

Provided by K-State Research Exchange

HIGH-SPEED HELICAL GEAR DESIGN

by

SHAMALDAS LALJIBHAI SUTHAR

B. E. (Mech.), Gujarat University, India, 1964

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1966

Approved by:

Jrofessor

LD 2668 RV					i
1965 TABLE OF CONTENTS 5965					
SYMBOLS USED					iv
REVIEW OF THE LITERATURE					1
INTRODUCTION		• •			3
Gear Teeth in Action					3
Dynamic Loads and Influence of Fine Pi	tch	and			
High Speed					5
DESIGN					5
Selection of Gear Materials					5
Number of Teeth		• •		•	6
Tooth-to-tooth Relationship					6
Helix Angle ()					9
Face Width (F)					9
Normal Diametral Pitch (P_n)					9
Bending Strength					10
Power Capacity (Based on Strength) .					13
Surface Durability					13
Power Capacity (Based on Surface Durab	ili	ty)			15
Dynamic Load (Wd)					16
Limiting Load for Wear (W_W)					17
Gear Blank Design					18
PROBLEM					19
SOLUTION					20
Selection of Materials					20
Number of Teeth					22
Transmitted Tangential Load Wt \ldots					23

	Bendir	1g	St	re	9 S S	3	•						•	•	•	•		•	•	•	•	٠	•	•	23
	Power	Ca	pa	cj	t3	r (B	as	ed	01	n ŝ	Sti	rer	ıgt	th))					•				25
	Surfac	e	Du	rε	bj	11	it;	y																	26
	Power	Ca	pa	cj	tj	r (Ba	as	эd	oı	n S	Sui	rîe	ace	эI	Dui	aì	oi]	Li	ty)					26
	Dynami	c	Lo	аċ	l W	d		•			•	•	•		•		•								27
	Limiti	ng	L	08	d	fc	pr	W	ear	• V	√w			•					•						32
	Result	s													•										33
ACKNO	WLEDGM	ÆN	T	•						•							•								35
REFEF	RENCES																								36

SYMBOLS USED

а	Thickness of arms, in.
Cp	Center distance, in.
đs	Shaft diameter, in.
dl	Operating pitch diameter of pinion, in.
d2.	Operating pitch diameter of gear, in.
0	Error in action, in.
Ep	Modulus of elasticity of pinion, psi.
Eg	Modulus of elasticity of gear, psi.
F	Face width, in.
\mathbb{F}_{a}	Acceleration load, 1b.
Fl	Force required to deform teeth amount of effective
	error, lb.
\mathbb{F}_2	Average force required to accelerate the masses when they
	are considered as rigid bodies, lb.
h	Thickness of the rim of gear, in.
j	Number of arms.
J	Geometry factor.
K	Load-stress factor.
Kſ	Surface condition factor.
Kh	Hardness ratio factor.
Кl	Life factor.
Km	Load distribution factor.
Ko	Overload factor.
Кp	Elastic coefficient.
Kr	Factor of safety.

- K₈ Size factor.
- Kt Temperature factor.
- m Effective mass, slugs.
- m, Effective mass of pinion, slugs.

m2 Effective mass of gear, slugs.

- np Speed of pinion, rpm.
- ng Speed of gear, rpm.
- N Number of teeth.
- Nn Number of teeth on pinion.
- Ng Number of teeth on gear.
- p Circular pitch, in.
- pa Axial pitch, in.
- p. Normal pitch, in.
- Pat Allowable power of a gear set based on tensile strength, hp.
- Pac Allowable power of a gear set based on surface dura-

bility, hp.

- Pd Diametral pitch.
- Pn Normal diametral pitch.
- Q Ratio factor.
- R1 Pitch radius of pinion, in.
- R2 Pitch radius of gear, in.

Sac Allowable contact stress, psi.

- Sat Allowable tensile stress, psi.
- Ss Shear stress, psi.
- Sc Calculated contact stress, psi.
- St Calculated tensile stress, psi.

- T Torque, in. 1b.
- Tr Peak operating temperature, degree F.
- Vt. Pitch line velocity, fpm.
- W_d Dynamic load, 1b.
- \mathbb{W}_{t} Transmitted tangential load at operating pitch diameter, 1b.
- Ø Pressure angle, degree.
- Øn Normal pressure angle, degree.
- ψ Helix angle, degree.
- P Density, lb./cu.in.
- μ_p Poisson's ratio for pinion.
- μ_g Poisson's ratio for gear.

REVIEW OF THE LITERATURE

In 1939 Maleev (3) presented a helical gear design. He recommended some formulae to find the limiting load for wear and also the dynamic load. He derived a bending strength formula by considering the gear tooth as a cantilever beam.

In 1946 Buckingham (1) suggested a method to calculate the dynamic load by considering the weight of the gear. He found the effective mass of gears by using the polar moment of inertia and then dividing by the pitch radius squared. This work is the most authoritative study of dynamic loads that is available to the gear designer.

In 1954 Dudley (2) carried out a set of experiments and suggested some practical methods to design helical gears. He introduced high-speed helical gears. Dudley also solved a few numerical problems on high-speed helical gears.

In 1956 Shigley (5) designed a helical gear by considering the dynamic load as a series effect. He also introduced the helical gears which are used for high speed. He suggested a few standard tooth proportions for helical gears.

In 1961 Wellauer (10) presented three formulae to find the bending stress and power capacity of a helical gear set based on strength. He described the relation between calculated and allowable bending stresses. He considered all permissible factors which affect the strength of the gear teeth, and suggested various values for different types of factors.

In 1962 Tuplin (6) presented the selection of materials

and the determination of manufacturing dimensions of gears for some specified purposes. The methods described by him are applicable to gears of any class of service and as far as it is consistent with that condition, they have been kept as simple as possible. Tuplin (7) stated that the maximum gear tooth loading is considerably higher than that corresponding to transmitted power because of the dynamic effect of unavoidable imperfections in the gear.

