provided by K-State...

ELEMENTARY CONCEPTS CONCERNING THE

 IEBESGUE INTEGRAL$$
\text { by } 1
$$

JOHN R. VANWINKLE
B. A., Harding College, 1961

A MASTER'S REPORT
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kanass

1967

Approved by:

TABLE OF CONTENTS

INTRODUCTION 1
LEBESGUE MEASURABLE SETS 2
LEBESGUE MEASURABLE FUNCTIONS 18
DEFINITION OF THE LEBESGUE INTEGRAL 23
ELEMENTARX PROPERTIES OF THE LEBESGJE INTEGRAL 29
GOMPARISON OF THE RIEMANN AND LEBESGUE INTEGRALS 39
WEAKNESSES OF THE LEBESGUE INTEGRAL 46
ACKNOWLEDGMENT 49
REFERENCES 50

INTRODUCTION

Before developing the Lebesgue integral, there must be a besic understanding of Lebesgue measurable sets and Lebesgue measurable functions. By considering a typical term of the Riemenn aum for a real-velued function $f(x)$ over en intervel $[a, b]$. it can be seen that thie term is a product of two numbers, the velue of the function $f^{\prime}(x)$ at a specific point times the length of a sub-interval of the interval $[a, b]$ which contains the point. Thie sub-interval is obtained by partitioning the interval $[\mathrm{a}, \mathrm{b}]$, which is the domain of definition of the function $f(x)$.

The correeponding situation with the Lebesgue integrel is not as simple. A typicel term of a "Lebesgue sum" for e function $f(x)$ over an interval $[\theta, b]$ is egain e product of two factors, but these factors are obteined quite differently. One of the factors, say α, ie a value of the function, but the value is related to a partition P for the renge of the function, end not a partition of the domain. The other factor, say β, is a number that represents "length" or measure of a eet E of ell points x in the domain for which $f(x)$ is between a particular pair of elements, say (α, η) of P. This measure is a generalization of length obtained by covering a set E with a counteble number of open sets. The set E is not neceseerily an interval. Defining the Lebeegue measure for these sets is discussed in the first part of thie report.

Lebesgue meesurable functions, or the functione "compatible" with Lebesgue messursble sete, are diecussed in the second pert
of the report. Then the Lebesgue integrel is defined for bounded Lebeegue messureble functions, end elementery properties ere presented.

In the next pert of the report the Lebesgue integral is compered with the Riemenn integral, end it is shown thet the set of ell Riemenn integreble functions is e proper subset of the set of ell Lebesgue integreble functions on e closed intervel. The Lebesgue integrel is superior to the Riemenn integrel in the eree of finding limits reletive to integretion proceeses. The Lebesgue integrel of a derivative ie shown to yield the primitive for more generel conditions than the Riemenn integral. The lest unit illustretes e weekness of the Lebeegue integrel encountered when the derivative to be integrated is not required to be bounded.

LEBESGUE MEASURABLE SETS

The discussion will be restricted to eets thet ere bounded subsets of the reel number line R. To define the Lebesgue meesure of e set, two other numbers ere defined; these numbers ere the outer and inner Lebesgue meesure of e set. Besio to the understending of these two numbers is the concept of length of en open intervel, which will now be defined.

Definition 1. The length of en open intervel (e, b) is the number $b-e$.

$$
\begin{aligned}
& \text { If } I=(a, b) \text {, then } \ell(I) \text { will denote the length of } I \text {. Hence } \\
& \ell(I)=b-e \text {, whenever } I=(e, b) \text {. Obviously } \ell(I) \text { is a non- }
\end{aligned}
$$

negative number.
Another concept besic to the understanding of outer and Inner Lebesgue meesure is the concept of e component open interval.

Definition 2. Let G be any open subset of R. If the open intervel (e, b) is contained in G and its endpoints do not belong to G,

$$
(e, \quad b) \subset G, \quad e \notin G, \quad b \notin G
$$

then this interval is seid to be e component open intervel or e component of the set G.

Example: Let $G=(0,1) \cup(2,3)$. Then $(0,1)$ and $(2,3)$ ere component open intervels of the set G.

Using these two definitions, eny set $E \subset R$ thet is the union of efinite or derumereble number of disjoint component intervels cen be essigned a number equal to the sum of the lengths of the component open intervels, if such a sum exists.

Definition 3. Let E be the union of a finite or denumereble number of peirwise disjoint open intervels. Associete with \mathbb{E} the number $L(E)$ such that if

$$
\mathrm{E}=\bigcup_{k} \mathrm{I}_{k} \quad(k=1,2, \ldots, .),
$$

then

$$
L(E)=\sum_{k} \ell\left(I_{k}\right) \quad(k=1,2, \ldots,
$$

Whenever this sum exists.

A reason for the preceding definition becomes apparent upon considering the following theorem.

Theorem 1. If G is on open set of reel numbers then G is the union of e finite or denumerable number of disjoint open intervels, celled the component open intervals of $G[2,73] .{ }^{1}$

Proof. Associete with every $x \in G$ en open interval I_{x} in the following wey, Let

$$
I_{x}=\bigcup_{\alpha} I_{\alpha}, \alpha \in A,
$$

for come indexing set A, such the $I_{\alpha}=\left(a_{\alpha}, b_{\alpha}\right) C G$ and $x \in I_{\alpha}$. Let λ be the greatest lower bound of the a_{α}, end μ be the leet upper bound of the b_{α}. Then $I_{\lambda}=(\lambda, \mu)$. This may be seen by assuming $\mathrm{y} \geqslant \mu$ or $\mathrm{y} \leqslant \lambda$. If $\mathrm{y} \geqslant \mu$, then $\mathrm{y} \notin \mathrm{I}_{\alpha}$ for any $\alpha \in \mathrm{A}$; or if $\mathrm{y} \leqslant \lambda, \mathrm{y} \notin I_{\alpha}$ for eng $\alpha \in A$, hence $\mathrm{y} \notin \mathrm{I}_{\mathrm{x}}$. Now it will be shown the if $y \in(\lambda, \mu), y \in I_{x}$. If $y \in(\lambda, \mu)$, then either $\mathrm{y}=\mathrm{x}$ or $\mathrm{x}<\mathrm{y}<\mu$, or $\lambda<\mathrm{y}<x$. If $\mathrm{y}=\mathrm{x}$, then $\mathrm{y} \in \mathrm{I}_{\mathrm{x}}$. If $x<y<\mu$, then there is an α such the $y \in I_{\alpha}$, since μ is the feet upper bound of the $\mathrm{b}_{\alpha}^{\prime} \mathrm{s}$. Also if $\lambda<\mathrm{y}<x$ there exists an α such the $y \in I_{\alpha}$, eince λ ie the greetest lower bound of the $e_{\alpha}{ }^{\prime} s$. Therefore $y \in I_{x}$. Now it will be shown that if $x \in G$ end $y \in G$, then either $I_{x}=I_{y}$ or $I_{x} \cap I_{y}=\varnothing$. Suppose $c \in I_{x} \cap I_{y}$, then $I_{x} \cup I_{y}$ ie en open interval. Since $I_{x} \cup I_{y}$ conteins x, it follows that $I_{x} \cup I_{y} \subset I_{x}$. Also $I_{x} \cup I_{y}$ conteins y, so the $I_{x} \cup I_{y} \subset I_{y}$. Therefore if $c \in I_{x} \cap I_{y}$, $I_{y}=I_{x}$.

[^0]Finelly, eny set of disjoint open intervels is finite or denumereble in number. Associete with eech open intervel of the set e rationel number which is in the intervel. Since disjoint open intervals are associeted in this wey with dietinct retionel numbere, the cerdinal number of this set of open intervals does not exceed the cardinal number of the set of retionel numbers, and so it is either finite or denumerable.

Since the null set \varnothing is considered to be open, the number $\mathrm{L}(\mathrm{G})$ essocieted with this eet will be zero. Therefore a nonnegetive number $L(G)$ can be associeted with every open set G; thet is, $L(G) \geqslant 0$.

The definition of outer Lebesgue meesure will now be given.

Definition 4. For every set S , the outer Lebesgue meesure,

$$
m *(S)=\inf \{L(G): G \supset S\}
$$

where G varies over ell open sete conteining $S[2,154]$.
The following theorem cen be proven for eny open set G.
Theorem 2. If G is an open set, then

$$
m *(G)=L(G)[2,155]
$$

Proof. Let H D G be en open set. Then every component of G is contained in e component of H. Thus $L(H) \geqslant L(G)$. But $G \supset G$ is an open eet. Hence

$$
\inf \{L(H): H \supset G\}=L(G),
$$

end

$$
m *(G)=L(G)
$$

Another important property of outer Lebesgue measure will be presented before defining inner Lebesgue measure.

Theorem 3. Let A end B be bounded subsets of R. If $A \subset B$, then

$$
m *(A) \leqslant m *(B)[3,64] .
$$

Proof. Let S be e set consieting of the numbers $L\left(\mathrm{G}_{\alpha}\right)$ essocieted with ell open sets G_{α} conteining A, where α belongs to en indexing set J. Let T be e set consisting of the numbers $L\left(H_{\beta}\right)$ essocieted with ell open sets H_{β} conteining B, where β belongs to en indexing set K. If E is en open set conteining B, then E necessarily conteine A, eince $A \subset B$. Therefore

$$
\mathrm{T} \subset \mathrm{~s}
$$

end

$$
m *(A)=\inf (S) \leq \inf (T)=m *(B)
$$

Now inner Lebesgue measure cen be defined. Let $\Delta=[a, b]$ represent en bounded closed intervel of R. Let $S C \Delta$, and C_{Δ} (S) represent the complement of S in the intervel Δ.

Definition 2. For every et S the inner measure of S is the number

$$
m_{n}(S)=(b-e)-m^{*}(C \Delta(S))[4,31] .
$$

The definition of a Lebesgue meesureble set med now be given.

Definition 6. Let E be any bounded subset of R. The set E is Lebeegue meesureble if it outer end inner measures ere equal; the is,

$$
m_{m}(E)=m_{n}(E)[4,31] .
$$

The common value of these measures is called the Lebesgue measure of the set E, and is denoted $m(E)$:

Now that the definition of Lebesgue measure has been established, it is important to consider several families of sets which are actually measurable according to this definition. In order to accomplish this goal a few elementary properties are presented. The following lemma will be useful in proving these elementary properties.

