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Abstract

Background: While obesity confers an increased risk of death in the general population, numerous studies have
reported an association between obesity and improved survival among critically ill patients. This contrary finding has
been referred to as the obesity paradox. In this retrospective study, two causal inference approaches were used to
address whether the survival of non-obese critically ill patients would have been improved if they had been obese.

Methods: The study cohort comprised 6557 adult critically ill patients hospitalized at the Intensive Care Unit of the
Ghent University Hospital between 2015 and 2017. Obesity was defined as a body mass index of ≥ 30 kg/m2. Two
causal inference approaches were used to estimate the average effect of obesity in the non-obese (AON): a traditional
approach that used regression adjustment for confounding and that assumed missingness completely at random and
a robust approach that used machine learning within the targeted maximum likelihood estimation framework along
with multiple imputation of missing values under the assumption of missingness at random. 1754 (26.8%) patients
were discarded in the traditional approach because of at least one missing value for obesity status or confounders.

Results: Obesity was present in 18.9% of patients. The in-hospital mortality was 14.6% in non-obese patients and 13.5%
in obese patients. The raw marginal risk difference for in-hospital mortality between obese and non-obese patients was
− 1.06% (95% confidence interval (CI) − 3.23 to 1.11%, P = 0.337). The traditional approach resulted in an AON of −
2.48% (95% CI − 4.80 to − 0.15%, P = 0.037), whereas the robust approach yielded an AON of − 0.59% (95% CI − 2.77 to
1.60%, P = 0.599).

Conclusions: A causal inference approach that is robust to residual confounding bias due to model misspecification
and selection bias due to missing (at random) data mitigates the obesity paradox observed in critically ill patients,
whereas a traditional approach results in even more paradoxical findings. The robust approach does not provide
evidence that the survival of non-obese critically ill patients would have been improved if they had been obese.
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Background
Obesity is a chronic disease associated with cardiovas-
cular disease, chronic kidney disease, diabetes melli-
tus, some cancers, and musculoskeletal disorders. It
has become one of the most important public health
problems in many high- and middle-income countries,
entailing a heavy economic burden [1–3]. The preva-
lence of obesity is steadily increasing worldwide and,
on average, approximately one in five patients admit-
ted to the intensive care unit (ICU) is obese [4, 5].
Although obesity confers an increased risk of morbid-
ity and mortality in the general population and poses
additional challenges that may compromise prognosis
in critically ill patients, a growing body of literature
has found an association between obesity and im-
proved ICU outcomes, including lower mortality. This
contrary finding has been referred to as the obesity
paradox [4–11].
While some authors postulate underlying pathophysio-

logic mechanisms to support its biological plausibility [4,
9, 10, 12, 13], others remain skeptical and provide meth-
odological explanations. The first potential type of bias
is confounding bias. Confounding factors of the obesity-
mortality relationship include age, sex, ethnicity, smok-
ing status, alcohol consumption, income, education,
physical activity, and dietary pattern, among others [14].
Failure to adequately control for confounding will result
in bias [15]. Bias may in particular arise as a conse-
quence of reverse causation, whereby pre-existing dis-
ease leads to unintended weight loss and higher
mortality, making obesity appear protective [16, 17].
Secondly, studies restricted to patients with an

obesity-related disease may suffer from so-called collider
stratification bias. The causal diagram presented in Fig. 1
depicts the causal relations between obesity, ICU admis-
sion, and mortality. Obesity may lead to earlier ICU ad-
mission, as clinicians tend to consider obese patients at
higher risk of worse outcome [4, 12]. The node U

represents common causes of ICU admission and
mortality that are usually unmeasured or difficult to
quantify. Examples include perceived reversibility of
the acute illness, anticipated quality of life, patient
wishes, ceiling of care, peer standards, and bed occu-
pancy status [18, 19]. Because ICU admission may be
affected by both obesity as well as these unmeasured
prognostic factors of mortality, restriction of the study
population to patients admitted to the ICU may in-
duce collider stratification bias, a form of selection
bias. In particular, non-obese patients will generally
have more potent risk factors U for mortality. Indeed,
the presence of more potent risk factors (and not the
absence of obesity) may explain why these patients
got admitted to the ICU [17, 20].
Other potential types of bias include body mass index

