
A STUDY OF LINEAR SYSTEMS ^iTLTH

RANDOMLY-VARYING PARAMETERS

by

SYED r. TARIQ

B, Tech. (Hons)., Indian Institute of
Technology, Bombay, 196I|.

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical Engineering

KANSAS STATE DIVERSITY
Manhattan, Kansas

1966

Approved by:

Majoi^ Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33362563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ACKl^OVn^EDGEMENT

I would like to thank Dr. Floyd W. Harris for

his invaluable guidance during the course of this

work.



u>

^' -^ TABLE OP CONTENTS

Chapter Page

I. INTRODUCTION ' 1

II, STATISTICS OF THE OUTPUT 3

III. STABILITY OP RANDOM LINEAR SYSTEMS 27

IV. CONCLUSION i}2

REFERENCES 1^4

APPENDIX 1^.6



CHAPTER I

INTRODUCTION

A random linear system (henceforth designated as RLS) is a

linear system whose parameter variations are random processes

with known probability density functions. If the probability

density functions are independent of time the RLS is said to be

stationary. The input-output relationship of a RLS may be de-

scribed by a linear differential equation with stochastic coef-

ficients ,

Recent interests in the study of many varied phenomena, such

as propagation through randomly-varying media, stability of radio

guided vehicles with randomly-varying loop gain, and reflection

from fluctuating targets have placed an ever- increasing impor-

tance on the methods of analysis of RLS. This report is a survey

of the various techniques that have been developed to analyze

stationary RLS. On account of the complexity of the problem on

the whole the restriction to the stationary case has been found

to be essential in all the published papers,

A complete representation of the output of a random linear

system requires a knowledge of all the multivariate probability

density functions of the output. This problem, however, is so

difficult that one has to be satisfied with a limited amount of

information in the form of the first probability density func-

tions and the various order moments of the output. Even this

information can be obtained in a concrete form for specific cases



only. The various techniques developed to analyze these special

cases have been discussed in Chapter II,

The limited description of the output of a RLS is often

quite sufficient to an engineer since he is primarily concerned

with the stability of such systems. In Chapter III it is shown

that sufficient criteria for stability of stationary RLS can be

established in terms of the available information at the output.

The concept of stability of random linear systems, however, is

quite different from the same concept for deterministic systems.

Chapter III brings out the idea of stability "in the stochastic

sense" and attempts to define it in terms of familiar notions of

convergence of random variables. It is shown that this permits

a very precise definition of stability of random linear systems.

The possibility of further investigation of random linear

systems has been discussed in the Conclusion,



CHAPTER II

STATISTICS OP THE OUTPUT

2.1 Introduction

The output of a random linear system Is given by the solu-

tion of the stochastic differential equation describing the sys-

tem. A complete representation of the output requires a know-

ledge of all multivariate probability density fxinctions of the

output. This problem is extremely difficult and no solution,

even for the simplest case, has yet appeared in literature. Prom

an engineering polnt-of-view, however, a partial description of

the output, involving the first probability density function, is

quite sufficient. In most cases, a knowledge of the first and

second order moments of the first probability density function,

and the autocorrelation fvmction of the output, gives a reason-

able idea about the system behavior.

Although a general method of analysis has not yet been de-

veloped, effective analytical procedures for special cases, have

been formulated. In particular, the case, in which the input is

a random, white noise, Gaussian process and in which the para-

meter variation is also, a Gaussian, white noise process, has

received wide attention (1-9). In all the referenced discussions,

the objective has been to establish conditions for system sta-

bility.

The analysis of first order networks, having a binary ran-

dom parameter variation for the underlying purpose of obtaining



tha spectral properties of the output, has been carried out by

Redman and Lampard (10)

.

A review of the various special cases, mentioned above, will

be presented in the following sections,

2.2 First Order Systems

A first order system is characterized by the differential

equation

-i- y(t) + k(t) y(t) = f(t) (2.1)
dt

where f(t) and k(t) are (in general) correlated, stationary ran-

dom processes; and y(t) is the output of the system. A number of

physical systems described by the differential equation 2.1 are

shown in Table 2.1.

The general solution of equation 2,1 can be written as

rt -t

k(u)du _^ - 1 k(u)du

y(t) = y^ + y^ = y^G *^to + / f(/V)e *^V dT (2.2)

*Ao

where the initial conditions are y = y^ at t = t ; y^^ is the gen-

eral solution of the homogeneous equation and y is a particular

solution of the inhomogeneous equation,

2.2.1 First Order Systems with Gaussian Random Variation of
Parameters Subjected to a Gaussian Random Input

2.2.1.1 General Case

A very general analysis of first order systems, in which

the parameter variation is a stationary and correlated random

process, was given by Tichonov (2). He used an effective tech-



TABLE 2.1

LINEAR FIRST ORDER SYSTEMS

Differential Equation: y(t) + k(t)y(t) «= f(t)

No, Type y(t) k(t) f(t)

1(a)

Kb)

^ fiCt)

e\.ci) T
—

eow; e^it)

#
eicv

"C(i)
^oW

eo(t)

k(t)

R(t)C

RC(t)

ej^(t)k(t)

e^Ct)

1(c)
e^^^T^EE]-

-[ Mi)
I

—
e,c-t;

«o(^) k(t) e^it)

nique to overcome the difficulty encountered by the dependence

of k(t) and f (t)

.

