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INTRODUCTION

The objective of this report is to demonstrate the ap-

plications of the discrete maximum principle to production

scheduling and inventory control problems in industrial

management. The three cases presented in this report are:

Case 1 is a production scheduling problem and is an illus-

tration of a process with memory in decision. Case 2 is also

a production scheduling problem but in this case backlogging

is permitted. Case 3 deals with the labor assignment as a

dynamic control problem. Nelson (8) has optimized labor

assignment in a labor machine limited production system by

the continuous maximum principle. In this report the problem

is extended for a non-linear cost function and for discrete

time intervals.

The rapid growth of modern technology has played a re-

markable role in the increasing interest in problems of

dynamic optimization. Various optimization techniques are

now available for analysing systems optimization. One such

method is Pontryagin's maximum principle. Originally it was

developed in 1956 for continuous processes and has been

mainly applied in the field of optimum system control (7).

The first attempt to extend the maximum principle to the

optimization of stagewise processes was made by Rozoner in

1959- The various versions of the discrete maximum principle

were proposed by Chang, Katz, and Fan and Wang (3). Not

many papers have been published on the applicability of the



maximum principle to management and operation research

problems U, 5, 6). However, the maximum principle proves

to be a powerful technique for solving optimization problems,

A multi-stage decision process may be considered as an

abstract notion by which large number of human activities

can be represented. A stage may represent any real or ab-

stract entity (a space unit, a time period, etc.) in which

a transformation takes place. Those variables which are

transformed in each stage are called state variables. The

desired transformation of the state variables is achieved

through manipulation of decision variables which remain, or

may be considered to remain, constant within each stage of

the process. The equations which completely describe the

transformation at each stage are called performance equa-

tions. Any process whose performance equations are linear

in state variables is called a linear process. A process

which is not linear is called a non-linear process. The

basic algorithm of the discrete maximum principle is first

stated along with the extension considering the memory in

decision. After that, case studies are presented.

Ruiz (9) presented the formulation of the problems of

Cases 1 and 2. The computation procedure for these cases

is presented in this report.

Case 1 deals with the production scheduling problem.

In this case, sales forecast for given periods are stated

and the objective is to fulfill the sales requirements as



well as to minimize the production cost. This problem is

solved by using the extension of the basic algorithm known

as "memory in decision". Case 2 also deals with the produc-

tion scheduling problem and here, too, sales requirements for

a given period are known but backlogging is permitted. The

iterative procedure for optimum solution is solved by the

exhaustive search technique with a computer.

Case 3 deals with the labor assignment as a dynamic

control problem in a multifacility network. The system

considered has limiting labor resources and the objective

here is to allocate the labor force in an optimum way to

minimize the non-linear in-process inventory cost func-

tion. In the original model, analyzed by Nelson (8), the

work pieces are assumed to arrive at the machine center at

a continuous rate and hence the continuous maximum principle

is employed in optimizing labor, assignment . The model con-

sidered by Bantwal (2) assumed that the work pieces arrive

at discrete time intervals and has a linear in-process in-

ventory cost function. However, the model considered in

this report is an extension of the discrete model and assumes

that the work pieces arrive at discrete time intervals and

the in-process inventory cost is non-linear and hence the

discrete version of the maximum principle is used.
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THE DISCRETE MAXIMUM PRINCIPLE STATEMENT
OF THE ALGORITHM

The following is an outline of the general algorithm

of the discrete maximum principle (3, 5).

A multi-stage decision process consisting of N stages

in sequence is schematically shown in Fig. 1. The state of

the process stream denoted by an s-dimensional vector,

x = (x-i, x
2 , ..., x

s ), is transformed at each stage according

to an r-dimensional decision vector, 6 = (6-p 9
2 » •••» Qr )>

which represents the decision made at that stage. The trans-

formation of the process stream at the nth stage is represented

by a set of performance equations.
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i=l, 2, ..., s; n=l, 2, ..., N.

or in vector form

xn = Tn (x
n-1.

en } ^ n = 1, 2, ..., N; (1)

x° = «

A typical optimization problem associated with such a

process is to find a sequence of 9n , n 1, 2, ..., N, sub-

ject to constraints

n n An An
""

i ' 2 '
' " * ' r '

^0 n = 1, 2, . .
.

, N,
I

i = 1, 2, . .
.

> r, (2)

which makes a function of the state variable of the final

stage N
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«<£- N
c ±

= constant (3)

an extremum when the initial condition x° - <*• is given. The

function S which is to be maximized (or minimized) is the

objective function of the process.

The procedure for solving such an optimization problem

by the discrete maximum principle is to introduce an s

dimensional adjoint vector z
n

and a Hamiltonian function

K
n satisfying the following relations.

H
n = (z

n
)

T
xR =:>: z

n TjU*-1^), n = 1, 2, ..., N, (4)

z
i~

= T^ > i = 1» 2, ..., s; n = 1, 2, ..., N, (5)

and

N
z
i

= c
i'

i = 1> 2
> •••• s * ^

If the optimum decision vector function 9
n

, which makes the

objective function S an extremum (maximum or minimum), is

interior to the set of admissible decisions, , then the

set given by equation (2), a necessary condition for S to be

a (local) extremum with respect to n is

— =0, n = 1, 2, ..., N. (7)



If 6
n

is at a boundary of the set, it can be determined from

the condition that H
n is (locally) extremum.

For the optimization problems in which some of the

final values of state variables, x
i , are preassigned,

such as x*J
= c^ and x{J

= c 2 , and the objective function

is specified as

S = J>_ Ci x±
i~l
i^a
i^b

the basic algorithm represented by equations (4) through

(7) is still applicable, except that equation (6) is replaced

by

z. = c- , i 1, 2, . . . , s. (9)
l * >

i ^ a, b.

t

PROCESSES WITH MEMORY IN DECISIONS (3)

If the transformation at a stage is not only a function

of the decision variable 9n but also of en_1 , that is, the

previous decision has an effect on the subsequent stage, we

write

xn = ^(xn-l. Qn. en-l )j n - 1, 2, ..., N, (10)

where the initial decision vector n is a r - dimensional

constant vector k, that is,

9° = k . (11)
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We are to choose the sequence of 9n to maximize or minimize

the objective function of the process.

To solve such a problem it is necessary to introduce a

new state vector % such that

0C n - en , n = 0, 1, 2, ..., N, (12)

and to introduce a new decision vector to satisfy

wn = en _ en-l , n - 1, 2, ..., N. (13)

Substituting equations (12) and (13) into equation (10),

we obtain

xn .. rpn/ vn-l. -vn-1T^x11"1
; X11- 1

+ wn ; X11"1
), n = 1, 2, ..., N. (14)

It is obvious that the new state vector % satisfies the

performance equation.

^C
n = X1

-1 + wn , n- 1, 2, ..., N. (15)

Equations (14) and (15) are in the general form of equation

(1), although the dimension of the state vector is increased

to (s + r). Thus we obtain an enlarged system process with

(s + r) state variables and r decision variables. The (s + r)

performance equations at each stage are provided by equation

(14) and (15). Equation (11) gives the initial conditions

for the r new state variables.



3. CASE STUDIES

CASE 1. A PRODUCTION SCHEDULING PROBLEM— ILLUSTRATION OF

A PROCESS WITH MEMORY IN DESCISION

DESCRIPTION OF THE PROBLEM:

This case deals with the types of problems where the

sales forecast is known in advance and the management wishes

to schedule their production so as to obtain lowest pro-

duction cost.

The following data are sales forecasts, initial inven-

tory and production. The cost function is given in a situ-

ation in which' the management desires to obtain the lowest

production cost.

yi = Sales in period i, 1 - 1, 2, ..., N (sales must be

satisfied),

1° = Initial inventory

P° = Initial production^

I
N = Inventory desired at the end of the production run.

