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0. INTRODUCTION

Probit analysis and logit analysis are used in the general area of

biological assay. In bioassay, plants or animals are subjected to some

stimulus in varying intensities and the response of the organism to each

intensity is observed. The relationship between the intensities of the

stimulus and the responses they elicit is then inferred from the obser-

vations. The stimulus can cover a wide range of chemical, physical, bio-

logical, physiological, or psychological agents which produce an obser-

vable response when administered to a particular organism.

Biological assays usually have one of two purposes:

1. To determine the mathematical relationship between the intensity

of the stimulus and the level of the response.

2. To evaluate the unknown strength of an agent by observing the

response it elicits in organisms whose response relationship with

an agent of known strength has been determined previously.

When response is known as a function of the stimulus, predictions can

be made of intensities of the stimulus which will produce desirable re-

sponses. For example, after a certain concentration of insecticide is

reached, higher concentrations produce almost no additional increase in

death rate and the additional expense of further concentration could be

avoided. To illustrate the second type of assay, suppose a new method of

manufacturing the insecticide has been discovered but its strength is

unknown. To assay its strength, the mortality rate it produces is observed

in insects for which the functional relationship between strength of the

insecticide prepared by the old method and mortality rate is known. Res-

ponse is assumed to be independent of the method of preparation and



dependent only on the active ingredient present. A fifty percent kill

under the unknown strength of the new method would then be equated with the

strength of the old preparation that also produced a fifty percent kill.

This report will deal with the particular type of bioassay in which the

stimulus is the dose of a toxic agent and the response observed is quantal.

Quantal responses are those in which the proportion of organisms affected by

a particular dosage is observed out of the total number of organisms exposed,

as opposed to a response measured on a continuous scale^. such as weight or

length. The all-or-none responses of death or survival given in the insecti-

cide example are quantal responses.

Because both of the purposes of bioassay involve finding the mathe-

matical relationship between dosage of an agent and response of an organism,

the main procedure is one of curve-fitting. A curve is fitted to the obser-

ved data of an experiment to discover the mathematical relationship assumed

to exist between agent and organism, and to minimize the deviations from it.

These deviations will then be attributed to sampling error.

1. GENERAL STATISTICAL MODEL

The following definitions will be used in developing the general statis-

tical model for quantal response

1. d^ = dosage of intensity i.

2. x^ - log^Q d^

3. n =• total number of organisms exposed to a given dose d of a

toxic agent.

4. r, = observed number of organisms responding to a dose d. where

response usually means death.



± — m observed proportion of organisms responding to dose d.

out of the n, organisms exposed; i.e., observed mortality rate.

6. q^ = 1 -
p^

7. Pj " true mortality rate at d.

8. Q^ - 1 - P^

For convenience the subscript i will be omitted in the discussion when the

meaning is clear.

In the statistical model for quantal response it is assumed that the

observed response at a given dosage is distributed about the true response

at that dosage, a binomial with mean P and variance PQ/n. Thus for a

sample of n organisms acting independently of one another at a given dose D,

the observed number responding, r^, is binomially distributed. Then the

probability that r individuals respond out of n exposed is given by:

>, . fXi. r n-r
(1) (r)p q

Dosage-mortality studies have been made upon a large variety of organisms

by many biologists. These studies have established that a graph showing the

percentage of dead organisms as the ordinate against some function of dosage

(usually the log dose) as the abscissa is generally sigmoidal. The rate of

change in percent kill per unit of dose is the lowest when the mortality

rate is near zero and one hundred percent and is the highest at mortality

rates near fifty percent. (It should be pointed out that a dosage, D, or

log dose, X, could refer to exposure time of a fixed amount of stimulus,

such as exposure time to X-rays.)

Among multicellular organisms it is practically universal for a graph

of dosage versus mortality rate to result in a characteristic sigmoidal



shape; but there is more than one interpretation of this curve. It is these

interpretations, or the underlying assxjmptions of the processes involved in

the dosage-response relationship, that lead to the different methods of ex-

pressing the relationship mathematically. Both of the methods to be con-

sidered herein begin with a transformation which will rectify (make linear)

the sigmoidal curve. The rectification will allow the use of linear re-

gression analysis.

The most well-known of these methods, indeed apparently often considered

synononous with bioassay, is known as probit analysis . Probit analysis was

essentially suggested by Gaddum., refined by R. A. Fisher, and actively pro-

moted by C. I. Bliss.

The second method, devised by Joseph Berkson, from earlier work done by

Pearl and Reed, and Wilson and Worchester, is called logit analysis .