The solution of the differential equation

dzft^ - cC f(t)
^^^^^

+ k(t) z(t) = G
dt

(2.3)

for the initial conditions z = y at t >= t is given by



z(t) = z^(t) + z^Ct)

- k(u)du t Z^'Cr(i') - k(u)cLu7

'»' dr (2.1^)

It is observed that y(t), as given by equation 2,2, can also

be obtained from equation 2,[|.. That is.

y(t) = z^(t) - t ^^'*' (2.5)

•^ oO «o

The. first moment of y(t) may be written as

rt

k(u)duv

y^t) » y ( G to )- ^̂ <.3(t)) (2.6)

oC =0

The auto-correlation function of y(t) may be obtained by averag-

ing the product of y(t) at times t-, and tp. Thus

= <^z^(t^) z-^(t2)^ - -1- <^z^(ti) Z2(t2)^

k«o

a«=c

(z-L(t2) 22(t^)y

oC -0

^oCi -^002
(^2^h) ^2^^2^) (2.7)

oC3_»=ce2=o



Tichonov showed that the evaluation of the various averages,

indicated in the above equations, follows from the use of the n-

dimensional characteristic fxinction of a norraal random process.

He obtained expressions for the mean and the auto-correlation

function of ciie output. Those expressions, though quite cumber-

some, are important because they have been derived for the most

general case, and reduce to convenient forms for some special

cases.

Tichonov also considered the asymptotic behavior of the

mean and the auto-correlation for various cases, and established

conditions for stability.

2.2.1.2 Homogeneous First Order Systems

The case of homogeneous first order systems, with Gaussian

parameter variation, was analyzed by Caughey and Dienes (6).

Expressions for the first order probability density function

were obtained for both white and non-white noise processes. In

the former case, the density function was obtained as the solu-

tion of the Fokker-Planck equation. This technique has been out-

lined in section 2.3. The case in which the parameter variation

is not necessarily a white noise process is discussed next.

V/e substitute,

k(t) = a + b(t)

, ,
(2.8)

f(t) =

in equation 2.1 to obtain

dy(t)

dt
+ /a + b(ty7 y(t) = (2.9)



where b(t) is an ergodic , stationary, Gaussian random process

with zero mean, having a spectral density ct)(w) and a =^k(t)^ .

Prom equation 2.2, for initial conditions y «= yo at t «= 0, we

can write

y(t) = y, e

-1 k(u

rt

)du -at b(u}du

lo^ ^ (2.10)

we define a random variable

V(t)

r*

b(u)du (2.11)

Since Y(t) is the result of a linear operation on b(u), a

Gaussian process, it is also a Gaussian process with the follow-

ing characteristics

{^(t)) . <^b(u)) du » (2.12)

(V^(t)^ - I / <^b(u^)b(u2)\ du^du,

*'0 ''O

(2.13)

From our assumption that b(u) is stationary, we can write

<^b(t^) bCt^)^ = cD (t^^ - t^) (2.1Ii.)

which is the auto-correlation function of b(t).

Using Wiener's theorem, (4) (t^ - t ) can be written in terms

of the spectral density of b(t). Thus



/-oO

(w) Cos w(u--u ) dw (2.15)

Substituting in 2.13 we get

t f-t foo

•^ m(w) Cos w(u -u ) dw du du^ (2.16)

Changing the order of integration and integrating with respect

to u^ and U2 successively, we obtain

'
I J>/ X

/I - Cos wt/
$(w) -^ =L- dw (2.17)e?

w

The probability density function of V is, thus, completely char-

acterized and we may write

N,2

P(y) G 26Z (2.18)

The output moments can now be obtained using equations 2.10 and

2.18; thus,
00

<y^) » yP P(^) dv (2.19)

.oO -CO

or <y'^> '^€
-apt - p-jj ^

-JT'

\IW 6Z
€ 2(5:'^ d'

"*0

<yP> = yP G
-p(at-ip (J—

'^)

(2.20)
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It is observed that, if (5^ is bounded as t -> oO , then

\y^/ tends to zero asymptotically.

The probability density function P(y) of the output can be

obtained using 2.18 and the following theorem.

Theorem 2.1 . Let vj^ and -c be two random variables related

by the linear transformation V^ » f (•^) which maps ^ into ""I

uniquely. Then

Pv^(y) « ^(^)
dV
dy

= f' <^^

(2.21)

v;here V and y are the range variables of 4: ^^^^ \ respectively.

We have

-at -"V(t)
y = y^G f(V)

ay

d^

-at -V
-^0^ - y

dy
dy

Substituting, 2.23 and 2.l8 in 2.21, we obtain

1 ^-^2/25-2
^P(y) ^ 6^

"»- f""'"(y)

Prom 2,22, we have

Ln -at -V

(2.22)

(2.23)

(2.21;)

.'. V = - /at + Ln y/y^

Substituting 2.25 in 2.2l|, we get '

?(y)
1 -(at + Ln v/yp)

(2.25)

(2.26)
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The probability of exceeding a value y' , can be found by

integrating 2.20 from y' to cO . Thus

Pr (y>y') P(y)dy

It has been established (6) that the probability of exceed-

ing y' tends to zero asymptotically. This leads to rather in-

teresting conclusions regarding the stability of the system.

This will be discussed in the chapter on stability.

2.2.1.3 Step Response of a First Order System

The probability density function of the output of a first

order system subjected to a step input was obtained by Rosen-

bloom (l). He considered a first order system of the type la,

shown in Table 2.1 which is described by equation 2.1. For

zero initial conditions, the output is given by
• t

i)du

I

- r k(u]

e^(r) k(r) G ^f dT (2.28)

For an unit step input, 2.28 reduces to

• t

t -
I

k(u)du- r k(u;

y -
1

k(r) € ^'»' dT (2.29)
'0

we observe that

J
"
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- f k(u)du -
I

k(u)du

d't* dT
•t

r rt

- r k(u)du r

- L •'('^ )dul

dk(u)

- f .(u
kCf) 6 Jy

We can, therefore, write

dr dr 1 dT^
V

)du

du

r* d - \ ^(^^

dr

Odu ^ - \ k(u)du

or

y = 1 - £ ^0

k(u)du

(2.30)

Putting k(t) = a + b(t) where b(t) is a stationary Gaussian

process with zero mean and a = /^k(ty , we have

-at
y = 1 - € e

)du
(2.31)

