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INTROD UC TION

The purpose of this report is to investigate some interesting

aspects of positive real functions. These have been uncovered by pre-

liminary investigation of A. Lee (6). This particular investigation was

easily executed after A. Talbot (7) published a fundamental paper on pro-

per positive real functions.

Aspects of interest essentially concern addition of a positive real

function with a non-positive real function (loosely speaking) to obtain a

positive real function result.

TERMINOLOGY

Definition: The right half s -plane exclusive of the j-axis will be denoted

as the region R.

Definition: A rational function of s is called a "positive real function"

(abbreviated p.r.f. ) if it satisfies the following conditions:

Re f(s)>0 when Re s>0

f(s) = real when s=real

where s=0"+jm is a complex number.

Definition: If Re f(s)>0 in the definition of a p. r.f. , then f(s) is called a

"proper positive real function".
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Foster reactances are a class of improper positive real functions.

2 2A more subtle example of an improper p.r.f. is (1 + s )/(l + 2s+s ).

Geometrically speaking, a p.r.f. simply maps the entire right half

of s -plane into the entire right half of f(s)-plane; furthermore, it trans-

forms the real axis of s -plane onto the real axis of the f(s) -plane.

Definition: An "integral function" has no finite singularities.

Every such function of finite order 7) may be written as:

Cs d
eXp(Q , ^ <->eX

p{f -ifff-" ^ff
r=l

,
r r r

where d= 0, 1, 2, • * *
, Q(s) is a polynomial of degree <i<_7j, p< rj-

We shall say that an integral function is of type (h, 1) if:

p<h, q<l.

Definition: Polynomials having no poles or zeros in R are called "Hurwitz

polynomials"

.

A p. r.f. is necessarily a ratio of Hurwitz polynomials but the re-

verse implication is not true. The reader will find more detailed discus-

sion about this fact in this report. As an example, the integral function

will be "Hurwitz" if Re s <0 for every r.
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BASIC THEOREMS ON POSITIVE REAL FUNCTIONS

With these definitions in mind, it is not difficult to note the impor-

tant tautology namely "A p. r. f. ofap.r.f. is also a p.r.f.". This state-

ment will be dignified as a theorem.

Theorem 1: If the functions f(s) and g(s) are p.r.f. , then f(g(s)) is also

a p. r . f . .

Proof: Observe that the right half of the s -plane is mapped into the

right half of g(s) -plane which, in turn, maps into the right half of

f(g(s)) -plane by the function f. This completes the proof.

Theorem 2: If f(s) is a p.r.f., then the reciprocal of f(s) is also a

p.r.f..

Proof: Let f(s) = Re(f) + j Im(f),

Then we have:

m 1

f Re(f) +
j Im(f)

Re(f) _ i Im(f)

Re
2
(f) + Im

2
(f) Re

2
(f) + Im2

(f)

Hence, Re(g)^0 ifRe(f)>0.

Since f(s) is a p. r.f. , it is apparent that Re(g(s))>0 for

Re s>0.
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Through the study of the theory of functions of a complex variable,

we may delve further into detailed properties of a p. r.f. . We do this by

showing that the real part of a function changes its sign at least twice as

we travel around a pole's immediate vicinity. Therefore, a p. r.f. cannot

have any poles or zeros in the right half plane since we restrict the real

part of a p. r.f. to be non -negative throughout the region and do not allow

any change of sign. Detailed analysis will be presented in the following

theorem's proof.

Theorem 3: A p. r.f. f(s) can have neither poles nor zeros in R. Poles

of f(s) and j- on the imaginary axis must be simple with

real positive residues.

Proof: Suppose f(s) has a pole of order n at s
q

. Its Laurent

series expansion about s is:
o

C C C
f(s) = — +

"n
; +• • • + —+ C + C (s-s )' .n . .n-1 s-s o l

v
o'

(s-s ) (s-s ) o
o o

In the immediate vicinity of s^, this series may be approxi-

mated by its dominant term, C /(s-s )

n
. This dominant

-n o

term can be written in polar form as:

C =Cejt
-n

s-s = r e
J

.
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Since f(s) = C e^. — . e~^
n9

, we obtain
n

r

Re f(s) = — • cos(n9 -f),
r

and is a constant angle. It is obvious that the Re f(s) changes sign

2n times as varies from zero to 27T, which is a journey once around

the pole as shown in Fig. 1.

