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Abstract

Organizations share data in a cross-organizational context when they have the goal
to derive additional knowledge by aggregating different data sources. The collabora-
tions considered in this article are short-lived and ad hoc, i.e. they should be set up in
a few minutes at most (e.g. in emergency scenarios). The data sources are located in
different domains and are not publicly accessible. When a collaboration is finished, it
is however unclear which exchanges happened. This could lead to possible disputes
when dishonest organizations are present. The receipt of requests / responses could
be falsely denied or their content could be point of discussion. In order to prevent such
disputes afterwards, a logging mechanism is needed which generates a replicated
irrefutable proof of which exchanges have happened during a single collaboration.
Distributed database solutions can be taken from third parties to store the generated
logs, but it can be difficult to find a party which is trusted by all participating orga-
nizations. Permissioned blockchains provide a solution for this as each organization
can act as a consensus participant. Although the consensus mechanism of the per-
missioned blockchain Hyperledger Fabric (version 1.0-1.4) is not fully decentralized,
which clashes with the fundamental principle of blockchain, the framework is used in
this article as an enabler to set up a distributed database and a proposal for a logging
mechanism is presented which does not require the third party to be fully trusted.
A proof of concept is implemented which can be used to experiment with different
data exchange setups. It makes use of generic web APIs and behaves according to a
Markov chain in order to create a fully automated data exchange scenario where the
participants explore their APIs dynamically. The resulting mechanism allows a data
delivering organization to detect missing logs and to take action, e.g. (temporarily)
suspend collaboration. Furthermore, each organization is incentivized to follow the
steps of the logging mechanism as it may lose access to data of others otherwise. The
created proof of concept is scaled to ten organizations, which autonomously exchange
different data types for ten minutes, and evaluation results are presented accordingly.
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FIGURE 1 Sample ad hoc cross-organizational collaboration where multiple organizations work on a common project: a control
room operator requests data from other organizations in order to offer a dashboard as a service to speed up a decision-making
process.

1 AD HOC CROSS-ORGANIZATIONAL COLLABORATIONS

The context of this research is the exploration of technical enablers for allowing the rapid creation and configuration of ad hoc
cross-organizational collaborations aiming to share knowledge (e.g. data, services) among the different participants. Although
any type of collaboration between different organizations can be considered a valid use case for this article, a prominent one is
that of an emergency situation1 or a smart city scenario2. An example collaboration scenario is illustrated in Figure 1 where
a control room operator wants to access data sources from different participating organizations. The aggregated data stream
will be shown on the control room dashboard, such that the operator can offer this service to speed up a decision-making
process. Persons are involved in enabling and disabling a stream of data exchanges, more specifically in granting and revoking
authorization to internal data sources.
Although it might be necessary to collaborate, there may be trust issues between the involved organizations. Trust in this

context can be defined as an assumption of belief in the honest and truthful operation of another organization at a particular
point in time. When an organization shares data with the operator as shown in Figure 1, it wants to be sure that it has a proof of
each data exchange, such that it can be compensated for each unique and valuable piece of data it delivers, and that the operator
only requests data relevant to the problem at hand. In general, it should not be possible for any data requesting organization to
falsely deny (the integrity of) a request / response in order to avoid any responsibility or obligation towards the sending party.
Most companies will therefore not trust others, especially in the case of ad hoc collaborations, for which there is no time to
negotiate data exchange contracts or service level agreements upfront. Not only the time is an issue, but it may also be difficult to
determine upfront which data needs to be exchanged in an ad hoc situation. For the remainder of this article, it is thus assumed
that there is a lack of full trust between the collaborating organizations.
The core problem is that, after a collaboration is finished, it is unclear which organization performed which action when no

loggingmechanism is used. This means that disputes between the partners are possible when dishonest organizations are present.
Two types of possible disputes are (1) disputes concerning the (integrity of) a request / response and (2) disputes concerning
potentially wrongful acts. The latter could be the case when there are no fine-grained access control policies in place due to the
collaboration being set up ad hoc. A solution to this problem is to provide the different partners with a pair of cryptographic
keys and to let them execute the following steps:

1. Organization Y (Operator) sends a signed request to Organization X

2. Organization X sends a signed notification confirming it received the request of Organization Y (Operator)

3. Organization X sends a signed response to Organization Y (Operator)
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4. Organization Y (Operator) sends a signed notification confirming it received the response of Organization X

This mechanism provides both Org X and Y with the logs it would need to prove which data exchanges happened in case of a
possible dispute in the future. It is important to note that these logs only capture the data streams that took place, not whether the
data was relevant. For example, when a camera stream is requested and only empty frames are sent, compensation for sending
this stream is questionable. The logging mechanism thus provides a way to observe the exchanges that have happened and to
impose consequences after the collaboration is finished.
Although this solution is sufficient to solve the proposed problem, it also needs to be examined how the logs need to be stored.

Org X and Y could store their exchanged logs separately, but this has two drawbacks. First, when one of them loses its logs,
disputes are again possible. Data replication is thus needed instead. Second, there is no central overview of all exchanges that
happened during a single collaboration. As multiple organizations will join a collaboration to achieve a common goal, it would
be better to aggregate all the different logs, e.g. to allow participating organizations to create a live overview of the current status
of the collaboration, to execute data exchanges according to a predefined regulated process (e.g. when data needs to be exchanged
and processed according to consecutive steps), to easily provide all logs to an organization higher-up (e.g. to the headquarters
in case different business units of a company collaborate), to determine the exact contribution of each organization, etc. Finding
an appropriate storage solution is examined in this article.
The remainder of the article is structured as follows. Section two presents recent related work integrating or extending the

Hyperledger Fabric framework3, which is a so called permissioned blockchain. Before elaborating on the proposed logging
mechanism, section three presents the integration of generic web APIs to allow collaborating participants to explore their APIs
dynamically. Section four then outlines possible topologies to store the logs and explains how the Hyperledger Fabric framework
fits within this use case. Missing verification mechanisms are identified and further detailed in section five, after which the
implemented proof of concept is explained and evaluation results for a specific setup is shown in section six. Finally, conclusions
are drawn for the presented work and future research directions are described.

2 RELATED WORK

This section presents related work building further on the Hyperledger Fabric framework3 4. The uptake of the Fabric frame-
work is clearly visible, both in industry and academia. Applications have been proposed for various use cases, e.g. banking5,
transparency for personal data handling6, global trading7, Internet of Things8, Community Mesh Networks9, etc. Furthermore,
there are research papers on the performance of the framework10, possible performance improvements11 12 13, risks related to the
implementation of a smart contract14, the mitigation of attacks by a malicious peer15, etc. This enterprise framework provides a
so called permissioned blockchain, which is a shared ledger where the writers of the system, i.e. the consensus participants, are
formed by a restricted set of members. The transactions (TXs) are stored in a chain of cryptographically linked blocks and define
the changes applied to key-value pairs (KVPs) stored in a separate database. Its execute-order-validate architecture, referred to as
the consensus mechanism, is novel compared to other permissioned blockchains as TX execution, i.e. passing an input through
the business logic of the application, and TX validation are separated from the consensus protocol for ordering4. This allows
TX endorsement policies to be created in which it is defined which endorsing peers (EPs) need to execute and sign a TX before
it is considered valid. The framework is also open-source, i.e. it can be extended in any way, and modular, e.g. new consensus
protocols can easily be integrated. Furthermore, it allows general-purpose programming languages (GPPLs) to be used to code
the business logic of the application into so called smart contracts without the need for cryptocurrencies, and provides identity
management tools. Why Fabric is chosen for this problem, is further detailed in section 4.
The cross-organizational data exchange applications built on Fabric that can be found in literature serve different purposes,