As was done, for the case of homogeneous first order systems,

we define a new random variable

b(u)du

which is the same as equation 2.11. It has been shown that '^

is a Gaussian process, with a probability density fxxnction given

by equation 2.18; that is,
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P(^)
{zW e

where r
OQ

«; |,(„) A - g°° "t7
a„

w

The pth output moment can be evaluated by solving the

integral _«

<yP> - \yP P(y) dV (2.32)

-«S0

where
-at -V

y « 1 - € G

from 2.31,

or <yp>

_ -at ^ -V n

\[2Tr 6;

267
dV (2.33)

To get the output probability density f\inction, we use

theorem 2.1. We have, therefore,

\

P(y) = PC?^)
dY
dy

(2.3i|)

'^= f(y)

-at -If

From y « 1 - e £ /eq: 2.31/ we get,

"^ = - /at + Ln (1- yj7 (2.35)

and -d2_ -at -V
€ e - 1 - y . (2.36)



li^

Substituting, 2.3^ and 2.36 in 2.31+, we get

- Za^t + Ln (1 - yJ7^

P(y) » i e y (2.37)

\f2^ (>^ (1 - y )y

Rosenbloom's underlying aim in the analysis was to study

the step response of first order systems. A discussion of the

results is presented in the chapter on stability.

2.2.2 First Order Systems with White Noise Input and a
handom Binary Parameter Variation

Redman and Lampard (10) obtained expressions for the auto-

correlation function of the output of first order systems shown

in Fig. 2.1, under the following assumptions:

(1) One parameter is switched randomly between two
values, the variation being a stationary binary
process.

(11) The lengths of successive time intervals are
statistically independent.

(Ill) The output process is ergodlc

.

For zero initial conditions, the solution of equation 2.1

Is given by *.

^t -j k(u)du

y(t) = ei(v) k(v) G ^^
dv (2.38)

The auto-correlation function of the output, expressed as

a time average, is

<J)(f) - Li"^ 1
'00 T ->oo 2T

y(t) y(t+r) dt (2.39)

-T
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Since, the output process is assumed ergodic, this time

average is equal to the ensemble average given by

Thus,

^ai'^) - (y(t) y{t+r))

<^J
'^

)

rt rt+f
/e^(v-j^) e^(v2)\oc(t) kCt+l')

(2.1^0)

exp:

r pt -rt+r "\v

k(u)du - 1 k(u)du ) dv

L \ Jv2 J

dv.

for 'y^^O (2.i|l)

We can write,

k(t) - a + b(t) (2.1+2)

where b(t) is a symmetric binary random process +m with a>m>0.

For a white noise input process, which is also ergodic.

" -IT o (v -V^)
1 '2' (2.1+3)

where S is the power spectral density of the white noise process.

Substituting equation 2.1+3 and 2.1+2 in 2.1+1 and simplifying, we

get
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rt

cpjt) .
I- e

-at -2a(t-v)

exp.[-afM.

/ a + b(t) a + bCt+r)

)du -

t+T
b(u)du ) dv ; T>^0. UM)

To evaluate the above integral Redman and Lampard used re-

sults of an earlier paper (11) in which they had devised a pro-

cedure to obtain the multidimensional transition probability

density and the associated characteristic function of a random

process defined by

7r(t) « V|(u)du (2.I4.5)

where yj (u) is a symmetric binary random process.

The auto-correlation function for a Poisson distribution

was shown by Redman and Lampard to be

S -(a +/A ) lr|

(P (r) « i- G

a +
Am^

2 ?or + a u -m*^

Coshir) Jy^A^ + m^

vP
Ifcjl^

+ m^

2 Mm^(a + )

a2 + a M -m'^

ua-m
' Q 2 J. a 11 _m<-r

— 00 <r < 00

where

M » mean rate of Poisson parameter variation.
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If we set m «= 0, equation 2.1|6 reduces to

(fi(r) - f a £ iZ.hl)
lio m=0 q-

This is the expression for the auto-correlation function of

the output of a time-invariant RC network, time constant l/a with

a white noise input process.

For low switching rates, 2.ii.6 reduces to

Lim S\ o -&\i'\ r
I

M H;,(''') "=
-t- € Ta Cosh mirj - ra Sinh mir}) (2.m

This relation is seen to be the arithmetic mean of the two

auto-correlation functions obtained for two separate RC network,

with time constants

and
a + m a - ra

For very high switching rates, the identity with the two

possible states of the network is lost, and the auto-correlation

function becomes

Lim
i) (ii) ^ S ^-^''^l

a£ (2.[).9)

Redman and Lampard also obtained an expression for the out-,

put spectral density using the expression for the auto-correla-

tion and Wiener's relation relating the two. They also verified

the theoretical results by experimental measurements,

2.3 Higher Order Systems

The analysis of higher order systems was first carried out
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by Samuels and Erlngen (3) and Samuels (Ij.) who obtained an ex-

pression for the auto-correlation of the output in the form of

an integral equation which could be evaluated in the closed form

for some special cases. Samuels considered random linear systems

in which all the parameters but one are constants. He obtained

expressions for the mean square of the output for the cases where

the random parameter varied as (i) a white noise process and (ii)

a narrow band process, Samuels (^) later extended his work to

include the case where any number of parameters vary as a white

noise process.

In later works (6,7,8) various authors have used the Fokker-

Planck equation to derive relations for the output moments of a

random linear system subjected to a white noise input process

and in which any number of parameters may vary as white noise

processes. This technique permits the evaluation of higher order

moments in terms of lower order moments and simplifies the study

of moment-stability. The Fokker-Planck equation technique has

been discussed in section 2.3,1,

The same technique was also used by Ariaratnam and Graefe

(8,9) to study the behavior of discrete linear systems in which

the parameters vary as Wiener processes (integral of white noise

processes)

,

2.3.1 Random Linear Systems with a V/hite Noise Input Process
and with the Parameters varying as IVhite Noise Processes {9?