Lemma 1. If $I_{1}^{\prime}, I_{2}^{\prime}$, . . ., I_{n}^{\prime} are a finite number of open intervals which cover $\Delta=[a, b]$, then

$$
\sum_{k=1}^{n} l\left(I_{k}^{\prime}\right) \geqslant b-a \quad[2,155]
$$

Proof. It may be assumed without loss of generality that $I_{k}^{\prime} \cap \Delta \neq \emptyset$, for every $k=1,2, \ldots, n$. Let $I_{k}^{\prime}=\left(a_{k}, b_{k}\right)$, $\mathrm{k}=1,2, \ldots, \ldots \mathrm{n}$. It may also be assumed without loss of generality that $a \in I_{1}^{\prime}=\left(a_{1}, b_{1}\right)$. Let $b_{1} \in I_{2}^{\prime}$, and in general

$$
b_{k} \in I_{k+1}^{\prime}=\left(a_{k+1}, b_{k+1}\right), \quad(k=1,2, \ldots, n-1)
$$

where $\mathrm{b}<\mathrm{b}_{\mathrm{n}}$. Hence

$$
\begin{aligned}
b-a<b_{n}-a_{1}= & \left(b_{n}-b_{n-1}\right)+\ldots+\left(b_{2}-b_{1}\right) \\
& +\left(b_{1}-a_{1}\right) \leqslant \sum_{k=1}^{n}\left(b_{k}-a_{k}\right)
\end{aligned}
$$

and the proof is complete.
It is now possible to prove the following elementary
property for any bounded subset of e closed interval.
Theorem 4. For every set $S \subset \Delta$, where $\Delta=[e, b]$,

$$
m *(S)+m * C \Delta(S) \geqslant b-e[2,155]
$$

Proof. Let G end H be open sets such that $S C G$ and $C \triangle(S) \subset H$. Let I_{1}, I_{2}, . . be the component intervals of G and J_{1}, J_{2}, . . . be the component intervals of H. Since every $x \in \Delta$ is ęither in S or $C \Delta(S)$, the open intervels $I_{1}, \dot{I}_{2}, \ldots, J_{1}$, J_{2}, . . . cover Δ. But Δ is a closed bounded set, hence by the Borel Covering Theorem, e finite number of theee intervals, eey $\mathrm{I}_{\mathrm{k}_{1}}, \mathrm{I}_{\mathrm{k}_{2}}$, . .., $\mathrm{I}_{\mathrm{k}_{\mathrm{m}}}$ end $\mathrm{J}_{\mathrm{k}_{1}}, \mathrm{~J}_{\mathrm{k}_{2}}$, . ., $\mathrm{J}_{\mathrm{k}_{\mathrm{n}}}$ cover Δ. By lemme one, the sum

$$
\sum_{i=1}^{m} \ell\left(I_{k_{i}}\right)+\sum_{j=1}^{n} \ell\left(J_{k_{j}}\right) \geqslant b-a .
$$

But

$$
L(G) \geqslant \sum_{i=1}^{m} \ell\left(I_{k_{i}}\right) \text { and } L(H) \geqslant \sum_{j=1}^{n} \ell\left(J_{k_{j}}\right),
$$

hence

$$
L(G)+L(H) \geqslant b-a .
$$

It follows thet

$$
\begin{aligned}
m *(S)+m *\left(C_{\Delta}(S)\right) & =\inf \{L(G): G \supset S\}+\inf \left\{L(H): H \supset C_{\Delta}(S)\right\} \\
& =\inf \left\{L(G)+L(H): G \supset S, H \supset C_{\Delta}(S)\right\} \geqslant b-\theta .
\end{aligned}
$$

The following corollery releting outer end inner meeeure is epparent.

Corollery 1. For every s $C \Delta$, where $\Delta=[e, b]$,

$$
m *(S) \geqslant m_{p}(S) \geqslant 0 .
$$

An elementary property of Lebesgue measure will now be proved.

Theorem 5. A set $S C \Delta, \Delta=[a, b]$, ia measurable if and only if

$$
m^{*}(S)+m^{3}\left(C_{\Delta}(S)\right)=b-a[2,156]
$$

Proof. Assume the set S is measurable. Then,

$$
m *(S)=m_{*}(S)=(b-a)-m *\left(C_{\Delta}(S)\right) ;
$$

therefore

$$
m^{*}(S)+m^{*}\left(C_{\Delta}(S)\right)=b-a
$$

Now assume

$$
m *(S)+m \%\left(C_{\Delta}(S)\right)=b-a
$$

Then it follows that

$$
m \%(S)=(b-a)-m *\left(C_{\Delta}(S)\right)=m_{*}(S)
$$

and S is measurable.

By combining the results of Theorem 4 and Theorem 5, the following theorem a are obvious.

Theorem 6. A set SC Δ, where $\Delta=[a, b]$, ia nonmeasurable if and only if

$$
m^{3}(S)+m^{n}\left(C_{\Delta}(S)\right)>b-a[2,156]
$$

Theorem 7. Let S be any measurable subset of the interval $\Delta=[a, b]$. Then $C_{\Delta}(S)$ is also measurable $[2,156]$.

The following theorem eatablishes the measurability of an important family of seta.

Theorem 8. Let S be e subeet of the intervel $\Delta=[a, b]$. If $m^{3}(S)=0$, then S is meesureble end has meesure zero $[2,156]$. Proof. The proof follows immedietely from the corollary to Theorem 4.

The following theorem establiehes the meaeurebility of counteble eete.

Theorem 9. Every countable set $A C R$ is Lebeegue meesureble with $m(A)=0 \quad[4,33]$.

Proof. Let A be the set of elements $e_{1}, e_{2}, . ., e_{n}, .$. . Given $\epsilon>0$, cover the elements a_{1}, a_{2}, . . with open intervals $I_{e_{1}}, I_{e_{2}}, . ., I_{e_{n}}$, . ., respectively, such that

$$
\ell\left(I_{e_{n}}\right)<\frac{\epsilon}{2^{n}} \quad(n=1,2, \ldots .)
$$

Then the sum of the lengths

$$
\sum_{n=1}^{\infty} \ell\left(I_{e_{n}}\right)<\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon \sum_{n=1}^{\infty} \frac{1}{2^{n}}=\epsilon \cdot 1=\epsilon .
$$

Since ϵ is en arbitrery positive reel number, $m \%(A)=0$.

Exemples of eets which are meesureble include the set of integers, the set of positive integers, the eet of rationel numbers, end the eet of irretionel numbere in the intervel (0,1).

Another importent femily of sets is the collection of open eets. The following lemme is used to prove sets in this family are meesureble.

Lemmas 2. If J_{1}, J_{2}, \ldots ere open intervals end the open set $G=\bigcup_{n=1}^{\infty} J_{n}$ hes components I_{1}, I_{2}, \ldots. then

$$
\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \leqslant \sum_{n=1}^{\infty} \ell\left(J_{n}\right) \quad[2,157] .
$$

Proof. If J_{1}, J_{2}, . . ere diejoint open intervels, then they ere identicelly the components of G end

$$
\sum_{n=1}^{\infty} l\left(I_{n}\right)=\sum_{n=1}^{\infty} \ell\left(J_{n}\right)
$$

Therefore essume the J_{1}, J_{2}, . . . ere not ell disjoint. Then for some $J_{i}, J_{j}, i \neq j$ there exist $x_{i, j}$ such the

$$
x_{i, j} \in J_{i} \cap J_{j}, \quad(i, j=1,2, \ldots)
$$

Let

$$
J_{i}^{\prime}=\left\{x: x \in J_{i} \text { end } x \notin J_{j}\right\}, J_{i j}=\left\{x: x \in J_{i} \cap J_{j}\right\},
$$

end

$$
J_{j}^{\prime}=\left\{x: x \in J_{j} \text { end } x \notin J_{i}\right\} .
$$

The contribution of these sets to the sum of the components of G is ${ }^{2}$

$$
\ell\left(J_{i}^{\prime}\right)+\ell\left(J_{i j}\right)+\ell\left(J_{j}^{\prime}\right),
$$

${ }^{2}$ The J_{i}^{\prime} end J_{j}^{\prime} ere helf-open intervals of the form ($\left.\theta, b\right]$ end $[e, b)$. The following definition of length is used for these helf-open pete:
end

$$
\begin{aligned}
& \ell(a, b]=b-\theta \\
& \ell[\theta, b)=b-a .
\end{aligned}
$$

whereas the contribution to the sum $\sum_{n=1}^{\infty} \ell\left(J_{n}\right)$ is

$$
\ell\left(J_{i}^{\prime}\right)+\ell\left(J_{i j}\right)+\ell\left(J_{j}^{\prime}\right)+\ell\left(J_{i j}\right),
$$

since

$$
J_{i}=J_{i}^{\prime} \cup J_{i j} \quad \text { end } \quad J_{j}=J_{j}^{\prime} \cup J_{i j}
$$

Therefore since ell of these numbers ere nonnegetive, it cen be seen the the contribution to $\sum_{i=1}^{\infty} \ell\left(J_{i}\right)$ is greater then the contribution to $\sum_{n=1}^{\infty} \ell\left(I_{n}\right)$. Hence

$$
\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \leqslant \sum_{n=1}^{\infty} \ell\left(J_{n}\right)
$$

The following importent theorem is proved.
Theorem 10. Every open set GC $\Delta=[0, b]$ is meesureble $[2,157]$.

Proof. Since G is open, it cen be written es the union of a finite or denumerable number of component open intervals I_{k} that are disjoint. Since the series

$$
\sum_{k=1}^{\infty} \ell\left(I_{k}\right)
$$

ie convergent, for every $\epsilon>0$, there is e number $n(\epsilon)$ such the

$$
\sum_{k=n+1}^{\infty} l\left(I_{k}\right)<\frac{\epsilon}{2}
$$

whenever $n>n(\epsilon)$. Since G is open,

$$
L(G)=\sum_{k=1}^{n} \ell\left(I_{k}\right)+\sum_{k=n+1}^{\infty} \ell\left(I_{k}\right),
$$

and, by substitution,

$$
\begin{aligned}
& L(G)<\sum_{k=1}^{n} \ell\left(I_{k}\right)+\frac{\epsilon}{2} \\
& L(G)-\frac{\epsilon}{2}<\sum_{k=1}^{n} \ell\left(I_{k}\right)
\end{aligned}
$$

or

Now let $J_{1}, J_{2}, \ldots, ., J_{m}$ be the intervals in Δ complementary to $I_{1}, I_{2}, \ldots, I_{n}$. Also let $J_{k}^{\prime}(k=1,2, \ldots, m)$, be an open interval concentric with J_{k} such that

$$
\ell\left(J_{k}^{\prime}\right)=\ell\left(J_{k}\right)+\frac{\epsilon}{2 m}, \quad(k=1,2, \ldots, m)
$$

Let $H=\bigcup_{k=1}^{m} J_{k}^{\prime} ;$ then $L(H) \leqslant \sum_{k=1}^{m} \ell\left(J_{k}^{\prime}\right)$ by lemma 2. Since

$$
\sum_{k=1}^{m} \ell\left(J_{k}\right)+\sum_{k=1}^{n} \ell\left(I_{k}\right)=b-a
$$

it follows that

$$
\sum_{k=1}^{m} \ell\left(J_{k}^{1}\right)+\sum_{k=1}^{n} \ell\left(I_{k}\right)<(b-a)+\frac{\epsilon}{2} .
$$

Thus $L(H)+L(G)<(b-e)+\epsilon$, and since $C_{\Delta}(G) \subset H$, $m *(G)+m *\left(C_{\Delta}(G)\right)<(b-a)+\epsilon$.