(BMI) group misallocation by estimating rather than ac-
tually measuring height and weight in critically ill pa-
tients [21], treatment bias due to closer monitoring and
different treatment of obese patients [4, 22, 23], and
publication bias due to selective reporting of unusual
findings such as the obesity paradox.
An important clinical question that arises from the

obesity paradox is whether the survival of non-obese
critically ill patients would have been improved if
they had been obese. This demands a causal infer-
ence approach. While the necessity of adequate con-
founding control for valid causal inference has been
recently emphasized by the editors of many critical
care journals, no recommendations have been made
on which method to apply [24]. This study pur-
ported to address the aforementioned clinical ques-
tion using two different approaches: a traditional
approach that used regression adjustment for con-
founding and a more robust approach that used
state-of-the-art machine learning techniques within a
causal inference framework along with missing data
imputation.

Fig. 1 Causal diagram representing causal relations between obesity, ICU admission, and mortality. The circle around variable U indicates that it
has not been measured. The box around variable ICU indicates that the analysis conditions on it by design, since the study cohort only
comprised patients admitted to the intensive care unit. This causal diagram has been simplified for the purpose of illustrating collider
stratification bias. ICU, intensive care unit; U, unmeasured factors
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Methods
Study design and data collection
This retrospective study focused on the relationship be-
tween obesity and in-hospital mortality in adult (≥ 16
years) critically ill patients consecutively hospitalized at
the ICU of the Ghent University Hospital between Janu-
ary 1, 2015, and December 31, 2017. During the study
period 11,244 adult patients were admitted to the ICU.
Fifty-five patients were excluded from the analysis be-
cause their reason for ICU admission was directly re-
lated to underweight or obesity. In case of multiple ICU
admissions during the study period (n = 1762), only the
first was considered. Patients with a Simplified Acute
Physiology Score II (SAPS II) of < 32 points (first quar-
tile, n = 2063) or missing SAPS II (n = 807) at ICU ad-
mission were discarded in order to exclude patients who
were admitted to the ICU for the sole purpose of moni-
toring and in whom critical illness was less likely to be
present. The final study cohort comprised 6557 patients.
A flow diagram is presented in Fig. 2.
Obesity was the exposure of interest and was dichot-

omously defined as a BMI of ≥ 30 kg/m2 according to
the classification of the National Institutes of Health and
the World Health Organization [1, 25]. A sensitivity ana-
lysis was also performed using a BMI cut-off value of ≥
25 kg/m2 and ≥ 35 kg/m2. The patient’s height and
weight were usually estimated at ICU admission by crit-
ical care nurses. A BMI of < 10 or > 80 kg/m2 was con-
sidered as biologically implausible, thus consequently
attributed to input error and handled as missing value.
In-hospital mortality was used as outcome variable.
The following potential confounders of the obesity-

mortality relationship were extracted or derived from
the prospectively maintained Intensive Care Information
System database (GE Healthcare Centricity® Critical
Care): age, sex, ethnicity, smoking status, alcohol con-
sumption, physical activity, hypothyroidism, chronic
glucocorticoid therapy, solid malignancy, hematologic
malignancy, dementia, human immunodeficiency virus
infection or acquired immunodeficiency syndrome, and
calendar time (in years since start of study). As annual
income was not available at the patient level, the median
annual income (net taxable income in 2015 as provided
by Statbel [26]) per statistical sector to which the patient
belongs based on home address was used as proxy vari-
able. Variables related to obesity or ICU stay were also
obtained. Obesity-related conditions included Charlson
comorbidity index, cardiovascular disease, hypertension,
diabetes mellitus, chronic kidney disease, chronic liver
disease, and chronic pulmonary disease. Variables re-
lated to ICU stay included SAPS II within 36 h after ICU
admission, type of admission, and ICU mortality. The
data on these sociodemographic characteristics and co-
morbidities contained in the Intensive Care Information

System database were inputted manually at ICU admis-
sion by critical care physicians. Data discrepancies were
resolved by expert opinion or by reviewing the electronic
health record.
The estimand of interest was the difference in in-

hospital mortality in non-obese patients if all had been
obese versus as observed (i.e., if they stayed non-obese).
This corresponds with the average treatment effect in
the untreated (ATU), which is the marginal causal risk
difference in the subpopulation that was not exposed (to
obesity at ICU admission). We considered this effect to
be of particular interest because it is less susceptible to
selection bias. The reason is that non-obese patients
would likely also have been admitted to the ICU and
have had a SAPS II of ≥ 32 points at ICU admission if
they had been obese (so that their selection is not related
to their obesity status). By contrast, this seems less
plausible to hold for obese patients if they had been
non-obese, making the average treatment effect in the
treated (and also the overall average treatment effect)
more prone to selection bias. Identifying the effect of
obesity on in-hospital mortality in non-obese patients
requires adequate confounding control [15]. In the fol-
lowing two sections, we describe the two approaches
that we considered for this.