We consider a general linear system governed by n first

order state equations:
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d_

^2

'n

11

^il

F- *

'in ^1

• •

• •

^

• •

• •

nn ^n

u.

°^11 • • <^ln

^nl • •
^nn n

^10

^20

nO

(2.50)

where Y = [j^ . . . J^Jr^ is the state vector; /a^ ^_7 » A is a

nxn matrix of constant elements; /~oC ,_J =
_f£ is an nxn matrix

and foC _7 " ®^ o is an nxl matrix of Gaussian white noiseno "~" "

processes.

It can be shown (9) that the trajectory of the state point

in the n-dimensional state space is a Markov process and the

first probability density of the response is governed by the

Pokker-Planck equation:

n

i-i o-^i 1=1 j«i
Sy^ ^yj

(B^jP) (2.^1)

where

Lim {^Ij^
^-><> ^t

and B
Ij

Lira ^4n^liy
t"> o ^t

(2.52)

In order to evaluate the coefficients A and B we shall

first formulate the state equations.

The state of a system, described by n state variables y, .

. . l^y can be represented at every instant by a point in the

n-dimensional state space. In the absence of an external dis-
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turbance, let the system be described by the equation

-^ = - A Y (2.53)
dt

where Y « (y, . . . y ) is the state vector and A »= /&,._/ is a— in — *- ij—

'

constant nxn matrix.

If the state point is at a position p at the instant t,

then in a finite interval ^^t, the state point will be shifted

by

Y - -AY^t +(D( ^t) , (2.5tj.)

where (D(^t) means that there are higher order terras.

If tiae system receives a continual random disturbance

P(t) .

the system is shifted by

-FfC (t) Y (t) -<Co (t)j (2.55)

t+At

Y--AY At+(D(^t) + 1 F('T') dn'

't

pt+ At

Y«-AY^t+0(At) - Z^C^) IC^) - !^('»')«7 dT (2.56)

In the limit as <i t -> 0, equation 2.56 becomes

-—- - - A Y - oC_(t) Y(t) - oC^(t)

which corresponds to equation 2,50.

The random processes oCj_^(t) and oCiQ(t) have the following

statistical properties:
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<cC,j(t,) (xT^^Ct^)) -2Dij^,^(V*2) (2.57)

where i, r «= 1, 2 . . . n

j, s « 0, 1 . . . n

and ^ y represents the ensemble average.

After considerable mathematical manipulation it can be shown

that the coefficients of the Fokker-Planck equation are given by:

m n

""l
" -iCl^ix-^x.^^) + 2 D^^^^ - 2^ D,^^^ j^{t)\ (2.58)

r«l V. s»l -*

n n

^j-"
/* - -

r«l 8=1

'^irjs ^r^^^^s^*^-^} ^^•^'^^

Although, no general method of solution of the Pokker-Planck

equation is available, it is possible to obtain differential

equations governing the moments of the system response, which

may be solved recursively for the various moments.

Let the mixed moments of order N be given by

m^ (k^k^ . . . k^) « (j^"""- 7^^ . . . l^'^y

N - 1, 2 . . ,

where k ^2 * * * ^n ^^^ positive integers satisfying
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n

i«=l

^1 ^2 ^n
Multiplying 2.5l by y^ y^ . . . y^^ and integrating by

parts over the entire state space, we get the moment equations:

n n

—•nijj(k^,k2
. . . l^n^ " " Z] ZJ ^ir^i^N^^l' ' • V^' M^'

k )
^^

"W'-x» <i - - - n L
I

I.
I ir 1 IN 1' - 1 ' T ' J

i«l r-l -A

i.l j.i r-l 8=ll^i^^i -^''^^
-^'J

n n n n

, kn , • • IC . —X , • •

k.-l . . . ky+1, . . k^+1. .k^)

n n n

n n
' fk.k. : (i^j)-)

I
\ ''t J • « • ^ t."^ i • •

2

n n

'L_^L^ °lrro ^i "^N-1 (ki . . . ,
k^-1

. . . k^)

'"^^'^
(2.60)

n n n

+ / / / Dj^rrs ^i "^^^1 • • • ' V^» • • V^' • • -^n^
i«l r«l s»l
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The evaluation of the last term of each summations warrants

special attention. It is possible that more than one k with the

same subscript 1 arises in the argument of m. In this case the

power of y in the moment equation should be taken as k plus the

algebraic sum of numbers added to all the k appearing in the

moment term. This becomes clear in the examples to appear.

We see that the Nth order moments are only related to the

moments of order less than N, and for a particular N the number

of equations are equal to the number of mixed moments of that

order. Once the first moments are determined, the higher order

moments may be determined recursively,

2.3,1.1 Example First Order Systems

A first order system is defined by the differential equa-

tion

where a,- constant

(C lit oC n
^^^ white noise processes.

Let y^ - y (2.62>

The state equation may be written as

-1- Y--AY-0GY + 0C0 (2.63)
dt

where,

I- yi» A - a^^, si '^^^



2hr

^^'^ SC.0 ' ^01-

Using equation 2,60, and after sorae mathematical manipula-

tion, we obtain the moment equation:

The first and second moments (N « 1 and N « 2, respectively)

may be obtained as

d

dt <=^i> * '^1 - ^m' <^i> - °nio <^-'5)

and

—
(^i) * 2(a,,-2 D,,,,) <y,) - - 6 D,,,, <y,> * Z D^„,,

(2.6S)

These equations may be used very conveniently to study the

moment stability of the system.