Therefore, since ϵ is an arbitrery positive real number, $m \%(G)+m \%\left(C_{\Delta}(G)\right) \leqslant b-a ;$
and, by Theorem 6, G is measurable.

Examples of open sets include open intervals, and sets composed of a finite or denumerable number of open intervals. By Theorem l, these are the only open sets, with the exception of the null set.

Another family of sets is now proved to be measurable.

Theorem 11. Every closed set $F \subset \Delta, \Delta=[e, b]$, is measureble $[2,158]$.

Proof. Since every closed set is the complement of en open set, then every cloeed set is messureble by Theorem 7 .

Exemplas of closed sets include finite sets end the closed intervals. Therefore $\{1,2,3\}$ end $[0,1]$ ere meesureble eets. Also eny union of efinite number of closed eets is closed, and tharefore meesureble by Theorem 11.

In perticular, the closed intarval $\Delta=[e, b]$ is meesurabla, end hes meesure $\mathrm{b}-\mathrm{e}$. This fect will now be established.

Theorem 12. If Δ is the closed interval $[e, b]$, then Δ is meesureble end $m(\Delta)=b-e$.

Proof. Since Δ is closed, Δ is maesureble by Theorem 11, end

$$
m *(\Delta)=m_{\%}(\Delta)=(b-e)-m *\left(C_{\Delta}(\Delta)\right)
$$

But $C_{\Delta}(\Delta)=\varnothing$, end $m(\phi)=0$, therefore

$$
m *(\Delta)=m_{\mu}(\Delta)=(b-e)-0=b-\theta .
$$

Therefore it cen be seen thet the number b - e in the preceding theoreme end definitions wes ectuelly the Lebesgue meesure of the intervel.

In order to devalop the elementery properties of meesurable functions and to esteblish the definition of the Lebesgue integrel, unions end intarsections of measureble sets must be considerad.

Theorem 13. If e bounded set E is the union of e finite or
denumereble number of meesureble sets which ere disjoint,

$$
E=\bigcup_{k} E_{k} \quad\left(E_{k^{\prime}} \cap E_{k^{\prime}}=\varnothing, k \neq k^{\prime}\right),
$$

then E is meesureble end

$$
m(E)=\sum_{k} m\left(E_{k}\right) \quad[3,67]
$$

Proof. The proof follows from the inequalities

$$
\begin{aligned}
\sum_{k} m\left(E_{k}\right) & =\sum_{k} m_{*}\left(E_{k}\right) \leqslant m *(E) \leqslant m *(E) \leqslant \sum_{k} m *\left(E_{k}\right) \\
& =\sum_{k} m\left(E_{k}\right),
\end{aligned}
$$

since outer meesure is countebly subedditive $[3,64]$ end the inequality for inner meesure holds $[3,65]$.

Theorem 14. The union of e finite number of meesureble sets is e measureble set $[3,67]$.

Proof. Let $E=\bigcup_{k=1}^{n} E_{k}$, where eech E_{k} is meesureble. Given $\epsilon>0$, there exists e closed set F_{k} and e bounded open set G_{k} such thet $F_{k} \subset E_{k} \subset G_{k}$, end $m\left(G_{k}\right)-m\left(F_{k}\right)<\frac{\epsilon}{n}$. Set

$$
F=\bigcup_{k=1}^{n} F_{k}, G=\bigcup_{k=1}^{n} G_{k},
$$

where F end G ere closed end open sets respectively. Since FCECG,

$$
m(F) \leqslant m_{\%}(E) \leqslant m \%(E) \leqslant m(G) .
$$

The set G-Fis open, since it cen be represented in the form $G \cap \mathbb{C}_{G}(F)$, end is therefore meesureble. Since G cen be represented es

$$
G=F \cup(G-F)
$$

where F and G-F are disjoint messurable sets, the preceding theorem applies and

$$
m(G)=m(F)+m(G-F)
$$

Therefore

$$
m(G-F)=m(G)-m(F)
$$

and

$$
m\left(G_{k}-F_{k}\right)=m\left(G_{k}\right)-m\left(F_{k}\right)
$$

Since

$$
G-F C \bigcup_{k=1}^{n}\left(G_{k}-F_{k}\right),
$$

and all these sets are open, it follows that

$$
m(G-F) \leqslant \sum_{k=1}^{n} m\left(G_{k}-F_{k}\right),
$$

or

$$
m(G)-m(F) \leqslant \sum_{k=1}^{n}\left[m\left(G_{k}\right)-m\left(F_{k}\right)\right]<\epsilon .
$$

Therefore $m_{m}(E)-m_{m}(E)<\epsilon$, and E is measurable.

The analogous theorem for intersections of messurable sets is given.

Theorem 15. The intersection of a finite number of measurable sets is a measurable set $[3,68]$.
Proof. Let $E=\bigcap_{k=1}^{n} E_{k}$, where the sets E_{k} are measurable sets.
Let Δ be any open interval containing all the sets E_{k}. It
can be verified that

$$
c_{\Delta}(E)=\bigcup_{k=1}^{n} c_{\Delta}\left(E_{k}\right)
$$

The sets $C_{\Delta}\left(E_{k}\right)$ ere measurable, since the sets E_{k} are measurable, and by Theorem $14, \mathrm{C}_{\Delta}(\mathrm{E})$ is measurable. Hence E is also measurable, since $C_{\Delta}\left(C_{\Delta}(E)\right)=E$.

The next two theorems establish results for unions and intersections of denumerable measurable sets.

Theorem 16. If a bounded set E is the union of a denumerable number of measurable sets, then E is measurable $[3,69]$. Proof. Let $E=\bigcup_{k=1}^{\infty} E_{k}$. Let $A_{k}(k=1,2, \ldots)$, be sets such the

$$
A_{1}=E_{1}, A_{2}=E_{2}-E_{1}, \ldots ., A_{k}=E_{k}-\left(E_{1} \cup \ldots \cup E_{k-1}\right), \ldots,
$$

then

$$
E=\bigcup_{k=1}^{\infty} A_{k} .
$$

All these A_{k} are measurable and are disjoint, therefore E is measurable by Theorem 13.

Theorem 17. The intersection of a denumerable number of meesureble sets is measurable $[3,69]$.

Proof. Let $E=\bigcap_{k=1}^{\infty} E_{k}$, where ell the sets E_{k} ere measurable. Since $E \subset E_{1}, E$ is bounded. Let Δ be en open intervel conteining E, end let

$$
A_{k}=\Delta \cap E_{k}
$$

Then

$$
E=\Delta \bigcap E=\Delta \cap \bigcap_{k=1}^{\infty} E_{k}=\bigcap_{k=1}^{\infty}\left(\Delta \bigcap_{E_{k}}\right)=\bigcap_{k=1}^{\infty} A_{k} .
$$

But

$$
C_{\Delta}(E)=\bigcup_{k=1}^{\infty} c_{\Delta}\left(A_{k}\right),
$$

and by epplying Theorem 7 end Theorem 16 this completes the proof.

One mex be led to believe that all sets ere meesureble, or the ell bounded sets are meesureble. That this is not the cere hes been proved $[3,76],[2,165]$; in fect, it cen be shown the, "Every meesureble set of positive measure contains e nonmeesureble subset" $[3,78]$. Examples ere evaileble $[1,92],[4,47]$, elthough the choice exiom is led to constrict them $[4,50]$.

Lebesgue measurable functions

The concept of measureble functions is elso besic to the understending of the Lebesgue integrel. In this part of the report measurable functions ere defined, and e few elementery properties ere presented.

Definition 7. The reel-velued function $f(x)$ ie meesureble in $[\mathrm{e}, \mathrm{b}]$ if the sets

$$
\{x: \alpha \leqslant f(x)<\beta\}=E[\alpha \leqslant f(x)<\beta]
$$

ere meesureble for every pair of reel numbers α, β with $\alpha<\beta$ $[4,67]$.

Instead of the set need above, ny one of the following
sets could be used:

$$
\begin{array}{r}
E[\alpha<f(x)<\beta], E[\alpha \leqslant f(x) \leqslant \beta], \text { or } E[\alpha<f(x) \leqslant \beta] \\
{[4,67] .}
\end{array}
$$

The following theorem is an important consequence of this fact.
Theorem 18. If all sets of one of these four types are measurable, then the sets

$$
E[f(x)=\alpha]
$$

are also measurable for every real number $\alpha[4,67]$.
Proof. The proof follows from the fact that

$$
\begin{array}{r}
E[f(x)=\alpha]=\bigcap_{n} E\left[\alpha-\frac{1}{n} \leqslant f(x)<\alpha+\frac{1}{n}\right], \\
(n=1,2, \ldots) .
\end{array}
$$

The following theorem is very useful in deriving certain basic characteristics of measurable functions.

Theorem 19. In order that $f(x)$ be measurable, it is necessary and sufficient that any one of the following sets is measurable for arbitrary real numbers α and β, respectively:

$$
\begin{array}{r}
E[\alpha \leqslant f(x)], E[f(x) \leqslant \beta], E[\alpha<f(x)], \text { or } E[f(x)<\beta] \\
{[4,68] .}
\end{array}
$$

A few elementary properties of measurable functions can now be established.

Theorem 20. If $f(x)$ is measurable on a measurable set M, then $a-f(x), a+f(x)$, a $\cdot f(x)$, and $-f(x)$ are also measurable, for any real number a $[4,68]$.

Proof. $-f(x)$ can be obtained from a $f(x)$ when $a=-1$; also a $-f(x)=a+(-f(x))$. Hence proofs are required only for a $+f(x)$ and a $f(x)$. The measurability of $e+f(x)$ follows from

$$
E[\alpha \leqslant a+f(x)]=E[\alpha-a \leqslant f(x)],
$$

which is measurable by Theorem 19. Tha measurability of e $f(x)$ can ba established as follows: when $a=0$, $a \cdot f(x)=0$ is obviously measureble. For e >0, it follows that

$$
E[\alpha<a \cdot f(x)]=E\left[\frac{\alpha}{a}<f(x)\right],
$$

which is also measurable by Theorem 19. For e <0, the proof is similar.
, The following theorem expresses a property peculiar to Lebesgue measure.

Theorem 21. If $f(x)$ is meesurable, $|f(x)|$ ia also measurable $[4,68]$.

Proof. The proof follows from the equality

$$
E[|f(x)| \geqslant \alpha]=E[f(x) \geqslant \alpha] \cup E[f(x) \leqslant-\alpha], \alpha \in R .
$$

At times a function may be proved to be measurable by representing it as the sum of two meesurable functions. To prove that the sum of two measureble functiona is measurable the following theorem mey be used.