For a p. r.f. , Re f(s) will

not be allowed to change sign in R.

These investigations explain why no

poles can be found in R for a p. r. f . .

However on the j-axis, a

boundary of R, only two sectors are

possible. The real part of the func-

tion must be positive on one side of

the boundary and negative on the

other. That is to say if any pole is

found on the j-axis, we must have

\j/= 0, n = 1 which means that poles

must be simple with positive and real 3 in the f(s) -plane,

residues.

We have so far discussed only the property of poles. The argument

extends immediately to zeros because of Theorem 2.
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We have gathered sufficient information to give a more restricted

definition of a p.r.f. . To have clearer impression as to how a p.r.f. be-

haves on the boundary and in R, we modify the definition as follows:

Re f(s)>0 when Re(s)>0, i.e. s in R.

Re f(s)>0 when Re(s)=0, i.e. s on j -axis

f(s) is real when s is real.

Through the first definition, we can easily see that every p. r.f. is

"Hurwitz". Yet it is possible for a Hurwitz polynomial to have zeros of

higher order than unity on the j-axis which is not true for a p. r.f. .

f(s)
Corollary: If / / is a p.r.f., then the degree of f(s) and g(s) should

g(s)

not differ by more than unity.

Proof: The points s = 0, and s = CO lie on the boundary of R. Con-

sequently, at these points only simple poles and zeros can

exist. Consider the point at infinity:

t f(s) . s
11

_ n-m
lim ) : = k = k s

g(s) m
s-00

6V
s

where n, m are degrees of f(s) and g(s) respectively. If

n-m>l, the function has non-simple zeros atcO- If n-m<l,

the function has non-simple poles atcO- Both cases are not

permissible for a p. r. f . .
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NEW THEOREMS ON POSITIVE REAL FUNCTIONS

Theorems stated in the previous section have been known for some

time. This section will present some new theorems on positive real func-

tions. As troubles always occur on the boundary of the right half s -plane,

this section will be divided into two parts. Starting out with theorems

valid for both proper and improper positive real functions, this investi-

gation proceeds further into a theorem on proper positive real functions.

Theorems for Both Proper and Improper Positive Real Functions

f(s)
Theorem 4 (Talbot): a). If

g | g j

is a p. r. f. , both f and g have no

common zeros, then xf(s) + jyg(s) is "Hurwitz" for all real

constant x, y not both zero.

b). If f(s) and g(s) are holomorphic in R, xf + jyg is

"Hurwitz" for all real non-zero, x, y, then + ^\
S

\ is a p. r. f . .~ g(s)

Proof: a), f and g are "Hurwitz".

f/g has neither poles nor zeros in R because of the

positive realness. By the assumption that f and g has no

common zeros, we conclude that f and g can have no zeros

in R. So that f and g must be Hurwitz polynomials.

If xf(s ) + jyg(s )=0, s in R with x and y not both
o o o

zero, then both must be non-zero; otherwise this contradicts



the fact that f and y are Hurwitz polynomial.

f(8
o ) fWe thus have —

.

°, = j ^ or Re — = at s in R.
g(S

Q )
x g o

But this is a contradiction to f/g is a p.r.f. (by Theorem 3).

So we conclude that xf + jyg is a Hurwitz polynomial.

b). f and g are Hurwitz polynomials. , i.e. has no zeros

in R.

Suppose g( s
Q

) = 0, s in R, we can put g(s) in the form:

g(s)=C (s-s )

n
+ C(s-s f"

1
+ + C .(8-8 ).

o o 1 o n-1 o

For the immediate vicinity of s^, that is for
|

s-S
o
|= r<g«l:

jQ
&( s )

= C „ i
( s

~ sJ = r e
n-1 o

jyg(s) = ye^72
. rejQ

= yrej(6 +
2 \ 0<9<2tt.

Now we determine how f(s) behaves in this vicinity:

f(s
O ' oi

, -|fJe^o,

f(s) =|f
Q +^ i

|e
j(<^>0+ ^2) where ^ ( j ^OmB-O

due to continuity. If we allow y to be large enough so that:

yr»|£ I

3
and 9 takes on the value <b - — 7T then as S— 0, we have:r o 2



f(s) + jyg(s) =|f
o
|e

j ^o +yrej(^o-^)

=|f |e
j ^-|f |e

j ^=0.