2.3»1»2 Second Order Systems

The system is defined by the differential equation

S * '^22 * <22' jf * '"21 ^ °^2l' ^ -"Cao- '^•^^'

We let the state variables be
yi

-= y

and y^ « -^ -
y^ (2.68)

it



Prom equation 2.67, we obtain

25

- ^22 ^2 " °^22 ^2 " ^^^^^ ~ "^o^y^ + °^'21''1 21''1 20

Thus,

d

dt

''1

y2

-1

^21 '22

1

^2 21 ^22

r^i'

[^2

+
"o

^20

(2.69)

Comparison of equation 2.69 with equation 2.^0 shows that

^11 'l2 " °^11 ^12 ^10

The various moment equations may be obtained by using equa-

tions 2,60,

Two equations for the first moment (N « 1) are obtained

corresponding to k^ «= 1, k « and k » 0, k " 1. The expres-

sions simplify if we note that the ^^j.*- corresponding to ^'C ^^ ,

oC ^2 *"^
°^io

^^® zero.

Similarly, three equations for the second moment (N -^ 2)

are obtained corresponding to (k-j^ "2, k2 * 0) , (k^ "1, k_ « 1)

,

and (k]^ «= 0, kp « 2) .

In matrix notation the moment equations may be written as

r
d

dt

<yi>

'*21"^2221 '^22"°2222 '2220

(2.70)

and
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<yl> 2 <rl)

dt <V^ - D -a
2221 21

D -a
2222 22

+1 Ol^S^

_<4>_ J °2121 ^°2122-2-21 liD -2a^2222 22 _<4)_

^ ^2120 ^ ^2220

'2220

<^>

<^z)

(2.71)

These two equations may be used conveniently to study the

noment stability of the system. This is discussed in Chapter

III.

2.1j. Remarks

Sections 2.2 and 2.3 reveal the complexity of the problem

of determining the probability density functions of the output

of a random linear system. Concrete results can be obtained for

certain first order systems only while for higher order systems

one has to be content with determinations of moments. As men-

tioned in the introduction, this knowledge is often quite suffi-

cient from an engineering point of view since one is usually

concerned with the problem of stability of such systems.

It must be noted that for higher order systems we have con-

fined ourselves to the case where the parameter variations are

Gaussian white noise processes. For other types of variations

the problem is highly complicated and no general solution has

appeared in the papers scanned.



CHAPTER III

STABILITY OF RANDOM LINEAR SYSTEMS

3»1 Introduction

The problem of establishing general stability criteria of

random linear systems Is very complicated. The most appropriate

way to deal with the. problem Is to extend to random linear

systems the stability concepts of deterministic systems. As the

RLS can exist in an ensemble of configurations, determined only

by probabilistic considerations, it is best to consider the sta-

bility of the system as a whole and, if possible, explain it in

terms of the stability of a particular configuration that the

system can exist in.

Before establishing any criteria it is necessary to define

exactly what we mean by the stability of a random linear system.

It is essential that this definition satisfy the Intuitive con-

cept of stability and therefore it seems logical that a defini-

tion based on the one ordinarily associated with deterministic

systems is in order. A linear time-invariant system, which is

initially in equilibrium is said to be stable if and only if the

system returns to equilibrium after a finite disturbance. In

the case of non-random systems, this return to equilibrium is a

purely deterministic process. The return of a random system to

equilibrium can only be described probabalistlcally. The most

precise definition of stability of random linear systems can be

given in terms of the convergence of random variables.
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Definition 3.1

A random linear system, initially in equilibrium, is

"strictly" stable, if and only if, the random variables repre-

senting its response to a finite disturbance, converge "almost

certainly" (Appendix) .

This definition, although very desirable, is rather diffi-

cult to adhere to in practice. The sufficiency conditions,

stated in the following section, in general ao not imply almost

certain convergence. It is, therefore, necessary to reexamine

the stability concept in terms of the less rigorous convergence-

In-probabillty notion.

Definition 3.2

A random linear system is (asymptotically) stable if the

random variables, representing the response to a finite disturb-

ance, converge asymptotically in probability.

We can now establish sufficiency conditions for stability

of random linear systems.

Theorem 3.1 . (Bershad and DeRusso (12)) For a stationary

RLS to be stable it is sufficient, though not necessary, that

the condition

^^"» ^H^(t)) -»

be satisfied. H(t) is the random response of the system to a

unit impulse applied at t « and ^

—

\ represents the ensemble

averaging operator.

Proof of Theorem 3.1 . In order to prove the theorem we
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make use of the following Lemma,

Lemma 1 . If ^H^(t)^ is bovmded, so is ^H(t)/ .

Proof of Lemma. Consider the ensemble of random functions

|H(t)] with probability density functions ^^i^) where v|^ is the

range variable of H, . Then

00

{H^(t)^ « \H^(t) dP(i^)

and
-00

.04

^mt))
I
H(t) dP(>|)

Prom Schwarz inequality we have

oo

"] 2

[H(t) G(t) dP(t^)

00

*• -co

< In^Ct) dP(t}) Wit) d?{ii)

00

For G « 1, this becomes

<H(t))^ ^ <H2(t)>.

Therefore, if ^H^(t)> is bounded, so is <^H(ty .

The proof of theorem 3,1 follows from Lemma 1 and Chebyshev's

inequality,

Prob||H(t) .<H(t)>| ^ '''^J^72

where K>

2
and c5-| « <^n^{t)y - <H(t)) ^^

Assume Lim /H^(t)S «
t -i-oo ^ ^
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since (E{t)^ ^
<[ <^H^(t)^

2
G~„ tends to zero as t tends to infinity. We let k -> oo aa
n

t -^ 00 such that k (TT. -* t where £ >0. Thus,

^^" Prob?^ lH(t) - <'H(t)>| ^ £ 'r -

t -> 00 L -^

k -» oo .

If £ is made arbitrarily small, the above equation means

that H(t) converges asymptotically to ^H(t)\ in probability

where ^H(t)^ , which is less than \H^(t)/ , tends to zero.

Therefore H(t) converges to zero in probability.

This means that ^'almost all*' H(t) of the ensemble jH(t)^

converge to zero asymptotically.

As stated before, convergence in probability, In general,

does not imply almost certain convergence. However, in certain

special cases, it can be shown (12, 13) that the sufficient con-

dition stated in theorem 3.1 does guarantee almost certain con-

vergence (Appendix)

.