From the purely empirical viewpoint of curve-fitting described previously,

both the use of probits and the use of logits usually lead to essentially the

same rectification of the originally curvilinear data, and to essentially the

same fitted straight line. They differ basically in the underlying assumptions

in what statistical tests might be run, and in the ease of the calculations

required to fit a dosage-mortality curve.

Since probits were historically first and are by far the most widely

used, they will be discussed first.

2. PROBIT ANALYSIS

The basic assumption of probit analysis is that the survival of an

organism in the presence of a dose of a toxic agent is proportional to its

tolerance to that agent. This assumption is widely accepted and seems to

include the many complicated physical and chemical reactions which may occur



between the organism and the agent. As stated by Finney, "for quantal response

it is necessary to consider the distribution of tolerances over the population

studied." On the basis of the assumption of the existence of tolerances, the

dosage-mortality curve is taken to be primarily a description of the variation

in susceptibility between individuals of the population. If the susceptibility

of an individual is represented by the smallest dose that is just sufficient

to kill it, the number of individuals having each particular susceptibility

might be expected to be normally distributed with respect to some function of

dosage.

5<. V, X, X-

Funci~ion o-f Q'osoae.

Fig. 1. Ordinates give the percentage of organisms in a single
sample responding to an individual lethal dose X.

The exact lethal dose for each individual would be necessary to plot a

normal frequency distribution of tolerances from sample data. However, ex-

perimental techniques with toxic agents are usually not sufficiently refined

to enable the exact individual lethal dose for complicated organism to be



distinguished. Because all those organisms that succumb to a lower dose

should also succumb to a higher dose, the observed mortality consists of all

individuals who are susceptable to any dose between zero and the administered

dose. Thus, the proportion of the total population responding to a dose Xo

is given by

P = f^^' f (X) dX.

If these percentage kills were then plotted as the ordinate of a new graph

against the same function of dosage as the abscissa, the result should be the

cumulative normal distribution function. As was noted previously, this is the

general form of the curve obtained when plotting percentage killed against

the log dose. .

/./>C

Loo d O s e-

Fig. 2. Ordinates give the percentage of organisms in a sample
of size n responding to a dose less than or equal to X.

The original assumption of the normality of individual susceptibility has

been tested by reversing the above argument. An expected dosage corresponding

to every observed dosage obtained experimentally may be determined from the



fitted curve. These then might be plotted, as was originally impossible,

and the normal frequency distribution obtained.

In order to rectify the curve, the standard deviation corresponding to

any observed mortality rate may be read directly from the Kelly-Wood Table or

the Shepard-Galton Table. When standard deviations are used all the obser-

vations below fifty percent kill would have negative expected dosages, which

are not convenient. In order to avoid this difficulty, R. A. Fisher devised

the probit which is equal to X + 5 where X is the standard normal variate.

The expected dosages can be expressed in terms of probits without changing

our basic assumptions. The probits corresponding to each percentage killed

have been tabled. The assumptions used in Fisher's probits may be stimmarized

as follows

:

1. Probability of death of an organism in any experiment is equal to

P and is determined by the tolerance of the organism. The probability

that r^ organisms respond out of n_ tested is (r) p q

2. Transforming percentage kill to probits, the probability that an

organism is killed is given by equation (3) , where Y is the probit

or normalized dose plus 5;

Y = ^^ + 5 = « + gX
o

Therefore:
.2

(3) P =/ir J ^ e d\. •

Equation (3) gives

:

P - P^ [X< Y - 5] - P [X + 5 < Y]
r- — r —

Therefore probit (Y) = X + 5 where X is distributed as a standard

normal variable.

If the value of the transform is plotted against the log dose 2i» the



resulting graph is a straight line whose slope and intercept estimate the

parameters of the original function, i.e.: g-— ,«»5- u/a.

Tne first step in probit analysis is to transform each percentage kill

to its probit value. If the probit values are plotted as ordinates against

some arithmetic function of the amount of dosage (with dosage having equal

increments) , it is usually not a straight line that is realized but rather

a graph which is convex upwards. This deviation from linearity is not en-

tirely unexpected since m.ost dosage-mortality curves are not symetrical.

It was pointed out by Galton in 1879 that variation in biological material

follows a geometrical rather than arithmetic distribution, thus suggesting

that response might be symmetrical on a log-dose scale. This biological

variation has been traced to the relationship between the dose administered

and the amount of poison fixed by essential cells or tissues. The use of a

log function of dosage produces a symmetrical sigmoidal curve, and also a

successful rectification of it, for many different situations. Even though

the tolerances of individual units may vary geometrically, it could be con-

sidered probable that the average susceptibilities of populations of single

cells are normally distributed. Each organism could then be considered as

an average of its component cells so that individual organisms may be expected

to respond normally to a specific poison.