Traditional approach
In line with common approaches [7, 8], a logistic regres-
sion model was fitted with in-hospital mortality as the
outcome, obesity as a dichotomous covariate, and the
main effects of the 14 confounders as other covariates.
Model selection procedures were not performed to re-
duce the risk of residual confounding, leaving all vari-
ables in the model. An estimate of the ATU was
obtained by direct standardization, also known as G-
computation [15, 27]. First, the logistic regression
model was used to predict the outcome for each pa-
tient as if the patient had been obese and the out-
come as if the patient had been non-obese. These
predictions were then averaged only across patients
who were non-obese. The difference between both av-
erages gave an estimate of the ATU.
This approach has several limitations. First, logistic

regression assumes that the log odds of in-hospital
mortality are linear in the covariates. Incorrect model-
ing of the true relationship between confounders and
outcome leaves residual confounding bias. This is a
major concern, especially when there is little overlap
in the confounder values between obese and non-
obese patients, for then regression-based estimators
can severely rely on extrapolation, without this being
visible from the results. For instance, that extrapola-
tions are being made is only subtly hinted at via
slightly increased standard errors, thereby possibly
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leaving an optimistically precise yet biased estimator
of the causal effect. Additionally, regression models
require complete cases of the data, discarding cases

with at least one missing value. Complete case ana-
lysis is, however, inefficient and can be biased when
missingness is informative [15].

Fig. 2 Flow diagram of the study cohort. BMI, body mass index; OHS, obesity hypoventilation syndrome; SAPS II, Simplified Acute Physiology Score II

Decruyenaere et al. Critical Care          (2020) 24:485 Page 4 of 11



Robust approach
In view of the foregoing concern about parametric
model misspecification, the one-step targeted maximum
likelihood estimation (TMLE) framework was used to
enable the use of machine learning methods with the
aim to reduce bias against model misspecification, while
ensuring that valid confidence intervals for the treatment
effect can be constructed [27–31]. Here, machine learn-
ing was based on a so-called super learning procedure.
This is an ensemble method that selects the optimally
weighted combination of multiple candidate algorithms
by applying a metalearning algorithm that minimizes the
cross-validated risk associated with chosen prediction
error loss functions. The resulting super learner is de-
signed to perform as well as or better than the best-
fitting candidate algorithm (in large sample sizes) [27,
29, 32, 33]. In this study, super learning with stratified
10-fold cross-validation was performed using following
library of 15 candidate algorithms: null estimator (un-
conditional mean); main effects logistic regression
model; stepwise logistic regression model; 5 penalized
regression models using elastic net with mixing param-
eter of 0 (ridge penalty), 0.25, 0.50, 0.75, or 1.0 (lasso
penalty); random forests; extreme gradient boosting;
support vector machines; Bayesian additive regression
trees model; and 3 general additive models with polyno-
mial terms to the second, third, or fourth degree. Three
super learners for the outcome mechanism and for the
exposure mechanism were created by applying the
squared error (L2) loss, log loss, and the rank loss func-
tions as metalearning algorithm. Details of the super
learning procedure, including the hyperparameter set-
tings of each candidate algorithm, the optimal super
learner weights that minimized the corresponding loss
function, and the performance measures obtained by
nested cross-validation, are presented in Additional file 1.
The best performance for the data at hand was shown
for the log loss super learners, which were therefore
used in the subsequent TMLE procedure. Truncation
levels of 2.5% and 97.5% were used for extreme inverse
probability weights. Standard errors for the TMLE were
calculated based on the influence curve.

