending moment. The limiting value of secondary

bending moment would be the case of zero rise in which it

would equal the simple-beam bending moment.

Pig. 8-a represents the results of a study^^ concerning

secondary bending moment. This graph is also based on the

fact that the curved surface can be represented by sets of

perpendicular parabolic arches, whose shearing forces and

normal forces on the two opposite faces can be neglected.

Also the assumption that the ends of the arches are not

free to move is made.

^2 Ibid., p. 16.
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Using the appropriate ratio of ^ coupled with the

dimensionless quantity |>, the secondary bending moment can

be found for a strip of L length. In studying Pig. B-a, it

is seen that as i decreases to zero, the bending moment

approaches the simple beam bending moment, which is not in

line with the membrane theory analogy. As L increases, i.e.

the strip of L length is farther from the corner, th«

secondary bending moment decreases, the rate of which is

a function of ^, As the ratio of §^ becomes larger, the

rate of decrease of the secondary bending moment becomes

larger. Using a shell thickness of 3", the normal ratio

of rise to span of 1/5,

aF " -TW °-°^°-

Prom Pig. 8-a, for ^ = 0.010, and a distance of 5 feet or

more from the corner, it is observed that the secondary

bending moment is becoming less important.

Pig, 8-b, representing the secondary bending moment

as secondary flexural stress, brings out the importance of

curvature on the magnitude of secondary stresses, ^ For

example, a square shell whose thickness is 3 inches and

ii » 1/5 has a secondary stress in terms of w equal to MO,
a

at a point 5 feet from the corner. Another square shell

^3 Ibid., p, 16.



27

with the same thickness and at the same point from the

corner, except having ~ « 1/7 has secondary stress In

terms of w equal to 115. Prom comparing the two values

of stress, the importance of curvature is quite evident,

DESIGN EXAMPLE

Shell Design

This design is for a square roof unit having a shape

commonly called the inverted umbrella. Fig. 7 shows a

partial unit with the exterior edges being horizontal. The

plan dimensions are 30 x 30 feet with a 3 foot vertical

rise. Since adequate reinforcement coverage controls the

shell thickness rather than stress limitations, a shell

thickness of 3 inches will be used. This gives a uniform

dead load of 37.5 psf for the shell. Live load is equal

to 30 psf plus 15$ of the live load to allow for the weight

of the edge beams. The total design uniform load is

therefore 72,0 psf.

Prom Equation (12), the pure shear per foot acting

within the parabolic arches of the shell is

s . ± !i£E . ± iiSE 2^ . i 72 W) (l?>
> i 2700 ib./ft.

P 2k 2 h 2 (3)
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The compressive concrete stress is

r = 2700 „ + 7c r^=^

'c
=
To?)

" - 75 psi.

No steel Is needed for concrete In the compressive parabolic

arches, however a nominal amount should be used for tempera-

ture and shrinkage stresses. The tensile concrete stress is

also 75 psi. Here again, no steel is theoretically needed

for loading stresses, however steel will be included to

take care of all tensile forces. The amount being

A = ^»7°0 = 0.135 sq. in. per ft.
20,000

Recalling that the parabolic arches are rotated ^5 degrees

from the shell's edge, the reinforcing should be placed

likewise. If for ease of placement, the reinforcing is

oriented parallel to the shell's edge, the amount of

reinforcing must be subsequently increased. For this

example, the amount of reinforcement placed parallel to

the edges equals

Ag » 0.135 X l.iim = 0,191 sq, in, per ft.

Therefore No, 3 bars placed at 7 inches apart are suffici-

ent. This same pattern will also be used for the

compressive area.
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Considering secondary stresses in the flattened

corners. Pig. 8-b shows the maximum secondary stresses

occurring at x/t equalling approximately 22 for

For the 3 inch thickness, this gives the L length strip

placed out an x distance 5* -6" from the corner. For the

D,L, plus L.L, of 72,0 psf, the maximum secondary stress

equals

f^ » ^75 X 72,0 „ 37^5 ^^^

While the magnitude of flexural stress is not critical,

five No. 3 bars placed ^5 degrees to the edge beams will

be added for tension in the immediate range of maximum

flexural stress.

Edge Beam Design

According to the membrane theory analysis the horizon-

tal edge beams are loaded by pure shear from the shell,

causing tension ranging from zero at the corners to a

maximum value at the center. Maximum tension in the

horizontal edge beams is

H • 2,700 X 15 " 40,500 lb.
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for which the area of steel required Is

\ ' ?7tTO ' 2.025 sq. m.

Two No. 6 bars and two No, 7 bars are sufficient.