Theorem 22. If f_{1} and f_{2} are measurable, then

$$
E\left[f_{1}(x)>f_{2}(x)\right]
$$

ia also meaarable $[4,69]$.

Theorem 23. If f_{1} end f_{2} ere meesureble, then $f_{1}+f_{2}$ end $f_{1}-f_{2}$ are elso meesureble $[4,69]$.

Proof. Since $f_{1}-f_{2}=f_{1}+\left(-f_{2}\right)$, end $-f_{2}$ is meesureble by Theorem 20, the proof is required only for $f_{1}+f_{2}$. Since

$$
E\left[f_{1}(x)+f_{2}(x)>\alpha\right]=E\left[f_{1}(x)>\alpha-f_{2}(x)\right]
$$

end $\alpha-f_{2}(x)$ is measureble by Theorem 20 , it follows from Theorem 22 thet the sets

$$
E\left[f_{1}(x)>\alpha-f_{2}(x)\right]
$$

ere elso measureble.

The following theorem expresses another elementery property of meesureble functions.

Theorem 24. If $f(x)$ is meesureble, $f^{2}(x)$ is elso meesureble $[4,69]$.

Proof. Consider the following reletionship:

$$
E\left[f^{2}(x) \geqslant \alpha\right]=E[f(x) \geqslant \sqrt{\alpha}] \cup E[f(x) \leqslant-\sqrt{\alpha}], \quad(\alpha \geqslant 0)
$$

Then since $E\left[f^{2}(x) \geqslant \alpha\right]$ is the union of two meesureble sets, $f^{2}(x)$ is also meesureble.

The following theorem is en immediete consequence of the preceding theorem.

Theorem 25. If $f(x)$ and $g(x)$ are messureble real functions, them $f(x) \cdot g(x)$ is meesurable $[2,185]$.

Proof. The proof follows from the equelity

$$
f(x) \cdot g(x)=\frac{1}{4}\left\{[f(x)+g(x)]^{2}-[f(x)-g(x)]^{2}\right\}
$$

The following theorem concerns functions of θ very importent cless of meesurable functions.

Theorem 26. Every reel-valued function $f(x)$ continuous in $[\mathrm{a}, \mathrm{b}]$ is messureble on this closed intervel.

Proof. Consider the sets

$$
E[f(x) \geqslant \alpha]=E_{\alpha} .
$$

These sets are closed and therefore meesureble. The fact thet eech E_{α} is closed cen be shown es follows: Teke e sequence of points

$$
p_{\mathrm{v}} \in E_{\alpha}, \text { where } p_{\mathrm{v}} \rightarrow \mathrm{p} .
$$

Since $p \in[\theta, b]$, the function $f(x)$ is continuous et p, and from $f\left(p_{v}\right) \geqslant \alpha$ it follows that

$$
\lim _{v \rightarrow \infty} f\left(p_{v}\right)=f(p) \geqslant \alpha
$$

which implies $p \in E_{\alpha}$.
The following discussion leeds to the importent conclusion thet the limit function of a sequence of meesureble functions is meesurable. This is helpful since it will be shown thet the Lebesgue integral of the limit function of a sequence of integreble functions exists, if the sequence of functions is of bounded variation.

Theorem 27. If $\left\{f_{n}(x)\right\}$ is e sequence of messureble functions, then sup $\left[f_{n}(x): \dot{n}=1,2, \ldots\right]$ end inf $\left[f_{n}(x): n=1,2\right.$, .. .] ere measureble if they exist $[2,185]$. Proof. Let α be a real number. Then, if $f(x)=\sup \left[f_{n}(x)\right.$: $\mathrm{n}=1,2, . .$.$] , then$

$$
E[f(x)>\alpha]=\bigcup_{n=1}^{\infty} E\left[f_{n}(x)>\alpha\right]
$$

is measurable, so that $\operatorname{aup}\left[f_{n}(x): n=1,2\right.$, . . . $]$ is meesurable. Similarly, $\inf \left[f_{n}(x): n=1,2, \ldots ;\right.$ is measurable. Theorem 28. If $\left\{f_{n}(x)\right\}$ is e sequence of measurable functions then $\lim _{n \rightarrow \infty} \sup _{n}(x)$ and $\lim _{n \rightarrow \infty} \inf _{n}(x)$ are meaaureble $[2,185]$.

Proof. Let

$$
E\left[\lim _{n \rightarrow \infty} \sup _{n}(x)<\alpha\right]=\bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} E_{m, n},
$$

where

$$
\mathrm{E}_{\mathrm{m}, \mathrm{n}}=\left[\mathrm{f}_{\mathrm{r}}(\mathrm{x})<\alpha-\frac{1}{\mathrm{n}}: r=\mathrm{m}, \mathrm{~m}+1, \ldots .\right] .
$$

But $E_{m, n}$ is measurable for every m, n so that $\bigcup_{m} \bigcup_{n} E_{m, n}$ is measurable and $\lim _{\mathrm{n} \longrightarrow} \operatorname{aup}_{\mathrm{n}} \mathrm{f}_{\mathrm{n}}(\mathrm{x})$ is measurable, Similerly, $\liminf _{n \rightarrow \infty} f_{n}(x)$ is measurable.

The following conclusion is established.
Corollary 1. If $\left\{f_{n}(x)\right\}$ is e convergent sequence of measurable functions and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, then $f(x)$ is meesureble $[2,185]$.

DEFINITION OF THE LEBESGUE INTEGRAL

The form of the definition of the Riemann integral is not appropriate if the real function $f(x)$ is "badly" discontinuous since in any contribution to the Riemann arm the value of the
function represents widely verying velues of $f(x)$ over the intervel. Lebesgue evoided this difficulty by epplying horizontel strips insteed of the verticel strips used by Riemann [4,62]. A definition end discussion of the Lebesgue integral will now be given for which $f(x)$ is essumed to be bounded end Lebesgue meesurable in $[\mathrm{e}, \mathrm{b}]$.

Let e pertition $P=\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{n}, y_{n+1}\right\}$ be given such thet

$$
\alpha=\mathrm{y}_{0}<\mathrm{y}_{1}<\cdots<\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}+1}=\beta
$$

where $\alpha \leqslant f(x)<\beta$. The notetion

$$
E_{v}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right]
$$

will be used to denote the set of $x \in[e, b]$ for which $y_{v} \leqslant f(x)<y_{v+1}$, where y_{v}, y_{v+1} ere elements of P. Form the sums

$$
s_{P}=\sum_{v=0}^{n} y_{v} \cdot m\left(E_{v}\right) \text { end } S_{P}=\sum_{v=0}^{n} y_{v+1} \cdot m\left(E_{v}\right)
$$

where $s_{P} \leq S_{P}$. Let $P \%$ be subdivision or refinement of P, or all the points of P together with finitely meny new ones. It is sufficient to consider a refinement P of P which conteins only one edditionel point $\overline{\mathrm{y}}$. Let

$$
\overline{\mathrm{y}} \in\left(\mathrm{y}_{\mathrm{v}}, \mathrm{y}_{\mathrm{v}+1}\right)
$$

then

$$
E_{v}^{\prime}=E\left[y_{v} \leqslant f(x)<\bar{y}\right], E_{v}^{\prime \prime}=E\left[\bar{y} \leqslant f(x)<y_{v+1}\right] .
$$

Hence.

$$
E_{v}=E_{v}^{\prime} \cup E_{v}^{\prime \prime}
$$

where E_{V}^{\prime} end E_{V}^{n} are disjoint. Therefore

$$
m\left(E_{\mathrm{v}}\right)=m\left(E_{\mathrm{v}}^{\prime}\right)+m\left(E_{\mathrm{v}}^{\prime \prime}\right) ;
$$

and

$$
y_{v} \cdot m\left(E_{v}\right)=y_{v}\left[m\left(E_{v}^{\prime}\right)+m\left(E_{v}^{\prime \prime}\right)\right] \leqslant y_{v} \cdot m\left(E_{v}^{\prime}\right)+\bar{y} \cdot m\left(E_{v}^{\prime \prime}\right)
$$

and it follows that

$$
s_{\mathrm{P}} \leqslant s_{\mathrm{P} \psi}
$$

Now consider the sum S_{P}, a typical term of which is
$y_{v+1} \cdots m\left(E_{v}\right)$. Then

$$
\begin{aligned}
\cdot y_{v+1} \cdot m\left(E_{v}\right)=y_{v+1}\left[m\left(E_{v}^{\prime}\right)+m\left(E_{v}^{\prime \prime}\right)\right] & \geqslant \bar{y} \cdot m\left(E_{v}^{\prime}\right) \\
& +y_{v+1} \cdot m\left(E_{v}^{\prime \prime}\right)
\end{aligned}
$$

and it follows that

$$
s_{P} \geqslant s_{P ; *}
$$

A combining of the above results yields

$$
s_{P} \leqslant s_{P *} \leqslant s_{P *} \leqslant s_{P}
$$

The following theorem can now be proved.
Theorem 29. If P^{\prime} and $P^{\prime \prime}$ are any two partitions of $[a, b]$, then

$$
s_{P^{\prime}} \leqslant S_{P^{\prime \prime}} \text { and } s_{P^{\prime \prime}} \leqslant S_{P^{\prime}} \quad[3,119]
$$

Proof. Form the partition $P^{\prime \prime \prime}=P^{\prime} \cup P^{\prime \prime}$, that is, $P^{\prime \prime \prime}$ is formed by using all the points of P^{\prime} together with all the points of $P^{\prime \prime}$. Thus $P^{\prime \prime}$ ' is a subdivision of P^{\prime} and $P^{\prime \prime}$ and

$$
s_{P^{\prime}} \leqslant s_{P^{\prime \prime}} \leqslant S_{P^{\prime \prime}} \leqslant S_{P^{\prime \prime}}
$$

and

$$
s_{P^{\prime \prime}} \leq s_{P^{\prime \prime}} \leq S_{P^{\prime \prime}} \leq S_{P^{\prime}}
$$

From these inequalities it follows that

$$
s_{P^{\prime}} \leqslant S_{P^{\prime \prime}} \text { and } s_{P^{\prime \prime}} \leqslant s_{P^{\prime}}
$$

It is now possible to form a sequence of subdivisions $\left\{\mathrm{P}_{k}\right\}$
with norm

$$
d_{k}=\max _{\left(P_{k}\right)}\left(y_{v+1}-y_{v}\right), \quad(k=1,2, \ldots),
$$

such that $d_{k} \rightarrow 0$, and such that

$$
s_{\mathrm{P}_{1}} \leqslant \mathrm{~s}_{\mathrm{P}_{2}} \leqslant \ldots . \leqslant \mathrm{s}_{\mathrm{P}_{\mathrm{k}}} \leqslant \ldots \mathrm{~S}_{\mathrm{P}_{\mathrm{k}}} \leqslant \ldots . . \leqslant \mathrm{S}_{\mathrm{P}_{2}} \leqslant \mathrm{~S}_{\mathrm{P}_{1}}
$$

Thus ${ }^{s_{P_{k}}}$ and $\mathrm{S}_{\mathrm{P}_{\mathrm{k}}}$ form bounded monotone sequences whose limits exist and

$$
\lim _{k \rightarrow \infty}{ }^{s} P_{k}=s \leqslant S=\lim _{k \rightarrow \infty} S_{P_{k}}
$$

Therefore

$$
\begin{aligned}
0 \leqslant S-s \leqslant S_{P_{k}}-s_{P_{k}} & =\sum_{V}\left(y_{V+l}-y_{V}\right) \cdot m\left(E_{V}\right) \leqslant \sum_{V} d_{k} \cdot m\left(E_{V}\right) \\
& =d_{k} \sum_{V} m\left(E_{V}\right)=d_{k} \cdot(b-a)
\end{aligned}
$$

Since $d_{k} \rightarrow 0$ as $k \longrightarrow \infty, d_{k} \cdot(b-a) \longrightarrow 0$, and $S=s$.
The Lebesgue integral can now be defined.