In 1964 Wellauer (11) showed how to predict surface durability of helical gears and presented some formulae to find surface contact stress and the relation between calculated and allowable contact stresses. He found the power capacity based on surface durability for helical gears.

In 1965 Wellauer (8) suggested a more fundamental and more accurate theoretical analysis of the stress system. This particularly applies to the strength of a gear tooth. He presented a better basic understanding and evaluation of the dynamic effects caused by speed.

In 1965 Wellauer (9) developed that the strength and profile durability (pitting) life of gear teeth is a fatigue phenomenon measured by stress level, contacting cycle, and mortality rates. The life of a gear power transmission depends upon mutually dependent survival of the principal elements-gears, shafts, and bearings.

INTRODUCTION

Most engineers prefer to use spur gears when power is to be transferred between parallel shafts because they are easier to design and manufacture. However, sometimes the design requirements are such that helical gears are a better choice. This may be true when the loads are heavy and speeds are high, or the noise level must be kept low. Although spur gears are ordinarily used in slow-speed applications, and helical gears are used in high-speed applications, spur gears may be used at very high-pitch line velocities if the noise requirements permit.

In the spur gears the line of contact is parallel to the axis of rotation; in helical gears the line of contact is diagonally across the face of the tooth. It is this gradual engagement of the tooth and smooth transfer of load from one tooth to another that gives helical gears the ability to transmit heavy loads at high speeds with low noise.

Gear Teeth in Action

The load-carrying capacity of any gear drive may be limited by any one or more of the following factors.

- 1. Excessive heat of operation
- 2. Breaking of the gear teeth
- 3. Excessive wear of the gear tooth surfaces.

In addition to these, excessive noise in operation may make a gear drive unsuitable for use even though none of the three foregoing factors is involved. To be satisfactory, gears must transmit power smoothly, with a minimum of vibration and noise, and must have reasonable length of useful life. Noise is relative rather than absolute and may be defined as unpleasant or objectionable sound (1).

Inadequate lubrication may also be a source of excessive heat, noise, and wear. At high speeds the major purpose of the oil is to act as coolant and carry away the frictional heat of operation. Here the lubrication may be a secondary factor. Conversely, too much oil at the mesh point of the gears may be squeezed from between the teeth.

It cannot be doubted that slow speeds will allow higher working stresses than high speeds, but it may be questioned whether a tooth with a velocity of 100 feet a minute is twice as strong as a tooth at 600 feet a minute, or four times as strong as the same tooth at 1800 feet a minute (1).

With the introduction of higher speed prime movers, such as steam turbines and electric motors, centrifugal pumps, fans, etc., it has been found by experience that after a pitch line velocity of the order of 5,000 feet a minute is reached, the load-carrying ability is practically constant for any higher speed (1).

When the helical gears are made accurate enough to operate satisfactorily at 5,000 feet a minute pitch line velocity, there seems to be little difference, except at critical speeds, in either quietness or load-carrying ability between that speed and a speed of 10,000 feet a minute (1).

Dynamic Loads and Influence of Fine Pitch and High Speed

It is apparent that for all gear drives, regardless of the extent of the actual error in action, there will be a speed at which the dynamic load is independent of the actual error in action. It may be that the dynamic load will reach a maximum value at some speed and then reduce with a further increase in speed. In such cases the gears must be strong enough to carry the loads through this maximum value without failure, in order to be able to operate at the higher speeds (1).

If the gears are to run at the higher speeds, and have a reasonable length of useful life, then design stresses should be higher than the endurance limit of the materials (1).

DESIGN

Selection of Gear Materials

Gears are commonly made of steel, cast iron, bronze, or phenolic resins. In many applications, steel is the only satisfactory material because it combines both high strength and low cost. Sometimes the gears are made of both plain carbon and alloy steels. In many cases the choice will depend upon relative success of the heat-treating department with the various steels (2).

Cast iron is a very popular gear material. It is easy to cast and machine, has good wearing characteristics, and transmits

less noise than the steel. The cast-iron classes and the physical properties of steel shown in Table 1 and Table 2 are recommended by the American Gear Manufacturers Association (AGMA) (2).

Bronze may be used for gears when corrosion is a problem. It is also very useful where the sliding velocity is high.

Phenolic resin is widely used under the name of bakelite, or laminated sheets obtained by compressing layers of paper or canvas impregnated with phenolic resin. Also it is used to menufacture silent gears and bearing shells (3).

Number of Teeth

High load and high-speed spur gear pinions are manufactured with from 18 to 70 teeth. High-speed helical pinions have from 35 to 70 teeth. Naturally, the number of teeth on a pinion or gear cannot be a fraction (2).

Tooth-to-tooth Relationship

The relation between the normal circular pitch and the circular pitch (5) (Fig. 1) is given by

$$p_n = p \cos \Psi \tag{1}$$

$$p_{a} = \frac{p}{\tan \varphi} .$$
 (2)

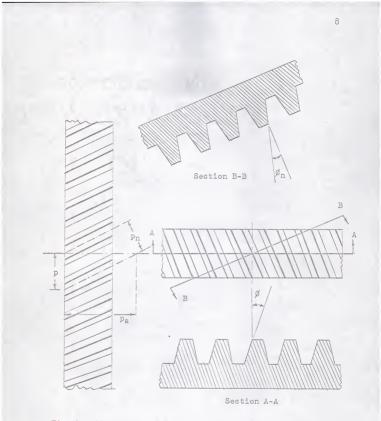
The relation between the normal diametral pitch P_{n} and the diametral pitch P_{d} is given by

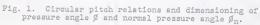
ness on n, b.h.n

Table 1. Properties of cast irons.

Table 2. Physical properties of steel.