To begin the analysis, the probit value for each percentage killed is

plotted against the corresponding log dose and a provisional regression line

is determined. This first estimate of the transformed curve is ordinarily

not calculated, but drawn in free-hand. If the observed values are quite

scattered, however, the experimentor may choose to calculate the slope of

the linear regression line from:



(4) b -i:(X-7)(Y-y)

Z(X-x)2

where Y - probit, and X " log-dose. The provisional regression serves two

purposes

:

1. It determines the probit values for and mortality rates of zero and

one hundred percent. Mortality rates of zero and one hundred per-

cent cannot be tabled since the curve of the normal distributions

approaches -" for zero percent kill and +" for one hundred percent

kill. This extension of the provisional regression line is accepta-

ble with large sample sizes, but breaks down when the sample size

is small. R. A. Fisher showed that when zero survivors are obser-

ved the expected probit term for one hundred percent kill is always

less than it would be if the class of zero survivors could exert

its proper influence on the provisional regression line. (Annals

of Applied Biology, 1935). Fisher has supplied a table of correc-

tions which are added to the expected probit given by the provision-

al regression line. The corrected probit is used for one hundred

percent kill.

2. It specifies the appropriate weights to be given to the separate

observations in the series. In order to weigh more heavily those

observations which are the most reliable, the weights used will be

the reciprocals of the variances. The variance needed is that of

the probit corresponding to a single observed percentage mortality.

The variance of a probit is equivalent to the variance of a per-

centile (Bliss, 1935). The formula for the variance of a percentile

is given by Kelley (cited in Bliss, 1935) as: a^PO

where Z is the ordinate of the normal curve for a given probit, a
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is the standard deviation, and P, Q, and n, have their previous

significance. The weight for each observation simplifies to:

(5) no) = nZ^

PQ .

because the probit is already in terms of the standard deviation,

i.e. a^ = 1. The term Z^/PQ is called the weighting coefficient

and has been tabled for each 0.1 probit within the useful range of

probit values (Bliss, 1935).

A new regression line can now be calculated by the method of maximum

likelihood. Because probits and the weights must be estimated from the data,

and the weights involve the quantity ultimately to be estimated, namely P,

the true percentage dead for each log-dose X, the solution of the maximum

likelihood equations must depend upon an iterative process. Adjustments to

the values obtained from the provisional regression line are calculated from

first order Taylor expansions. The improved values are used as a basis for

the second cycle of calculation, and its action continues until adequate

convergences to the solutions is reached.

The likelihood function (L) is defined as:

k

<« ^"J,Q)p^i,"i-^i

where i = 1, 2, . . . , k is the index for the different dosages used. The log

of the likelihood is given by:

k
Log L =

I
i=l ^"^Uy + r^ log Pi + (n^-Y^) log

^i

(7)

Let 5 = log(r) + r log P + (n-r) log q

The maximum likelihood estimates for « and 6 are found by solving the

following ^uations

:
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/Rx • i_lPJLJi „ \ 31 • il • II set
^^^ 3« / ap 3Y 9«

9 log L \ 3S_ . IZ • 31 ®S^
^^^

96 "
/ 3? 3Y 33

Evaluation of the partial derivatives gives

:

no) Ll°SJk = f^C^jB) = \ Zn(p-P) =
3" Z PQ

(11) 3 3 *

L fq

Because equations (10), (11) cannot be solved as they are, ^^("iB) and

f„(« S) are expressed in terms of a. Taylor expansion.

f(«,6) = f(«o6o) +91
9«

A8 + 9f.

98

«oSo

''+h(A),

where

A« = «-«o

AB = B - So.

The term h (A) involves higher powers of A« and AS and will be neglected.

(A detailed solution for the estimates of « and 6 from the Taylor expansion

for f^ («jS) and f2(«;S) can be found in Gilliland, 1964.)

Berkson (1946) gives the approximation

p-P = Z(Y-Y)

to express the equations, to be solved, in terms of probits rather than

percentage mortality; i.e.,

(12)
Zn(p-P) ^ Z^n(Y-Y)

PQ PQ

and

(13)
Zn(p-P)(X-y) ^ Z^n(Y-Y)(X--;r) . .. .