A similar sufficiency condition can be established in terms

of the response of a RLS to a unit step input.

An alternate way to describe the stability of a random

linear system is in terras of the convergence of distribution con-

cept. This is not uncommon in probability theory (lij.) and can be

extended to explain the stability of first order systems discussed

later. This concept is stated in the form of a definition.

Definition 3.3

A stationary random linear system is stable if



31

where P(y;t) is the probability density function at time t of the

random variable y(t) representing the response of the system to

a finite disturbance.

This definition is equivalent to definition 3.2 since the

area of an unit impulse function is unity. This means that y(t)

converges asymptotically to y in probability.

Definition 3.3 has very restrictive use because of the ob-

viously difficult Job of determining the probability density

function of the output.

3.2 Examples

3.2.1 Impulse Response of a First Order System

We consider first order systems described by a differential

equation:

^^ + k(t) y(t) - eAt) k(t)
dt -^

where ej^(t) is the input to the system,

y(t) is the output of the system

and k(t) is the open loop gain (T4tU.'2,l)

The solution of this equation for zero initial conditions

is given by equation 2,28, which is repeated for convenience

ft

r* - I k(u)du
y(t) - e^irf) k(T) Jy dt (3.1)

If ej^(t) is a dirac-delta function at t « 0, equation 3.1
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H(t) - kg € Jq (3.2)

where k is the value of k(t) at t «= and is assumed to be

knovm, and H(t) is the impulse response of the system.

Equation 3.2 is similar to equation 2.10 of the homogeneous

first order system with yQ and y(t) replaced by kQ and H(t)

respectively.

Substituting the following into equation 3,2,

k{t) - a + b(t) (3.3)

where /b(t)N - and /k(t)\ « a,

we obtain
-at -z

H(t) - kQ 6 G (3.1;)

where

rt

^0

b(u)du (3.5)

If b(t) is a stationary, ergodic Gaussian process the first

probability density of the impulse response is given by equation

2.26 with slight modification. Thus,

-(at •<• Ln H(t)/ko)^

P(H) «
" ^^Z (3.6a)

"f
where ^

5-^2 . ^-°°y^
f („) dw (3.6b)

and ^(w) » spectral density of b(t).
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P(H), with b(t) a white noise process, is shown in Fig, 3.1

as a function of H(t) and t.

FIGURE 3.1

IMPULSE RESPONSE OF A FIRST ORDER SYSTEM

It can be shown that P{H) tends to a delta function asymp-

totically. Prom Definition 3.3 this implies that the system is

stable.

It is interesting to note that the stability of the moments

la not necessary for the system to be stable according to Defini<

tion 3.2. This is seen from the following analysis.
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An expression similar to equation 2.20 can be vrritten for

the pth moment of the impulse response. With necessary modifi-

cations of equation 2,20 we have

2

<HP(t)) « kg e ^
(3.7)

Prom equation 3.7 we have

2 1 1 - Cos wt
0-,
Z w2

J (w) dw

T 2D
For b(t), a white noise process, $(w) » ^ which when

substituted in 3.6b yields

6"/ - 2Dt (3.8)

Substituting 3.8 in 3,7 we obtain

/ ^ V -p(at - pDt)
<;HP(t)) » kP G (3.9)

If a > pD the pth moment is stable.

If a<D, all moments become unstable. This, however, does

not effect the nature of the probability density function. Thus

the system is stable according to Definition 3.3 although its

moments become unbounded with time.

This interesting deduction can be easily explained by prob-

ability concepts, although it is difficult to give a precise

physical reasoning. It has been shown in theorem 3.1 that the

stability of the mean square implies convergence in probability.

The reverse, however, is not true in general. Thus, it is quite
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possible for a sequence of random variables to converge in prob-

ability, while not converge in the mean square,

A plausible reason for the instability of the moments is

not obvious. The instability of the moments is often attributed

to the fact that there is always a finite probability of the out-

put becoming +oO , and the moments may be emphasizing the large

positive value of the output. However, this reasoning implies

that the moments are always unbounded, which contradicts our re-

sults since we know that the pth output moment can be made stable

if a >pD, without affecting the nature of the probability density

curves.

It will be noted that if a >2D, ^H (t)^ is always positive

and an exponentially decaying function. From theorem A,l (Appen-

dix) it follows that a>2D is a sufficient condition for the sys-

tem to be stable according to the stronger Definition 3.1. That

is, the system is "almost certainly" stable or is stable almost

everywhere in time,

3,2.2 Step Response of First Order Systems

Rosenbloom (1) obtained an expression for the first prob-

ability density of the step response of a first order network

and discussed the stability problem of such systems. Hosen-

bloom's analysis has been summarized in section 2.2. Some of

the expressions will be rewritten for convenience;

-/&t + Ln (l-y)_7
^

P(y) . _-_ Z
(3^^Qj

Js^ (5- (1-y)

Z
'
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If the b(t) is a white noise process, the first probability-

density is as shown in Fig, 3.2.

FIGURE 3.2

STEP RESPONSE OF A FIRST ORDER SYSTEM

It is seen that the probability density functions converge

to a delta function at y = 1, as t tends to infinity. From the-

orem 3.2, this implies that the system is stable.

Prom equation 2,3, we can determine the first and second

moments as follows

t
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-(a-D)t

<y> - 1 - e

-2(a-2D)t -(a-D)t
<y2> - 1 - € -2 €

If a<2D both the first and second moments tend asymtotl-

oally to — oO • This phenomena is similar to that encountered

in the impulse response. As stated earlier convergence in mean

square implies convergence in probability although the reverse

is not true. Thus, it is quite possible for the system to be

stable according to Definition 3.3 while have moments which do

not converge. As before, a plausible physical explanation for

the instability of the moments has not been given in the litera-

ture ,

3.3 Moment Stability of Hipiher Order Systems

In this section sufficient conditions for stability of cer-

tain higher order random linear systems (described in section

2.3) will be established. It has been shown that for general

systems in which the parameter variations are white noise proc-

esses the transition probability density is given by a partial

differential equation of the Fokker-Planck type. Using this

equation it is possible to obtain moment generating functions

(equation 2,60), These moment generating functions can, in gen-

eral, be described by the matrix differential equation

n-1

dt -^ An Mn +Z] B^ Mi O.H)
i-1

where M_ is a column matrix with various mixed moments of order
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n as components, A is a constant matrix and

n-1

C 2lMl

represents other matrices of lower order moments.