This contradicts the assumption that xf + jyg is Hurwitz. So we conclude

that g is Hurwitz. Thus ~ is holomorphic in R because f and g are

holomorphic and g 4 in R.

Re ~ 4 (given xf + jyg 4 0), together with the property of contin-

uity (f/g is holomorphic) in R imply + ^ is a p.r.f. .

The inequality, xf(s) + jyg(s) 4 0, s in R, which Talbot used in

his theorem needs closer investigation. Detailed discussion will be pre-

sented in the following corollary.

f (s)Corollary: If f(s) and g(s) are Hurwitz polynomials, and
; ( is not a

g(s)

p.r.f., then xf(s) + jyg(s) = 0, for certain s in R, where x,

y are real numbers not both zero.

Proof: Given that -^j" is not a p. r . f . , then Re achieves
g(s) r

g(s)

positive as well as negative values in R. Since f(s) and g(s)

f(s)

g(s)

f (s)
are Hurwitz polynomials, J g {

is holomorphic in R. By

f (s)
continuity, it is known that Re *

(
= for certain s in R

g(s)

f(s) . v ,
~7~t - -J for these values of s.
g(s) X
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Two necessary consequences of this corollary will be emphasized

and stated separately for future reference, namely:

1. If f(s) and g(s) are Hurwitz polynomials and the degrees of

f(s) and g(s) differ by more than unity, then xf(s) + jyg(s) = for

certain s in R, where x, y are real numbers not both zero;

2. If f(s) and g(s) are Hurwitz polynomials having zeros of higher

order than unity on the j-axis, then xf(s) + jyg(s) = for cer-

tain s in R, where x, y are real numbers not both zero.

This corollary and the above statements bring out certain possi-

bilities for xf(s) + jyg(s) going to zero in R, which were not obvious when

Talbot presented his theorem.

There is doubt whether Talbot's theorem applies to improper p. r.f. .

Since his proof does not imply the p. r.f. to be a proper one, it should and,

in fact it does, apply to improper p. r.f. . An example in the following sec-

tion will demonstrate how well Talbot's theorem applies to a Foster re-

actance function.

Theorem 5 (Talbot-Lucas): If f(s) is a Hurwitz polynomial or integral

function of type (0, 2) with Q(s) = as + bs , a>0, Re(b)>0,

then f'(s) = ~ is also a Hurwitz polynomial.

^ n
Proof: Let f(s) = s

P exp(as + bs) T~f ( s -s ), with Re(s )<0.
r=l

r r ~

From
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log f(s) = p log s + as^ + bs + ^ log (s-s )

r=l

one can deduce that

JliSl = £ + 2 as + b + f _J_ (*,
£(s) s ^->. s-s

r=l r

Every term of f'/f is positive real and non-zero in R; one

can then state that

f'(s) = f(s). \^
S
) is Hurwitz polynomial.

l(s

)

Notice that the degree of polynomial Q is limited to 2; otherwise,

terms of s^, where q is an integer greater than unity, will be introduced

into f'/f and thus f'/f ceases to be positive real.

Corollary: If f(s) and g(s) are Hurwitz polynomials or integral functions

of type (0, 2) as in the above theorem, and xf(s) + jyg(s) 4 in

R, then xf' + jyg
1 4 in R for every pair of real non-zero

numbers x, y.

The proof of this corollary is a straight forward application of

Theorem 5.

f (s)
Theorem 6: If is a p.r.f. (including the Foster reactance functions),

- OT1
^'(s) _ f + b(l+bs)f . .

tnen '
' - — is also a p. r.

/'(s) g' + b(l+bs)g *
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Here, b is any non-negative real number including zero and

2 3
the monomial (1+bs) cannot extend to 1+bs + (bs) + (bs)

+ + (bs)
P

.

Proof: Leti^(s) = f(s) exp£bs+(bs)
2

j, and let

Y(s) = g(s) • expJ^bs+(bs)
2

J,

these are integral functions of type (0, 2).

xl/(s)

Since it is given that
)

is a p. r. f. , by Theorem 4

x\}/+ jyyj in R for all real non-zero x and y.

The corollary of the previous theorem is applicable and

x\j/
1 + jyy' 4 in R for every real non-zero x and y. So that

—— is a p. r . f . .

The limitation on the monomial (1+bs) lies in the proof of

Theorem 5.

This is a powerful theorem which enables us to generate a p.r.f.

of higher or lower degree from a given p. r.f. . It also enables us to con-

vert a Foster reactance function into a proper positive real function!