Costs:

i 2
C(Pn - Pn_1 ) = Cost due to change in production level

from nth stage to (n-l)st stage/

n 2
D(E - I ) = Inventory cost

/

where C, D, and E are constants and are greater than zero.

Find the optimum production level at each period (stage) to

minimize total cost.
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FORMULATION AND SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

The problem is a general N-period (stage) problem and

the process stream can be represented as shown in Figure 1.

Let us define each period of production as a stage and let

6n = production at the ntn stage, Pn
,

x? inventory at the end of ntn stage,

x - cost up to and including the n stage.

The material balance at each stage gives:

I
11"1 + Pn . Qn + I

»
i

Then the performance equations are:

X
l

= x
l~

1
+ &n " Q

n
» n = 1, 2, ..., N, (1)

x, = I (initial inventory) (la)

x^ = I
N

(final inventory) (lb)

xg = x^-
1

+ C(9n - a"" 1 )

2
+ D(E - xj)

2
, (2)

x° - 0. (2a)

Substitution of equation (1) into equation (2) yields.
-

x£ - x^"1 + C(0n - G
11"1

)

2 + D(E - xj"
1

- n + Q
n

) (3)

- T^x11"1
; 6

n
;

0n-l), n = 1, 2, ..., N. (3a)

\
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Equation (3) shows that the transformation at each stage is

not only a function of the decision variable G but also of

9
n~

, that is, the previous decision has an effect on the

subsequent stages. This type of process is defined as a

process with memory in decision (2). To solve this problem

by the discrete maximum principle the following transforma-

tions are required.

Let

x* = 6
n

, n = 1, 2, ..., N, (4)

be a new state variable and

wn . n _
n-l

^ n = 1, 2, ..., N, (5)

be a new decision variable, which satisfies

x§ = x^-1 + wn , n = 1/ 2, ..., N, (6)

x^ = P° , the initial production. (6a)

The performance equations can be modified by substituting

equations (4), (5), and (6) into equations (1) and (3),

which gives

x
l

= x
l"

1 + x
3

-1
+ wn

~
Qn

'

n = lt 2
'
••" N

'
(7)

x
2

= x
2

_1
+ c(wll)2 + ^E-x^-x^-w^Q11

) ,
(S)

Xl """" -L
y

»i- « • • •
J

AN •
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The objective function to be minimized is

> c. x.
•—i i i

.N (9)

where x^ is the total cost incurred and therefore:

1
- 0,

c 2
- 1,

Co = 0.

(9a)

(9b)

(9c)

Introducing the Hamiltonian function, Hn
, and the adjoint

variables, z£, gives:

Hn =
*J

(xj" 1 + x^"1 + wn - Q
n

) + "oF^"1 + CUn)2 +

(E - xj-1 - x^"1 - wn -f Q
n

)

2
] +.»| (x^"

1
+ wn ),D

n = 1, 2, . .
. , N. (10)

Therefore the recurrence relation of the adjoint variables

is

,n-l _ "bK
n

cJxJ'
1

= z? - z? j" 2D(E - x?" 1 - x*"1 - wn + Q
n

) ,

1 <- L 13 J

n - 1, 2, . .
. , N,

,n-l . "b Hn = 7
n

2 ^x9-l 2
n = 1, 2, . .

.
, N,

(11)

(11a)
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n-1 m h Hn n _ 2Dz
n
(E _ n-l^n-l.^n, +

n

3 bxn-l
1*13 3

n-1, 2, ..., N. (lib)

From equations (11), (11a), (lib) and from equations

(9a), (9b), and (dc) we obtain

z, fi c-^ - because x^ is fixed, (12a)

z!J = c
2

- 1, (12b)

z^ - c
3

- 0. (12c)

Combining equations (11a) and (12b) gives

z n = 1 , n = 1, 2, ..., N. (13)

We apply the necessary condition of optimality according to

the maximum principle which states that the optimal choice

of the decision variable will be found where

^r=0. (14)
-2>G

n

Therefore, applying the condition of equation (14) to equation

(10) yields:

»j£.o..»^ + I;^ + ,»li. d5) •

\

•
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V/e take partial derivatives of equations (6), (7), and (8)

with respect to wn , and insert the respective derivatives

into equation (15) which yields

z£ + zg f~2C (w
n

) - 2D(B-a^-1-x5"1.W,*+Qn J + zj = 0,

n = 1, 2, . .
.

, N. (16)

Rearranging equation (16) results in

2D(E-x£- 1-xi^ 1-w
n
+Qn ) - 2C(wn )l -«»z

n - z
n

(17)

Combining equations (11), (13), and (17) gives

z^ = 2D(E-x£-1-x"-1-wn+Qn ) - 2C(wn ) + 2C(wn+1 ) + z"+1 . (18)

Combining equations (lib), (17), and (18) gives

.n+1 2C (w11
) - UC(^+1 ) - 2D(E-xn

-1-x?-1-wn+Q
n

) ,

n = 1, 2, — , N. (19)

Inserting equation (19) into equation (18) gives the fol-

lowing recurrence relation for optimal conditions.

2C(wn
-1

) - 4C(wn ) - 2D(E-x5' 2
-x^- 2-wn

- 1+Qn ) + 2C(wn+1 ) = 0,

This can be written as

(2C+2D) w11" 1 - 4C(wn ) - 2D(E-xn-2-x§- 2+Qn ) + 2C(wn+1 ) = 0,

n = 1, 2, . . . , N. (20)
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The optimal sequence of wn , n 1, 2, ..., N, can be

obtained by utilizing the recurrence equation (20) and the

performance equations (6), (7), and (8). In the systematical

search for wn , n = 1, 2, . .., N, we assume that there exists

an optimal sequence of wn , n = 1, 2, ..., N, which satisfies

equation (20) with permissible error.

CALCULATION PROCEDURE:

Step 1. Assume a value of ir*.

Step 2. Assume w2 = 1.0.

Step 3. Calculate x^- and xi from equations (6) and (7).

Step 4. Calculate x| and x? from equations (6) and (7).

Step 5. With the values of w1 and w2 , calculate w^ from

equation (20).

Step 6. Calculate xj, and x^ for n - 3, 4, ..., N from

equations (6) and (7), and w11
, n = 4, 5, ..., N

from equation (20).

Step 7. Compare the calculated value of x^ with the given

value of X3_. If the error, ER, defined as

ER = (Xl ) caicuiat ed - (xl) given is ec^ual t0 zero

or the value of ER is less than the permissible

error, (ER)
MAX , the optimal solution is obtained.

Step 8. However, if ER< and |ER| > (ER)MX , w2 is replaced

by

w2 = w2 + 1.0
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and the calculation is repeated from step 3« I*"

ER>0 and |ER| > (ER)MX , then w1 is replaced by

wl = wl + l.o

and the calculation is repeated from Step 2.

Step 9. If the optimal solution is obtained, x
2 , is obtained

from equation (8).

This problem is solved in an IBM 1410 computer. A flow chart

of calculation procedure is given in Fig. 2, and the FORTRAN

program is given in Table 1. The symbol table for the com-

puter program is also given in Table 2.

NUMERICAL EXAMPLES:

A three stage system and a six stage system are con-

sidered. However, the computer program and the numerical

method developed are for systems with an arbitrary number

of stages.

THREE STAGE SYSTEM:

Data given:

1° = initial inventory = 12,

I
N = final inventory desired = 10,

P° = initial production = 15.

Cost functions:

$100 (P
n - p*1"1

)

2 = Cost due to change in production level,

$20 (10 - In )

2 = Inventory cost per period.
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Requirements:

Sales forecast, Q
n

, n = 1, 2, 3 periods.