Definition 8. The common value $S=s$ is called the Lebesgue integral of $f(x)$ in $[a, b]$, denoted

$$
\int_{a}^{b} f(x) d x,
$$

and is equivalent to

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{d_{k} \rightarrow 0} \sum_{v} X_{v} \cdot m\left(E_{v}\right) \\
& =\lim _{d_{k} \rightarrow 0} \sum_{v} y_{v+1} \cdot m\left(E_{v}\right), \\
& =\lim _{d_{k} \rightarrow 0} \sum_{v} \lambda_{v}=m\left(E_{v}\right),
\end{aligned}
$$

and also
where λ satisfies the inequality $\mathrm{y}_{\mathrm{v}} \leqslant \lambda_{\mathrm{v}} \leqslant \mathrm{y}_{\mathrm{v}+1} \quad[4,64]$.
A function $f(x)$ for which $s=S$ in $[a, b]$ is seid to be Lebesgue integrable or summable in $[a, b]$.

It will now be proved that the Lebesgue integral, as defined above, is independent of the saquence of subdivisions used, and any sequence of partitions with norms $d_{k} \longrightarrow 0$ may be employed.

Consider any two sequences of partitions $\left\{P_{k}\right\},\left\{P_{k}^{\prime}\right\}$ with norms d_{k} and $d_{k}^{\dagger} \longrightarrow 0$, respectively. The corrasponding sums ara $S_{P_{k}}, s_{P_{k}}$ and $S_{P_{k}^{\prime}}, s_{P_{k}^{\prime}}$. Form a third partition $P_{k}^{\prime \prime}$ by combining the points of P_{k} and P_{k}^{\prime}. Thus $P_{k}^{\prime \prime}$ is a subdivision of P_{k} and of P_{k}^{\prime}; moreover, $\mathrm{P}_{\mathrm{k}+1}^{\prime \prime}$ is a subdivision of $\mathrm{P}_{k}^{\prime \prime}$. Lat $\mathrm{s}_{\mathrm{P}_{k}^{\prime \prime}}$ and $\mathrm{S}_{\mathrm{P}_{k}^{\prime \prime}}$ be the sums corresponding to $\mathrm{P}_{\mathrm{k}}^{\prime \prime}$ and $\mathrm{d}_{\mathrm{k}}^{\prime \prime} \rightarrow 0$ be the norm of $\mathrm{P}_{\mathrm{k}}^{\prime \prime}$. Also set

Then $s^{\prime \prime}=S^{\prime \prime}$, and

$$
\begin{aligned}
& s_{P_{k}} \leqslant s_{P_{k}^{\prime \prime}} \leqslant s^{\prime \prime}=s^{\prime \prime} \leqslant S_{P_{k}^{\prime \prime}} \leqslant S_{P_{k}} \\
& s_{P_{k}^{\prime}} \leqslant s_{P_{k}^{\prime \prime}} \leqslant s^{\prime \prime}=S^{\prime \prime} \leqslant s_{P_{k}^{\prime \prime}} \leqslant S_{P_{k}}^{\prime}
\end{aligned}
$$

Since $S_{P_{k}}-s_{\mathrm{P}_{k}} \leqslant d_{k}(b-a)$ and $S_{P_{k}}-s_{P_{k}} \leqslant d_{k}^{\prime} \cdot(b-a)$, it follows for every $\in>0$ there exists a k_{0} such that

$$
s_{\mathrm{P}_{\mathrm{k}}}-s_{\mathrm{P}_{\mathrm{k}}}<\epsilon \text { and } \mathrm{s}_{\mathrm{P}_{\mathrm{k}}^{\prime}}-s_{\mathrm{P}_{\mathrm{k}}^{\prime}}<\epsilon
$$

whenever $k \geqslant k_{0}$. It then follows that

$$
\begin{array}{ll}
\mathrm{s}_{\mathrm{P}_{\mathrm{k}}}-\mathrm{S}^{\prime \prime}<\epsilon, & \mathrm{s}^{\prime \prime}-s_{\mathrm{P}_{\mathrm{k}}}<\epsilon, \\
\mathrm{S}_{\mathrm{k}}^{\prime} & -\mathrm{s}^{\prime \prime}<\epsilon,
\end{array} \mathrm{s}^{\prime \prime}-\mathrm{s}_{\mathrm{P}_{\mathrm{k}}^{\prime}}<\epsilon, \text { for } \mathrm{k} \geqslant \mathrm{k}_{0} .
$$

$$
\lim _{d_{k} \rightarrow 0} s_{P_{k}}=\lim _{d_{k} \rightarrow 0} S_{P_{k}}=\lim _{d_{k}^{\prime} \rightarrow 0} s_{P_{k}^{\prime}}=\lim _{d_{k}^{\prime}}^{11 m_{0}} S_{P_{k}^{\prime}}=s^{\prime \prime}=s^{\prime \prime}
$$

Thus two completely erbitrery sequences of pertitions $\left\{P_{k}\right\}$ and $\left\{\mathrm{P}_{k}^{\prime}\right\}$ heve the seme limit, which implies the integrel is independent of the sequence used.

In the definition of the Lebesgue integrel the intervel $[e, b]$ cen be repleced by e meesureble set M. Then the $E_{v}{ }^{\prime} s$ ere defined as

$$
E_{V}=\left\{x \in M: y_{v} \leqslant f(x)<y_{v+1}\right\},
$$

and $m(M)$ repleces $b-\theta$. The notetion for the integrel is

$$
\int_{M} f(x) d x .
$$

With e few edditionel essumptions the Lebesgue integrel cen be generelized to include unbounded meesureble functions [4, 66]. The y-exis cen be subdivided by meens of e pertition P such thet
.. $<y_{-v}<\ldots<y_{-2}<y_{-1}<y_{0}<y_{1}<\ldots<y_{v}<y_{v_{+1}}<\cdots$ with $\mathrm{y}_{\mathrm{v}} \rightarrow \infty$ as $\mathrm{v} \rightarrow \infty$ end $\mathrm{y}_{\mathrm{v}} \rightarrow-\infty$ es $\mathrm{v} \longrightarrow-\infty$. It must be essumed thet the set of differences $\left(y_{v+1}-y_{v}\right)$ is bounded, end cell the leest upper bound of this set the norm d of P. Now form e sequence of such partitions $\left\{P_{k}\right\}$ with $d_{k} \longrightarrow 0$. A finel essumption must be made, thet the infinite sums $s_{P_{k}}$ end $S_{P_{k}}$ converge. Under these edditionel assumptions the previous discussion cen be madified, end the velue $\mathrm{S}=\mathrm{s}$ is egein the Lebesgue integrel. It is helpful to know thet, since $\left\{\mathrm{s}_{\mathrm{P}_{k}}\right\}$ end $\left\{\mathrm{S}_{\mathrm{P}_{\mathrm{k}}}\right\}$ ere monotone increesing end decreesing sequences, if for any perticular value of k, sey k_{0}, the sums $S_{P_{k}}$ end $s_{P_{k}}$ ere
finite, then the corresponding sums are finite for all $k \geqslant k_{0}$. ELEMENTARY PROPERTIES OF THE LEBESGUE INTEGRAL

To expand the concept of the Lebesgue integral, a few elementary properties are presented. Most of the properties established in this section are for a real function $f(x)$ which is assumed measurable and bounded on a measurable set M. The excaption is tha last theorem where $|f(x)|$ is assumed measurable and bounded.

The following theorem is obtained as a direct result of the limitations placed on $f(x)$ when defining the Lebesgue integral in the preceding part of this report.

Theorem 30. Every function $f(x)$ which is boundad and measurable in $[a, b]$ is summable in $[a, b][4,64]$.

The following elemantary property is proved.

Theorem 31. If $f(x)$ is measurable and bounded on M, then $f(x)$ is summable on each measurable subset M_{1} of $M[4,74]$.

Proof. Using the dafinition of a partition previously stated, let P be a partition such that

$$
\alpha=y_{0}<y_{1}<\cdots<y_{n}<y_{n+1}=\beta,
$$

where $\alpha \leqslant f(x)<. \beta$. It can be seen that

$$
\begin{aligned}
\left\{x \in M_{1}: y_{v} \leqslant f(x)<y_{v+1}\right\} & =\left\{x \in M: y_{v} \leqslant f(x)<y_{v+1}\right\} \cap M_{1} \\
& =E_{v} \cap M_{1} .
\end{aligned}
$$

Since $E_{v} \cap M_{1} \subset E_{v}$,

$$
m\left(E_{v} \cap M_{1}\right) \leq m\left(E_{v}\right)
$$

Therefore the Lebesgue sums involving $m\left(E_{v} \cap M_{1}\right)$ converge, since the Lebesgue sums in terms of M converge.

The following theorem is sometimes celled the first law of the mean.

Theorem 32. If $f(x)$ is measurable end bounded on $M(\alpha \leqslant f(x)$ $<\beta$ for ell $x \in M$), then

$$
\alpha \cdot m(M) \leqslant \int_{M} f(x) d x \leqslant \beta \cdot m(M) \quad[3,121] .
$$

Proof. Let $\left\{P_{k}\right\}$ be a sequence of pertitions with norms $d_{k} \longrightarrow 0$. It hes been shown the

$$
s_{P_{1}} \leqslant s_{P_{2}} \leqslant \ldots \leqslant s_{P_{k}} \leqslant \ldots \leqslant \int_{M} f(x) d x \leqslant \ldots \leqslant s_{P_{k}} \leqslant \ldots .
$$

Let P_{1} be the undivided intervel $[\alpha, \beta]$. Then $s_{P_{1}}=\alpha \cdot m(M)$ and $S_{P_{1}}=\beta \cdot m(M)$, and this esteblishes the theorem.