TMLE combined with super learning reduces model
misspecification bias [27, 29], but it does not tackle the
potential problem of selection bias due to missing data.
Therefore, multiple imputation by chained equations
(MICE) was used to impute missing values. MICE is an
iterative algorithm based on fully conditional specifica-
tion, where the imputation model is specified separately
for each incomplete variable in function of all other
(possibly incompletely) measured variables. It relies on
the missing at random assumption, which states that the
probability of a value being missing does not depend on
the unobserved data conditional on the observed data
[34]. Specification of the imputation model is given in
Additional file 2. The number of imputations was set to
50. Each imputed dataset was analyzed separately using
the one-step TMLE and the log loss super learner for
the outcome and exposure mechanism. The separate es-
timates and variances for each of the imputed datasets
were pooled into an overall estimate and variance using
Rubin’s rule [35].
Data analysis was performed in R version 3.3.2 using

the stdReg version 3.0.0, SuperLearner version 2.0-24,
rBayesianOptimization version 1.1.0, tmle version 1.3.0-
2, and mice version 3.6.0 packages [36].

Results
Baseline characteristics
The final study cohort comprised 6557 patients. Obesity
was present in 18.9% of patients. The respective ICU
and in-hospital mortality was 9.7% and 14.4% in the
overall cohort, 9.8% and 14.6% in non-obese patients,
and 9.1% and 13.5% in obese patients. The raw marginal
risk difference for in-hospital mortality between obese
and non-obese patients was − 1.06% (95% confidence
interval (CI) of − 3.23 to 1.11%, P = 0.337). These find-
ings are consistent with the obesity paradox. Baseline
characteristics are summarized in Tables 1 and 2.

Traditional approach
The results of the multivariate logistic regression model
are presented in Table 3. This model indicated that the
odds for in-hospital mortality were 20% lower in obese

Table 1 Baseline characteristics (continuous variables)

Variable Total (n = 6557) Non-obese (n = 5121) Obese (n = 1192)

Mean (SD) Median (Q1–Q3) Mean (SD) Median (Q1–Q3) Mean (SD) Median (Q1–Q3)

BMI (kg/m2) 26.2 (5.2) 25.6 (23.0–28.8) 24.4 (3.2) 24.6 (22.4–26.9) 34.1 (4.6) 32.9 (31.1–35.4)

Age (years) 64.1 (15.3) 67.0 (56.0–75.0) 63.8 (15.8) 67.0 (55.0–75.0) 65.3 (12.1) 67.0 (59.0–74.0)

Income (€1000/year) 25.9 (4.1) 26.0 (23.2–28.6) 26.0 (4.0) 26.0 (23.5–28.6) 25.7 (4.2) 25.8 (22.9–28.5)

CCI (points) 2.0 (2.3) 2.0 (0.0–3.0) 2.0 (2.3) 2.0 (0.0–3.0) 2.1 (2.2) 2.0 (0.0–3.0)

SAPS II (points) 59.5 (16.8) 61.0 (44.0–71.0) 59.2 (16.7) 61.0 (44.0–71.0) 61.0 (16.9) 64.0 (45.0–73.0)

Calendar time (years) 1.7 (0.9) 1.7 (0.9–2.4) 1.7 (0.9) 1.7 (0.9–2.4) 1.7 (0.9) 1.7 (0.9–2.4)

BMI body mass index, CCI Charlson comorbidity index, Q1 first quartile, Q3 third quartile, SAPS II Simplified Acute Physiology Score II, SD standard deviation
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Table 2 Baseline characteristics (categorical variables)

Variable Total (n = 6557) Non-obese (n = 5121) Obese (n = 1192)

Count (%) Count (%) Count (%)

Sex

Male 4196 (64.0) 3297 (64.4) 742 (62.2)

Female 2361 (36.0) 1824 (35.6) 450 (37.8)

Ethnicity

Asian 25 (0.4) 23 (0.4) 2 (0.2)

Black 48 (0.7) 37 (0.7) 11 (0.9)

Caucasian 6154 (93.9) 4825 (94.2) 1112 (93.3)

Other 79 (1.2) 57 (1.1) 19 (1.6)

Missing 251 (3.8) 179 (3.5) 48 (4.0)

Smoking status

Never-smoker 3254 (49.6) 2563 (50.0) 569 (47.7)

Ex-smoker > 1 y 1721 (26.2) 1303 (25.4) 374 (31.4)

Ex-smoker < 1 y 220 (3.4) 172 (3.4) 41 (3.4)

Current smoker 1158 (17.7) 939 (18.3) 174 (14.6)

Missing 204 (3.1) 144 (2.8) 34 (2.9)

Alcohol consumption

Abstinent 3823 (58.3) 3011 (58.8) 686 (57.6)