Materials	 Specific weight, lb/cu in	:	Allowable tensile stress, psi	:	Modulus of elas- ticity, psi 106	•••••	Endurance limit, psi	: : : :	B.h.n.
SAE 1010	.282		15,500		30.3		24,000		110
SAE 1020	.282		17,500		30.2		26,000		125
SAE 1030	.282		42,000		30.0		32,000		150
SAE 1040	.282		25,000		29.8		37,000		180
SAE 1050	.282		26,000		29.7		42,000		190
SAE 1095	.282		40,000		29.7		65,000		300
SAE 1120	.282		22,500		30.2		26,000		125





$$P_n = \frac{P_d}{\cos \psi} .$$
 (3)

Generally the normal pressure angle \mathscr{G}_n for helical gear is 20 degrees and the relation between \mathscr{G}_n and pressure angle \mathscr{G} is given by

$$\cos \Psi' = \frac{\tan \phi_n}{\tan \phi} \quad . \tag{4}$$

Helix Angle (Υ)

According to definition of the AGMA, the helix angle ψ' is the angle between a tangent to a helix and an element of the cylinder along the pitch line. Helix angles of 15 to 23 degrees are more commonly used because they give low axial thrust load. The axial thrust increases with an increase of the helix angle (Ψ') (3).

Face Width (F)

The face width of helical gears should be at least two times the axial pitch. For very high speeds the face width may be four or more times the axial pitch, but the accuracy of the teeth must be increased correspondingly (5).

Normal Diametral Pitch (Pn)

Normal diametral pitch of a helical gear presents the

number of teeth per inch of normal pitch diameter.

The size of normal diametral pitch for which a cutter may be obtained (3) is from one to four, by increments of onefourth; from four to six, by one-half; from six to 16, by one; and from 16 to 32, by two.

Bending Strength

The basic equation for the bending stress (11) in a gear tooth is

$$S_{t} = \frac{W_{t} K_{o}}{K_{v}} \frac{P_{d}}{F} \frac{K_{s} K_{m}}{J} .$$
 (5)

The overload factor Ko can be found from Table 3.

Character of power	: Characte	r of load on dri	ven machine
source	: Uniform :	Moderate shock	: Heavy shock
Uniform Electric motor turbine	1.00	1.25	2.00
Light shock Multicylinder I.C. engine	1.25	1.50	2.25
Medium shock Single-cylinder I.C. engine	1.50	1.75	2.50

Table 3. Overload factor Ko.

The dynamic factor ${\rm K}_{\rm V}$ is

$$K_{v} = \sqrt{\frac{.78}{78 + \sqrt{v_{t}}}}$$
(6)

The face width F is

$$F \ge 2 p_a \text{ to } 4 p_a$$
 (7)

The size factor ${\rm K}_{\rm S}$ can be found from Table 4.

Normal diametral pitch F	'n :	Size factor K _s .
2.00 1.00 6.00		1.22 1.15 1.10
8.00 10.00 12.00		1.05 1.00 0.96
14.00 16.00 18.00		0.93 0.92 0.91

Table 4. Size factor Ks.

The load distribution factor ${\rm K}_{\rm m}$ can be found from Table 5.

Fac	ace width F, in.		- 1	Load	distr	ibu	tion	factor Km	
			:	Precision	gear	:	Less	accurate	gear
	2.00 4.00 6.00 8.00			1.20 1.28 1.34 1.42				1.50 1.57 1.64 1.72	
16.00	10.00 12.00 14.00 and over	16.00		1.48 1.56 1.63 1.70				1.78 1.86 1.93 2.00	

Table 5. Load distribution factor ${\rm K}_{\rm m}.$

The geometry factor J can be found from Table 6.

Helix angle \forall , degree	:	Geometry factor J
5.00 10.00 15.00		。 0,近9 0,53 0,54
20.00 25.00 30.00 35.00		0.52 0.52 0.50 0.46

Table 6. Geometry factor J.

The relation between calculated and allowable stress is

$$s_{t} \leq \frac{s_{at} \kappa_{\ell}}{\kappa_{t} \kappa_{r}} \quad . \tag{8}$$

The life factor Kg can be found from Table 7.

Required tooth	:		Mi	nimum ha	ardne	ss B.h.	s B.h.n.					
contact cycle	:	450	:	350	:	250	:	160				
10 to 1000		3.40		3.00		2.40		1.60				
104		2.40		2.20		1.80		1.40				
105		1.70		1.60		1.50		1.20				
106		1.30		1.25		1.20		1.10				
10 ⁷ and over		1.00		1.00		1.00		1.00				

Table 7. Life factor Kg.

The temperature factor K_t is

$$K_{t} = \frac{460 + T_{f}}{620} .$$

(9)

The factor of safety $K_{\rm p}$ covers the unknowns in the various rating factors, the spread or scatter of material properties, and the concept of statistical reliability now widely used. The factor of safety can be found from Table 8.

		the second se
Requirement of application	:	Factor of safety Kr
Highest reliability Probability of failure practically nil		2.00 or over
Commercial reliability		1.20
Failure frequency (per cent)		
. 1.		1.00
20		0.80
30		0.70

Table 8. Factor of safety Kr.

Power Capacity (Based on Strength)

The power capacity of a gear set based on strength (10) can be calculated as

$$P_{at} = \frac{n_p \, d_1 \, K_v}{126,000 \, K_o} \frac{F}{K_m} \frac{J}{K_s \, P_d} \frac{S_{at} \, K_\ell}{K_r \, K_t} \, . \tag{10}$$

Surface Durability

The load-carrying capacity of a helical gear is normally limited by the pitting resistance. This is commonly called the "durability capacity". Pitting is defined as surface fatigue failure of the material caused by repeated surface or subsurface stresses that exceed the endurance limit of the material (11).

The recently developed AGMA gear-rating standard AGMA 212.02 provides the fundamental formula for determining the surface durability especially for helical and herringbone gears.