The following corollaries are both useful and descriptive of the Lebesgue integral.

Corollary 1. If $\mathrm{f}(\mathrm{x}) \geqslant 0$ on $\mathrm{M}, \int_{\mathrm{M}} \mathrm{f}(\mathrm{x}) \mathrm{d} x \geqslant 0$.
Proof. This follows from the theorem by letting $\alpha=0$.
Corollary 2. If $\dot{m}(M)=0$, then $\int_{M} f(x) d x=0$.
Corollary 3. If $f(x)=C$, e constant on M, then

$$
\int_{M} C d x=C \cdot m(M)
$$

Proof. This can be seen by letting the interval $[\alpha, \beta]=$ $[C, C+\epsilon]$, where $\epsilon>0$. In particular, if $C=1$, then

$$
\int_{M} C d x=\int_{M} 1 \cdot d x=m(M)
$$

The next theorem asserts the additivity of the Lebesgue integral.

Theorem 33. If $f(x)$ is measurable and bounded on M and M is the union of countably many disjoint and measurable sets

$$
M=\bigcup_{k=1}^{\infty} M_{k}, \quad\left(M_{k} \cap M_{k}^{\prime}=\varnothing, k \neq k^{\prime}\right),
$$

then

$$
\int_{M} f(x) d x=\sum_{k=1}^{\infty} \int_{M_{k}} f(x) d x[3,121]
$$

Proof. Consider first the simple case in which there are only two disjoint sets:

$$
M=M_{1} \cup M_{2}, \quad\left(M_{1} \cap M_{2}=\phi\right)
$$

Since $f(x)$ is bounded, $\alpha \leqslant f(x)<\beta$ on the set M. Let P be a partition of the interval $[\alpha, \beta]$ and define the sets
and

$$
\begin{array}{ll}
E_{v}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right] & \text { on } M, \\
E_{v}^{\prime}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right] & \text { on } m_{1}, \\
E_{v}^{\prime \prime}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right] & \text { on } M_{2} .
\end{array}
$$

Obviously

$$
E_{\mathrm{V}}=\dot{E}_{\mathrm{V}}^{\prime} \cup \mathrm{E}_{\mathrm{V}}^{\prime \prime} \quad\left(\mathrm{E}_{\mathrm{V}}^{\prime} \cap E_{\mathrm{V}}^{\prime \prime}=\varnothing\right),
$$

and therefore

$$
\sum_{v=0}^{n} y_{v} \cdot m\left(E_{v}\right)=\sum_{v=0}^{n} y_{V} \cdot m\left(E_{V}^{\prime}\right)+\sum_{v=0}^{n} y_{v} \cdot m\left(E_{V}^{\prime \prime}\right)
$$

Let $\left\{P_{k}\right\}$ be a sequence of pertitions with norms d_{k}. Then as $d_{k} \longrightarrow 0$,

$$
\int_{M} f(x) d x=\int_{M_{1}} f(x) d x+\int_{M_{2}} f(x) d x
$$

Therefore the theorem holds for the case of two disjoint sets. Applying the technique of methemeticel induction, the theorem cen be generelized to the case of en arbitrery finite number " n ". The denumerable cease is ell that is left to consider. For this cease

$$
M=\bigcup_{k=1}^{\infty} M_{k} \text {. }
$$

By e property of meesureble sets,

$$
m(M)=\sum_{k=1}^{\infty} m\left(M_{k}\right),
$$

but since this series converges,

$$
\sum_{k=n+1}^{\infty} m\left(M_{k}\right) \longrightarrow 0 \text { es } n \longrightarrow \infty
$$

Denote

$$
\bigcup_{n+1}^{\infty} M_{k}=R_{n} .
$$

Since the theorem is already proved for a finite number of component terms, it is possible to write the following equality:

$$
\int_{M} f(x) d x=\sum_{k=1}^{n} \int_{M_{k}} f(x) d x+\int_{R_{n}} f(x) d x
$$

Then, by Theorem 32,

$$
\alpha \cdot m\left(R_{n}\right) \leqslant \int_{R_{n}} f(x) d x \leqslant \beta \cdot m\left(R_{n}\right),
$$

end the measure, $m\left(R_{n}\right)$, of the set R_{n} epproeches zero es
$\mathrm{n} \rightarrow \infty$. It follows that

$$
\int_{R_{n}} f(x) d x \rightarrow 0
$$

as $n \longrightarrow \infty$, which yields the conclusion.

The following useful property is proved for real functions $f(x)$ and $g(x)$.

Theorem 34. If $f(x)$ and $g(x)$ are measurable and bounded on M, then $f(x)+g(x)$ is summable and

$$
\int_{M}(f(x)+g(x)) d x=\int_{M} f(x) d x+\int_{M} g(x) d x[2,217] .
$$

Proof. Let $\alpha \leqslant f(x)<\beta$, and $\delta \leqslant g(x)<\tau$. Let P and Q be partitions of $[\alpha, \beta]$ and $[\delta, \tau]$, respectively, such that
and

$$
\begin{aligned}
& \alpha=\mathrm{y}_{0}<\mathrm{y}_{1}<.,<\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{n}+1}=\beta, \\
& \delta=\overline{\mathrm{y}}_{0}<\overline{\mathrm{y}}_{1}<., \cdot<\overline{\mathrm{y}}_{\mathrm{N}}<\overline{\mathrm{y}}_{\mathrm{N}+1}=\tau .
\end{aligned}
$$

Also set

$$
\begin{array}{ll}
E_{v}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right], \\
\bar{E}_{1}=E\left[\bar{y}_{i} \leqslant g(x)<\bar{y}_{i+1}\right] \quad & (v=0,1,2, \ldots, n ; \\
& i=0,1,2, \ldots, N) .
\end{array}
$$

Define

$$
\begin{array}{r}
T_{1, v}=E_{V} \cap \bar{E}_{1} \quad(v=0,1,2, \ldots, n ; 1=0,1,2, \\
\ldots, N) .
\end{array}
$$

Obviously the set

$$
M=\bigcup_{i, v} T_{i, v}
$$

and the sets $T_{1, v}$ are disjoint, hence

$$
\int_{M}(f(x)+g(x)) d x=\sum_{i, v} \int_{T_{1, v}}(f(x)+g(x)) d x .
$$

On the set $T_{i, v}$

$$
y_{v}+\bar{y}_{i} \leqslant f(x)+g(x)<\overline{\mathrm{y}}_{i+1}+y_{v+1}
$$

end the first lew of the mean implies

$$
\begin{aligned}
\left(y_{v}+\bar{y}_{i}\right) \cdot m\left(T_{i, v}\right) & \leq \int_{T_{i}, v}(f(x)+g(x)) d x \\
& \leq\left(y_{v+1}+\bar{y}_{i+1}\right) \cdot m\left(T_{i, v}\right)
\end{aligned}
$$

A combination of these inequalities yields

$$
\begin{aligned}
\sum_{i, v}\left(y_{v}+\bar{y}_{i}\right) \cdot m\left(T_{i, v}\right) & \leqslant \int_{M}(f(x)+g(x)) d x \\
& \leqslant \sum_{i, v}\left(y_{v+1}+y_{i+1}\right) \cdot m\left(T_{i, v}\right) .
\end{aligned}
$$

Consider the sum

$$
\sum_{i, v} y_{v} \cdot m\left(T_{i, v}\right),
$$

which can be written in the form

$$
\sum_{v=0}^{n-1} y_{v}\left(\sum_{i=0}^{N-1} m\left(T_{i, v}\right)\right)
$$

where

$$
\begin{aligned}
\sum_{i=0}^{N-1} m\left(T_{i, v}\right)=m\left[\bigcup_{i=0}^{N-1} T_{i, v}\right] & =m\left[\bigcup_{i=0}^{N-1} \bar{E}_{i} \cap E_{v}\right]=m\left[E_{v} \cap \bigcup_{i=0}^{N-1} \bar{E}_{i}\right] \\
& =m\left(E_{v} \cap M\right)=m\left(E_{v}\right) ;
\end{aligned}
$$

so the the original sum meg elsa be written es

$$
\sum_{v=0}^{n-1} y_{v} \cdot m\left(E_{v}\right) .
$$

Hence the originel sum is the Lebesgue sum s_{p} of the function $f(x)$. Denote this sum s_{f}. The other sums in the inequality cen
be denoted end evelueted enslogously, so thet the inequelity cen be written

$$
s_{f}+s_{g} \leqslant \int_{M}(f(x)+g(x)) d x \leqslant s_{f}+s_{g}
$$

By increesing the number of points of the pertitions P end Q end by teking the limit in the inequelities ebove, the theorem is proved.

It is now possible to prove the following elementary property.

Theorem 35. If $f(x)$ is meesureble end bounded on M end C is e constent, then

$$
\int_{M} c \cdot f(x) d x=C \int_{M} f(x) d x \quad[3,125]
$$

Proof. If $C=0$, the theorem is obvious. Consider the cese $c>0$. Since $f(x)$ is bounded, $\alpha \leqslant f(x)<\beta$. Let P be e pertition of the segment $[\alpha, \beta]$ end let

$$
E_{v}=E\left[y_{v} \leqslant f(x)<y_{v+1}\right]
$$

It follows thet

$$
\int_{M} C \cdot f(x) d x=\sum_{n=0}^{n-1} \int_{M_{k}} C \cdot f(x) d x
$$

On the sets E_{v} the inequelities

$$
c \cdot y_{v} \leqslant c \cdot f(x)<c \cdot y_{v+1}
$$

hold. Thus by the first law of the mean,

$$
c \cdot y_{v} \cdot m(E) \leqslant \int_{M_{k}} c \cdot f(x) d x \leqslant c \cdot y_{v+1} \cdot m\left(E_{v}\right)
$$

Combining these inequalities yields

$$
c \cdot s \leqslant \int_{M} c \cdot f(x) d x \leqslant c \cdot s,
$$

where s end S ere the Lebesgue sums for $f(x)$. The theorem is obtained from this lest inequality by teking S - s erbitrerily smell. Finally, consider $\mathrm{C}<0$. Here

$$
\begin{aligned}
0=\int_{M}[C \cdot f(x)+(-C) \cdot f(x)] d x= & \int_{M} C \cdot f(x) d x \\
& +(-C) \int_{M} f(x) d x
\end{aligned}
$$

and the proof is completed.
Another useful property of the Lebesgue integrel is the feet the equivalent functions have equal integrals. Two fundtions ere seid to be equivelent, denoted $f(x) \sim g(x)$, if $f(x)=g(x)$ on M except for e set of meesure zero. The property will now be stated es θ theorem.