Q1 - 30,

Q2 = 10,

Q3 = 40.

The optimum solution obtained from equations (20), (6),

(7), and (8) for three stage system is as follows (see

Table 3a)

:

Difference in production level wn :

w1 = 6,

w2 = 5,

w3 = 5.

Inventory level at the end of each stage is:

xj r 3,

x
2 = 19,

X3 = 10.

Production at each stage is:

x^ = 21,

x
2 = 26,

*3 = 31.

Total optimal cost obtained:

x| = $11,619.20.
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/Read x? ,i-l,2,3

I Qn , n - 1,2,...

\A, C, D, E .

'i

Assume

W 1 - 0.0

w2 - 0.0

I

1

ii

w1 - w1 + l.C
•

W2 « W2 + 1.0

COMPUTS

n - 1,2, ...N
from equatior
(6) and (7)
Wn ,n-1,2...N
from Eq (20)

W2-0.0
i

CJEr} ^ ERl£

1

s >

«

-£-<jERJ < ERM>—*<,ER-(jC$

7*Q

7^ ^' <

WRITE
Xn , X$, wn

,

n = 1,2, . . .N

t
1

„

COMPUTE

x5,n-l,2,..H

from Equ (8)

1

Fig.

i

'WRITE \

^x2,k-1,2 *)

( END
J

2 Flow Chart

i

""•

t
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Table 1. SYMBOL TABLE

a

ITEM PROGRAM SYMBOL
•

STAGE N

xn
1

X(I,N)

w W(N)

n = 0, 1, 2, ..., N N = 1 , 2 , . . . , N

(x
N

) - (x
N

) ER

MAXIMUM PERMISSIBLE ERM
ERROR

Sales Requirement U
1

, 1-1, 2, ..., N

•

i

»
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Table 2 Computer Program

DIMENSI
5 FORMAT

10 FORMAT
11 FORMAT
12 FORMAT
21 FORMAT
52 FORMAT
54 FORMAT
55 FORMAT
7? FORMAT

RFAD (1

RFAD (1

ON W(50) ,X(3»50) ,S( 50) ,Y<50)
(13)
( 3F12.2)
(6F12.2)
(4F12.2)
(F12.4)
( 1X,F8.4,4X,22HMINIMUM POSSIBLE ERROR)
(/1X,1HN,6X,6HX(1,IM) »6X,6HX(3»N) ,8X,4HW(N) )

(/.I2.3F12.0)
(/4X,8HX(2,N) $tF12«2

)

»5>N
»10) |X.I J.l) .J«l*3)

RFADd ,11 ) (S( I ) »I"2»N)
RFADU »12)A,C»D.E
P=2.*D
0=4. *C
R=2.*C+2.*D
T=2.*C
S(l )=0.0
W(2 )=0.C
W(3)=0.0

15 W(2 )=W(2) +1.0
2 W(3 )=W(3) +1.0

DO 35 1=2,

N

W( I+?)=(P*(E-X( 1 ,I-1)-X (3,1-1 )+S( I

)

)+Q*W( I+1)-R*W( I ) )/T
X (3,1 )=X( 3,1-1 )+W( I

)

3 5 X ( 1 , I )=X( 1,1-1 )+X(3,I-l)+W( I )-S( I )

ER=X( 1 ,N)-A
WRITE(3,21 )ER
IF(ER) 19,50,16

19 IF(ER+. 5) 20,50,50
16 IF(ER-. 5) 50,50,45
4 5 W(3)=0.0

GO TO 15
5 WRITF(3,52)ER

WRITF( 3,5 4)
WRITF(2,54)
N2 = l

Nl = 2

56 WR I T F ( 3 , 5 5 ) N 2 » X ( 1 , N 1 ) , X < 3 , N 1 ) » W ( N 1

)

WRITE(2,55)N2,X(1,N1),X(3,N1),W(N1)
N2«N2+1
,N1 = N1 + 1

IF(N2-(N-1 ) )56,56,76
76 IF(N1-N)56. 56,58
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58 DC 60 I=2»N
X(2»I)=X(2»I-1)+C*W( I )**2 + D*( E-X( 1 » 1-1 ) -X ( 3 » 1-1 ) -W( I )+S ( I ) ) **2

60 CONTINUE
WRITE(3»72)X(2»N)
WRITE(2»72)X(2«N)
STOP
END
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Table 3a Results (Three Stage Process)

INPUT DATA

N=NC. OF STAGES=3

X(l»0)=12.0 Q(l)=3C.O A=10.0

X (2.0) =0.0 Q(2)=10.0 C=100.0

X(3»0)=15.0 0(31=40.0 D=20.0

OUTPUT

E-10.0

N X(l.N) XOtN) W(N)

1 3. 21. 6.

? 19. 26. 5.

3 10. 31. 5.

X(2,N)=$ 11619.20
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SIX STAGE SYSTEM:

Data given:
*

1

1° - initial inventory - 12,

IN = final inventory desired = 13,

P° initial production - 15.

Cost functions:

$100 (P
n - p

n-1
)

2 = Cost due to change in production level,

$20 (10 - I
n

)

2 = Inventory cost per period.

Requirements:

Sales forecast, Qn , n = 1, 2, ..., 6 periods.

Q
1 - 30,

Q
2 = 10,

Q3 = 40,

Q> - 20,

Q5 =15,

Q
6 - 25.

The optimum results obtained from the solution of equation

(20), (6), (7) and (S) for a six stage system is as follows

(see Table 3b):

Difference in production level at each stage w11

w1 - a,

w2 = 5,

w3 = 3,
\

vA - -1,

w5 = -7,

w6 = -15.
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Table 3b Results (Six Stage Process)

INPUT DATA

N=NC. CF STAGES=6

X(l»0)=12.0 Q(l)=30.0 A=13.0

X(2»« )»0.C O(2)=l0.0 C=100.0

X(3»0)=15.0 Q(3)=40.0 D=20.0

Q(4)=20.0 E=10.0

Q(5)=15.0

Q(6)=25.0

OUTPUT

M X ( 1 » N ) X ( 3 » N ) W(N)

1 5. 23. 8.

7 23. 28. 5.

3 14. 31. 3.

4 23. 29. -1.

5 30. 22. -7.

6 13. 7. -15.

X(2.N)=$ 54335.32
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Inventory level at the end of each stage is

x1 =X
l

5,

2
x
l

= 23,

x3 =xl 14,

X4 -x
l

23,

x 5 -x
l

30,.

6
x
l

= 13.

Production at each stage is

x1 =X
3

23,

x2 =X
3

2d,

x3 =X
3

31,

4x
3

= 29, .

4 = 22,

4- 7.

Total minimum optimal cost obtained is

4- $54,335.32.

•

\
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CASE 2. A PERSONNEL AND PRODUCTION SCHEDULING PROBLEM

DESCRIPTION OF THE PROBLEM:

This case mainly deals with the type of problems where

the management knows exactly the requirements of their pro-

ducts in the future periods and they are interested in

planning their production so as to meet the known market

requirements with minimum operating cost of manufacturing

(1).

It is required to plan operations in a situation in

which initial conditions, costs, and market requirements

are given as follows:

P° = Initial production,

¥° = Initial work force,

1° = Initial inventory,

I Final inventory (after the production run is

completed)

,

K = Production units per worker per period in regular

time.

Costs:

$ G (W - W "
) = Cost due to change in work force,

$ V (Pn ) - Production cost,

$ C (Pn - KWn )

2 = Overtime cost,

$ D (E - I ) = Inventory cost,

where G, V, C, D, and E are positive constants.
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Requirements:
1" Vi

Q
1 = Sales in the i period, i - 1, 2, ..., N.

Back order is permitted.

The management desires to make those plans which will result

in the lowest operating cost in meeting the above require-

ments to solve for an optimum schedule.