Excessive corner deflection of the horizontal edge

beam has been experienced for this type of structure,'^

Recalling the discussion of secondary stresses, as the

shell flattens out near the corners the validity of

membrane theory analysis decreases. The parabolic arch

strips approach simple beams In which the horizontal

edge beams take the vertical reaction. This in turn

causes a downward deflection. To offset this deflection,

the centroid of the edge beam is placed above the applica-

tion of the shearing action from the shell. This results

in an eccentric loading which tends to lift the end of

the edge beam. In addition, a small amount of steel can

be placed in the top of the edge beam to take tension

stresses.

The sloped edge beams are designed for axial compression

resulting from shearing action on both sides ranging from

zero at the outer edge to a maximum at the valley Of the

shell. The maximum amount is

2H lliiO , 2 X 40,500 X i|^ « 82,620 lb.

14 Building for Economy with Hyperbolic Paraboloids, by
0. Madsen and D, Biggs, Journal ACI, Vol, 32, No. 4,
PP. 373-383.
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Since the sloped beam Is subjected to axial compression with

small eccentricity, it may be designed by column formulas.

Another approach^ to the design would be to consider the

sloped beam as a flange with the shell acting as the web.

This approach permits using allowable compressive stress

in flexure. Since the membrane analysis does not include

the effect of strains occurring in the edge beam, the

conservative column formulas will be used to reduce

possible strains.

The standard formula for lateral tied columns is

P « 0.8 (0.225 f'cAg + Agfg)

substituting Po-Ao, » A_, the above formula becomesKg 3

P = 0.8 (0.225 f'e + Pg^g^ ^g

from which

8 0.8(0.225 f*c + Pg^s)

Using a percentage of steel p = 0.01, fg = 20,000 psi and

f*„ ' 3.000 psi, the required gross area at the valley for

the sloped beam is

82,620 T -1 -I r 4H„ " « = 111.6 sq. in.
S 5l|0 + 20,000 X 0.01

^ Elementary Analysis of Hyperbolic Paraboloid Shells,
Portland Cement Association, I960.
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For an 18 inch wide beam, the depth required la

d - iii^ " 6.2 Inches.

Due to possible unsyimnetrlcal loading causing increased

bending stresses, an increase of depth to 9 Inches will

be used. The required As for the sloped beams equals

Ag » 0.01 X 111.6 « 1.116 sq. In.

Pour No, 6 bars will be used.
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CONCLUSION

By membrane theory, the doubly curved surface of the

hyperbolic paraboloidal shell will support a uniform load

mainly by direct axial compression or tension forces. The

edge beam stiffens the shell at the boundaries, and is

loaded by pure shear from the shell, according to membrane

theory. However, since stresses developed by this theory

are dependent upon shell curvature, sections of the flatter

portion of the shell near the corners tend to act as simple

beams, thus developing bending stresses. Accompanying the

bending stresses of the shell is a vertical reaction on the

tension edge beam. This in turn produces bending moments

in the edge beam.

Analysis by the membrane theory for stresses in the

shell under uniform load does not involve complicated

mathematics. However, under unaymmetrical loading, the

mathematics becomes very complicated. With unsymmetrical

loading and even uniform loading to a lesser degree, there

is some question as to how much of the shell is conforming

to the assumptions made for the use of membrane theory. No

allowance by the membrane theory is given for compatibility

of stress-strain relationships. Consequently, any deflection

which the structure obtains will introduce a need for stress-

strain consideration. The uniformly loaded structure
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treated in this paper will have slight deflection, especially

near the shell boundaries. However the stress analysis

resulting from this deflection is beyond the scope of this

paper.

In studying the available literature, the author

failed to uncover a complete ??:eneral solution of hyperbolic

paraboloidal shells. Several approaches have been used.'^

Model studies with simplified mathematical analysis appears

to be one of the simpler, while a more complicated approach

would be to apply a combination of membrane, bending,

ultimate load, and buckling theories to the particular

shell being studied.

16
Thin-shelled Structures, by D. P. BillinKton, Civil
Engineer, December I96I, p. 57,
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Many articles have been published on hyperbolic

paraboloidal shells. However to the knowledge of the

author, no complete simplified analysis covering various

loading conditions has been developed to date.

The shell analysis explained is a result of reviewing

several references using the membrane theory solution with

uniform vertical loading. By the membrane theory, no

bending moment is allowed within the shell, therefore the

shell acts mainly by axial forces. Applying this theory,

the basic equations are developed for one quadrant of the

hyperbolic paraboloid, A consideration of secondary

stresses, which cannot be included in the membrane theory

solution, is given. The basic equations and the considera-

tion of secondary stresses are then applied to a practical

design of an inverted, single support reinforced concrete

hyperbolic paraboloid.

A brief detailed drawing is presented showing the

dimensions and reinforcing resulting from the design of

the hyperbolic paraboloid.