but it is possible to divide them into two categories. The applications in both categories have in common that they require the
data sender and receiver to communicate via both on-chain and off-chain communication channels. However, applications in
the first category cause the receiver to wait for off-chain data to be consumed until certain interaction with the blockchain is
successfully completed16 17. This is what we refer to as a synchronous data exchange approach. A specific case of this situation
is when physical instead of digital goods are exchanged, as the sender and receiver need to meet in person and acknowledge
the handover on-chain before the actual package transfer happens18. The earlier proposed logging mechanism by the authors19
is in a second category, as the data receiver can immediately consume the received data without having to wait for on-chain
information to be received. This is referred to as an asynchronous data exchange approach. The goal behind this design choice
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FIGURE 2 Recap of the components needed for the proposed logging mechanism.19

is to minimize the additional latency imposed by the logging process on the actual data exchange, at the cost of less logging
certainty.
The goal of the proposed mechanism is to allow a data delivering organization to assess the integrity and correctness of the

entire collaboration setup such that it can decide whether it wants to share its data with the other participants in a trustful way.
Trustful means that every data exchange is logged, both request and response, in order to prevent possible disputes afterwards.
Both the sending and receiving organization are incentivized to log properly: the sending organization may miss its compen-
sation otherwise, while the receiving organization may lose access to the required data stream. There are thus only two direct
stakeholders in providing appropriate data exchange logs. Furthermore, it is not an issue if any couple of organizations would
agree on some fake logs to try to fool other organizations, as the actions of these indirect stakeholders are not influenced by
these logs in a, for the dishonest couple, positive way.
Figure 2 shows the components of the architecture together with the content of the messages that are exchanged. The client

components each expose an API to the partners in the collaboration and invoke other APIs. The proxy components receive
logging requests from their corresponding client and invoke the EP to execute a function of the smart contract (=chaincode).
Before Org Y sends an HTTP data request (RQ2) via channel 2, it logs the request with the chaincode (CC) function logRequest
(RQ1) via channel 1. Note that TX IDs are sent along in the HTTP header to allow the counterparty to search for the expected
TXs. When Org X receives the request, it queries its internal service, and sends the corresponding HTTP response (RS2) via
channel 2 and executes the CC functions inspectRequest and logResponse (RS1) via channel 1. Finally, Org Y executes the
CC function inspectResponse via channel 1 based on the received response. Note that the actual data request and response are
replaced by hashes inRQ1 andRS1 respectively and that all interactions with channel 1 are executed asynchronously to prevent
channel 2 from blocking. This flow thus generates four logging TXs for each data exchange in order to obtain an irrefutable proof
of its existence and its integrity. This article explains the properties of the mechanism more extensively, applies the concept of
generic web APIs as found in literature to the cross-organizational problem, and shows additional evaluation results.

3 DATA AND SERVICE SHARING THROUGH EXPOSED WEB API FEATURES

Collaborating organizations make use of client-server relationships, i.e. Org Y sends a request to Org X, X processes the request,
and sends a response back to Y. Each organization, willing to share services, exposes a web API to the partners in the collabo-
ration to allow them to request data from internal resources. Authentication and authorization, although crucial in this scenario,
are not further detailed here but will be treated separately in future work. The focus in this section is on the design of these APIs.
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Each organization could define its own API using e.g. OpenAPI20 to automatically generate server stub code, client library
code and documentation. However, this should not be left to the organizations themselves, as it would result in a number of
heterogeneous APIs being tightly coupled to different backend systems, imposing two severe drawbacks. First, an organization
would need to study the documentation of each API to be able to use it. This is not possible when an ad hoc collaboration is
initiated in case of an emergency situation. Second, even minor changes in the backend system of an organization could lead to
API changes, resulting in many software updates to solve incompatibilities. It would instead be more useful to let connecting
organizations, also called clients, couple to one or more reusable features. This feature-based vision, enabling automated clients,
is extensively described by its founders Verborgh and Dumontier21. It is important to note that their vision is aimed at the entire
web API ecosystem and that the selection and granularity of the different features needs to be agreed upon by the community.
Their vision is applied here on a much smaller subset of this ecosystem, i.e. on cross-organizational collaborations. They propose
five principles describing how a feature-based web could be realized:

• "Web APIs should consist of features that implement a common interface." The advantage this provides is that clients con-
suming the API can be generalized, i.e. an organization can connect or switch to (a subset of) features offered by different
organizations without changing any code. Also, server-side interface code can be reused by multiple organizations.

• "Web APIs should partition their interface to maximize feature reuse." An organization should only define a new feature
when there is no feature available which already provides the required functionality. As no common repository of features
is available yet, a specific repository for cross-organizational collaborations can be defined to illustrate the concept.

• "Web API responses should advertise the presence of each relevant feature." The advantage this provides is that the
offered API functionality can be discovered at runtime by any organization, which is necessary in case of a time-critical
collaboration.

• "Each feature should describe its own invocation mechanics and functionality." Feature identification is one thing, using
them is equally important. Communicated feature URLs can be dereferenced to find new API routes, request body formats
in case of HTTP POST request, etc. This hypermedia constraint is important for the cross-collaboration scenario, as it
allows organizations to explore how features can be used at runtime.

• "The impact of a feature on a Web API should be measured across implementations." This principle is not further discussed
here, as the idea of using generic clients for cross-organizational collaborations is more important for this article than the
exact composition of the feature set.

An illustrative setup is proposed in Figure 3. An Org X has three features available to share data of employees, image files and
text files. Implementing a feature per resource type is a reasonable mapping as organizations will most likely share similar types
of data and code can be reused. Furthermore, this separation allows an organization to easily start, stop and scale the sharing
of individual resource types at runtime, as features are implemented as independent services. The labeled links in the figure are
now discussed:

I The only information Org Y knows in advance about Org X is an entry point defined by a fixed URL, e.g. example.
org/collab. The client component of Org Y uses this URL to send an initial HTTP GET request to the hypermedia-
driven API exposed by the client of Org X. The JSON-LD22 data format, being compatible with the Resource Description
Framework (RDF)23, is used to define the semantics of an organization’s resources in plain JSON. The Hydra vocabulary,
proposed by Markus Lanthaler, is furthermore used to allow dereferenceable Internationalized Resource Identifiers (IRIs)
to be described24. This vocabulary consists of several classes and properties which are commonly found in web APIs. The
base class of Hydra is the Resource class, from which all other classes inherit, and indicates that an IRI is dereferenceable
and thus further information can be retrieved24. The code snippets below show how the proposed API can be dressed upwith
keywords from this vocabulary. This vocabulary provides a useful addition to RDF, as the latter uses IRIs for identification
without any description related to their dereferenceability, forcing clients to blindly dereference each IRI in order to discover
whether further information can be retrieved24.

II When features are deployed, they first register themselves with the entry point of the API, i.e. the collaboration feature. This
way, it is possible for the collaboration feature to have an up-to-date overview of all enabled features. When queried, an
HTTP response is sent to the client of Org Y which contains an overview of all enabled features for which it is authorized.
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FIGURE 3 The proposed web API consisting of features which can be reused by multiple organizations.

An example definition of the entry point is shown in Listing 1. Note that the listings presented in this section are strongly
based on the demo code of the generic client Hydra Console25.