Social 1832 (27.9) 1409 (27.5) 364 (30.5)

Problematic 714 (10.9) 568 (11.1) 113 (9.5)

Missing 188 (2.9) 133 (2.6) 29 (2.4)

Physical activity

No restriction 3791 (57.8) 3042 (59.4) 626 (52.5)

Limited 2200 (33.6) 1679 (32.8) 439 (36.8)

Chair-ridden 302 (4.6) 207 (4.0) 83 (7.0)

Bed-ridden 167 (2.5) 128 (2.5) 32 (2.7)

Missing 97 (1.5) 65 (1.3) 12 (1.0)

Hypothyroidism

Yes 280 (4.3) 213 (4.2) 60 (5.0)

No 5804 (88.5) 4554 (88.9) 1041 (87.3)

Missing 473 (7.2) 354 (7.0) 91 (7.6)

Chronic glucocorticoid therapy

Yes 444 (6.8) 366 (7.1) 65 (5.5)

No 6031 (92.0) 4702 (91.8) 1117 (93.7)

Missing 82 (1.3) 53 (1.0) 10 (0.8)

Solid malignancy

None 5053 (77.1) 3905 (76.3) 962 (80.7)

Non-metastatic 900 (13.7) 714 (13.9.) 159 (13.3)

Metastatic 514 (7.8) 442 (8.6) 60 (5.0)

Missing 90 (1.4) 60 (1.2) 11 (0.9)

Hematologic malignancy

None 6085 (92.8) 4744 (92.6) 1126 (94.5)

ALL 28 (0.4) 25 (0.5) 3 (0.3)

AML 64 (1.0) 54 (1.1) 9 (0.8)

CLL 34 (0.5) 27 (0.5) 4 (0.3)
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Table 2 Baseline characteristics (categorical variables) (Continued)

Variable Total (n = 6557) Non-obese (n = 5121) Obese (n = 1192)

Count (%) Count (%) Count (%)

MM 35 (0.5) 28 (0.5) 5 (0.4)

NHL 70 (1.1) 59 (1.2) 11 (0.9)

Other 157 (2.4) 128 (2.5) 25 (2.1)

Missing 84 (1.3) 56 (1.1) 9 (0.8)

Dementia

Yes 139 (2.1) 116 (2.3) 18 (1.5)

No 6355 (96.9) 4967 (97.0) 1168 (98.0)

Missing 63 (1.0) 38 (0.7) 6 (0.5)

HIV/AIDS

Yes 43 (0.7) 43 (0.8) 0 (0.0)

No 6427 (98.0) 5020 (98.0) 1182 (99.2)

Missing 87 (1.3) 58 (1.1) 10 (0.8)

Cardiovascular disease

Yes 3235 (49.3) 2442 (47.7) 679 (57.0)

No 3253 (49.6) 2635 (51.5) 507 (42.5)

Missing 69 (1.1) 44 (0.9) 6 (0.5)

Hypertension

Yes 2866 (43.7) 2081 (40.6) 696 (58.4)

No 3603 (54.9) 2981 (58.2) 487 (40.9)

Missing 88 (1.3) 59 (1.2) 9 (0.8)

Diabetes mellitus

Yes 1281 (19.5) 816 (15.9) 421 (35.3)

No 5194 (79.2) 4251 (83.0) 762 (63.9)

Missing 82 (1.3) 54 (1.1) 9 (0.8)

Chronic kidney disease

Yes 1317 (20.1) 974 (19.0) 305 (25.6)

No 5149 (78.5) 4085 (79.8) 877 (73.6)

Missing 91 (1.4) 62 (1.2) 10 (0.8)

Chronic liver disease

Yes 408 (6.2) 312 (6.1) 80 (6.7)

No 6058 (92.4) 4748 (92.7) 1001 (92.4)

Missing 91 (1.4) 31 (1.2) 11 (0.9)

Chronic pulmonary disease

Yes 994 (15.2) 741 (14.5) 225 (18.9)

No 5471 (83.4) 4318 (84.3) 956 (80.2)

Missing 92 (1.4) 62 (1.2) 11 (0.9)

Type of admission

Elective surgery 2727 (41.6) 2094 (40.9) 550 (46.1)

Urgent surgery 989 (15.1) 776 (15.2) 168 (14.1)

Trauma/burns 214 (3.3) 170 (3.3) 22 (1.8)