FORMULATION AND SOLUTION BY THE DISCRETE MAXIMUM PRINCIPLE

The problem is a general N stage problem and each period

is represented as a stage

Let

6? = P
n

- P
n-1 - difference in production between the

nth stage (period) and previous stage

(period)

.

x^ = P
n = Production rate during the n stage (period),

62
= Wn - Wn~ = Difference in work force between the

nth stage (period) and the previous

stage (period),

x2 ~ Work force during the n stage (period),

x? I
n Inventory at the end of n stage

(period)

,

x, = Sum of the cost up to and including the n n stage

(period)

.

Therefore we can write the following performance equations.
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Production rate:

*J- xj" 1 + e^ = T^ (a*"
1

; e
n

) , n-1, 2, ..., N, (1)
t

x
l

= P° .
(la)

Work force:

n mX
2 *r

1 + 0^ = t£ (x^ 1
; e

11

), n = 1, 2, ..., N, (2)

4- w° . (2a)

Inventory •

n
x
3

= x
3

_1
+ x* - Q

n
. (3)

Substituting equation (1) into equation (3) yields

*5-
n-1

X
3

+ xj^ + ej- Q
n = T* (x**

1
; e

n
),

n-1, 2, ..., N, (4)

X
3

= 1°
,

(4a)

N
X3" I

N
. (4b)

Costs:

<" x?- 1 +
4

G(8^)
2

+ V xj + C(x£ - Kx£)
2

+ D(E - x^)
2

,

n-1, 2, ..., N, (5)

*?~ o . (5a)
<

*
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Substituting equations (1), (2), and (4) into equation (5)

yields

x£ - x^"
1

+ G(e»)
2

+ vcx^+ej) + c(x^X-Kx2"
1
-Ke

2
)2

+ D(E-x^1-x^1
-6^Q

n
)

2

Tf(x
n_1

; 6
n

) , n - 1, 2, ..., N.
4

(6)

Objective function:

m • Q ^" N NMinimize S > c. x. = x,
,

f=l i i 4

therefore c^=0, i=l, 2, 3>

and c< = 1.

(7)

(7a)

(7b)

The Kamiltonian Function is

rrn _ n, n-l,_.n. n, n-l lQn, n f
n-1, n-l ir n n,

H = z (x, +e,) + z 2
(x

2
+e o' z 3(x 3 "*- +Q.-Q )

+ z
n
4 xf-

1
+G(e

n
)

2
+ vu^O.4 2 11

CU^Ve^Kx!;-1
-]^)

2
+ D(B-x»-l-^-1-8^+Q

n
)

2

n = 1, 2, . .
.

, N (d)

The adjoint variables are;
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1
fcxn-l 1 3 4

V + 2C(xJ-
1+8£-Kx£-

1
-K6 2

1
)

- 2D(E-x"-1-x"-1-e^+Q
n

)

} 1 1 —
, n = 1 , 2, • • • | N,

(9)

zj - ^ - 0, (9a)

„n-l . £>H
n _ „n orir _n /vn-ljnn Vvn-1 van^Z

2 I n-1
Z
2 " 2CK 2

4
{x +VKX

2 "Ka2 }
»

Ox2

n = 1, 2, ..., N, (10)

z?J = c
2
= 0, (10a)

_n-l _ £>Hn n ^_n /« n-1 n-1 ^n irsn xz - Zo - 2Dz (E-x -x -8.+Q ),
3 bxn-l 3 4 3 11

n = 1, 2, ..., N, (11)

N
z. ^ c„ - (End point fixed) , (11a)

^ 1 -
v

b
l' r- *? , n-1, 2, ..., N, (12)

4

K
z
4

= c
4

= !• (12a)

The combination of equations (12) and (12a) gives

J - 1, n-1, 2, ..., N. (12b)
\

The necessary condition for the optimum decision variables,
^n
6. , is
l

--

•
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^- - , n = 1, 2, ..., N; i - 1, 2.

Therefore differentiating equation (6) partially with re-

spect to 9^ and 9
2

gives

^Hn . . z
n + z

n + zn

^ en 1 3 4 L
V+2C(x^- 1+Gj-Kx^"

1
-K6^)

- 2D(E-x5"1-xJ-
1-e^Qn

)J , .
(13)

ae
2

- - - z§ + 2z£G(6§) - 2znCK(xJ"
1
+eJ-Kx^"

1
-K02) '. (H)

Combination of equation (10), (12b) and (14) gives

e
i = ^< e2»-ic<1, - (xr

1-Kxr
1-Ke2»-

n - 1, 2, ..., N. (15)

Equation (15) gives one of the optimality conditions for the

multistage process under consideration. Another recurrence

relation for other optimality conditions can be found by

combining equations (9), (11), and (13), and substituting

equation (15) into the resulting equation yielding:

2DE - 2Dx
n~ 1 - 2DKx

n-1 + 2DQ
n - 2D(G/C) + 2DK2 -t- 2C(G/C) £

3 2 K 2

+ 2C(G/C) + 2C(G/C) + 2D(G/C) Qn+1 2C(G/Q Qn+2 n
K

e
2

' K
e
2 " °»

n = 1, 2, ..
.

, N. (16)
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thus the optimization problem can be solved by the following

procedure utilizing the optimality conditions given by equa-

tions (15) and (16), together With the set of performance

equations (1) through (5). In the systematical search for

ej, n - 1 , 2, ..., N we assume that there exists an optimal

sequence which satisfies equations (15) and (16) with per-

missible error

.

CALCULATION PROCEDURE:

Step 1. Assume 6^ = and §2 - 0.

Step 2. Compute e£, 9», xj, x£, x*, for n - 1, 2, . .
. , N

from equations (16), (15), (1), (2), and (4)

respectively.

Step 3- Compare x calculated in Step 2 with x given.

ER - (x
3

)
e

- U
3

)

g

ER will be in either one of the following situations

(a) equal to zero (b) greater than zero (c) less

than zero. If it is (a) then we reached the op-

timal stage, go to Step 11, if it is (b) go to

Step S, if it is (c) go to Step 4-

Step 4. Decrease the value of
2

by 10 let ER calculated

in Step 3 be equal to ER 1, and go to Step 2. Com-
\

pute ER again, then go to Step 5«

Step 5- Compare
(
JERlj - |ER| )

.

If this is greater than zero go to Step 4 until

•
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ER is greater than or equal to zero, then go to

Step 7. If ( |ERl| - ER| ) is less than zero, go

to Step 6.
*

Step 6. Increase the value of
2

by 10, take ER1 = 0.0,

and go to Step 2 until ER is greater than or

equal to zero, then go to Step S.

Step 7. Increase the value of 6 by 1 and go to Step 2

until ER is less than or equal to zero, then go

to Step 9.

Step ft. Decrease the value of 9^ by 1 and go to Step 2

until ER is less than or equal to zero. Then go

to Step 10.

Step 9. Decrease the value of 9 by 0.1 and go to Step 2

until ER has achieved minimum possible value,

then go to Step 11.

Step 10. Increase the value of 9
2

by 0.1 and go to Step 2

until ER has achieved minimum possible value,

then go to Step 11.

Step 11. Solution has reached optimum stage. Compute x
,

n = 1, 2, . . . , N.

Step 12.
2

Increase the value of 9
2 by 10 and reinitialize

Q-r = 0, then go to Step 2.

Step 13.
NCompare the values of x, computed before with the
4

Nvalue of x, computed after Step 11. i
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ER2 will be in either one of the following situa-

tions, (a) greater than zero (b) less than or

equal to zero. If it is (a) then go to Step 2,

if it is (b) then go to Step 14-

Step 14. Decrease the value of G^ by 50 and take 9^ - 0, go

to Step 2 until ER2 is greater than zero, then go

to Step 15

•

2
Step 15. Decrease the value of G

2 by 1 and go to Step 2,

until ER2 again becomes less than zero. Then go

to Step 16.