{
"@context ": {

"prefix ": "http :// example.org/collab",
"docs": "prefix :/docs#",
"EntryPoint ": "docs:EntryPoint",
"employees ": {

"@id": "EntryPoint :/ employees",
"@type": "@id"
=> Property value is an IRI

},
=> Analogous for other features

},
"@id": "prefix:",
"@type": "EntryPoint",
"employees ": "prefix :/ employees",
=> Analogous for other features

}

Listing 1: Entry point of the Web API

Each HTTP response furthermore contains a URL /collab/docs, stored in the HTTP Link header24, allowing the receiving
organization to send a web API documentation request D. When such a request is received by the collaboration feature of
the sending organization, a documentation is constructed by querying all active features and merging their documentations
into one response. The merged documentation used in this work is presented in Listing 2. The merge in this approach boils
down to the aggregation of the supported classes and supported properties from the different features as indicated in the
comments in the code below.

{
"@context ": {

"prefix ": "http :// example.org/collab",
"docs": "prefix :/docs#",
"hydra": "http :// www.w3.org/ns/hydra/core#",
"ApiDocumentation ": "hydra:ApiDocumentation", ...

},
"@id": "prefix :/docs",
"@type": "ApiDocumentation",
"supportedClass" : [

{
"@id": "docs:EntryPoint",
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"@type": "Class",
"title": "The main entry point of the API",
"supportedOperation ": [

{
"@type": "Operation",
"method ": "GET",
"description ": "Retrieves the entry point of the API.",
"returns ": "docs:EntryPoint",
"possibleStatus ": [

{
"description ": "The entry point was retrieved successfully .",
"statusCode ": 200

}
]

}
],
"supportedProperty ": [

{
// Define a new property
"property ": {

"@id": "docs:EntryPoint/employees",
"@type": "Link",
=> Property value is a dereferenceable IRI
"domain ": "docs:EntryPoint",
=> Property is found in Entrypoint instances
"range": "docs:EmployeeCollection"
=> IRI points to an EmployeeCollection instance

},
"title": "employees",
"description ": "Link to the collection of employees of Org X"

},
=> Analogous properties for other features (aggregation)

]
}, {

"@id": "docs:Employee",
"@type": "Class",
"subClassOf ": "schema:Person",
"title": "An employee of Org X",
"supportedOperation ": [ => Similar as above
],
"supportedProperty ": [ => e.g. name , employer , department , IP address , etc.
]

}, {
"@id": "docs:EmployeeCollection",
"@type": "Class",
"subClassOf ": "Collection",
"title": "The collection of employees of Org X",
"supportedOperation ": [ => Similar as above
],
"supportedProperty ": [ => e.g. number of items , members , etc.
]

},
=> Analogous classes for other features (aggregation)

]
}

Listing 2: Documentation of the Web API

III The client component instructs the proxy component to execute the CC functions according to the steps of the proposed
logging mechanism.

IV The requests sent by the client of Org Y are authenticated and authorized by the client of Org X after which they are
forwarded to the correct feature. As the resulting web API is Hydra-compliant, it can be consumed by the aforementioned
Hydra Console25. When a collaboration is set up, this console can be used by every organization to explore such an API in
an interactive way, i.e. by displaying dynamically constructed HTTP request forms, by showing HTTP responses and the
corresponding documentation.
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FIGURE 4 Overview of possible topologies discussed in this article.

V The constructed web API provides a level of abstraction as the client of Org Y does not know whether it is actually commu-
nicating with an internal API, database, etc. Writing code, called plugins, to map the functionality of the generic features to
the company-specific internal services is the responsibility of Org X. This requires coding effort upfront, e.g. the connec-
tion with an SQL database, before a collaboration can be initiated. Once these plugins are implemented, an organization
only has to provide configuration settings such as file path, URL, port, type of database, credentials, etc. An additional
advantage of the feature based approach could be the reuse of plugin implementations amongst organizations. On the one
hand, an organization could copy a full plugin implementation and use the same initial internal API / database structure.
On the other hand, plugins could be implemented in a more generic way, e.g. by searching for matching tables, columns
and/or records in metadata based on feature related attributes.

4 STORING LOGS OF DATA EXCHANGES

As discussed in section 1, a database with shared write access is needed in order to store the logs generated by the collaborating
organizations. An overview of possible topologies is given in Figure 4. First, topology T1 and T2 are discussed, which both rely
on a trusted third party. The applicability of a blockchain solution is then investigated, after which the topologies T3, T4 and T5
integrating the permissioned blockchain Hyperledger Fabric are discussed.

4.1 Trusted third party
The first solution, visualised by topology T1, is to delegate the logs to an online trusted third party storage solution provided by
companies like Amazon, Google, Microsoft, IBM, etc. As all logs are stored at that single organization, there are two require-
ments for this topology to work. First, a third party offering a Platform as a Service (PaaS) / Software as a Service (SaaS) solution
needs to be found which is trusted by all collaborating organizations. Although this might be difficult, it is not unlikely. Second,
the organization operating as the admin of the cloud solution also needs to be trusted as it has the power e.g. to provide differ-
ent views of the database to the different organizations. The second solution, visualised by topology T2, is to use a master-slave
topology, i.e. where one organization takes the lead in processing updates and distributing them to the others. Obvious solutions
in this context are e.g. Google Docs / Drive or Dropbox to share a file or folder among authorized organizations. Without any
countermeasures, this solution also requires all organizations to agree on a trusted third party and on a trusted share owner, as
both have the power to e.g. delete the share and corresponding file activity at any point in time. Trust is the key requirement for
both topologies and only when this requirement is fulfilled, a suitable storage solution is found. For the general collaboration
case, it is however not possible to make assumptions about trust, so alternative topologies are to be examined.
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FIGURE 5 Flow chart to assess whether a blockchain solution may add value to an application.26

4.2 Blockchain applicability
Due to the potential impossibility of finding a trusted third party, a blockchain solution can be applied to this problem. This
observation can be verified using the commonly used flow chart in Figure 5. The steps of the chosen path are discussed below:

1. The organizations need to store state, i.e. the different logs, in a structured way.

2. As each organization wants to store its logs, multiple writers are present.

3. As is clear from section 4.1, it might be difficult to find an online trusted third party to delegate the logs to. An offline
trusted third party acting as a certificate authority could potentially be found.

4. The set of writers, i.e. the collaborating organizations, is known at each time. The on-boarding process is guided by a set
of admins which grant or revoke permissions for writers.

5. As explained in section 1, the trust assumption between the collaborating organizations might not hold. It is therefore
needed to identify each of the known writers using a public key infrastructure to be able to guarantee authentication and
data integrity for each action taken by any of the writers. This way, malicious behavior can easily be traced.

6. The set of readers is also restricted, as the collaborating organizations are the only involved stakeholders.

The result of the analysis is that a private permissioned blockchain solution may be utilised to solve the issue at hand. Note
that this type of blockchain does not meet the criteria of a public blockchain27: a blockchain is a digital ledger which is (1)
decentralized, i.e. independent entities are involved in the consensus process, (2) immutable or permanent, i.e. it is impossible
to revert previous state transitions and (3) transparent, i.e. anyone can verify the correctness of the ledger. A permissioned
blockchain should be fully decentralized, but this is not the case for Fabric (version 1.0-1.4) as will be explained in the next
section. The immutability guarantee always needs to be evaluated against the probability of a certain scenario happening and is
not a binary guarantee, as extensively described by Greenspan28. Assume that at least ≥ 50% of the organizations unanimously
create a fork because they do not agree with the current version, e.g. two out of four organizations do this, it is unknown which
ledger should be seen as the correct one, as there exists no majority for any chain. As the number of copies of the chain is rather
low in a permissioned enterprise setup, it is more prone to such an attack. Finally, a private permissioned blockchain is not
transparent as the set of readers is restricted.