Since the calculated stress and allowable stress have a linear relation, the exact stress and location need not be determined.

The fundamental surface durability formula for gear teeth is

$$S_{c} = K_{p} \sqrt{\frac{W_{t} K_{o}}{K_{v}}} \frac{K_{s}}{d_{1}F} \frac{K_{m} K_{f}}{J}$$
(11)

The elastic coefficient Kp is

$$\kappa_{p} = \sqrt{\frac{1}{\frac{1 - \mu_{p}^{2}}{E_{p}} + \frac{1 - \mu_{g}^{2}}{E_{g}}}} .$$
 (12)

The surface condition factor K_f depends on profile surface, finish residual stress, and plasticity effects (work hardening). Excessively deep hob scallops or shaper grooves, as well as surface heat-treating checks caused by improper flame or induction surface hardening, might singly or in combination require a K_f factor from 1.25 up to as high as 1.40. Gears that are generated by shaving or manufactured with reasonable care can be rated with a $K_f = 1.00$.

The relation between calculated and allowable contact

stresses (ll) is

$$s_c \leq s_{ac} \frac{K K_h}{K_t K_p}$$
 (13)

The hardness ratio factor K_h depends on the ratio of B.h.n. of gear to B.h.n. of pinion, and it also depends on reduction gear ratio. It is obvious that two meshing gears, particularly with a high ratio, have a higher capacity when a hardness differential exists between gear and pinion. Even at low ratios a differential in hardness should exist between the gear and pinion to minimize the possibility of scuffing or scoring. The hardness ratio factor K_h can be found from Table 9.

							_
Single reduction gear ratio	:	b: B.h.n.		to B.h	n. of p	inion : : 1.70	
2.00	1.003	1.004	1.005	1.006	1.007	1.008	
4.00	1.008	1.010	1.013	1.016	1.018	1.020	
6.00	1.012	1.018	1.022	1.025	1.030	1.034	
8.00	1.017	1.024	1.030	1.036	1.042	1.048	
10.00	1.021	1.030	1.040	1.047	1.054	1.081	
12.00	1.026	1.037	1.048	1.058	1.067	1.075	
14.00	1.030	1.044	1.057	1.069	1.079	1.090	
16.00	1.035	1.051	1.065	1.079	1.091	1.130	

Table 9. Hardness ratio factor $K_{\rm h}$.

Power Capacity (Based on Surface Durability)

The power capacity of a gear set based on surface durability (11) is

$$P_{ac} = \frac{n_{p} F}{126,000} \frac{J K_{v}}{K_{s} K_{m} K_{f} K_{o}} \left[\frac{S_{ac} d_{l}}{K_{p}} \frac{K_{\ell} K_{h}}{K_{t} K_{r}} \right]^{2} .$$
(14)

Dynamic Load (Wd)

There is an approximation to the Buckingham equation which may be used for rapid computations (5). This is

$$W_{d} = W_{t} + \frac{.05 F_{1} V_{t} \cos \psi}{.05 V_{t} + \sqrt{F_{1}}}$$
(15)

where

 $F_1 = F$

$$C \cos^2 \varphi + W_t$$
 (16)

$$C = \frac{1}{c_1 \left[\frac{1}{E_p} + \frac{1}{E_g} \right]} \quad . \tag{17}$$

 $c_1 = 9.345$ for 14 1/2 degree gears (normal pressure angle) and 9.000 for 20.0 degree gears (normal pressure angle).

Error in action, e, in., can be found from Table 10.

Normal	diametral	pitch,	Pn :	Class l	:	Class 2	:	Class 3
	1.00			0.0048		0.0024		0.0012
	2,00			0.0040		0.0020		0.0010
	3.00			0.0032		0.0016		0.0008
	4.00			0.0026		0.0016		0.0007
	5.00			0.0022		0.0011		0.0006
	6.00 and c	over		0.0020		0.0010		0.0005

Table 10. Error in action, e, in.

There are a few changes in the fundamental Buckingham equation (15) for the dynamic load when applied to helical gears (1).

The changed equation is as follows.

$$W_{d} = W_{t} + \sqrt{F_{a}(2F_{l} - F_{a})}$$
(18)

where

$$F_{a} = \frac{F_{1} F_{2}}{F_{2} + F_{2}}$$
(19)

$$F_2 = H m \cdot \dot{V_t}^2 \cos^2 \psi$$
 (20)

$$H = c_2 \left\lfloor \frac{1}{R_1} + \frac{1}{R_2} \right\rfloor.$$
(21)

 c_2 = 0.0012 for 20.0 degree normal pressure angle gears, and : 0.00086 for 14 1/2 degree normal pressure angle gears,

$$m = \frac{m_1 m_2}{m_1 + m_2} .$$
 (22)

Limiting Load for Wear (Ww)

In helical gear design the wear load is almost always the ruling design factor, and hence usually determines the size of the gear. Gears in continuous service lose their usefulness because of a sudden failure (3). Wear occurs in five ways.

- By pitting of the tooth surface by repeated compressive stresses.
- 2. By abrasion caused by foreign matter.
- By scoring caused by sharp and projecting edges and rough surfaces.
- By scuffing, which results from the use of an improper lubricant.

5. By seizing due to a complete failure of the lubrication accompanied by locally generated heat sufficient to weld the surfaces to each other (6).

The limiting load for wear ${\rm W}_{\rm W}$ is the load beyond which wear is likely to be rapid. It is given by the expression

$$W_{W} = \frac{2 R_{\perp} F Q K}{\cos^{2} \psi} \quad . \tag{23}$$

The ratio factor Q is given by

$$Q = \frac{2 R_2}{R_1 + R_2}$$
(24)

and the load stress factor K is given by

$$K = \frac{S_{ac}^{2} \sin \beta \left[\frac{1}{E_{p}} + \frac{1}{E_{g}}\right]}{1.4} \quad . \tag{25}$$

Gear Blank Design

Gear blanks are produced by casting, forging, machining, and fabricating. When the pinion is small, it is frequently made integral with the shaft, thus eliminating the key as well as an axial-loading device (5).