Monitoring 1503 (22.9) 1198 (23.4) 247 (20.7)

Organ failure 1097 (16.7) 864 (16.9) 202 (16.9)

Missing 27 (0.4) 19 (0.4) 3 (0.3)

AIDS acquired immunodeficiency syndrome, AML acute myeloid leukemia, ALL acute lymphoblastic leukemia, CLL chronic lymphocytic leukemia, HIV
human immunodeficiency virus, MM multiple myeloma, NHL non-Hodgkin lymphoma, y year
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Table 3 Multivariate logistic regression model for in-hospital mortality (n = 4803)

Variable β (SE) OR (95% CI) P

Intercept − 2.32 (0.102) – –

Obesity − 0.23 (0.115) 0.80 (0.64–0.99) 0.048

Age (standardized) 0.28 (0.054) 1.32 (1.19–1.47) < 0.001

Sex, male 0.10 (0.098) 1.11 (0.91–1.34) 0.30

Ethnicity

Caucasian reference

Asian − 0.04 (0.784) 0.96 (0.21–4.47) 0.96

Black 0.39 (0.575) 1.48 (0.48–4.56) 0.50

Other − 0.31 (0.448) 0.73 (0.31–1.76) 0.49

Income (standardized) − 0.06 (0.044) 0.95 (0.87–1.03) 0.20

Smoking status

Never-smoker reference

Ex-smoker > 1 year 0.02 (0.109) 1.02 (0.82–1.26) 0.87

Ex-smoker < 1 year 0.46 (0.218) 1.59 (1.04–2.44) 0.033

Current smoker 0.18 (0.131) 1.20 (0.93–1.56) 0.16

Alcohol consumption

Abstinent reference

Social − 0.31 (0.109) 0.73 (0.59–0.91) 0.004

Problematic 0.39 (0.139) 1.47 (1.12–1.94) 0.005

Physical activity

No restriction reference

Limited 0.55 (0.095) 1.74 (1.45–2.10) < 0.001

Chair-ridden 1.05 (0.167) 2.87 (2.07–3.98) < 0.001

Bed-ridden 1.21 (0.214) 3.34 (2.20–5.09) < 0.001

Hypothyroidism 0.03 (0.193) 1.03 (0.70–1.50) 0.89

Chronic glucocorticoids 0.28 (0.149) 1.33 (0.99–1.78) 0.056

Solid malignancy

None reference

Non-metastatic − 0.10 (0.125) 0.90 (0.71–1.15) 0.41

Metastatic 0.23 (0.161) 1.26 (0.92–1.73) 0.15

Hematologic malignancy

None reference

Acute lymphoblastic leukemia 0.29 (0.647) 1.33 (0.37–4.73) 0.66

Acute myeloid leukemia 0.88 (0.374) 2.41 (1.16–5.01) 0.019

Chronic lymphocytic leukemia 1.28 (0.440) 2.59 (1.51–8.50) 0.004

Multiple myeloma 0.66 (0.458) 1.93 (0.79–4.75) 0.15

Non-Hodgkin lymphoma 0.41 (0.359) 1.50 (0.74–3.04) 0.26

Other 0.74 (0.223) 2.11 (1.36–3.26) < 0.001

Dementia 0.04 (0.245) 1.04 (0.64–1.68) 0.88

HIV/AIDS − 0.63 (0.619) 0.53 (0.16–1.80) 0.31

Calendar time (standardized) 0.05 (0.043) 1.05 (0.96–1.14) 0.26

AIDS acquired immunodeficiency syndrome, CI confidence interval, HIV human immunodeficiency virus, OR odds ratio, SE standard error
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patients compared with non-obese patients with the
same level of the confounders that were controlled for
(adjusted odds ratio of 0.80, 95% CI 0.64 to 0.99, P =
0.048). Using standardization, this translated into a mar-
ginal causal risk difference—in particular an ATU—of −
2.48% (95% CI − 4.80 to − 0.15%, P = 0.037). This sug-
gested that the in-hospital mortality would be signifi-
cantly smaller if all non-obese patients had been obese.
This regression-based approach thus resulted in even
more paradoxical findings, despite presumed adjustment
for confounding.
Although only 2.7% of values for exposure and con-