4.3 Hyperledger Fabric
A key property of each distributed database is the chosen consensus mechanism in order to keep the different copies of the
ledger in-sync. Blockchain architectures in particular should be able to cope with Byzantine faults11. Byzantine Fault Tolerant



10 Van Hoye ET AL

TABLE 1 Overview of ordering service implementations for Fabric version 1.0-1.4.

Ordering service CFT BFT Max. malicious consensus nodes

Solo (only one node) - - 0
Kafka cluster (centralized consensus in a single domain) X - 0
Raft32 (centralized consensus over multiple domains) X - 0

PBFT proposal33 (decentralized consensus) X X x when #nodes ≥ 3x + 1

(BFT) systems are able to reach consensus on the state of the ledger among the honest nodes in the presence of faulty nodes.
The general purpose of this class of algorithms is to provide safety and liveness guarantees by masking Byzantine faults, e.g. a
lost TX due to a network error or due to a malicious node. The safety guarantee implies that a distributed system behaves like
a centralized one from the viewpoint of a client, while the liveness guarantee implies that clients of the system will eventually
receive a reply to their requests29. These guarantees only hold under certain assumptions. The first assumption is a (partially)
synchronous network, as the FLP theorem30 proves that it is impossible to reach consensus in a fully asynchronous network
when there is only one faulty process. Second, for e.g. the Practical Byzantine Fault Tolerance (PBFT) protocol, consensus is
possible as long as there are at most f number of faulty nodes in a set n of size 3f + 1. This means e.g. that when two out of
four consensus nodes are faulty, the ordering system already malfunctions. Facebook’s LibraBFT consensus mechanism31 is a
recent example of a BFT protocol deployed on a larger scale, i.e. n = 100 and thus f = 33. It is clear that, the more consensus
participants there are in the ordering system, the more fault tolerant it becomes.
The consensus mechanism used in Fabric consists of three phases: simulation of TX execution, TX ordering and TX valida-

tion. As already mentioned, the separation of TX execution and validation from the consensus protocol for ordering allows an
application-specific endorsement policy to be specified defining which trust assumptions hold, i.e. which EPs need to endorse a
TX in order for it to be considered valid. This policy allows to prevent Byzantine behavior on the application level, at least when
the policy requires endorsements from multiple EPs to be available when the TX is validated. The ordering of TXs in Fabric
is done by the so called ordering service which basically collects TXs and packages them into blocks. At the time of writing
this article, Fabric has not officially released a BFT ordering service as is visible in the overview of Table 1. This thus means
that this phase is not decentralized and consequently that the consensus mechanism is not fully decentralized. Fabric advertises
itself as a permissioned blockchain solution, but the versions 1.0-1.4 do not fully meet the expected requirements yet.
Topology T5 displayed in Figure 4 is thus not possible yet, and a master-slave topology using a crash fault tolerant (CFT)

cluster of Kafka brokers, which is topology T3 in Figure 4, needs to be used instead. A second option is to use topology T4 which
uses an implementation of the Raft protocol32. As this algorithm also uses a leader node to dictate the commands to its followers,
the only difference is that it is more crash fault tolerant as the consensus nodes can be deployed at different organizations in the
network. Topology T3, which is examined in the remainder of this article, thus has no decentralized consensus mechanism for
ordering TXs. Given this constraint, it is needed to find a solution in which the third party, which hosts the crash fault tolerant
ordering service, does not need to be fully trusted. This third party could be an external organization, e.g. one which provides a
SaaS solution for Fabric, or one of the participating organizations in case one of them is the initiator of the collaboration, e.g.
the operator in a control room scenario as show in Figure 1. An important observation is that masking faulty behavior for the
ordering phase is not necessarily required for this application. The goal is to allow each organization to detect faulty behavior, as
will be described in section 4.4.3, such that it can pause its data sharing with a specific organization or even its participation in
the collaboration and it can assess whether it still wants to be part of the current cooperation. Although faulty behavior will only
be detected once the faults wrongly influence the state of the ledger, i.e. safety is not guaranteed at all, it is not a crucial issue for
this application as it should only provide a way to verify whether the collaboration setup can be trusted. The requirements for this
application are thus less strict compared to these of critical BFT systems for which any propagation of faults may be disastrous.
One could argue why a blockchain framework like Fabric, given the restriction of topology T3, would be used over already

existing distributed database technologies. The differences between both systems and the reasons why Fabric is used for this use
case are listed below:

• Fabric provides identity management out of the box, allowing TXs to be cryptographically signed and to be tamper proof.
Every state update can thus be linked to an individual organization. Furthermore, as the authentication and integrity of each
block is guaranteed by a digital signature of one of the ordering service nodes (OSNs), it is impossible formalicious entities
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to tamper blocks and to convince others of having the correct version of the ledger, as they do not have corresponding
block headers signed by an OSN.

• A traditional CFT system, using leader-backup replication, requires a single entity to be responsible for the execution
of all TXs, which is not desirable due to the earlier mentioned trust issue. A traditional BFT system, e.g. using PBFT
consensus, requires all organizations to execute all TXs sequentially, which causes an unnecessary performance penalty
and a problem with confidentiality4. Fabric provides a hybrid approach through the endorsement policy, which is further
detailed in section 4.4.2, allowing the execution and validation of TXs to be parallelized.

• The chain data structure in blockchain systems like Fabric and the recovery log as used for traditional databases have
similar properties, i.e. they are both append-only and describe state updates34. However, there are also four differences, as
identified byMohan35: read operations are often also recorded in Fabric, a recovery log could be truncated when databases
are backed up, log records of multiple TXs are interspersed in a recovery log whereas all information related to a single
TX is packed together in a blockchain, and a hash chain is not used in a recovery log as Byzantine faults are not considered.

• The purpose of chaining blocks is completely different in the case of Bitcoin, being the first generation blockchain, com-
pared to Hyperledger Fabric. Assume an attacker in Bitcoin wants to tamper history, i.e. wants to take its previously spent
money back36, and tries to mine this adapted block. The expected number of hash calculations C that needs to be executed
to mine a block with difficulty D in Bitcoin is37 38:

C = 1
P (validℎasℎ)

= D ⋅ 2256

0xFFFF ⋅ 2208
= D ⋅ 248

216 − 1

The expected time T in seconds to mine a block, when hardware with a hashrateH is used, therefore equals:

T = C
H

≈ D ⋅ 232
H

At the time of writing,D ≈ 7.93⋅1012.When an attacker would use oneGPU, e.g. the Nvidia GTX680with 120Mhash/s39,
it would take about 9 million years to mine a valid block. This shows that an attacker would need a significant amount
of hashrate to do the proof-of-work for one block in a reasonable amount of time. Assume the attacker can control such
an amount (≤ 50% of the network hashrate) or is lucky and mines a block much faster. This is not a problem as, due to
the longest chain principle, all succeeding blocks x after the tampered block need to be re-mined in order to become the
longest chain. The original paper40 shows that the probability for such an attack to occur decreases exponentially when x
increases, assuming the hashrate of the attacker is not more than half the network hashrate. Note that this assumption is
crucial, as otherwise a private fork can be generated faster than the longest chain. Although this assumption seems to be
valid due to the size of the Bitcoin network, it may not be true as mining is dominated by a few large pools41. Nevertheless,
the goal of the chain of blocks is to lower the probability of double spending and to increase the probability of immutability.