PQ PQ

The solutions (Gilliland, 1964) give the weighted standard regression
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equations in probits (Y) and log-dose (X). Using w for the weight Z^/PQ,

the following equations are used to estimate 6 and «:

/•,/N V .. ^ r o ;:nw(X-y)(Y*-vT
(14) b = estimate of B = -^ ^—

Znw(X-x)2

(15) a = estimate of « «= y-bx.

The probits Y are obtained from the provisional regression line and x and y"

are the weighted means of the log-dose and probit values respectively

X = ZnwX

Enw

y "" EnwY

Enw

In terms of the original normal distribution

b = estimate of ^ /a

a = estimate of 5 - y/c

In summary, the calculations for estimating « and 8 may be carried out

as follows: ••

1. Find the provisional regression line. From each observed percentage

dead obtain the corresponding probit value Y from the tables and

plot Y against log-dose X. A straight line fitted by eye is then

used to obtain a set of expected probits, Y corresponding to log-dose

X.

2. To obtain a second approximation to the regression line, a series of

working probits and their weights are obtained, which are then used

in the regression formulas previously given. The working probits

are obtained from either:

Y^ = Y + Q/Z - q/z
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(17)

or

Y = Y - P/Z + p/z

where Y is the expected probit obtained from the previous regression

line, p = observed percentage of individuals responding, and q = 1 - p.

The appropriate weighting coefficient for Y- is obtained from a table.

Also tabled along with the values of the weights for the probit value

are the maximum working probit Y » Y + Q/Z, the minimum working

probit Y ^ = Y - P/Z, and the Range R » 1/Z. Y, and nw, are then
min 1 1

used in the regression formulas to compute the new estimates of the

regression coefficients « and 6.

3. The values of the expected probits obtained from this second approx-

imation to the regression line may then be used to repeat the itera-

tive process. Iteration is continued until the desired degree of

accuracy is reached. It might be noted here that from a statistical

point of view b is the slope with which the regression line passes

through the point 0?,y) ; while from a biological point of view, b

measures how closely the individual organisms in the experiment

agree with one another in their sensitivity to the toxic agent. If

a small change in dosage concentration gives a wide range in the

percentage kill, the sensitivity is high. This toxicological

characteristic can be expressed as the percentage increase in dosage

that is required to increase kill by one probit. This is given by

the ratio:

100 log 10
^e

"
_ 230.6 (Bliss, 1935)
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The most likely position of the true dosage-mortality curve for the entire

population has been computed on the basis of the experimental evidence obtained

from a sample. A different sample would have produced a different regression

line. To determine how accurately the curve has been determined, i.e., whether

the observed mortalities agree with the theoretical mortalities obtained from

the regression line, a chi-square test may be used. If none of the expected

frequencies nP or nQ is too small (less than 5) the formula for Pearson's

chi-square may be obtained from the following table:

TABLE I

DEAD ALIVE TOTAL

OBSERVED pn qn n

EXPECTED Pn On n

Number of organisms observed to be dead
or alive out of a sample of size n.

X^ then is computed to be:

•25^ = \ (pn^- Pn)^ ^ (qn - Qn)^

Pn Qn

(18)
n

PQ

(P-P)2

» \ (r-nP)^ '

'^

^ nPQ

where r = number responding to dosage X. An easier method of computation given

by Bliss (1935) adapted from one given by Fisher, is as follows:

(19) X^ = [Z„y2 - y j:„y[ - b [EwXY - 3^wY].

Nearly all of these components were computed in determining the regression

equation. The number of degrees of freedom is two less than the number of
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levels of X used in the experiment.

In dealing with expected frequencies less than 5, two methods have been

proposed:

1. The exact procedure, according to Bliss (1935), would be to exclude

from the computation of"K^ the results of those dosages at which the

expected survivors (or mortalities) are less than 5.

2. The second method is to group together the results of those dosages

in which the expected survival rate is small (or expected death rate

is small), since they will contribute less to the X^ value as a

group, than as single observations.

If the calculated tJC^ with (n - 2) d.f., is significant, then either the

observations depart significantly from a straight line relationship, or some

uncontrolled condition in the experiment is causing a greater variation about

the line than can be attributed to fluctuations due to sampling. According

to Bliss (1935) the latter is the more likely, since systematic deviations

from linearity were eliminated from the start.