A Theorem for Proper Positive Real Functions

Theorem 7: If -^f is a Proper p.r.f., then -^f + T^flg(s) g(s) Lg(s)J

is also a proper p. r. f . .
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Proof: Given that ^\
S

\ is a p. r.f. , we assert that there exists non-
g(s)

zero real numbers x, y such that xf(s) + jyg(s) 4 0, s in R.

If x[f-(g)
n ' 1

+ (f)
n
] + jy(g)

n
= 0,

m (g^'^xf + jyg] + x(f)
n

= 0,thei

(f)
n

and xf + jyg = -x — .

(g)

Now, x(f)
n
/(g)

n 1
goes to zero as x = 0, y 4 and contra-

dicts the fact that g(s) is "Hurwitz" (Theorem 4).

So we conclude that:

x[f-(g)
n_1

+ (f)
n
]

+ jy(g)
n OinR,

a f(s) x r f(s)i
n

and — + is a p. r.f..
g(s) Lg(s)J

This theorem does not extend to improper positive real functions;

for if g(s) has a simple zero on the j-axis, £g(s)J
n

will then have a non-

simple zero on the j-axis. Thus statement No. 2 (p. 11) under the corol-

lary of Talbot's theorem applies.

EXAMPLES

In this section some numerical examples will be presented to give

a brief idea of applications of theorems discussed in the previous section.
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An Example for Theorem 4.

An example of the Talbot theorem's applicability to the Foster

(where s = a + ju> with o ^_0) is now given.
^ + 1

Calculation shows that,

reactance function —
s

xf +
j yg = xs +

j y(s
2
+

= x(o + ju) + jy [(a + >)
2
+ lj

2 ?
(xo - 2y0(o) +

j
(xw + ya + y - yu ).

The real part goes to zero when

x = 2 yw .

The imaginary part goes to zero when

x = v U2
-a

2
-1)

Both parts must be zero in order to make xf +
j y g = 0, which is the case

when

o 2 2 2
,2 u - a) - a - 1

i. e. when

o
2

+ a)
2 +1 = 0.

For a>_0, no real u will satisfy this equation; this simple means no points

in R will make xf + j y g go to zero as Talbot's theorem predicts.
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An Example for Theorem 6.

This problem is to convert a Foster reactance function into a

proper positive real function. Given the Foster reactance —
, choose

s

b=l, and execute the procedure described in the theorem:

f(s) . I
g(s) s

^ exp(s + ^-s
2

)

X(s) . , 1 2.
s • exp (s + — s )

V"(s) 1 + s 1 + s

X'(s) s (1 + s) + 1 2
'

1 + s + s

and the result is a proper positive real function.

An Example for Theorem 7.

Suppose that a series resistor and inductor load must be protected

from a sharp pulse voltage. This can be interpreted as the need for a

driving point impedance,

Z(s) = —\ +
l-

(1 + s)
3

Straight -forward continued fraction expansion yields the following ladder

ne twork:
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This driving point impedance will act as a pulse stretcher and will reduce

the magnitude of the input spike voltage at the load impedance (1 + s).

SUMMARY

This report is concerned with the truth value in the reverse impli-

cation of the true statement:

If f(s) and g(s) are positive real functions, then f(s) + g(s) is

a positive real function.

On the other hand, if f(s) + g(s) is a given positive real function,

this does not imply that both f(s) and g(s) are positive real functions.

After reviewing well-known theorems on positive real functions,

this report presents some theorems on the nature of a non-positive real

function that can be added to a positive real function to yield a positive real

function. Three applications are presented.
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Brune (2) has shown in the early 1930's that the driving point

impedance of every finite passive network is a positive real function;

and conversely, it is always possible to construct a finite passive network

for each of these functions. This fact explains why positive real functions

play such an important role in the study of network synthesis.

The main purpose of this report is to present certain procedures

(which are described in the form of theorems) of generating another posi-

tive real function from a given one. These procedures are concerned

with non-positive real functions which can be added to the given positive

real function to form a new positive real function.

The development begins by constructing the frame work from

definitions of a positive real function. Some important fundamental

theorems follow. A complete proof of Talbot's theorem (7) is presented.

With the help of this important theorem, several new theorems on both

proper and improper positive real functions are introduced and followed

by a theorem valid for proper positive real functions.

In the last section, some numerical examples are worked out to

give applications of these new theorems.