In Fabric however, forks are not possible assuming a correct operation of the ordering service, as the consensus mechanism
is deterministic, and double spending is solved by the read-write conflict check at validation phase4. Thus, the presence
of the chain does not change the difficulty with which the consensus protocol for ordering could be attacked. However,
the purpose of chaining blocks is only to allow the peers to audit the integrity of the sequence of blocks more efficiently4.
Another efficiency advantage of the chain is discussed in section 4.4.3.

• Smart contracts have similar properties as stored procedures in traditional databases42. However, Fabric allows the busi-
ness logic defined in smart contracts to be written in GPPLs such as Go, while stored procedures are often written in a
SQL dialect. This allows the database for the KVPs to be freely chosen in Fabric.

• When a scalable BFT ordering service is provided by Fabric in the future, it can easily be swapped in, as ordering is
totally separated from other parts of the architecture. Switching to a decentralized ordering service will make malicious
behavior within the ordering phase harder.

• Fabric is open source and the components can easily and rapidly be deployed using Docker containers.
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4.4 Validation mechanisms
This section investigates which validation mechanisms are required for the discussed use case. First, validation mechanisms
which are already present in the code of the EPs are identified. Second, the validation of TXs according to the endorsement
policy is discussed. Finally, two additional mechanisms, which are not yet present in Fabric, are proposed.

4.4.1 Block validation
At a certain point in time, the ordering service creates a block of TXs and attaches a block header which contains the block
number number, the hash of the header of the previous block previous_hash, and the hash of the data included in the current
block data_hash43. This block header is signed with the private key of one of the OSNs and the corresponding signature, public
key and certificate are attached to the metadata section of the block. When a block is received by a Fabric peer, authentication
and data integrity are verified using the digital signature and the data_hash field is checked for correspondence with the TXs in
the block44. This last check is important as it allows a peer to detect whether a malicious OSN sends a chain of block headers
which does not match with the actual content of the blocks. When these checks are validated, the peer performs two other checks
before it adds an incoming block to its ledger:

1. The code shown in Listing 3 only processes a new block when its number corresponds with the current height of the
local chain. This check prevents TXs from being executed multiple times, e.g. when a block with number x is replayed, it
guarantees that blocks are processed in the correct order, and it prevents already received blocks from being overwritten
by a tampered version.

func (mgr *blockfileMgr) addBlock(block *common.Block) error {
bcInfo := mgr.getBlockchainInfo ()

if block.Header.Number != bcInfo.Height {
return errors.Errorf(

"block number should have been %d but was %d",
mgr.getBlockchainInfo ().Height ,
block.Header.Number ,)

} ...
}

Listing 3: Check one of block storage functionality45 in Fabric version 1.3.

This check should go one step further. Each received block with height x needs to be exactly the same due to the finality
property46 of Fabric. This property guarantees that forks are not possible when the ordering service is honest as it operates
deterministically. This means that, when a block with number x is received for which a different block with number x was
already received, an attacker controlling one ore more OSNs might try to tamper the history of the logs. Instead of only
reporting an error in that case, an organization may decide to (temporarily) withdraw itself from the collaboration.

2. The code shown in Listing 4 focuses on the integrity of the chain: the hash, set by an OSN in the header of an incoming
block, at height x (PreviousHash) needs to be the same as the hash of the header of the latest received block at height x−1,
as calculated by the EP of Org X (CurrentBlockHash). Both hash values are calculated over the ASN.1 encoded block
header47. This check thus verifies that a valid chain is received and that no operational mistakes are made by an OSN.

func (mgr *blockfileMgr) addBlock(block *common.Block) error {
... if !bytes.Equal(block.Header.PreviousHash , bcInfo.CurrentBlockHash) {

return errors.Errorf(
"unexpected Previous block hash. Expected PreviousHash = [%x], PreviousHash

referred in the latest block= [%x]",
bcInfo.CurrentBlockHash ,
block.Header.PreviousHash ,)

}
blockBytes , info , err := serializeBlock(block) ...

}

Listing 4: Check two of block storage functionality45 in Fabric version 1.3.
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4.4.2 TX validation
Individual TXs are validated against the endorsement policy. This policy is coupled to the CC and defines which EPs, one
deployed at each organization, need to simulate and sign a TX proposal by evaluating the CC deployed in their local Docker
container. The policy chosen for this application is that only one organization needs to sign the proposal in order to be valid. The
reason for this is twofold. On the one hand, each ledger update an organization triggers is signed, meaning it can be held respon-
sible for this update. This means that, when an organization removes the logging information entered by another organization,
it is immediately clear which organization is responsible for this undesirable behavior. On the other hand, the data exchange
and logging process are separated, in order to avoid latency for the exchange19. Conceptually, two layers can be identified, the
application layer and the blockchain layer. Due to this, it is impossible to choose an alternative policy requiring the two organi-
zations involved in a data exchange to endorse a single TX, as the actual data exchange can only be known by the EPs when it
is communicated top-down, i.e. from the application layer to the blockchain layer. Creating a bottom-up dependency, i.e. from
the blockchain layer to the application layer, is not desirable as the logging process should be abstracted as much as possible. A
consent by the counterparty to confirm the correctness of a log proposal is thus not directly provided via an endorsement in the
same TX, but through a separate TX generated using the inspect CC functions. This approach thus leads to four TXs per data
exchange as mentioned in section 2.

4.4.3 Validation collaboration setup
The validation mechanisms yet present in Fabric are not enough to check for any faulty behavior in this application. Two
additional checks are required to be able to verify the correct operation of the entire collaboration setup19.

• As each organization can store the logs it wants and as TXs can get lost, intentionally (e.g. malicious ordering service) or
not (e.g. network failure), it is needed for each organization to verify the presence and integrity of all expected logs. It is
important to note that the involved organizations should obtain complete logging cycles, i.e. both for request and response,
as external parties are not able to knowwhat exactly happened during their private communication without those logs. This
is a consequence of the asynchronous approach, implemented using two channels, to limit the delay on the data exchange
caused by the integration of the logging mechanism. The implementation of the first check was already done, as the CC
functions inspectRequest and inspectResponse were defined for this purpose. These functions allow an organization to
inspect the logs, which are stored by the counterparty using the CC functions logRequest and logResponse, in order to
verify whether they match with the actual data exchange. The implementation of the smart contract is straightforward, i.e.
is mainly based on getters and setters, as is partially illustrated in Listing 5.

• As a malicious ordering service may create a separate fork for each organization satisfying check one, it is needed to
verify whether this service replicates the data correctly. As the hash previous_hash stored in the block header at height
x provides a summary of all TXs that modified the database from the genesis block up to and including the TXs of block
x− 1, it is possible for the organizations to perform an efficient check among each other. They only have to exchange the
previous_hash value together with the corresponding block height to know whether they share the same state. As already
mentioned in section 4.3, the main purpose of chaining blocks is to allow for efficient auditing techniques.

func (t *Collab) inspectResponse(stub shim.ChaincodeStubInterface , exchangeId string , data string)
pb.Response {
// (Step I) Unpack string by Org Y to Response object and hash it
response := Response {}
err := json.Unmarshal ([] byte(data), &response)
if err != nil {

return shim.Error(err.Error ())
}
responseString := fmt.Sprintf("%v", response)
sum := sha256.Sum256 ([] byte(responseString))
hashResponse := hex.EncodeToString(sum [:])

// (Step II) Get log stored by Org X
logByte , err := stub.GetState(exchangeId + "_response")
if err != nil {

return shim.Error(err.Error ())
}
// ... and unpack string by Org X to Response object => loggedResponse
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FIGURE 6 Cross-organizational hash verification request which allows organizations to assess whether they share the same
state up to some point.