To consider the stability of K^ it is sufficient to consider

the "homogeneous" equation

provided the lower order moments are bounded. The necessary and

sufficient condition for stability of Mn ^^^ ^® stated as a the-

orem.

Theorem 3.2 . If the nth order mixed moments are given by

the matrix differential equation

n-1
d

^n - An 1^ + I] li Mi <3.13)
d* i-l

where the M. are bovmded, then the necessary and sufficient con-

dition for Mj^ to be stable is that the eigenvalues of A^^ lie in

the left half of the complex plane.

The proof for this theorem is straight forward and is avail-

able in any standard book on state variables,

3.3.1 Example

In section 2.3 the generating matrix differential equation

for the second moments of a second order system has been derived

(eq: 2.71). According to theorem 3.2 it is sufficient to consider

the homogeneous portion of equation 2.71 for stability of the
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second moments.

According to the notation of theorem 3.2, we have

2

D -a D -a 1
2221 ^21 2222 22

2I> 6D -2a liD -2a
2121 2122 21 ^2222 22

For simplicity we shall assume that oC pi *^^ ^22 *^® '^^^

correlated. Therefore, ^2122 " ^2221 " ^*

The characteristic equation \^L ~
^pl

the following equation:

results in

where

,

and

E,

E,

E,

>,^ + E^ X^ + E^A + \

^^22 " ^^2222

^2222 - ^^22 ^2222 ^ ^^2 ^ ^^^21

ka a - 8D a - kD^21 22 2222 21 ^2121

The necessary and sufficient conditions for the roots of

the characteristic equation to lie in the left half of the com-

plex plane can be obtained from the Routh-Hurwitz criterion.

Applying this criterion we obtain the following conditions:

E^ >

^0 > °

E^E, > Eq .
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If only one coefficient varies randomly we have the follow-

ing special cases.

• ^^^^' <=^ 22 " ° ^^2222 " 0^
•

The characteristic equation reduces to

1^2 X^ + (2a|2 + i^a2^) A + (l|a2i^22 " '-'2121A^ + 3ap5X2 + (2a2 + l^a ) X + (l|a_-a - Ipp. p, ) -

The Routh-Hurwltz criteria yields the following necessary and

sufficient conditions for stability:

22 '^

^21^22 > ^2121 •

and 6a22 (a^2 + 2a2^) > kU^^^^^ - D^^^l^

Case 2 . oO " (D «= 0)
21 2121

The characteristic equation reduces to

X ^ + Fg X^ + F^ X + F «

where

•^2 " ^^22 " ^°2222

F, - l^l^^^ - 6-22^2222 * ^4 ^ ^^21

^0 - ^^21^22 - ^^21°2222

For stability the necessary and sufficient conditions are

F2 >

Fq >

^2^1 X ^0 •
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3,h Remarks

It has been shown in this chapter that the stability of a

RLS can be defined precisely in terms of the convergence of the

random variable representing the output. It is difficult to use

these definitions directly to determine the stability of a RLS

since the output cannot be described completely. It is, there-

fore, necessary to establish sufficiency conditions in terras of

a quantity which can be evaluated without major difficulty. In

most cases the mean-square of the output can be obtained quite

easily and therefore sufficiency conditions in terms of the mean-

square would be most useful. It has been shown in theorem 3.1

that the stability of the mean-square always guarantees asymp-

totic stability. Under certain conditions the mean-square sta-

bility also guarantees stability almost everywhere in time

(Theorem A.l)

.

Another phase of the stability problem is the time required

for a RLS to settle down to its equilibrium value. This problem

has not been investigated theoretically although some experimen-

tal work has been carried out (l5) to determine conditions for

a small settling time.



--,l»n«5«r,T'--i^

CHAPTER IV

CONCLUSION

The study of random linear systems is essential for a better

understanding of a number of phenomena, as, for example, the

propagation through randomly-varying media, stability of radio

guided vehicles with randomly-varying loop gain, and reflection

from fluctuating targets. It has been pointed out in Chapter II

that the investigations of the output of a RLS are often limited

by the mathematical complexity of the problem. Fortvmately, the

complete description of the output is in most cases, unnecessary

since one is usually concerned with the overall behavior of the

system. In particular, the stability of such systems is of in-

terest. In Chapter III it has been shown that the stability of

random linear systems is best described in terms of the conver-

gence of the random variables representing the output. The sta-

bility can be conveniently studied in terms of the mean square

of the output. In most of the published works on the subject

the investigations have been directed towards obtaining the mean-

square of the output since this statistic is relatively easy to

evaluate. These investigations have been fruitful in specific

cases only.

It has been shown in Chapter III that for certain systems,

in which the variation of parameters is a white noise process,

the transition probability density function is given by a par-

tial differential equation of the Pokker-Planck type, A general
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solution of this equation is very difficult and is unnecessary

if the object is to study the stability of the system. It may

be possible, however, to solve this equation numerically. Such

a solution would be helpful in the investigation of the stability

theory since it would give a firmer foundation to the study of

stability in terms of the convergence of distribution concept.