In designing a gear blank, rigidity is almost always a prime consideration. The hub must be thick enough to maintain proper fit with the shaft and to provide sufficient metal for the key slot. This thickness must also be large enough so that the torque may be transmitted through the hub to the web or spokes without serious stress concentration. The hub must have length in order that the gear will rotate in a single plane without wobble. The arms or web and the rim must also have rigidity without excessive weight because of inertia effects (3).

The length of the hub should be at least equal to the face width, or greater if this does not give sufficient key length. The spokes may be designed with elliptical cross section, an H- or I-section, or any shape depending upon the stiffness and strength desired (6).

The hub length (shown in Fig. 2) is given by

and

$$L \ge F \text{ to } 1.2 F \tag{26}$$
 the hub dismeter D is given by

$$D = 2 d_s$$
. (27)

The Westinghouse-Nuttall formula for the rim thickness is given by

$$h = \frac{1}{P_{\rm n}} \sqrt[3]{\frac{\rm N}{2\rm j}} \,. \tag{28}$$

PROBLEM

A turbine is geared to a 600-kw generator. The turbine and generator are running at 10,000 rpm and 1,200 rpm respectively. Center distance (the distance between the center of pinion and that of gear) should be about 17.00 inches. Assume the efficiency of the generator equal to 93.5 per cent.

SOLUTION

Selection of Materials

For protection against too much pinion wear, a medium-hard pinion will be matched with a low-hardness gear. This will have the advantage of giving some increase in load capacity and slightly lower coefficient of friction on the teeth. A pinion of 300 B.h.n. and gear of 200 B.h.n. will be considered. Corresponding materials are:

Pinion:	Steel	SAE]	1095,	allo	3 W C	able	tensi	ile	stress	65,000
	psi,	B.h.n.	300,	Ep	11	29.7	106	psi		

Gear: Cast iron class 40, minimum tensile stress 40,000 psi, B.h.n. 200, E_g = 16.0 10⁶ psi.

Center distance (Fig. 3)

đ٦

$$C_p = R_1 + R_2 = \frac{d_1 + d_2}{2}$$

so that

$$\frac{c_p}{d_1} = \frac{(1 - d_2/d_1)}{2}$$

or

$$=\frac{20p}{(1-d_2/d_1)}$$
 and $\frac{d_2}{d_1}=\frac{n_p}{n_g}$.

Let us consider $C_p = 17.00$ inches so that

$$d_1 = \frac{2(17.0)}{(1 + 10,000/1,200)} = 3.64$$
 inches.

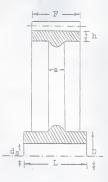


Fig. 3. Meaning of center distance.

Number of Teeth

About 35 to 40 pinion teeth should be desirable for quiet running and good wear resistance. Consider 37 teeth on the pinion, i.e., $N_{\rm D}=$ 37.0, so that

$$N_{g} = \frac{37(10,000)}{1,200} = 308.5.$$

To keep turbine speed on the high side, a ratio of 37 to 309 will be used.

The normal diametral pitch $P_n = 37/3.64 = 10.16$. Assume $P_n = 10.00$, so that modified pinion diameter $d_1 = 3.70$ inches and gear diameter $d_2 = 30.9$ inches, which gives center distance

$$C_{\rm p} = \frac{(3.70 + 30.90)}{2} = 17.30$$
 inches,

which is permissible, and the circular pitch

$$p = \frac{\pi D}{N} = \frac{3.14(3.70)}{37.0} = 0.314 \text{ inch.}$$

Assume 20-degree normal pressure angle for pinion and gear, and 23-degree helix angle for both. Now the normal circular pitch

 $p_{\rm n} = p \, \cos \, \Psi \, = \, 0.31 \text{L} \, \cos \, 23^{\circ} \, = \, 0.289 \text{L} \, \text{inch} \, ,$ and the axial pitch

$$p_a = \frac{p}{\tan \psi} = \frac{0.314}{\tan 23^0} = 0.740$$
 inch.

The face width $F \geq \mu$ $p_{\rm g}$ = $\mu(0.7\mu0)$ = 2.960 inches. Consider F = 3.00 inches.

Transmitted Tangential Load Wt

Efficiency of the generator is 93.5 per cent, so that the transmitted horsepower of a gear set should be greater than 600.0 hp. The horsepower that the gear must transmit =

 $\frac{600.0}{0.746(0.935)} = 860.0 \text{ hp. Since the hp} = \frac{W_t V_t}{33,000}, \text{ and}$

$$V_{t} = \frac{2.0 \pi d_{l} n_{p}}{2(12)} \text{ fpm} = \frac{2(3.14)(3.70)(10,000)}{2(12)} \text{ fpm} = 9707.9 \text{ fpm},$$

 $W_t = \frac{860(33,000)}{9,707.9} = 2939.2$ lbs.