It is useful to see how accurately a and b have been estimated. The

formulas for the variances of a and b, as given by Bliss (1935), are:

Var (b) = S^b = ^ _
n[IwX'^ - xZwX]

Var (a) = S^a = X^

nZw

When the tK? test for the position of the computed curve is non-significant,

these variances may be reduced to a simpler form for all tests involving the

same dosages and numbers of organisms. Replacing X^/n by its approximate

expected value when n is large,
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E [x2/n] - ^^ - 1,
n

the variances simplify to:

Var (b)

EwX^ - xZwX

Var (a) - 1_

Ew

Confidence limits can also be placed about the regression line, as given

by:

Y - a + b (X - x) + t - [S^a + (X - x) S^bl^— n—

Z

where t_ is taken from "Students'" table for the appropriate «- level of con-

fidence and (n - 2) degrees of freedom (Bliss, 1935).

It was given previously that a_ was the estimate of 5 - u/a. Therefore

the estimate of u is given by (5 - ^/b where b is the estimate of 1/a. This

is the estimate of the dosage at which there is a fifty percent response, often

called the L. D. 50 (median lethal dose). The large sample formula for the

variance of X_- (estimate of L. D. 50) is given by:

i ' J^ * <X3„ - ^^
50 Znw

Znw (X - x)2

(cited in Biometrical Tables for Statiticians as given by Finney, 1952)

3. LOGIT ANALYSIS

Logit analysis was devised to avoid the necessity of assuming normality of

tolerances. According to Berkson (1951), the purpose of the analysis is to

give information about the relationship between dosage and' response given by

the slope of the dosage-mortality curve, not deviations of hypothetical
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tolerances of the organisms. \Vhen speaking of the standard deviation of

tolerances, a variability is perhaps being supplied for something that in fact

does not exist at all. Berkson offered several examples to question the

existence of tolerances. One involved subjecting pilots to high-altitude

conditions and observing their all-or-none responses of getting the "bends".

Those who succumbed were marked as having low tolerance and were not to be

assigned to high-altitude flying. At Berkson 's request the tests were re-

peated and many of the pilots who had succumbed the first time were not affected

the second time; and many of those who passed the first trial, got the "bends"

on the second. Either their tolerances had changed; or as he questions "Did

it exist at all?". A second example was a bio-assay experiment in which

Drosophila were exposed to increasing doses of X-ray intensity and the quan-

tal response of the percentage mutation was observed. From the probltist's

point of view, the increase in percentage response from one dose to the next

reflected a difference in the tolerances of the flies. However, it is the

generally accepted theory that the probability of an effective hit on a cell

by a photon, which is what causes the mutation, is directly proportional to

the intensity of the radiations. In other words the more photons the more

chance of mutation, rather than the cell of a fly showing a tolerance to

photons.

If assumptions of normality are discarded and with it the use of the

integrated normal in fitting the dosage-mortality curve, a new functional

relationship must be found to govern the process. Berkson, on the basis of

previous work done in studies of population growth, has suggested the logistic

curve

:

"«
1 . e-<-««



As^^r^ p+ofe,

Ti rr\c^

Fio- 5 The |oai5"f"ic curfe and /f^ firsi"

der'iUQ'^fue. oar(;€. as de pi c"l"(nor
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3.1 THE LOGISTIC CURVE

In 1838 P. F. Verhulst, a Belgian mathematician, suggested the use of a

curve which he called the "logistic" to describe the growth of human popula-

tions. His work was forgotten for many years and in 1920 R. Pearl and

L. J. Reed, without knowing of Verhulst's work, derived the logistic curve

empirically to meet certain postulates for a curve to describe population

growth. The equation for the logistic may be written in the form:

(27)
K

-(=+3t)
1 + e

The first derivative with respect to time gives the change in mass per unit

of time:

dY

dt

KBe
-(«+Bt)

[1+e
-(«+et)]2 ,

which can be rewritten as follows:

dY
dt

K

[1 + e'
(«+St)]

-(«+et)

1+e
K

-(«+Bt) K

Y r K + e-^"^^^^ K - K ]

[ 1 + e-^"-^^^) ] K

6 Y
K (1 + e-^'^^^^

K (1 + e-^"+^^))

K

(1 + e-^'-'-^^h K

Y[ 1-f ]
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or dY _ 6Y (K - Y) .

(28) dt " K

Using the above equations and Fig. 2 the following properties of the logistic

are derived:

1. The logistic is asymptotic to a line K units above the t-axis and

parallel to it.

2. The point of inflection is given by the coordinates:

t = - «/B and Y = K/2.

This is shown as follows:

,2y . r,., dY. . ,„ „. dY

dt"^ K
d2Y „ ^ [Y(-^) + (K - Y) ^ ]df ' ' dt

K ^^ dt -
2 Y -g ] .

at

Setting d£Y
dt^ "

vil _ 2 Y^ = A
^dt ^ ^dt

K - 2Y =

<29>
Y = K/2.