The contents of this report indicate that the analysis of

RLS is limited to a large extent by the mathematical complexity

of the problem. Although solutions for specific cases can be

obtained under certain simplifying assumptions, no general pro-

cedure has been formulated at this stage. In particular, the

behavior of non-stationary RLS has hardly been studied. The in-

vestigations of RLS, at the present level, have been successful

only to a limited extent and there is a need for further re-

search, both theoretical and experimental.
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The stability of random linear systems can be conveniently

discussed in terms of convergence of random variables. In prob-

ability theory this convergence is defined in a number of ways

depending on the "strength" of the convergence. In particular,

the following concepts are commonly employed.

Convergence in Probability (weak convergence)

A random process <H(t)j converges, to a stochastic limit

H('>'), in probability if, for any positive number 6
,

Lim
t ^r p

^
|H(t) - H(i')| > e^ =

A necessary and sufficient condition for such convergence

(Bartlett) is that for any positive e and Vj^ there is a t' such

that

P \ lH(t) - H(r)I |H(t) - H(r)| >€l < 'VJ

for all t, 'V "^ t'.

Convergence in the Mean-Square Sense

A random process s^H(t)i is said to converge, to a stoch-

astic limit HCf
)

, in the mean-square sense if

Lim
t -» r

^^(t) - H(r)j^^=

where ^ ^ represents the ensemble averaging operator.

The necessary and sufficient condition for mean square con-

vergence is (Bartlett) that for any positive G there is a t'

such that

^^E[(t) - E{r)J^y for all t, r :> t'
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In the previous definitions we have been considering the

random process |H(t)V . We have an ensemble of functions H(t)

as shown in Fig. A.l; at time t' the random variable is H{t').

•Let us regard each function H(t), for all time t, as a ran-

dom variable and denote that particular function as Hj^(t), Thus

H(t) has realized values H-j_(t), HgCt) ....

Almost Certain Convergence (Also called strong convergence or
convergence with probability one)

H(t) converges almost certainly if the realized sequence ;

H^(t), H2(t) . . . converges to H'(t) in probability. That is,

for any positive €
,

Lim
k ^ '^ p |lyt) -H.(t)| >e]

for almost all t.

A sufficient criterion for a-c convergence is (Bartlett)

dt < <^/lH(t) - H(r)| \

for some p > 0.

Convergence in Distribution (Doob)

If the sequence {f j is the sequence of distribution fiino-

tions of the sequence of random variables ^^(^nM » ^^^ ^^

^^^ p (y) « F(y)
n ->.oo ^

at every point of continuity of F, then, the sequence of random

variables VHCtn)}- is said to converge in distribution.
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ENSEMBLE OP H(t) : ILLUSTRATION OP CONVERGENCE
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It can be shown that almost certain convergence Implies con-

vergence in probability although the reverse is not true. It can

also be shown that mean square convergence implies convergence

in probability. There is, however, no relation in general be-

tween mean square convergence and almost certain convergence.

The implications of the three definitions of stability dis-

cussed in section 3.1 can be discussed in terms of the defini-

tions of convergences.

Definition 3.1 states that the system reaches equilibrium

almost certainly or with probability one and implies that the

system is "almost always" stable in time. In other words, the

probability of the system going unbounded at any time is of meas-

ure zero. This is obviously the most desirable condition.

Definition 3.2, on the other hand, implies that the system

is ultimately stable, although it may be unbounded for most of

the time. In other words, definition 3.2 is concerned only with

the asymptotic behavior of the system. Definition 3.3 is equiv-

alent to definition 3.2.

Under certain conditions, a system which is mean square

stable can be stable "almost certainly." A number of such cases

have been discussed by Bershad and DeRusso and Bershad. In par-

ticular, if /H^(tyls an exponentially decaying function the sys-

tem will be "almost certainly" stable. This is stated as a the-

orem.

Theorem A.l . If H(t) represents the impulse response of a

random linear system, and if ^li (t)y is an exponentially decaying
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function, then H(t) converges almost certainly to zero (system

is stable according to definition 3.1).

Proof. We have stated (without proof) that the sufficient

condition for almost certain convergence is that

dt <: c>or(iH(t) -HCT)] ^)

for some P > 0.

For Y -» oO we have HC**) » as the equilibrium value

of H(t), The condition for almost certain convergence (P chosen

as 2) becomes _
.00

<H2(t))

If \H^(t)/ is an exponentially decaying function then the

condition is obviously satisfied. Therefore, H(t) converges to

zero almost certainly. Therefore the system is stable almost

everywhere in time.
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A random linear system (henceforth designated as RLS) is a

linear system v^ose parameter variations arc random processes

with knovm probability density functions. If the probability

density functions are independent of time the RLS is said to be

stationary. The input-output relationship of a RLS may be de-

scribed by a linear differential equation with stochastic coef-

ficients.

Recent interests in the study of many varied phenomena,

such as propagation through randomly-varying media, stability

of radio guided vehicles with randomly-varying loop gain, and

reflection from fluctuating targets have placed an ever-increas-

ing importance on the methods of analysis of RLS, This report

is a survey of the various techniques that have been developed

to analyze stationary RLS. On account of the complexity of the

problem on the whole the restriction to the stationary case has

been found to be essential in all the published papers.

A complete representation of the output of a random linear

system requires a knowledge of all the multivariate probability

density functions of the output. This problem, however, is so

difficult that one has to be satisfied with a limited amount of

information in the form of the first probability density func-

tions and the various order moments of t he output. Even this

information can be obtained in a concrete form for specific

cases only. The various techniques developed to analyze these

special cases have been discussed in chapter 2.

The limited description of the output of a RLS is often



quite sufficient to an engineer since he is primarily concerned

with the stability of such systems. In chapter 3 it is shown

that sufficient criteria for stability of stationary RLS can be

established in terms of the available information at the output.

The concept of stability of random linear systems, however, is

quite different from the same concept for deterministic systems,

Chapter 3 brings out the idea of stability "in the stochastic

sense" and attempts to define it in terms of familiar notions

of convergence of random variables. It is shown that this per-

mits a very precise definition of stability of random linear

systems.

The possibility of further investigation of random linear

systems has been discussed in the Conclusion,