The diametral pitch ${\rm P_d}={\rm P_n}\,\cos\,\varphi$ = 10.0 cos 23° = 9.2050. The dynamic factor

$$\kappa_{v} = \sqrt[4]{\frac{78.0}{78.0 + \sqrt[4]{v_{t}}}} = \sqrt[4]{\frac{78.0}{78.0 + \sqrt[4]{9,707.9}}} = 0.664.$$

The bending stress formula (5) is

 $s_t \leq \frac{s_{at} K_\ell}{K_t K_n}$.

$$\begin{split} \mathbf{S}_{t} &= \frac{W_{t} \ \mathbf{K}_{0}}{\mathbf{K}_{v}} \ \frac{\mathbf{P}_{d}}{\mathbf{F}} \ \frac{\mathbf{K}_{s} \ \mathbf{K}_{m}}{\mathbf{J}} \ \text{, and } \mathbf{S}_{t} \not \in \frac{\mathbf{S}_{st} \ \mathbf{K}_{\ell}}{\mathbf{K}_{t} \ \mathbf{K}_{r}} \\ \mathbf{S}_{t} &= \frac{2939.2(1.25)}{0.66 \mu} \ \frac{(9.205)}{3.0} \ \frac{(1.0)(1.2 \mu)}{0.52} \\ &= 40.300 \text{ psi.} \end{split}$$

Now

so

Various factors are as follows:

Factors	: Source	: Value	: Remarks
Overload factor Ko	Table 3	1.250	Uniform power source and moderate shock on driven machine
Dynamic factor K _v	Formula 6	0.664	
Diametral pitch P _d	Formula 3	9.205	$P_n = 10.0, \Psi = 23^{\circ}$
Face width F, in.	Assumed	3.000	$F = \mu p_a$
Size factor K _s	Table 4	1.000	$P_{n} = 10.0$
Load distribution factor K _m	Table 5	1.250	Precision gear and F = 3.00 inches
Geometry factor J	Table 6	0.520	Helix angle = 23 ⁰
Factor of safety K _r	Table 8	1,200	Commercial reliabilit
Hardness ratio factor K _h	Table 9	1.040	B.h.n. ratio = 1.50
Life factor Kj	Table 7	1.000	B.h.n. = 300.0. As- sume contact cycle 10
Surface condition factor K _f	Assumed	1.300	
fodulus of elas- ticity E _p , psi	Table 2	29.7x10 ⁶	Steel SAE 1095
fodulus of elas- ticity E _g , psi	Assumed	16.0x10 ⁶	Cast iron class 40
Poisson's ratio	Assumed	0.300	
llowable contact stress S _{ac} , psi	Table 2	65,000	Steel SAE 1095
llowable tensile stress S _{at} , psi	Table 2	40,000	Steel SAE 1095

Assuming the peak operating temperature equal to 80.0 degrees F., the temperature factor

$$K_{t} = \frac{460.0 + 80.0}{620.0} = 0.871.$$

$$S_{t} = \frac{40,000(1.00)}{0.871(1.20)} = 38,300 \text{ p}$$

Hence

But the calculated tensile stress is $S_{t} = 40,300$ psi, which is greater than the allowable stress. Calculated stress can be reduced by increasing the face width. Modifying the face width F to 4.00 inches

= 38,300 psi.

 $S_{\pm} = (3/4)40,300 = 30,300 psi$ which is considerably less than allowable stress.

Power Capacity (Based on Strength)

P _{at}	=	np dl Kv			S _{at} K	_
		126,000 K _o	K.m	K _s Pd	K _r K _t	
	=	(10,000)(3.	7)(0	.664)	(4.0)	(0.52)
		(126,000)	26,000)(1.25)			(1.00)(9.2050)
						40,000(1.00)
						(0.871)(1.20)

so that $P_{at} = 650.25$ hp, which is not permissible.

Power capacity of the gear set should not be less than 860.0 hp, so face width F still needs to be increased.

Redesigning the face width to 8.00 inches, the new $P_{st} = 650.25(8/4) = 1300.5 \text{ hp, which is quite safe.}$

Surface Durability

 $S_{o} = K_{p} \sqrt[n]{\frac{W_{t} K_{o}}{K_{v}}} \frac{K_{s}}{d_{1} F} \frac{K_{m} K_{f}}{J}$ $K_{p} = \sqrt[n]{\frac{1.0}{3.14 \left[\frac{1 - \mu_{p}^{2}}{E_{v}} + \frac{1 - \mu_{g}^{2}}{E_{\sigma}}\right]}}$ $= \sqrt[4]{\frac{1.0}{3.14 \left[\frac{1-0.3^2}{29.7(10^6)} + \frac{1-0.3^2}{16.0(10^6)}\right]}}$ = 1813.0 so $S_c = 1813.0 \int \frac{2939.2(1.25)}{(0.664)} \frac{(1.00)}{3.7(8.0)} \frac{(1.24)(1.30)}{(0.52)}$

where

= 43,500 psi.

The allowable contact stress

$$= S_{ac} \frac{K_{f} K_{h}}{K_{t} K_{r}} = \frac{65,000(1.0)(1.04)}{(1.20)(0.871)} = 64,600 \text{ psi}$$

which is greater than the calculated contact stress; hence it is safe.

Power Capacity (Based on Surface Durability)

$$P_{ac} = \frac{n_{p} F}{126,000} \frac{J K_{v}}{K_{s} K_{m} K_{f} K_{o}} \left[\frac{S_{ac} d_{l}}{K_{p}} \frac{K_{\ell} K_{h}}{\kappa_{t} \kappa_{r}} \right]^{2}$$

$$= \frac{(10,000)(8.0)}{126,000} \frac{(0.664)(0.52)}{(1.0)(1.24)(1.3)(1.25)} \\ \left[\frac{65,000(3.70)}{(1813.0)} \frac{(1.00)(1.04)}{(1.24)(.871)} \right]^2$$

= 1960.0 hp

which is quite safe.

Dynamic Load Wd

0.05 F1 V+ cos 4

where

$$W_{d} = W_{t} + \frac{1}{0.05 V_{t} + \sqrt[4]{F_{1}}}$$
$$F_{1} = F C \cos^{2} \Psi + W_{t}$$

and

$$= \frac{1}{c_{1} \left[1/E_{p} + 1/E_{g} \right]} = \frac{(0.002)}{c_{1} \left[1/E_{p} + 1/E_{g} \right]}$$

9.00
$$\left[\frac{1}{29.7(10^6)} + \frac{1}{16.0(10^6)}\right]$$

So

$$W_{d} = 2939.2 + \frac{(0.05)(18539.2)(9707.9)(\cos 23^{\circ})}{(0.05)(9707.9) + \sqrt{18539.2}}$$

= 16,339.2 lbs.