// (Step III) Compare hash of log reported by Org X with hash of response observed by Org Y
if loggedResponse.Hash == hashResponse {

return shim.Success(nil)
} else {

return shim.Error("POSSIBLE FRAUD: Hashes of responses Org X and Org Y did not match!")
}

}

Listing 5: Snippet of the proposed smart contract.

5 EXTENSION OF THE LOGGING MECHANISM

The implementation of the second check outlined in section 4.4.3 has not been discussed before. Figure 6 shows a high level
overview of how it is integrated in the architecture. The idea is to extend the API of each organizationwith a /hash[/blocknumber
] endpoint, such that the hash of the header of a specific block x can be requested by any of the collaborators. Each Org Y then
randomly picks another Org X each I seconds and sends a hash verification request H to it. As such, it is possible to verify
whether the same chain of block headers is received by both organizations up to that block number.
The queryBlock function of the Node.js Software Development Kit (SDK)48 of Fabric can be used to retrieve the full block

located at a certain height. The hash of the header of a block x can either be found as previous_hash in block x+1, but as it is not
sure whether block x+1 exists, the hash value for block x is calculated separately in the same way as mentioned previously, i.e.
using the ASN.1 encoded block header. It is important to note that this hash verification check can be turned on or off, depending
on the needs for a specific application. When for example a BFT ordering service is used instead of a CFT ordering service, an
organization might find it sufficient to trust the assumption(s) under which the service operates. In our proof of concept, this
code is written in JavaScript and executed periodically using the setInterval function, and it runs in the browser when the user
clicks the verification button in the dashboard of the collaboration.
As the goal is to allow Org Y to specify a specific block number B for which Org X needs to send its hash, it is needed for Org

Y to know which blocks are already received by Org X. Finding a general solution to solve this problem is difficult, as there may
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be a(n) (accumulating) difference in block processing latency, e.g. due to a difference in network latency between the ordering
service and each of the organizations. Amore specific solution can however be foundwhen the interaction of the different logging
functions is used. To be able to explain this, it is needed to show the code in Listing 6. The listenToEvent function receives a
set of TX IDs and returns a promise which only resolves when the local ledger of the EP contains all corresponding TXs. The
different TXs are looked up concurrently, by scheduling the execution of the lookUpTx function each two seconds. In order to
search more efficiently, block indications are exchanged between Org Y and X, i.e. the RQ2 and RS2 messages as shown in
Figure 2 are extended with block indication headers. This means that, for each data exchange, an organization receives a block
indication (receivedBlockIndication (RBI)) and sends a block indication (sentBlockIndication (SBI)). These values are
only communicated to make searching for TXs more efficient, i.e. instead of traversing all blocks starting from genesis until the
TX is found, these lower limits can be used to skip blocks for which it is certain that the looked for TX is not in there. The values
of these indicators are determined in the client code, just before the logRequest and logResponse functions are invoked as shown
in Listing 7 and 8 respectively, and correspond with the number of the latest inspected incoming block + 1. The client receives
updates on this block number from the proxy, as each time a logging cycle is completed, a block number is communicated back
from the proxy to the client, as is visible in the waitForCycle function.

// Map filled with blocks , based on block events sent by EP
var blocks = new Map();

// FUNCTION I
function lookUpTx(txId , index , resolve , reject) {

while (index <= latestReceivedBlockNumber) {
var block = blocks.get(index);

if (block) {
var txs = block[’filtered_transactions ’];
var result = txs.findIndex(tx => tx[’txid’] === txId);
if (result > -1) {

return resolve(index); // Return number of block in which TX is found
}

}

index ++;
}

setTimeout(function () { lookUpTx(txId , index , resolve , reject); }, 2000);
}

// FUNCTION II
function listenToEvent(txIds , RBI) {

var promises = [];

for (var i = 0; i < txIds.length; i++) {
promises.push(new Promise(function(resolve , reject) {

var txId = txIds[i];
setTimeout(function () {

lookUpTx(txId , RBI , resolve , reject); // FUNCTION I
}, 2000);

}));
}

return Promise.all(promises);
}

// FUNCTION III
function waitForCycle(txIds , RBI , SBI , ...) {

// Wait until inspect TXs are received (i.e. the logging cycle is completed)
listenToEvent(txIds , RBI) // FUNCTION II
.then(( blockNumbers) => {

// Reply to client max(blockNumbers)

// Store SBI for future hash verification requests with counterparty
});

}

Listing 6: Proxy code which is needed to wait for logging cycles to be completed.
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This waitForCycle function lets both Org Y and X wait until a logging cycle is completed, i.e. when their copy of the ledger
contains the two inspect TXs, of which the IDs are passed via the txIds parameter. The solution to know which block numbers
are already received by the counterparty, can be found in this function. When a logging cycle is completed, the inspect TX
generated by the counterparty is received, meaning that the counterparty should have received the block containing the original
logging TX. The block indication sent to the counterparty (SBI) thus provides a trustful sharp lower limit for the block numbers
in which this original logging TX can be stored. When the time has come to execute a hash verification check, this stored block
number can then be used in the query to the selected organization to report its hash value corresponding with that number. The
only assumption for this to work properly is that couples of organizations exchange data. As long as this is true, they will learn
the number of blocks received by other organizations, allowing it to perform hash verification checks and to gain confidence in
the correct replication of the logging data.
For the logging mechanism to work properly, it is needed to enforce organizations to follow the proposed steps. The data

delivering organization X sets two protections for this purpose, i.e. it refuses requests R from Org Y when (Protection I) there
is an unanswered hash verification request, as explained above, sent to Org Y and (Protection II) the difference between the
number of data responses sent to Org Y and the number of corresponding logging cycles by Org Y exceedsM . These protections
incentivize Org Y to behave as expected by Org X, as it could lose access to the data of Org X otherwise. The first protection
prevents Org X from not being able to compare the state of its local ledger with those of others and to be fooled by a malicious
ordering service. Org X should repeat this hash verification request until it is fulfilled. The second protection prevents Org X from
sending its data without receiving any corresponding log from Org Y. In case this scenario occurs, Org X should repeatedly send
the exchange IDs which it expects to be re-executed by Org Y, in order to obtain complete logging cycles for these exchanges.
Each Org X can set its own value M ≥ 0, even per Org Y. The selection of this value is a trade-off between performance and
security, i.e. a high value allows more data exchanges per time interval but provides less logging guarantees and vice versa.

6 EVALUATION PROOF OF CONCEPT

A proof of concept of this logging mechanism is developed, deployed and evaluated. The details of the evaluation phase are
given in the following sections.