Solving for t and using Y = K/?:

K/2 = K
-(^+et)

1 + e

1/2
-(c.+6t)

1 + e

1 4- e-^"^^^^ = 2

e ""1



20

hence

^e-^"-^^^^ =

- (cc+Bt) -

so that the point of inflection is given by

(30) t = - «/6 , Y = K/2

3. The rate of change of the mass Y is greatest at Y - K/2 and is given

by:

(31)

dY
dt - B(K/2)(K-K/2) ^ 6K

Y = K/2 K
^

A. By inspection of equation (28)

dY BY(K - Y) ,

^""^
K

the rate of growth of the population, diminishes with time as a result

of the slowing effect of the factor (K - Y) , which measures the

aggregate of forces that slow down and finally stop growth.

Because of the dynamic relationship expressed in equation (28) above,

where the rate of change of the mass Y with respect to time t is proportional

to a factor that decreases as Y increases, the logistic has been successfully

applied in a great many experimental fields. It has been used to describe

chemical autocatalysis, electrode potential of an oxidation-reduction reaction,

enzyme reactions, and other organic reactions, as well as the previously stated

population growth and the growth of an individual. Thus, the logistic function

applies to a wide range of phenomena whose physical mechanisms are different.

And all of these mechanisms are dynamic, as opposed to a static distribution

of tolerances.

VThile the logistic is not considered as a probability density function

in loglt analysis it is of additional statistical interest to note that the



21

density function of the logistic has been given by Gupta (1965).

A random variable Y is said to follow a logistic distribution L(y,a )

if its cumulative distribution function is:

F (Y;ii,a) =

1 + expf _ ^Y_^^
._Tr_|

The probability density function is:

f (^,,,,) = C^/v^cT) exp{-.(Y-u)//r^a I

[1 + exp{-Tr(Y-y)//3~ a]]

where

_ CO < Y < "

and

-oo<y <»
^ a>0..

2

The density is symmetrical with mean u and variance a . The moment generating

function of X = -^^bil ^g:
o

M^(t) = (1+t/g) (1 - t/g)

where g = Tr//3 •

3.2 APPLYING THE LOGISTIC TO BIOASSAY

In logit analysis, the logistic function is used to describe the true

mortality rate P instead of a normal distribution of tolerances:

(35) ^^^-(<^+Bt),

Comparing the dosage-mortality curve of a bioassay experiment (Fig. A) with

the population growth curve graph used by Pearle and Reed, the following facts
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may be noted:

1. The population growth has been replaced by the death rate, thus

where K stood for the naxiinum population level in the Pearle and

Reed model K is now equal to one.

2. The time intervals on the absicissa have been replaced by the in-

creasing concentrations of the doses administered.
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Fig. 4. Dosage-Mortality Curve.

^i Loq dose-

The probability of observing r deaths out of n organisms exposed to a

dose X is again governed by the binomial distribution and is given by:

(36)
,nv r n-r
(r) p q

In fitting the logistic to population growth, Pearl and Reed used the

method of least squares. The weighted normal equations are obtained by

minimizing the quantity:
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(37) \ T~ (p - P)^

(where the weight is the reciprocal of the variance of P.) This cannot be

solved directly in terns of the logistic because:

1. The logistic is not linear in the parameters to be evaluated.

2. The weights contain the quantities P and Q to be estimated. The;

logistic can be expanded in terms of a Taylor series and solution

obtained by successive approximations, as was done with probits.

To avoid the first difficulty to an easy solution, a transformation is

made which will rectify the curve in the same manner as used in probit analysis.

The transformation used is the logit , defined as:

p
Logit L = iln Yip

^ Zn 1 + e
^

1 -

1 + e-^-^^^^^

L - £n

-(«+SX)
e

(38) = oc + B X.

The logit L can then be plotted against the corresponding dosage X and the

resulting straight line gives the original parameters as the slope and

intercept.



24

O
r
o

en
o

Fig. 5. Scatter diagram showing true regression
line and estimated regression line.

The L. D. 50 is the dosage such that fifty percent of the organisms ex-

posed die, that is:

P = 1/2 = 1

1 + e-^'-'-'So^

Using elementary algebra one obtains:

1 = e-^"^^S0^ ;

and taking natural logarithms

;

= - C'^+BX^q)

giving the dose L. D. 50 = -«/S.

Making an approximation analagous to that used in the solution of the maxi-

2
mum likelihood equations for probits (Berkson, 1946), the minim.um X can be

found in terras of the logit Jl = In (p/q) rather than the observed response p.