Using equation (18),

$$\begin{split} & \mathbb{W}_{d} = \mathbb{W}_{t} + \sqrt{\mathbb{F}_{a}(2 \mathbb{F}_{1} - \mathbb{F}_{a})} \\ & \mathbb{F}_{1} = \frac{\mathbb{F}_{1} \mathbb{F}_{2}}{\mathbb{F}_{1} + \mathbb{F}_{2}} \\ & \mathbb{F}_{2} = \mathbb{H} \ \mathbb{M} \ \mathbb{V}_{t}^{2} \ \cos^{2} \mathbb{V} \\ & \mathbb{H} = \mathbb{O}_{2} \left[\frac{1}{\mathbb{R}_{1}} + \frac{1}{\mathbb{R}_{2}} \right] = 0.0012 \left[\frac{2}{(3.70)} + \frac{2}{(30.9)} \right] \\ & = 0.000727 \ . \end{split}$$

To find effective mass m, all dimensions of the pinion and gear must be known.

Pinion and Gear Design. Consider the shaft of the pinion and the gear in torsion. Mild steel can be used for the shaft.

> $T = W_t(a/2) = 2939.2(3.70/2) = 5430.0$ in 1b ST STAJ

$$\frac{d_s}{d_s} = \frac{d_s}{16}$$

ds-For mild steel

> $S_s = working shear stress = 6,000.0 psi, so that$ $d_s^3 = \frac{(16)(5,430.0)}{(3.14)(6,000)} = 4.60$

which gives $d_s = 1.663$ inches.

πSg

For key allowance, consider $d_s = 1.70$ inches.

The diameter of hub $D = 2.0 d_s = 2.0(1.70) = 3.40$ inches, and the length of hub L = 1.2 F = 1.2(8.00) = 10.00 inches.

The rim thickness of gear can be calculated by formula

$$h = \frac{1}{P_{n}} \sqrt[3]{\frac{N}{2 j}} = \frac{1}{10.00} \sqrt[3]{\frac{309.0}{(2.0)(6.0)}} = 0.295 \text{ inch.}$$

For casting allowance, consider h = 0.05 inch.

t = (face width)/4 = 8.0/4 = 0.05 inch.

Assuming the rectangular cross section of the arm with a = 2t, check:

Bending moment on each arm,

B.M. =
$$\frac{(2939.2)(3.70)}{2(6)}$$
 = 905.0 in.1b.

Bending stress = 905.0/5.33 = 170.0 psi, which is permissible.

Now effective mass m can be calculated.

Pinion (Fig. 4).

 ρ = density of pinion

= 0.282 lb/cu.in. for steel SAE 1095.

Mass of pinion = (density)(volume)

= 0.745 slug.

Effective mass of pinion

$$m_{l} = mass moment of inertia/R_{l}^{2}$$
$$= \frac{(mass of pinion) d_{l}^{2}/8}{d_{l}^{2}/4}$$
$$= (mass of pinion)/2.$$

So the effective mass of pinion $m_1 = (0.745)/2$

= 0.3725 slug.

$$\frac{\text{Effective Mass of Gear m_2}}{P} (\text{Figs. 5 and 6}).$$

$$P = 0.26 \text{ lb/cu.in. for cast iron class 40}$$

$$m_a = \frac{P\pi}{4 \text{ g}} (\text{outer diameter}^2 - \text{inner diameter}^2)(\text{length})$$

$$= \frac{(0.26)(3.14)(30.9^2 - 29.9^2)(8.0)}{4(32.2)}$$

$$= 3.048 \text{ slugs}$$

$$m_b = \frac{(0.26)(3.14)(29.9^2 - 3.40^2)(2.0)}{4(32.2)}$$

$$= 11.34 \text{ slugs}$$

$$m_c = \frac{(0.26)(3.14)(3.4^2)(10.0)}{4(32.2)}$$

$$= 0.735 \text{ slug.}$$
Since the moment of inertia of entire gear is
$$= \frac{m_a(30.9^2 + 29.9^2) + m_b(29.9^2 + 3.4^2) + m_c(3.4)(3.4)}{8.0}$$

$$= \frac{(3.048)(1852) + (11.34)(907.6) + (0.735)(11.6)}{8.0}$$

$$= 1996.0 \text{ slugs/sq.in.,}$$
then the effective mass of the gear is
$$m_2 = \frac{(1996)}{R_2^2} = \frac{1996}{(25.45)^2} = 8.20 \text{ slugs,}$$
and the effective mass

 $\frac{m_{1} m_{2}}{m_{1} + m_{2}} = \frac{(0.3725)(8.2)}{0.3725 + 8.2} = 0.356 \text{ slug.}$ $m \approx -$

and

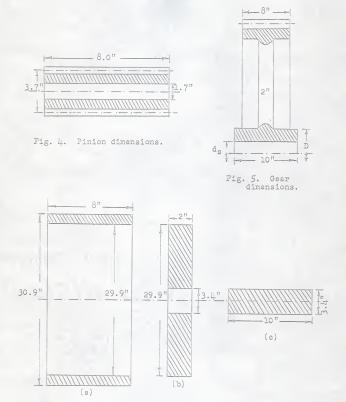


Fig. 6. Division of gear into three parts.

Now

and

 $F_2 = H m V_t^2 \cos^2 \psi$ $= (0.000727)(0.356)(9707.9^2)(\cos^2 23^{\circ})$ = 208.0 lbs.. $F_{a} = \frac{F_{1} F_{2}}{F_{1} + F_{2}} = \frac{(208.0)(18539.2)}{208.0 + 18539.2}$ = 206.0 lbs. Now the dynamic load

$$W_{d} = W_{t} + \sqrt{F_{g}(2F_{1} - F_{g})}$$

= 2939.2 + $\sqrt{206(218539.2 - 206)}$
= 5764.2 lbs.,

which is permissible.