6.1 Data exchange model
In order to improve upon the fixed evaluation scenario where only one organization requests data from the otherO−1 organiza-
tions19, a Markov chain can be used to simulate generic pseudorandom collaboration scenarios. Figure 7 shows the four states in
which each organization can reside when the collaboration consists of four participants. The red arrows indicate the probability
x of moving to the sleep state in which an organization does not request any data. The blue arrows indicate the probability y of
remaining in the same state. In general, an organization will likely try to query the same organization multiple times in a row,
meaning that this probability needs to be different than the one of the black arrows. The state transition matrix Pi,j , defining the
probabilities of moving from state i to state j, is a right stochastic matrix and equals for a collaboration of O > 2 organizations:

Pi,j =
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The Markov chain determines the model that is used for each organization deciding on the next organization to send a request
for data to. It is however also required to define which data needs to be requested. The experiments consider two different data
sources: (1) an image feature mapping to a REST API written in Python and (2) an employee feature mapping to an SQLite
database. The former data source provides three base64 encoded images with an original size of 75, 21 and 45 KiB, while the
latter data source is a database file with size 88 KiB consisting of one thousand records of dummy employees. Both data sources
are spawned at each organization such that they can be used in the data exchange process. In order to realize a fully autonomous
collaboration scenario, the implemented generic client needs to execute a number of steps automatically based on the response
sent by Org X. Although multiple approaches are possible, the following steps are sufficient for our purpose:

1. The JSON-LD expansion algorithm is applied to the response of Org X
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FIGURE 7 Markov chain for an Org Y participating in a collaboration with O = 4.

2. The type of the resource is inspected and looked up in the supported class section of the API documentation

3. One of the supported class properties of type Hydra Link is randomly selected, as the values of these properties are known
to be dereferenceable IRIs

4. Org Y executes an HTTP GET request using the IRI of the selected property

This way, the execution trace of a client will be extended indefinitely. Note that this sequence of requests is constructed step
by step per organization, meaning that Org Y postpones new requests P until it has received a response from Org X. The
steps can be illustrated using the code listings shown in section 3: Org Y retrieves the entry point of Org X and discovers,
using the documentation, that the value of the employees property is a dereferenceable IRI which points to an instance of
the class EmployeeCollection. Detailed information on this GET request and any other supported operations are found in the
supportedOperation property of that class. Note that for this evaluation resources are only retrieved and not created, updated or
deleted, which covers most cross-organizational collaborations. When the EmployeeCollection is received, the documentation
can again be used to discover its supported properties. Only the hydra:member property is eligible as it is an instance of the Hydra
Link class. Finally, when an Employee is received, no further dereferencing is possible, and the process is repeated. Changing
functionality can be dealt with at runtime as requests and responses are constructed dynamically. The speed at which changes
can be incorporated depends on the refresh rate of the API documentation, which is set to one minute for this evaluation. Note
that documentation exchanges are the only exchanges which do not get logged in the experiments.

6.2 Measurement setup
Additional code fragments are presented in this section to show how data exchange and logging cycles are processed and how
the measurements, as shown in the next section, are exactly obtained. The code fragments in Listings 7 and 8 highlight the setup
as used in the client code.

var repeat = setInterval(function () {
if ((Date.now() - startTime > timeLimit)) {

return clearInterval(repeat);
}
// Select recipient using matrix P (section 6.1)

// Dynamically construct a request (section 6.1)

// Determine latest inspected block number + 1 (= SBI)

// FUNCTION IV: Log Request asynchronously (RQ_1)

// Request data from Org X asynchronously (RQ_2 , SBI)
var call = http.request(options , response => {

// FUNCTION V: Inspect Response asynchronously (args: SBI , and RBI from Org X)



18 Van Hoye ET AL

var call = http.request(options , response => {
// Update latest inspected block number

});

// Process received data
});

}, delay);

Listing 7: Client code to periodically generate cross-organizational data requests.

// Receive requests from Org Y
app.receive(’/collab /*’) {

// Protection I (section 5): Check for pending hash verification requests with Org Y

// Protection II (section 5): dataResponsesToOrgY - loggingCyclesByOrgY <= M

// Retrieve requested data from internal feature
var call = http.request(options , response => {

// Determine latest inspected block number + 1 (= SBI)

// FUNCTION IV: Log Response asynchronously (RS_1)

// FUNCTION V: Inspect Request asynchronously (args: SBI , and RBI from Org Y)
var call = http.request(options , response => {

loggingCyclesByOrgY ++;
});

dataResponsesToOrgY ++;
});

// Send requested data (RS_2 , SBI)
});

Listing 8: Client code to process incoming data requests.

The core of the client code is the periodically executed function getData which allows data requests to be sent concurrently
to different organizations. The delay in milliseconds with which the function is executed can be expressed in terms of S, which
represents the number of state transitions per second: 1000

E
ms. Each time it executes, it selects a recipient according to the

process described in section 6.1, logs the request asynchronously, executes the request asynchronously, inspects the response
asynchronously when the request is resolved and processes the received data. The periodic execution of the function stops
when a preset deadline, e.g. ten minutes, is exceeded. When a request is received, the two protections as described in section
5 are evaluated. Only when both are passed, the requested data is retrieved from the internal feature, the response is logged
asynchronously, the request is inspected asynchronously and the data is sent. Listings 9 and 10 highlight the setups as used in
the proxy code. The core of this code is the inspect function. It first waits until the request/response to be inspected is received.
When this is the case, it then invokes the callCc function to do the inspection. This latter function returns a promise in which it
first sends a TX proposal to the EP, which sends back its endorsement, after which the endorsement is sent to the ordering service
in order to be integrated in a block. When this is done, the previously discussed waitForCycle function is invoked as a final step.

// FUNCTION IV
function callCc(ccFunction , txId , args) {

return new Promise ((resolve , reject) => {
var phase_one = // Struct: CC ID, CC function , TX ID, transient map , targeted EP

// Let EP execute TX proposal
channel.sendTransactionProposal(phase_one)
.then(endorsement => {

var phase_two = // Struct: endorsement , original proposal and TX ID

// Send TX to the ordering service
channel.sendTransaction(phase_two)

})
.then (() => { resolve (); });

});
}

Listing 9: Proxy code to execute a chaincode function.
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FIGURE 8 Overview of the different VMs used in the evaluation setup.

// FUNCTION V
function inspect(’request ’ / ’response ’, SBI , RBI , ...) {

var txIdLog = RQ_2[TX_ID_LOG_REQUEST] / RS_2[TX_ID_LOG_RESPONSE ];

// Listen for log of counterparty to come in
listenToEvent(txIdLog , RBI) // FUNCTION II
.then (() => {

var txIdInspect = RS_2[TX_ID_INSPECT_REQUEST] / RQ_2 [TX_ID_INSPECT_RESPONSE ];

// Inspect log of counterparty
callCc(’inspect_request ’ / ’inspect_response ’, txIdInspect , ...); // FUNCTION IV

})
.then (() => {

// txIds = [txIdInspect , RQ_2[TX_ID_INSPECT_RESPONSE] / RS_2[TX_ID_INSPECT_REQUEST ]]
waitForCycle(txIds , SBI , RBI , ...); // FUNCTION III

});
}

Listing 10: Proxy code to inspect the log of a counterparty.