Theorem 36. If $f(x)$ is meesureble end bounded on M end $f(x) \sim g(x)$ on M, then $g(x)$ is summable on M end

$$
\int_{M} f(x) d x=\int_{M} g(x) d x[4,75] .
$$

Proof. By definition $f(x)=g(x)$ on $M-Z$, where Z is e set of measure zero. Then

$$
\int_{M} f(x) d x=\int_{M-Z} f(x) d x+\int_{Z} f(x) d x
$$

Since

$$
\int_{Z} f(x) d x=\int_{Z} g(x)=0 \text { end } \int_{M-Z} f(x) d x=\int_{M-Z} g(x) d x \text {, }
$$

it follows the

$$
\int_{M} f(x) d x=\int_{M-Z} g(x) d x+\int_{Z} g(x) d x=\int_{M} g(x) d x
$$

An application of this theorem will now be given. Consider the problem of finding the Lebesgue integral of

$$
f(x)=\left\{\begin{array}{l}
1 \text { for irrational } x \\
0 \text { for rational } x, \text { in the interval } M=[0,1] .
\end{array}\right.
$$

Let $g(x)=1$ in $[0,1]$. Then $f(x) \sim g(x)$ in $[0,1]$. By Corollary 3 of Theorem 32

$$
\int_{M} g(x) d x=\int_{M} 1 d x=1 \cdot(1-0)=1
$$

Hence by the preceding theorem $f(x)$ is also summable and

$$
\int_{M} g(x) d x=\int_{M} f(x) d x=1
$$

The following theorem is fundamental to the Lebesgue integral.

Theorem 37. If $f(x)$ is measurable and bounded on M, then $|f(x)|$ is summable on M and

$$
\left|\int_{M} f(x) d x\right| \leqslant \int_{M}|f(x)| d x[4,76]
$$

Proof. Set $M^{+}=M[f(x) \geqslant 0]$ and $M^{-}=M[f(x)<0]$.
Then by Theorem 33,

$$
\int_{M} f(x) d x=\int_{M^{+}} f(x) d x+\int_{M^{-}} f(x) d x
$$

and therefore

$$
\int_{M} f(x) d x=\int_{M^{+}}|f(x)| d x-\int_{M^{-}}|f(x)| d x
$$

since $f^{\prime}(x)=-|f(x)|$ when $f(x)$ is negetive. Since the integrels on the right side of the statement above exist, then the sum of the integrels exists end by Theorem 33 egein

$$
\int_{M^{+}}|f(x)| d x+\int_{M^{-}}|f(x)| d x=\int_{M}|f(x)| d x .
$$

This states that $|f(x)|$ is summeble on M. Note that

$$
\int_{M^{+}}|f(x)| d x \geqslant 0 \text { and } \int_{M^{-}}|f(x)| d x \geqslant 0
$$

Then

$$
\begin{aligned}
\left|\int_{M^{\prime}} f(x) d x\right|= & \left|\int_{M^{+}}\right| f(x)\left|d x-\int_{M^{-}}\right| f(x)|d x| \\
& \leqslant\left|\int_{M^{+}}\right| f(x)\left|d x+\int_{M^{-}}\right| f^{\prime}(x)|d x| \\
= & \int_{M^{+}}|f(x)| d x+\int_{M^{-}}|f(x)| d x=\int_{M}|f(x)| d x
\end{aligned}
$$

end the theorem is esteblished.

The converse of the preceding theorem is elso proved.

Theorem 38. If $f(x)$ is meesureble on M and $|f(x)|$ is meesureble end bounded, then $f(x)$ is also summeble on $M[4,77]$.

Proof. If $f(x)$ is measureble, then the sets M^{+}and M^{-}ere meesureble. Since $|f(x)|$ is surmeble,

$$
\int_{M}|f(x)| d x=\int_{M^{+}}|f(x)| d x+\int_{M^{-}}|f(x)| d x
$$

However, if these two integrels on the right exist,

$$
\int_{M^{+}}|f(x)| d x-\int_{M^{-}}|f(x)| d x
$$

exists end equels $\int_{M} f(x) d x$.

COMPARISON OF THE RIEMANN AND LEBESGUE INTEGRALS

For the purpose of compering the Riemenn and Lebesgue integrels, the definition of the upper end lower Riemenn intergrele, end the definition of the Riemenn integral will be essumed to be known to the reader. The Riemenn integrels will be denoted by the prefix "R".

The definition of the upper end lower Lebesgue integral is es follows.

Definition 9. The upper end lower Lebesgue integrels of the function $f(x)$ defined on e meesureble set M ere
end

$$
\int_{M} f(x) d x=\operatorname{lnf}\left\{S_{P}\right\}
$$

$$
\int_{M} f(x) d x=\sup \left\{s_{p}\right\},
$$

respectively $[2,205]$.

The following reletionship between the Riemenn and Lebesgue integrele will now be given.

Theorem 39. If M is a closed interval, then for every bounded function $f(x)$ the following inequalities hold:

$$
R \int_{M} f(x) d x \geqslant \int_{M} f(x) d x \geqslant \int_{M} f(x) d x \geqslant R \int_{M} f(x) d x[2,206]
$$

As e result of this theorem it cen be seen the if the

Riemenn integral exists, the upper end lower Lebesgue integrals ere equel to eech other end to the Riemenn integral. Hence the Lebesgue integrel exists whenever the Riemenn integrel exists, end has the seme velue. The converse of this preceding stetement is not true, es may be seen by considering agein the previous exemple, known es the Dirichlet function. Let

$$
\begin{aligned}
& f(x)=0 \text { for } x \text { irrationel } \\
& f(x)=1 \text { for } x \text { retionel in }[0,1] .
\end{aligned}
$$

Since $f(x)$ is e constent function of the set $R *$ of retionels end $m(R *)=0$, the Lebesgue integrel $\int_{M} f(x) d x=0$, where $M=[0,1]$.

For the upper end lower Riemenn integrels of $f(x)$,

$$
R \int_{0}^{1} f(x) d x=1 \text { and } R \int_{0}^{1} f(x) d x=0,
$$

so thet the Riemenn integrel of $f(x)$ does not exist.
Therefore the existence of the Lebesgue integrel does not imply the existence of the Riemenn integrel. Thus the Lebesgue Integrel is more general then the Riemenn integrel, et leest for bounded functions.

The Lebesgue integrel is superior to the Riemenn integrel in the eree of finding limits reletive to integretion processes. Let $\left\{f_{n}(x)\right\}$ be e sequence of summeble functions on M which converge to $f(x)$. Does

$$
\int_{M} f(x) d x=\lim _{n \rightarrow \infty} \int_{M} f_{n}(x) d x ?
$$

To see thet the preceding equality does not hold necesserily, consider the following exemple: Let $M=[0,1]$ end

$$
f_{n}(x)=\left\{\begin{array}{l}
0 \text { outside }\left(0, \frac{1}{n}\right) \\
n \text { for } x=\frac{1}{2 n} \\
\text { Ineer in }\left[0, \frac{1}{2 n}\right] \text { end }\left[\frac{1}{2 n}, \frac{1}{n}\right] \\
\quad(n=1,2, \ldots) .
\end{array}\right.
$$

Then $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=0$ since $f_{n}(x)=0$ for $x \leqslant 0$, end, for eech $x>0$, n cen be teken so large that $\frac{1}{n}<x$, end hence $f_{n}(x)=0$. Thus $\int_{M} f(x) d x=0$, but $\int_{M} f_{n}(x) d x=\frac{1}{2} \cdot \frac{1}{n} \cdot n$ $=\frac{1}{2}$. Therefore it cen be seen thet without edditionel conditions the limit end integretion processes cennot be interchanged. A generel condition under which the limit end integretion processes mey be interchenged for Lebesgue integretion is known es the uniform boundedness of e sequence.

Definition 10. A sequence $\left\{f_{n}(x)\right\}$ is celled uniformly bounded on M if $\left|f_{n}(x)\right| \leqslant C, n=1,2$, . . . where C is e consterit independent of n end of $x \in M \quad[2,103]$.

The bounded convergence theorem for the Lebesgue integrel mey now be given.

Theorem 40. If the sequence of summeble functions $\left\{f_{n}(x)\right\}$ converges to $f(x)$ end is uniformly bounded on M, then $f(x)$ is also summable on M end

$$
\int_{M} f(x) d x=\lim _{n \rightarrow \infty} \int_{M} f_{n}(x) d x[4,82] .
$$

Proof. The function $f(x)$, as the limit of a convergent sequince of meesureble functions, is e meesureble function. All functions involved ere bounded end meesureble, hence they ere summeble. Since the sequence $\left\{f_{n}(x)\right\}$ is uniformly bounded on M, there is $e C>0$ such the for every n end every $x \in M$, $\left|f_{n}(x)\right| \leqslant C$. Also, for every $x \in M,|f(x)| \leqslant C$. Let $\in>0$ be given. By the Theorem of Bgoroff $[2,187]$, there is e meesureble set TC M such the

$$
m(M-T)<\frac{\epsilon}{4 C},
$$

end $\left\{f_{n}(x)\right\}$ converges uniformly on T to $f(x)[2,223]$. There is a number N such the for every $n>N$ end every $x \in T$,

$$
\left|f(x)-f_{n}(x)\right|<\frac{\epsilon}{2 \cdot m(T)}
$$

Hence for every $n>N$,

$$
\begin{aligned}
& \left|\int_{M} f(x) d x-\int_{M} f_{n}(x) d x\right|=\mid \int_{T} f(x) d x+\int_{M-T} f(x) d x \\
& \quad-\int_{T} f_{n}(x) d x-\int_{M-T} f_{n}(x) d x\left|\leqslant\left|\int_{T}\left(f(x) d x-f_{n}(x)\right) d x\right|\right. \\
& \quad+\left|\int_{M-T}\left(f(x)-f_{n}(x)\right) d x\right|<\frac{\epsilon}{2 \cdot m(T)} \cdot m(T)+\frac{\epsilon}{4 C} \cdot 2 C=\epsilon .
\end{aligned}
$$

Hence for every $\mathrm{n}>\mathrm{N}$,

$$
\left|\int_{M} f(x) d x-\int_{M} f_{n}(x) d x\right|<\epsilon,
$$

and the theorem is proved.

This theorem is not true for Riemann integrals, for in genersl the limit function $f(x)$ is not Riemann integrable under these conditions, as may be seen by the following example.

Assume the rational numbers in $[0,1]$ to be ordered in a sequence $r_{1}, r_{2}, \ldots, r_{m}, \ldots$, and set

$$
f_{n}(x)= \begin{cases}0 \text { for } x=r_{1}, & r_{2}, \ldots, r_{m} \\ 1 \text { otherwise } & \text { in }[0,1] .\end{cases}
$$

Thus the $f_{n}(x)$ are Riemann integrable. However,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) & =0 \text { for rational } x \\
& =1 \text { otherwise in }[0,1]
\end{aligned}
$$

and $f(x)$ is not Riemann integrable $[2,210]$.
A further generalization of Theorem 40 is possible for the Lebesgue integral. This theorem is known as the "dominated convergence theorem".