Therefore
(39)

(p - P) - (PQ) a- L) ;

or, using a further approximation

(40) (p - P) = (PQ) (pq) (,^ - L) .
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Using equation (18) ,

(40) ^^5 it- <P - f)'

2
We are now able to determine estimates for « and 6 by minimizing the logit X .

(41) X = npq (il - L)

(Berkson originally called this the method of least squares.)

An iterative solution for logits analagous to that used for probits

could be used, but by minimizing equation (41) a direct solution can be ob-

tained since the weights on the right side are entirely in terms of the observed

values, n, p, q; i.e., they do not contain the parameters to be estimated. This

same simplification does not occur with the integrated normal since the corres-

ponding approximation would be

(42) (p - P)^ = Z^ (Y - Y)^

where y is the observed probit, Y is the expected problt, and Z is the estimated

2 - «
normal ordinate. Using this in the same X (18) we do not divide out the P Q

in the denominator.

Berkson gives the following properties for all values of the parameters

2
of the minimum logit X (Berkson, 1955)

1. The logitX is distributed asymptotically as XT.

2. It is asymptotically efficient.

3. It is sufficient.

4. It has a smaller sampling error (mean square error) and smaller

variance about the mean than the maximum likelihood estimate.

2To obtain the normal equations for estimating « and 6 , the logit X is

differentiated with respect to «, and with respect to S. As with probits the

derivative must be composite since the logit L «• « + 6 x.
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B Tnpqx (£ - L) =

(43)

(44)

The solution of equations (43) and (44) lead to the least squares

solutions for the regression line L = a + bX, where npq is the weight of

dose X. The estimates of « and S are given by

//rN t, Enpq (g. - T ) (X - x)
Q45) b = — —2-^

Enpq (X - x)

(46) a = I - bx. (Berkson, 1953) ,

where

(47) L « Znpq£
Enpq

(48) X - |^23X
Znpq

The weights w = pq and wl = pql have been tabulated (Berkson, 1953) using the

machine formula:

(49)

Enw^t ICnwx

b = ZnwJLX - Enw

r (Em>yx)
Znwx - —z

Znw

/er\\ ZnwZ - b Z nwx
(50; a = ;

Znw

The estimate of the L. D. 50 is given by X._ - -a/b.

A close approximation of a least squares solution in terms of the logistic

has now been obtained with only the arithmetic of the estimates involved.

In the instances in which the observed mortality rate is zero of 100 per-

cent the logit cannot be used since it becomes infinite at these values. The
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method used for probits can be used to obtain a preliminary solution for the

observations in question.

The variances of a and b, the estimates of « and B, have been derived as

the asjrmptotic variances with estimates then substituted for the parameters

(Berkson, 1958). The estimated logit linear equation may be written as:

L=a+bX-a'+b(x-x)

where a' «• il " a + bx. The formulas for the variances of the estimates of the

parameters may be written as follows:

(51) S^a' -
Enw

S^ = 1
(52) % ^

Znw(x - x)

(53) sl - s2. ^ -2^2 _ _1_ ^ x^ .

b Enw Enw(x - x)

These formulas provide closely accurate estimates of the variances, under the

ideal conditions in which:

1. The true P's are given exactly by equation (35).

2. The samples are random for each fixed dose.

3. The number of organisms used at each dose is large (Berkson, 1953).

The variance of the estimate of the L. D. 50, where X is the log-dose, is

given by

(54) S^ = 1 _2 ^ .2 . -.2
^50 J ^a

•" h ^^^50 - ""^

The use of logit analysis leads to a relatively easy solution for the

estimates of the parameters, and thus an easily fit dosage-mortality curve.

From the mortality rate p at any log-dose X the logits I and weights w may

be obtained from tables. (Berkson, 1953) The antilogits, p, for logit I have
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also been tabulated by Berkson. The straight line transform obtained in terms

of a and b may then be easily plotted using special logit graph paper, sold

by the Codex Book Company, Norwood, Massachusetts. From the regression line

L = a + bx

the expected logits may be found. Using the antilogit tables (Berkson, 1955)

to find p and Q for logit L, the Pearson chi-square

(55) 0^ = V%^
can be calculated. The logit chi-square could have been calculated instead of

the Pearson chi-square, which as was indicated earlier, reduces the computa-

tional work.

The accuracy of the estimates for « and S can be measured by the formulas

for the variance of a and the variance of b.

Because the assumption of normality has been discarded in favor of the

logistic distribution in logit analysis, the statistical tests used in probit

analysis cannot be used.