6.3 Evaluation results
The experiment setup, as summarized in Figure 8, consists of sixteen virtual machines (VMs). Each of these VMs runs Ubuntu
18.04 LTS and is equipped with four vCPUs of an Intel Xeon E5645 2.4 GHz processor and 4 GiB of RAM. The different VMs
act as worker nodes in the Kubernetes v1.13 cluster. The Docker images of Fabric version 1.3 are used for the EPs and the OSNs
and the default key-value store LevelDB49 is used as database in the peers’ secondary memory. Furthermore, three Kafka50 and
three ZooKeeper51 instances are deployed to set up a Kafka cluster with replication factor three and with at least two in-sync
replicas. The tc command is used to add an equal latency of 25 ms to both the incoming and outgoing packets for the VMs of the
organizations and the VMs of the OSNs, leading to a round trip time of 100 ms. The VMs of the Kafka cluster do not impose an
artificial delay on packets, as it is assumed that the different brokers are running in the same data center. This latter assumption
is important, as a serious drop in logging cycle completion can be observed when an artificial delay between these brokers is set.
Finally, the Node.js codes of the client, proxy and feature components use HTTP agents which reuse existing TCP connections
in order to heavily lower the different number of sockets that need to be used.
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TABLE 2 The parameter set used for the reported experiments.

Parameter Value
# Organizations (O) 10
# State changes per second per org (S) 25
Collaboration duration 10 minutes
Probability of moving to sleep state (x) 1

5
Probability of remaining in same state (y) 3

10
Time between cross-organizational hash checks (I) 5 seconds
Max(#data responses to counterparty - #logging cycles by counterparty) (M) 20
Fabric’s max. block size (BS) 512 KiB
Fabric’s block creation timeout (BT ) 2 seconds

The goal of the evaluation section is not to present an exhaustive performance overview of a data exchange service implement-
ing the proposed logging mechanism. The reason for this is that performance results are influenced by many use case specific
parameters, such as the number of organizations, the number of data streams per second, the direction of data streams, the type of
data, the collaboration duration, the number of clients and proxies per organization, the latencies between the virtual machines,
etc. Therefore, a typical case is selected, i.e. a short-term collaboration of ten minutes between a limited set of ten organiza-
tions, and the performance impact of the logging mechanism is evaluated. The complete set of parameters used to evaluate the
software is shown in Table 2. Data is exchanged in a fully automated way as described in section 6.1. A part of the data requests
will be refused due to the protections discussed in section 5, as these have the goal to protect a data delivering organization
from a potentially malicious collaboration setup. As no truly malicious entities are present in this controlled experimental setup,
both protections will always be satisfied eventually (depending on the different loads of the involved organizations), causing
subsequent data requests to be processed on an ongoing basis.
Table 3 compares the performance results when the loggingmechanism is turned on and off. Both experiments are repeated ten

times and the median values together with the corresponding interquartile ranges (IQRs) are shown (percentiles are calculated
using the nearest-rank method). The number of completed exchanges reduces with around 5% when the mechanism is turned
on, but still more than ten data exchanges per second per organization are finished. The logging mechanism thus has an impact,
but it certainly does not drastically interrupt the data exchange processes under this configuration. The ten minute collaboration
is, thanks to the logging mechanism, fully captured and stored in a replicated directory of size 1.1 GiB. Note that this, by Fabric
created, directory includes the chain of blocks and the LevelDB database, but not the actual request and response data which are
needed to reconstruct the stored hash values. The number of hash verification requests agrees with the setting of parameter I as
displayed in Table 2, as each organization does 120 chain synchronization communications in 10 minutes. The number of API
documentation requests is also expected, as each organization refreshes the API documentation of the other nine organizations
every minute. Finally, the average TX size is 3.5 KiB. This average TX size is a bit lower than the earlier reported 4.8 KiB19. The
reason for this is that the transientMap field instead of the args field is now used when the sendTransactionProposal function
(shown in Listing 9) is called. This prevents the arguments passed to each CC function to be logged in a TX, i.e. it prevents the
actual request and response data to be logged unintentionally.
Table 4 shows the performance results when the value ofM is further lowered, i.e. when the data exchange processes between

organizations are more tightly coupled to their corresponding logging processes. The experiments are repeated ten times and
the median values together with the corresponding interquartile ranges (IQRs) are shown (percentiles are calculated using the
nearest-rank method). The results show that setting low M values seriously impacts the performance of the data exchange
processes. When M is decreased from twenty to zero, the number of completed data exchanges drops significantly. Compared
to the situation when the logging mechanism is disabled, it leads to a performance reduction of more than 80%. The selection
of the parameter M is thus a crucial decision. A trade-off has to be made by each data delivering organization, i.e. they have
to decide whether they prefer more logging certainty or whether they are willing to contribute to a higher performance of the
exchange processes. This value could possibly be changed according to the level of trust and the required performance at a
specific moment in time.
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TABLE 3 Overview of both cross-organizational interactions and generated logging data when the parameter set defined in
Table 2 is used, and when the logging mechanism is turned on/off.

Logging disabled Logging enabled

# Completed Exchanges (Etotal) 70941 IQR: 317 67785 IQR: 230
# /collab 23673 22620
# /collab/images 11812 11310
# /collab/employees 11805 11274
# /collab/images/[0-9] 11796 11295
# /collab/employees/[0-9] 11788 11256

# Postponed Requests (Ptotal) 47528 IQR: 156 45982 IQR: 214
# Refused Requests (Rtotal) 0 IQR: 0 672 IQR: 14
# Hash Verification Requests (Htotal) 0 IQR: 0 1200 IQR: 1
# API Documentation Requests (Dtotal) 900 IQR: 0 900 IQR: 0
# Blocks received by each Org 0 IQR: 0 1974 IQR: 2
# TXs received by each Org 0 IQR: 0 271810 IQR: 972
Size ledger data at each Org (GiB)

/var/hyperledger/production/ledgersData 0 IQR: 0 1.1 IQR: 0

TABLE 4 Overview of cross-organizational interactions when the parameter set defined in Table 2 is used, when the logging
mechanism is turned on, and when the parameterM is lowered.

M = 20 M = 10 M = 5 M = 1 M = 0
# Etotal 67785 IQR: 230 67641 IQR: 240 56579 IQR: 181 22183 IQR: 25 11517 IQR: 28
# Ptotal 45982 IQR: 214 45965 IQR: 426 44512 IQR: 49 39500 IQR: 179 37761 IQR: 233
# Rtotal

Protection I:
Pending hash
verification

672 IQR: 14 687 IQR: 32 679 IQR: 63 666 IQR: 29 695 IQR: 27

Protection II:
M exceeded 0 IQR: 0 97 IQR: 3 13181 IQR: 74 54590 IQR: 59 67009 IQR: 249

7 CONCLUSIONS

This article focuses on a logging mechanism for temporary and ad hoc cross-organizational collaborations using the Hyperledger
Fabric framework which implements a so called permissioned blockchain. In the normal case, i.e. when a complete logging cycle
is generated, the logging mechanism provides proof of what has happened during a collaboration in order to prevent possible
disputes. When faulty behavior is introduced, intentionally or not, a data delivering organization will be able to detect this,
and pause its data sharing with a specific organization or even its participation in the collaboration until the problem is solved.
Although the cause of the fault cannot be proven, it provides a way for data delivering organizations to share data in an untrusted
setup. Important is that organizations are incentivized to execute the logging functions properly, as they may lose access to the
data of other organizations otherwise. The contributions compared to a previously published paper by the authors19, are a more
extensive explanation of the properties of the proposed mechanism, the idea of applying generic web APIs as found in literature
to this use case and a more detailed evaluation of the designed proof of concept. Future work will need to investigate how this
work can be combined with existing access control solutions which allow person-to-person data sharing and how container
orchestration could be applied to cross-organizational scenarios.
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