Step 16. Stop the iterative procedure.

Step 17. Plot the curve between x, and 6 with various values

of xj? and oi from the above computations. The one

which gives minimum cost will be the optimum value.

A flow diagram, a symbol table and a computer program for

IBM 1410 is given in Fig. 3, Tables 4 and 5, respectively.

NUMERICAL EXAMPLES

A three stage and a five stage system are considered.

However, the computer program and the numerical method

developed are for a system with an arbitrary number of

stages.



35

Fig.
•

3- Flow Chart
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Table 4 SYMBOL TABLE

ITEM PROGRAM SYMBOL

STAGE N

n = 0, 1, 2, . . . ,N N = 1 , 2 , . . . , N

xn
l

X(I,N)

Sales requirement S(I)

(x
N

) - (x
N

)u
3

;
c

lx
3

;

g
ER

xNx
3

Ax

-

•

•

1
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Table 5 Computer Program

DIMFNMCN THFTA(2»50 >,X(4,50),S(50),Z(50),H(50)»Y(50)
10 FORMAT (4F12.2)
12 FORMAT (6F12.2)
25 FORMAT (6F10.2)
33 F0RMAT(1X,F14.4)
34 FORMAT ( IX , 1HN IX , 1 OHTHETA ( 1 , N ) » IX » 10HTHETA < 2 »N )

)

36 FORMAT ( 1X»I2*2F10.0)
37 FCRMAK IX ,F12 .4 , 5X , 22HM INI MUM POSSIBLE ERROR)
42 FORMAT ( 1X»1HN»8X»6HX( 1 ,N) »7X,6HX( 2»N) »7X»6HX(3»N) )

55 FORMAT ( IX » I 2 » IX *3F12 .0

)

70 FORMAT ( 1 X 8HX ( 4 »N > =$ » E20. 8

)

N = 6

RFADd »10 ) (X( j,l ) ,J=1 ,4)
RFAD(1»12) (S( I )

.

I=2*N)
READ(1»25 )G»V,C.D»E»0
M =

Ml = G

M2 =

M3«0
ERl=10vOOO.O
ER=C.O
< =

AX=300.0
DUMMY= 3 00 000 00000000.0
A=G/(C*0)
R=G/(C*0)
P=(2.*D*E*C> /(2.*G)
Q=(2.*D*0) /( 2.*G)
R=(2.*D*0)/(2.*G)
F=(2.*D*(0)**2 )/(2.*G)
T=(2.*D*(G/C)+2.*D*( G)**2+2.*C*(G/C) ) /(2.*G)
U=(2.*C*(G/C)+2.*D*(G/C)+2.*C*(G/C) ) /(2.*G)
THETA(2»2)=0.0
THETA(2.3)=0.0
GO TO 38

30 THFTA (2*2 )=THETA(2»2 )+l0.
ER1=0.C
GO TO 38

39 IF(ABS(ER1 )-ARS(ER).) 30,30,46
46 ThETA(2»2)=THETA(2,2)-10.0

ER1=ER
K = K + 1

38 DO 40 1=2,

N

Z( I )=X( 1,1-1 )-0*(X( 2,1-1) )-0*THETA(2,I )

Th ETA( 1 , I )=A*THETA( 2, I )-B*THETA(2» 1 + 1 ) -Z ( I )

H(

I

)=U*THETA(2,I+1 )

THETA(2, I+2)=P-Q*X(3,I-1 ) +R*S ( I
) -F*X ( 2 ,

I -1 )-T*THETA(2, I ) +H ( I

)

X ( 1 I )=X( 1, 1-1 )+THETA( 1 ,1

)

X(2,I)=X(2,I-1 )+THFTA(2,I )

X(3,I)=X(3»I-1)+X (1,1-1 )+THFTA( 1, I )-S( I )
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40

32
41
43

500

501

502

100

300
200

CON
ER =

WRI
IF(

If (

K = 2

IF(

M = l

IF(

THE

TINUE
X(3,N)-AX
TE(3,33)ER
ER) 100*45.32
M4)41,41 ,43

Ml)500,500,45

K-l )501 ,501,502
TA(2,2)=THETA(2 ,2)-l .0

GO TO 38-

THETA(2,2)=THETA(2,2)+1.0
GO TC 38
M4=l
IF(M)300,300,200
I F( Ml) 39, 39.45
Ml = l

IF(<-1)201,201,202
THETA(2,2)=THETA(2,2 )+0.1
GO TC 38

201

202 :

• ..'-.:

45
GO TC 38

50

76
56

58

59
61

65

WRITE(3,37)ER
N2 = l

Nl = 2

WRITF(3»42)
WRITE(2,42

)

WRITE(3,55)N2»X(1,N1),X(2,N1)»X(3»N1)
WRITE(2,55)N2,X(1,N1),X(2,N1)»X(3,N1)
N2=N2+1
N1=N1+1
IF(N2-(N-1 ) )50,50,76
IF(N1-N)5C,50,56
WRITE (3,34)
WRITE(2,34)
N3«l
N4 = 2

WRITE(3,36)N3»THETA( 1

WRITE(2,36)N3,THETA( 1

N3=N3+1
N4=N4+1
IF( N3-(N-1 ) ) 58,58,59
IF(N4-N)5 8,5 8,61
D( 65 I»2»N
Y( I )=C*(X( 1,1 )-C*X( 2,1 ) )**2+D*(E-X(3,I ) ) **2
X(4,I )=X( 4,1-1 )+G*THETA(2, I )**2+V*X( 1,1 )+Y{ I

)

CONTINUE
WRITF(3,7C)X(4,N)
WRITE(2»70)X(4,N)

,N4) ,THETA(2,N4)
,,M4) ,THETA(2,N4)
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-s

M =

M1*0
M,4=0

ER1=100000.0 -

K*

I MM3) 8 1,3 1,82
81 THETA(2*3)=THETA<2»3>+10.0

THETA(2t2)=0.0
82 IF(DUMMY-XU,N) ) 75, 7 5, 8

90 DUMMY=X(4,N)
M2=M?+1
IF(M3)38t38»990

75 IF(M?-] )700,700,300
700 THETA(?,3)=THETA(?,3 1-50.0

DUMMY* 300 00000000000.0
M2 = C

THETA(2,2)=0.0
GC TO 38

800 THETA<2,3)=THETA(2»3>-1.0
M3 = l

DUMN!Y = X(4»N)
GC TO 38

990 STOP
END

•

-

1

1

'
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THREE STAGE SYSTEM

Data given:

P° = initial production = x, = 2000,

W° - initial work force = x^ 600,

1° = initial inventory = x^ = 300,

I
N = 3

final inventory desired = x< = 300.

K = production units per worker per period in

regular time = 3«

Cost:

Cost due to change in workforce - $200 (W11-^" 1
)

2
,

Production cost - $50 (Pn
)

,

Overtime cost - $25 (P
n
-KV/

n
)

2
,

Inventory cost = $20 (500-In )

2
.

Requirements:

Sales force cost Q
n

, n = 1, 2, 3, is

Q
1 = 3000,

Q
2 = 1800,

Q3 = 2400.

The optimum solution obtained from equations (15), (16),

(1), (2), and (4) for a three stage system is as follows

(see Table 5a)

Production at each stage is:

xj = 2686,

*

i

\
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Table 6a Three Stage System

INPUT DATA

N=NC. CF STAGES

X(l,0)=2000 CM 1 ) = 30C0 AX=30C

X(2»0)=600 Q(2 )=1800 G = 200

X<3,0)=300 Q(3)=2400 V = 50

X(4,C)=0 C = 25

D = 20

E = 500

OUTPUT

N X ( 1 » N ) X ( 2 , N ) X(3,N)

1 2686. 756. -13.