Theorem 41. If the sequence of aummable functions $\left\{f_{n}(x)\right\}$ converges to $f(x)$ and if

$$
\left|f_{n}(x)\right| \leqslant F(x) \quad(n=1,2, \ldots)
$$

on M, where $F(x)$ is summable on M, then $f(x)$ is also summable on M and

$$
\int_{M} f(x) d x=\lim _{n \rightarrow \infty} \int_{M} f_{n}(x) d x[4,83]
$$

Another area in which the Lebesgue integral is superior to the Rieman integral is in the relation between integration and differentiation. Consider a function $f(x)$ which is continuous in $[a, b]$ and define

$$
F(x)=\int_{\theta}^{x} f(t) d t \text { with } x \in[\theta, b] .
$$

$F(x)$ is e primitive or entiderivetive of $f(x)$, for either the Lebesgue or Riemenn integrels, since the following theorem is true in both ceres.

Theorem 42. If $f(x)$ is continuous et $x_{0} \in(a, b)$, then $F^{\prime}\left(x_{0}\right)$ exists end equels $f\left(x_{0}\right)[4,86]$.

If the function $f(x)$ is required to be e bounded derivefive, then the Riemenn integral does not necessarily yield the primitive, while the following theorem cen be proved for the Lebesgue integrel.

Theorem 43. Every bounded derivative in $[\theta, b]$ is summable end the Lebesgue integral yields the primitive (antiderivetive) up to en edditive constent. That is, if $F^{\prime}(x)$ is bounded in $[e, b]$, then for every $x \in[e, b]$

$$
\int_{e}^{x} F^{\prime}(t) d t=F(x)-F(e) \quad[4,87] .
$$

Proof. Since $\mathrm{F}^{\prime}(\mathrm{x})$ is meesureble end bounded in $[\mathrm{e}, \mathrm{b}]$, it is summeble in $[\mathrm{e}, \mathrm{b}]$. There is e theorem of Bini which states the if $\mathrm{F}^{\prime}(\mathrm{x})$ is bounded in $[\mathrm{e}, \mathrm{b}]$, then

$$
\frac{F(x+h)-F(x)}{h},(h>0)
$$

hes the some bounds there es $\mathrm{F}^{\prime}(x)[4,87]$. Thus using e null sequence $\left\{n_{v}\right\}$, it follows by Theorem 40 the

$$
\begin{aligned}
\int_{a}^{x} F^{\prime}(t) d t & =\int_{a}^{x} \lim _{h_{V} \rightarrow 0} \frac{F\left(t+h_{V}\right)-F(t)}{h_{V}} d t \\
& =\lim _{h_{V} \rightarrow 0} \int_{a}^{x} \frac{F\left(t+h_{V}\right)-F(t)}{h_{V}} d t \\
& =\lim _{h_{V} \rightarrow 0}\left[\frac{1}{h_{V}}\left(\int_{a}^{x} F\left(t+h_{V}\right) d t-\int_{a}^{x} F(t) d t\right)\right] .
\end{aligned}
$$

Set $t+h_{v}=\tau$ in the first integral of the last expression. Then

$$
\int_{a}^{X} F^{\prime}(t) d t=\lim _{h_{V} \rightarrow 0}\left[\frac{1}{h_{V}}\left(\int_{a+h_{V}}^{x+h_{V}} F(\tau) d \tau-\int_{a}^{x} F(t) d t\right)\right] .
$$

Since $F(x)$ is continuous in $[a, b]$, then its primitive $\Phi(x)$ exists there, that is, $\Phi^{\prime}(x)=F(x)$, and hence

$$
\begin{aligned}
\int_{a}^{x} F^{\prime}(t) d t & =\lim _{h_{V} \rightarrow 0}\left[\frac{\Phi\left(x+h_{V}-\Phi(x)\right.}{h_{v}}-\frac{\Phi\left(a+h_{v}\right)-\Phi(a)}{h_{V}}\right] \\
& =\Phi^{\prime}(x)-\Phi^{\prime}(a)=F(x)-F(a) .
\end{aligned}
$$

To show that the preceding theorem does not hold true for Riemann integration, the following example is given.

Let $g(x)$ be the so-called signum function defined as follows:

$$
\begin{aligned}
& s(x)=1 \text { if } x>0 \\
& s(x)=-1 \text { if } x<0 \\
& s(x)=0 \text { if } x=0 .
\end{aligned}
$$

Let $M=[-1,1]$, then $s(x)$ is bounded in M, but the primitive does not exist $[1,42]$.

A weakness in the Lebesgue integral for a bounded function $f(x)$ occurs as a result of Theorem 37 , which states that the integral of $|f(x)|$ also exists whenever $f(x)$ is summable. However, from elementary calculus there are improper integrals for which this property does not hold. For example,

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2} \text {, but } \int_{0}^{\infty} \frac{|\sin x|}{x} d x
$$

does not exist.
For bounded derivatives the Lebesgue integral is satisfactory, as was stated in Theorem 43; however, unbounded derivatives $F^{\prime}(x)$ are not necessarily sumable. The following is an example of an unbounded derivative which is not summable $[4,89]$. Let

$$
\begin{aligned}
F(x) & =x^{2} \sin \frac{1}{x^{2}} \text { for } x \neq 0 \\
& =0 \text { for } x=0
\end{aligned}
$$

Then

$$
\begin{aligned}
F^{\prime}(x) & =2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}} \text { for } x \neq 0 \\
& =0 \text { for } x=0
\end{aligned}
$$

since

$$
F^{\prime}(0)=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h^{2}}}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h^{2}}=0 .
$$

$a=\sqrt{2 / \pi}$. This first term of $\mathrm{F}^{\prime}(x)$ is continuous in $[0, a]$; however,

$$
\int_{0}^{a} \frac{2}{x} \cos \frac{1}{x^{2}} d x
$$

does not exist. To show this, assume the integral did exist, then by Theorem 37

$$
\begin{equation*}
\int_{0}^{a} \frac{2}{x}\left|\cos \frac{1}{x^{2}}\right| \mathrm{d} x \tag{2}
\end{equation*}
$$

also exist. It can be proven that this integral is continuous for every $x \in(0, a),[4,86]$; hence

$$
\begin{equation*}
\int_{0}^{\beta} \frac{2}{x}\left|\cos \frac{1}{x^{2}}\right| \mathrm{d} x=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{a} \frac{2}{x}\left|\cos \frac{1}{x^{2}}\right| \mathrm{d} x . \tag{2}
\end{equation*}
$$

The zeros of the integrand in (1) are at $x=\sqrt{\frac{2}{(2 n+1) \pi}}$ ($\mathrm{n}=0,1, . .$.), thus the right member of (2) may be written as

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\sqrt{2 /(2 n+1) \pi}}{\sqrt{2 /(2 n+3) \pi}} \frac{2}{x}\left|\cos \frac{1}{x^{2}}\right| d x . \tag{3}
\end{equation*}
$$

Making the change of variables $\frac{1}{x^{2}}=z$ in (3), yields

$$
\sum_{n=0}^{\infty} \int_{(2 n+1) \pi / 2}^{(2 n+3) \pi / 2} \frac{\cos z}{z} d z>\sum_{n=0}^{\infty} \int_{(4 n+3) \pi / 4}^{(4 n+5) \pi / 4} \frac{|\cos z|}{z} d z
$$

This last sum is greater than

$$
\sum_{n=0}^{\infty} \frac{1}{2} \sqrt{2} \cdot \frac{1}{(4 n+5) \pi / 4} \cdot \frac{\pi}{2}=\sqrt{2} \sum_{n=0}^{\infty} \frac{1}{4 n+5}>\frac{\sqrt{2}}{5} \sum_{n=0}^{\infty} \frac{1}{n+1} .
$$

This last series diverges, hence (1) is infinite, Since (1) does not exist,

$$
\int_{0}^{2} \frac{2}{x} \cos \frac{1}{x^{2}} d x
$$

cannot exist, by the contrapositive of Theorem 37.

ACKNOWLEDGMENT

The writer wishes to express sincere appreciation to his major professor, Dr. Robart D. Bechtel, for his time and assistance during the preparation of this report.

1. Gelbaum, Bernard R., and John M. H. Olmsted. Counterexamples in analysis. San Francisco: HoldenDey, 1964.
2. Goffman, Casper.

Real functions. New York: Rinehart, 1953.
3. Natanson, I. P.

Theory of functions of a real variable. Translated by Leo F. Boron. New York: Frederick Unger, 1955.
4. Rosenthal, Arthur.

Introduction to the theory of measure and integration. Notes by Robert P. Smith. Stillwater, Oklahoma: Dept. of Mathematics, Oklahoma State University, 1955.
5. Rudin, Walter. Principles of mathematical analysis. New York: MoGrawHill, 1964.

ELEMENTARY CONCEPTS CONGERNING THE LEBESGUE INTEGRAL

by
JOHN R. VANWINKLB
B. A., Harding College, 1961

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SGIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY Menhattan, Kanasa

The first pert of the report is e discussion of Lebesgue meesureble sets, restricted to the reel number line. A definition of Lebesgue meesure is given in terms of outer and inner Lebesgue meesure. After e few elementary properties of Lebesgue meesure ere esteblished, certein femilies of sets which are meesurable eccording to the definition ere considered. For exemple, open end closed sets ere meesureble sets.

The next pert of the report is e discussion of Lebesgue measureble functions, the functions "competible" with Lebesgue meesurable sets. A few elementery properties of Lebesgue meesureble functions ere presented.

In the third pert of the report the Lebesgue integrel is defined. It is shown thet the Lebesgue integral as defined is independent of the sequence of pertitions used.

The fourth pert of the report is devoted to en elementery discussion of the Lebesgue integral. A few of the properties of the Lebesgue integrel ere presented, end the Lebesgue integrel is compered with the Riemann integral. It is shown thet whenever the Riemenn integrel exists on e closed intervel, the Lebesgue integrel exists. The converse is shown not to be true by presenting en exemple. The Lebesgue integrel is elso shown to be superior to the Riemenn integral in the ares of finding limits reletive to integration processes. The Lebesgue and Riemann integrals ere elso compared relative to the reletion between integretion and differentietion. It is shown that the Lebesgue integral of e derivative yields the primitive in e
closed interval for more general conditions than the Riemann integral. The last unit illustrates a weakness of the Lebesgue integral encountered when a derivative to be integrated.is not required to be bounded.

[^0]: ${ }^{1}$ Throughout the report this notetion will be used: the first number indicetee the number of the reference et the end of the report, and the eecond number indicates the pege number.