= 91.0.

Limiting Load for Wear Www

Limiting load for wear W_W is given by formula (23).

$$W_{W} = \frac{2 R_{1} F Q K}{\cos^{2} \psi}$$

$$Q = \frac{2R_{2}}{R_{1} + R_{2}} = \frac{2(30.9)}{3.70 + 30.9} = 1.79$$

$$K = \frac{S_{ac}^{2} \sin \beta \left[\frac{1}{E_{p}} + \frac{1}{E_{g}}\right]}{1.4}$$

$$= \frac{65,000^{2}(\sin 20^{\circ}) \left[\frac{1}{29.7 \times 10^{6}} + \frac{1}{16.0 \times 10^{6}}\right]}{1.4}$$

and

where

Therefore $W_{W} = \frac{(2.0)(3.7)(\delta.0)(1.79)(91.0)}{(2.0)(\cos^2 23^0)}$

= 5670.0 lbs.

which is quite safe.

Since the calculated limiting load for wear is greater than the transmitted tangential load of 2939.2 pounds, the design conditions for wear are satisfied. Wear is likely to be rapid in cases where the transmitted load is greater than the calculated limiting load for wear.

Results

	Factors	Values
l.	Center distance Cp, in.	17.30
2.	Pitch diameter of pinion d1, in.	3.70
3.	Pitch diameter of gear d2, in.	30.90
4.	Number of teeth on pinion Np	37.00
5.	Number of teeth on gear N_g	309.00
6.	Face width F, in.	8.00
7.	Normal diametral pitch Pn	10,00
8.	Transmitted tangential load W_t , lbs.	2,939.20
9.	Calculated tensile stress S_t , psi	30,300.00
10.	Calculated contact stress S _c , psi	43,500.00
11.	Power capacity Pat, hp	1,300.50
12.	Power capacity Pac, hp	1,960.00
13.	Thickness of the rim of gear h, in.	0.50

	Factors	Values
14.	Number of arms of gear	6.00
15.	Hub diameter of gear D, in.	3.40
16.	Hub length of gear L, in.	10.00
17.	Dynamic load W _d , 1bs.	5,764.20
18.	Limiting load for wear Www. 1bs.	5.670.00

34 %

ACKNOWLEDGMENT

The author is deeply grateful to his major instructor, Professor Alley H. Duncan, of the Department of Mechanical Engineering, for his guidance, encouragement, and many helpful suggestions.

He also wishes to thank Professor Monday, of the Department of Mechanical Engineering, for his patience in reading the whole manuscript and his valuable remarks and suggestions.

REFERENCES

- Buckingham, Earle. Analytical mechanics of gears. New York: McGraw-Hill Book Company, 1949.
- Dudley, D. W. Practical gear design. New York: McGraw-Hill Book Company, 1954.
- Maleev, V. L. Machine design. Scranton: International Textbook Company, 1947.
- Moceker, D. L. The new AGMA manual for machine tool gearing. ASME publication, 65-MD-20.
- Shigley, J. E. Machine design. New York: McGraw-Hill Book Company, 1956.
- 6. Tuplin, W. A. Gear design. New York: John Wiley & Sons, 1962.
- Tuplin, W. A. Gear load capacity. New York: John Wiley & Sons, 1962.
- Wellauer, E. J. Gears new rating system simplifies design. Mechanical Engineering, February, 1965, pp. 21-27.
- Wellauer, E. J. Predicting the life of gears, shafts, and bearings a system approach. ASME publication, 65-MD-6.
- Wellauer, E. J. How to predict the strength capacity of helical and herringbone gears. Machine Design, December 21, 1961, pp. 123-140.

 Wellauer, E. J. How to predict surface durability of helical and herringbone gears. Machine Design, May 7, 1964, pp. 156-164.

HIGH-SPEED HELICAL GEAR DESIGN

by

SHAMALDAS LALJIBHAI SUTHAR

B. E. (Mech.), Gujarat University, India, 1964

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

This report presents a method of designing high-speed helical gears for any given reduction gear ratio.

In helical gears, the line of contact is diagonally across the face of the tooth that gives gradual engagement of the tooth and smooth transfer of load from one tooth to another. This helps in transmitting heavy load at high speed with less noise.

The selection of gear materials depends upon the type of load which occurs by driving and driven machines. At the same time, it is necessary to know how long the required gear set is expected to last. Gears are commonly made of steel, cast iron, and bronze. Cast iron is the most popular gear material, and is easy to cast and machine. It also has good wearing characteristics and makes less noise than the steel. To keep the pitch line velocity down, the smallest possible center distance should be used. By selecting the standard normal diametral pitch, and the number of teeth on pinion and gear, we can easily find the transmitted tangential load at operating pitch diameter.

The cantilever-plate theory for determining the bending strength of gear teeth, reported by E. J. Wellsuer, is an improvement over the older Lewis formula which considered the tooth as a cantilever beam. Calculated bending stress must always be less than the allowable bending stress. Also calculated contact stress should not be higher than allowable contact stress. The power capacity of a gear set, based on strength and surface durability, must be at least 25 per cent or more higher than the required power. The designed gear tooth should also be checked under dynamic load. According to the Buckingham formula, the analysis of the dynamic load on helical gear teeth requires the determination of the effective mass acting at pitch line of gear. The effective mass of a gear is calculated by determining the moment of inertia and then dividing by the pitch radius required. It is necessary that the limiting load for wear must be higher than the transmitted tangential load, since the limiting load for wear is the load beyond which wear is likely to be rapid.

Gear blanks are made by casting, forging, and machining. Small pinions are made integral with the shaft. For any gear the length of the hub should never be less than the gear face width. The Westinghouse-Nuttall formula can be used to calculate the thickness of the rim. The usual cross section of the arms is an ellipse, a cross, and an I-section or an H-section.