2 2276. 756. 463.

3 2239. 753. 302.

N THETA(ltN) THETA(2»N)

1 686. 156.

2 -410.

3 -37. -2.

X(4,N)=$ 15703839.00
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x
2 = 2276,

x3 - 2239.

Work force:

x^ - 756,

x 2 = 756,

x| = 753.

Final inventory level = x^ = 300.

The total optimal cost obtained, which is the minimum

point in Fig. 4a between xf and 2
is:

x3 = $ 15,703,339.00.

Simulation shows that this is the optimal solution.

FIVE STAGS SYSTEM

In this case except for the sales forecase the rest of

the data is the same as that of the three stage system.

Sales requirements:

Q , n = 1, 2, 3,' 4, 5, is

Q
1 = 3000,

Q
2 = 1800,

Q
3 = 2400,

Q^ = 2000,

Q5 - 2400.

The optimum solution obtained from equations (15), (16), (1) \

(2), and (4) for a five stage system is as follows (see

Table 6b).
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Table 6b Five Stage System

INPUT DATA

N = NC. OF STAGES

X(l ,0=2000 Q( 1 )=3000 AX=300

X(2,C)=6Q0 0(2 )=1800 G = 200

X(3,0)=300 Q(3)=2400 V = 50

X(4,0)=0 0(4)=2000

Q(5)=2400

C = 25

D = 20

E = 500

OUTPUT
t

N X(ltN) X ( 2 » N

)

X ( 3 , ,M )

1 2C45. 643. -654.

2 1122. 643. -1331.

3 566. 946. -3165.

4 1098. 2101. -4066.

5 6766. 5208. 300.

N THETA(l.N) THETA(2»N)

1 45. 43.

2 -923. .

3 -556. 302.

4 532. 1155.

5 5667. 3106.
\

X(4 » N ) = $ .

!

J7816230E 10

»
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Production at each stage

xj- 2045,

4- 1122,

*{- 566,

x4 =X
l

109S,

x 5 =X
l

6766.

Work for ce usei

4-

x3 =x
2

x4 =x2

x^ =X
2

i at each

643,

643,

946,

2101,

520S.

stage

Final inventory level - x^ = 300.

The total optimum cost obtained, which is the minimum point
c o

in Fig. 4b between xr and 0"*. is:
4 2

x£ - $ 573,162,300.00.
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CASE 3. APPLICATION OF THE DISCRETE MAXIMUM PRINCIPLE TO
LABOR ASSIGNMENT AS A DYNAMIC CONTROL PROBLEM WITH NON-

LINEAR COST FUNCTION

In this case a problem of labor assignment in a labor

and machine limited production system is formulated as a

dynamic control problem. The criterion function employed

here is to minimize the total in-process inventory cost over

a given time span. This problem with linear cost function

was first solved to obtain necessary and sufficient condi-

tions for the optimal control by the continuous maximum

principle by Nelson (8). Bantwal (2) solved the problem

by the discrete maximum principle. In this case, an attempt

has been made to consider the problem with a non-linear cost

function by employing a discrete version of the maximum

principle.

The problem can be stated as follows:

Consider a production system consisting of L laborers

and m machine centers. Each machine center i = 1, 2, ..., m

consists of fj_ identical machines. We assume,

l<5; fi
i=l

so that labor is a limiting resource.

Let

^ = rate of arrival of work units to the machine center

in work units per period,
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Ml service rate in work units per period for each

machine in machine center i when there is a laborer

assigned to the machine, i = 1, 2, . .
.

, m,

x^ queue length at machine center i at the n " period

measured in work units, i = 1, 2, . .
.

, m,

K^ inventory cost per work unit per period at machine

center i, i = 1, 2, . .
.

, m.

The following assumptions are made. A job lot is a

block of successively arriving work characterized by iden-

tical processing requirements. Each job lot requires pro-

cessing at a completely ordered sequence of machine centers.

Both the job routings and service time requirements are

known in advance. The work force is completely homogenous

and flexible; i.e., every laborer is equally efficient at

any given machine center. Only one laborer can work on a

machine at one time.

Work is processed at each machine center at discrete

time intervals. The service rate of the machine center at

any period is proportional to the number of laborers assigned

to the machine center at that period. The queue discipline

is arbitrary except that only one job lot can be processed

in any machine center at one time. The portion of a job lot

that has been processed instantaneously enters the appropriate

queue for its succeeding operation.

The problem is to find a labor assignment procedure that

minimizes total in-process inventory costs over the n time
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periods. The cost of carrying the inventory over a period

is the inventory cost times the square of the queue length at

the machine center i at the n h period, i = 1, 2, ..., m.

Denote the system state vector of queue length in the n

period by

1 2' ' m

Introducing a decision vector G - (G^, 6^, ..., G^) where

6^ is the number of laborers assigned to machine center i

in the nth period. Considering the decision vector which

satisfies the following constraints (a) through (e) belongs

to the set of admissible vectors.

Q
a) If 2Z 9-,-<L> then there cannot exist i such that

i-1
x

8°< fx and x?> for 0<n<N, where N is total number

of periods under consideration.

b) G? = whenever x
i

= 0, for i = 1, 2, ..., m, and

0< n<N.

c) G? = an integer, for i = 1, 2, ..., m and 0<n<N.

d) 0-<8<f<, for i - 1, 2, ..., m and G<n<N.

e) 2Z ©n 4L, for 0<n-iN.
i=l x

The meaning of constraint (a) is that as many as possible

of the laborers will be used at any given period. This is

necessary to reflect the principle goal of producing finished

products for income. Constraint (b) states that laborers are

to be assigned only to machine centers that have work to be
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performed at any given period. Constraint (c) gives an indi-

cation of the indivisibility of a single laborer. Constraint

(d) signifies the limitations of the machine centers to ab-

sorb labor productively. Constraint (e) assures that the

total size of the labor force is not to exceed the given

number

.

As stated before the cost of carrying the inventory over

a period is the inventory cost times the square of the queue

length. This cost function follows the curve shown in Fig. 5y

which shows that in-process inventory cost in this case is

less (when the queue length is small) than that in the case

of linear relation between queue length and the function of

in-process inventory cost. But when the queue length exceeds

a particular value the non-linear inventory cost function

curve increases rapidly.

Therefore the objective of problem is to minimize

£ it Mxj) 2
.

n=l i=l x

AN ALGORITHM BASED ON THE DISCRETE MAXIMUM PRINCIPLE

The performance equations are given by

vn _ vn-l , pn \ + V" p31" 1^ p&~^- JU. a? a . i o

3=
J>i

(1)

x.
i

= ex.



^ x.

Fig. 5. NON-LINEAR COST FUNCTION
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where

P. .
= represents the transition of work units from

machine center i to j in the n period. This

is equal to one if work is transferred and zero

otherwise.

Similarly

_n
P

i
= represents the transition of work units from

outside to machine center i in the n**" period.

This is equal to one if work is transferred and

zero otherwise.

The second, third, and fourth terms on the right handside

of equation (1) represents changes in queue length caused

by work units arriving from outside the system, work

units arriving from other machine centers, and work units

completed and departing for subsequent processing. We

introduce a new state variable xn+1 to represent cost,

i.e.
,

n n-1 ^BL v . n>2
m+1 m-f-1 £^j i i KCI

where x£+1 is the total cost up to and including the n
th

stage

and 2Z Kj_(xJ) is the cost incurred at the nth stage.

The objective function to be minimized is

S- ZI Ci x? + c .. xN+ =xN
.