A. CONCLUSION

The integrated normal curve used in probit analysis and the logistic

curve used in logit analysis lead to essentially the same rectification of the

original curvilinear data and to essentially the same fitted straight line. In

practice, discrimination between the normal and logistic fitting of the dosage-

response relationship is not likely to be possible. When the chi-square values

for probits and logits are compared, the results are practically the same

(Berkson, Finney). Berkson (19A4, 19A6) gives data which indicates that:

1. Both the probit and logit chi-square approache the true value of
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chi-square.

2. The logit approximation is closer than that of probits.

3. The logit approximation always gives a smaller value than the true

value, while the probit approximation is sometimes lower, sometimes

higher.

A. The variability from the true value is greater for the probit than

for the logit.

While the final fitted curve is nearly the same for both methods, the

calculations involved are definitely more laborious in probit analysis than

logit analysis. From the purely empirical curve-fitting point of view, logit

analysis might be preferred.

If more than curve-fitting is desired in the analysis , then the assump-

tions behind probits or logits should be considered. Probit analysis assumes

a normal distribution of tolerances of the organisms to the agent. Logit

analysis was devised to avoid such a static distribution of tolerances. But,

by not making the assumption of normality, no tests or confidence intervals

about the estimates can be run. It must be recognized that the true distri-

bution may not be normal, but in the absence of evidence favoring a specific

alternative, the hypothesis of normality is very attractive (Finney, 1952).

In fact, the central limit theorm gives reason for hoping that conclusions

based on the normal assumption will be close to the truth if the means of

several observations are involved.

The differences involved in using logit analysis or probit analysis have

aroused considerable interest and some controversy in bioassay. Perhaps it

should be recognized that both probit and logit analysis are important in

bioassay. The choice between them may depend upon the nature of the bio-

logical reactions in use, and the results desired.
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Probit and logit analyses are generally utilized in the area of bioassay.

In bioassay plants or animals are subjected to some stimulus in varying in-

tensities in order to determine the relationship between the intensities of

the stimulus and the responses they elicit from the organism. When the response

is known as a function of the stimulus, predictions can be made of intensities

which produce desirable responses.

Probit and logit analyses deal with a particular type of bioassay where

the response by an organism to a stimulus administered is quantal. Quantal

responses are all-or-none responses in which the organism is either affected or

not affected by the stimulus, as opposed to responses measured on a continuous

scale.

The purpose of this report is to compare the methods of obtaining this

dosage-response relationship by probit analysis and logit analysis.

Probit analysis and logit analysis differ basically in the underlying

assumptions and in the method of fitting the dosage-response curve.

Probit analysis assumes a normal distribution of tolerances of the organism

to the stimulus. The probability that a certain percentage of organisms will

respond to a given dose of the stimulus is given by

Y-5
f 2

P - -J_ -±A
' /?fr ^ dx

where Y is the probit or normalized percentage killed, plus five; i.e.,

Probit (Y) = X + 5

The sigmoidal curve obtained by plotting the percentage responding against a

given dosage is rectified (made linear) by using the probit transformation and

plotting probits against dosage. The method of maximum likelihood is used to

estimate the parameters of the regression line obtained in terms of probits



and dosage. Because the weighted normal equations contain the parameters to

be estimated, a first order Taylor expansion is used as an approximate solution.

An iterative procedure must then be used to solve for the estimates to a de-

sired accuracy. The variance of the estimates can be calculated and confidence

limits can be placed about the regression line.

Logit analysis was devised to avoid the assumption of normality. The

probability that a certain percentage of organisms will respond to a certain

dose of the stimulus is given by the logistic curve:

. p« 1 •

1 4- e-^'^-^^^^

The rectification of the curve is accomplished by transforming the percentage

responding to logits by:

Logit (Y) =Ai-2-

where p is the observed percentage responding and q « 1 - p. The minimum chi-

square method is used to find the estimates of the parameters, « and 3. An

approximation of weighted percentage responding in terms of logits enables the

normal equations to be solved directly and weighted equations for linear re-

gression are obtained. The variances of the estimates can be calculated, but

no confidence limits can be set since normality was not assumed.

If the fitting of the dosage-response curve is all that is wanted and the

assumption of normality is not obvious from the material being tested, logit

analysis gives the easier solutions.

If tests of the estimates are needed, and the assumption of normality of

tolerances is reasonable, probit analysis must be used.

Both methods have an importance in bioassay, the choice between them de-

pending on the nature of the biological reactions in use and the results desired.