, ( 3 )

i=]_
x * m+1 m+1 m+1 • VJ;
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Cj_ = 0, i 1, 2, . .
. , in, (4)

cm+1
- 1. (4a)

The Kamiltonian function and (m+1) dimensional adjoint
,

var:.ables which satisfy the following relation are

Hn . £ .; 4 + &r *£+1

m

i-i

m+l v m+1 f=i * i

Substituting the value of x. from equation (1) in equation

(5) yields

Kn -

i=]_
1 1 01 fcj J1 J J ii .

(6)

n-]
z i

- ^ - z
n
+z^1 (2Ki (x?-

1<.> +flP
n'1

V?"
1

^xn-l l m+l v i v i oi Jr^ ji j J

-/^e?)), n - 1, 2, ..., N; i = 1, 2, .... m, (7)

I

4- , i = 1, 2 , • • •
i
m,

*
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uxm+l

z
N = c ,

= 1. ( *a)

m+1 m-rl

Combining equations (8) and (8a) gives

n_-i,,_-io m (8b)

m+1

Substituting equation (8b) in equation (6) and rearranging

the terms yields

jvi

m n 5 . ffl n n-1 .
m n-1^-

+ ZZK^^eJ)
2

+ Z2Ki
(P

i
A x*-

1
) + Zla^xJ

X
Z:

3i j j i=1
x ui ^ ji j j i=1 i

i ii i=1 i 1 1 i=1
i 1 1

j=1 1

• p
1

?:
1 ^^"1

) . (9)
J 1 j j
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S is minimum when Hn is a minimum. Equation (9) shows that

n n
H is non-linear with respect to B^.

In equation (9) zj, x
±
~

, x^, P^ , P^~ , K
± ,

A
, ZZj

and 4*-j are constants. Therefore, the variable portion of
J.

n n
Hamiltonian H , Hy can be written as

i=l i=l x j=l J J J

j«.

+ >' K
i
(Xi

i )

2
(eJ)

2
. do)

n n
Ky is non-linear with respect to the decision variable 6

i .

The necessary condition for the optimality is

^V
- - z

n A- 2K
i
(x
n-1

+P
n
.A + X: P^M.e^1)^

^9n i *\ i i oi ^ ji j j i

J>i

+ 2^ (^
± )

2
ef - o. (ID

This can be written as

.J^ - - 2K
i Uj-

1<i
^ +|:p5:

1A.e^1
)^

i+
2Ki (^ i )

2
0j.

(12)
t

Dividing both sides by X>l . gives

2
? " - ^(^C^ + &»'AfiT

>'

) + 2% ^9$ . (13)

it±

»
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Substituting the value of z£ given by equation (13) into

equation (7) yields

z
11" 1 = 2Ki (x""

1+p" X+ iS^A.e"- 1
) - 2K. A.e"

1 1 1 01 fcj Ji J J • i ii

- 2K
i (xJ"

1
+ AX+ fp^Afl;-1

] + 2K.^ G
nii oi ^J Jl j j i i i

J

which gives

if1 - o, n = 1, 2, . . . , N, (14)

Substituting this value of zj - o from equation (14) into

equation (13) yields

1*1

This can be written as

An _ l
e
i ~ 77

i i-

x
11"1 + p

n .A
1 01

m
z p^A.e?- 1

J 1 j j
(15)

i - 1, 2, . .
. , m; n = 1, 2, . .

.
, N.

Equation (15) gives the relation from which the optimum value

of decision variable 6? can be computed. It satisfies the

constraints given (a) through (e). But there is one danger,

namely if the service rate of the next machine in line is low,
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this decision will not constitute optimal policy. In order

to avoid this undesirable solution and also to satisfy the

constraint (e) on the decision variable, a time dependent

priority
77-jJ

is calculated. Let

Mj = service rate in work units per period for the

machine center to which work being processed at

machine center i at the n h period, that is the

service rate of machine center in line.

Kj_ = inventory charges per unit period for the next

machine center in line.

f? = number of machines in the next machine center in

line.

Then, the time dependent priority, -77-?, is given by

TtJ - (fj M*K
±

- f
±
M± K*), i = 1, 2, ..., m. (16)

Optimum policy is to allot in any period n, as many of L

laborers as given by equation (15) for which x^> in order

of decreasing values of Tf^
1

.

NUMERICAL EXAMPLE:

A four machine center system is considered, so that

m 4. Work pieces are processed first on machine center 1,

then on 2, 3 and finally on machine center 4. The constants

assigned for this problem are given in Table 1

.
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Table 7. DATA

A - work piece arrival rate 60 units per hour

Machine Center
m

Number Of
identical ma-

chines

Service Rate
in units per

hour, p.

Inventory
Cost in $ per
Unit per hour

K

1 6 10 $ 1

2 15 5 0.40

3 6 12 0.60

4 5 15 0.75

5 1 60 0.70

(Inspection
Station)

The maximum number of laborers available is 25. Each laborer

is assumed to be equally competent to work in any machine

center. We also assume that there is no initial in-process

inventory. The cost of carrying inventory over a period is

the inventory cost for that period times the square of the

queue length of units waiting to be processed at a given

period. Determine how many laborers should be assigned to

each machine center every hour, to minimize in-process in-

ventory cost for a time span of S hours.
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To solve this problem of four machine center and one

inspection station, we can assume the inspection station

to be the fifth machine center, because this will simplify

the calculation procedure.

First calculate the time dependent priority for each

machine center. In this case it may be noted that

K
i

= K
i+1 and K =M±+1 >

i = 1, 2, 3, 4.

Hence we can write the 7T? expression in equation (16), that

is,

n , * * #

,

*i" ( fi^i K
i " fi^i h ] '

Therefore

77" = (15 x 5 x 1 - 6 x 10 x 0.40) = 51,

7^2
= (6 x 12 x 0.40 - 15 x 5 x 0.60) = -16,

7T~ - (5 x 15 x 0.60 - 6 x 72 x 0.75) - -9,

7jr£ - (1 x 60 x 0.75 - 5 x 15 x 0.70) - -7.

Therefore, if there is a queue length of work pieces at all

four machine centers, each machine center has a priority of

allocation of labor force, i.e., machine center 1 has a

priority for maximum labor assigned to it over the rest of

the machine centers. Similarily the next priority goes to

machine center 4 and so on. This can be written as:
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__n _n _. n -_.n*1 >TT
4
>7r

3
>7T

2
•

The assignments can be computed by using equations (15) and

equation (1), that is,

^^(x-l.Pg.A.gp^A.e- 1
, (15)

xn = x^-Vp" A + t^1^/"1-^^ • (1)
i x 01 p Ji J J i i

Hence for n = 1:

i = 1, 4 = ^ (0 + 60 + 0) - 6,

i = 2, el = i (0 + + 0) = 0,
f 5

i - 3, e^ = i (0 + + 0) - 0,

i = 4, ej = i- (o + o + o) = o,

x^ - (0 + 60 + - 6 x 10) - 0,

x?;= (0 + + 0-0) =0,

x^ = (0 + + - 0) = 0,

xf= (0+0+0-0)=0,
4

x^ - (0 + + - 0) - (inspection station).

For n = 2:
!

i = 1, ej = 1_ (o + 60 + 0) - 6,

i - 2, Go = i (0 + + 1 x 10 x 6) - 12,

•
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-. n 2i=3, 9
3

- ^ (0 + + 0) = 0,

i - 4, e£ =
Yj

(o + + 0) - 0,

|

x2 = (0 + 60 + - 6 x 10) = 0,

x2 - (0+0 + 1 x 10 x 6 - $ x 12) = 0,

x2 - (0+0 + - 0) - 0,

x2 = (0 +
4

+ - 0) = 0,

x2 - (0 + + - 0) - 0.

For n 3:

i - i t e| - jL (o + 60 + 0) = 6,

i - 2, q\ =
| (0+0+1x10x6) =12,

i - 3, G3 = ^(0+0+1x12x51=5,

i = 4, e^ = yt (0 + + 0) = 0,I?

x3 = (0 + 60 + - 6 x 10) = 0,

x3 = (0 + + 1 x 10 x 6 - 5 x 12) = 0,

x3 - (0 +
3

+ 1 x 12 x 5 - 12 x 5) = 0,

x3 = (0 +
4

+ - 0) - 0,

x3 = (0 +
5

+ - 0) = 0.

For n = 4:

i - i, e£ -
Jq (0 + 60 + 0) = 6,

\

i - 2 , e£ -
j (0 + + 1 x 5 x 12) - 12,

»
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i - 3, 63 = ^ (0 + + 1 x 12 x 5) = 5,

i - 4, 9? • Jr (0 + + 1 x 12 x 5) - 4.
4 1?

4 ,

At n - 4, the summation of XLO? - 27, and the maximum
1=1

for ce available is only 25- Since machine center 2 has the

lowest priority, to make the sum of labor assigned at n = 4

to be 25, we allot 10 laborers at machine center 2. That is,

ft
4

10. Then we obtain

xj = (0 + 60 + - 6 x 10) = 0,

x^ - (0 + + 1 x 10 x 6 - 10 x 5) - 10,

x^ - (0 + + 1 x 5 x 12 - 12 x 5) = 0,

x£= (0+0+lxl2x5-15x4)=0,
x^=(0+0+0-0)=0.
5

For n - 5:

i - 1, ej -
Jjj

( + 60 + 0) - 6,

i = 2, 02 = | (10 + + 1 x 10 x 6) - 14,

i - 3, 93=l2 (° +0+1 xl°x5) =4,

i - 4, 6^ = L (0 + + 1 x 12 x 5) = 4.

Here, as the sum of laborers assigned this hour also exceeds

25, we will allot only 11 laborers on machine center 2, which
t

has the lowest priority. Hence 9? - 11. Then we obtain
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x5 = (0 + 60 + - 6 x 10) - 0,

x5 = (10 + + 1 :

2
c 10 x 6 - 11 x 5) 15,

x5 = (o + + 1 x
3

5 x 10 - 12 x 4) = 2,

x5 = (0 + + 1 x
L

12 x 5 - 15 x 4) - 0,

xj - (0 + + 1 x 15x4-60xl)=0.

For n 6:

i " 1. el " 10 <° +60+0) - 6y

i - 2, ef - | (15 + + 1 x 10 x 6) - 15

i-3.4-fe<« +0+1x11x51=5;

1 " *• 6' " fe
( ° + + 1 x 12 x 4) - 3,

The sum of laborers assigned to various machine centers

exceeds the total available this hour. Therefore we will

allot here 12 laborers on machine center 2, which has the

lowest priority and 4 laborers on machine center 3 which has

the next lowest priority. The positive queue length is taken

into account in allocation of labors to machine centers 2

and 3

Kence 62 = 12 and 83 = 4. Then we obtain

x^ - (0 + 60 + - 6 x 10) = 0,

x^ = (15 + + 1 x 10 x 6 - 5 x 12) - 15, \

x^ = (2 + + 1 x 11 x 5 - 4 x 12) - 9,

x? = (0 + + 1 x 12x4-15x3) =3,

x6K - (0 + + 1 x
5

15 x 4 - 60 x 1) - 0.
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For n - 7:

i — 1, ej=^y (0+60+0) =6,

i - 2, Q
7
2
= ~ (15 + + 1 x 10 x 6) = 15,

-

i - 3, e3=l2 (9+0+1x12x5) =5,

i - 4, ej - jj (3 + + 1 x 12 x 4) = 3,

The sum of laborers assigned to various machine centers

exceeds the total number available. Hence we will take
n

&L = **•• Then we obtain

x? = (0 + 60 + - 10 x 6) = 0,

x? - (15 + + 1 x 10 x 6 - 11 x 5) = 20,

x? = (9-r0 + lxl2x5-12x5)=9,
X
Z

= (3+0+1x12x4- 15 x3) =6,

x? = (0 + + 1 x 15 x 3 - 60 x 1) - -15.

For n - 6:

8 1
i = 1, 6! =

Jq (0 + 60 + 0) - 6,

8 1"
,

i = 2, 9
2

= T" (20 + + 1 x 10 x 6) - 16,

i - 3, 6^ - ^ (9 + + 1 x 5 x 11) - 5,

& 1
i = 4, 0^ = jj (6 + + 1 x 12 x 5) - 4.

I

The sum of laborers exceeds the total number available. Kence

we will take the one which gives the minimum units waiting to

*
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be processed. Again the positive queue length, x. > 0,

i = 1, 2, 3, 4, is taken into account in the allocation

of labors. Therefore,

0^ - 10 and e| - 5,

Then we obtain

x& - (0 + 60 + - 10 x 6) - 0,

x^ - (20 + + 1 x 10 x 6 - 10 x 5) = 30,

x& = (9 + + 1 x 11 x 5 - 12 x 5) - 4,

x? - (6 + + 1 x 5 x 12 - 15 x 4) = 6,
4

x? = (0 + + 1 x 3 x 15 - 60 x 1) = -15.
5

Here x° is negative, the reason of this is that the in-

spection station remains idle for some time because of the

lack of units produced at machine center 4« Hence there is

no queue at this station. We can compute the total in-pro-

cess inventory cost from equation (2), which is,

Hence the total cost will be

x| = 0.40 (x^)
2

+ 0.40 (x|)
2

+ 0.60 (x|)
2

+ 0.40 (x^)
2

+ 0.60 (x^)
2

+ 0.75 (x£)
2

+ 0.40 (x?)
2

+ 0.60 (x?)
2

+ 0.75 (x£)
2

+ 0.40 (x^)
2

+ 0.60 (xf)
2 + 0.75 (xf)

2
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- 0.40 x 100 + 0.40 x 225 + 0.60 x 4 + 0.40 x 225

+ 0.60 x 31 + 0.75 x + 0.40 x 400 + 0.60 x Si

+ 0.75 x 36 + 0.40 x 900 + 0.60 x 16 + 0.75 x 36.

= 40.0 + 90.0 + 2.40 + 90.0 + 43.60 + 6.75 + 160.0

+ 4S.6O + 27.0 + 36O.O + 9.60 + 27.0

- $909.95.
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The objective of this report is to demonstrate the ap-

plicability of the discrete maximum principle to production

scheduling and inventory control problems frequently encoun-

tered in industrial management. The basic algorithm of the

discrete maximum principle along with the extension "memory

in decisions" is stated. Several case studies are presented.

Both Case 1 and Case 2 deal with production scheduling,

where the objective is to minimize the production cost.

However, in Case 1, there is only one decision variable

which signifies the production rate at each period. The ex-

tension of the basic algorithm known as "memory in decisions"

is employed to solve this case. In Case 2 two decision

variables are involved. The first decision variable signifies

the change in the production rate between the present and the

previous periods, where as the second decision variable re-

presents the change in the number of labor force employed

between the present and the previous periods. Back logging

is also permitted in this case and, therefore, the production

cost structure is different from that of Case 1. Case 3

deals with the labor assignment as a dynamic control problem

in a multi-facility network. The system considered has a

limiting labor resource and the objective is lo allocate the

labor force in an optimum way so as to minimize the non-

linear in-process inventory cost function.

In each of the cases considered the optimality condition

represented by a recurrence relation of the decision variables



is obtained. Such a recurrence relation is valid for a

multi-stage system. From above cases it can be concluded

that the discrete maximum principle is practical for solving

industrial management problems

.