founders were missing, 1754 (26.8%) patients had at least
one missing value and were thereby discarded in the
traditional approach. However, the complete cases
formed a selective, non-random sample in which the as-
sociation between obesity and in-hospital mortality be-
came more pronounced. Indeed, the raw marginal risk
difference for in-hospital mortality between obese and
non-obese patients went from − 1.06% (95% CI − 3.23 to
1.11%, P = 0.337) in patients with complete cases for ex-
posure to − 2.25% (95% CI − 4.65 to 0.15%, P = 0.067) in
patients with complete cases for exposure and con-
founders. Missingness was equally common in obese
and non-obese patients (24.2% versus 23.9%, P = 0.828).
Additionally, and somewhat counterintuitively, the

above regression adjustment seemed to indicate that the
bias arising from measured confounders was towards the
null. Indeed, the marginal causal risk difference of −
2.48% was further away from zero than the raw marginal
risk difference of − 2.25% in patients with complete cases
for exposure and confounders. This suggested that a
seemingly protective effect of obesity on in-hospital
mortality had been partially masked by worse baseline
confounders in obese patients. However, this may also
be the result of model misspecification and, hence, of in-
adequate removal of confounding bias.

Robust approach
We therefore provided a re-analysis based on TMLE and
missing data imputation which, interestingly, mitigated
the obesity paradox by yielding an ATU of − 0.59% (95%

CI − 2.77 to 1.60%, P = 0.599). A summary table of the
traditional versus robust approach is given in Table 4.
This table also provides the separate impact of performing
TMLE or missing data imputation on the marginal causal
risk difference. Traditional regression adjustment on the
imputed data resulted in a pooled ATU of − 1.46% (95%
CI − 3.58 to 0.66%, P = 0.178), while performing TMLE on
the complete cases (thus without missing data imputation)
gave a similar ATU of − 1.52% (95% CI − 3.85 to 0.81%,
P = 0.201). Only the combination of both techniques at-
tenuated evidence for an obesity paradox. Truncation of
the exposure weights was necessary in 0.1% and 0.6% of
patients in the TMLE analysis without and with missing
data imputation, respectively.
A sensitivity analysis was performed by repeating the

above analysis for different BMI cut-off values. Details are
given in Additional file 3. The raw marginal risk difference
for in-hospital mortality between patients with a BMI of ≥
25 kg/m2 (54.8% of patients) and patients with a BMI of <
25 kg/m2 was − 1.40% (95% CI − 3.14 to 0.35%, P = 0.117).
The traditional approach resulted in an ATU of − 2.11%
(95% CI − 4.10 to − 0.12%, P = 0.038), whereas the robust
approach yielded an ATU of − 0.01% (95% CI − 1.81 to
1.79%, P = 0.992), thereby debunking this overweight/
obesity paradox. Since only a small proportion of patients
had a BMI ≥ 35 kg/m2 (5.2% of patients), the confidence
intervals of the effect estimates were too wide to make a
meaningful comparison between the traditional and ro-
bust approach in patients with a BMI ≥ 35 kg/m2 versus
patients with a BMI < 35 kg/m2.

Discussion
The obesity paradox refers to the counterintuitive asso-
ciation between obesity and improved survival rates in
critically ill patients and may arise from several meth-
odological pitfalls, including confounding bias and col-
lider stratification bias. The underlying question that
clinicians may ask is whether the survival of non-obese
critically ill patients would have been improved if they
had been obese. This has, to our knowledge, not yet
been addressed by prior clinical research and demands a
causal inference approach.

Table 4 Summary table of the traditional versus robust causal inference approach

Estimand Method Complete cases in A Complete cases in (A, C) Imputation for (A, C)

Estimate (95% CI) P Estimate (95% CI) P Estimate (95% CI) P

Raw marginal risk
difference (unadjusted)

Regression − 1.06% (− 3.23 to 1.11) 0.337 − 2.25% (− 4.65 to 0.15) 0.067 − 1.03% (− 3.22 to 1.14) 0.354

Marginal causal risk
difference (ATU)

Regression + G-
computation

– – − 2.48% (− 4.80 to − 0.15) 0.037 − 1.46% (− 3.58 to 0.66) 0.178

TMLE + super
learner

– – − 1.52% (− 3.85 to 0.81) 0.201 − 0.59% (− 2.77 to 1.60) 0.599

With A = obesity and C = age, sex, ethnicity, income, smoking status, alcohol consumption, physical activity, hypothyroidism, chronic glucocorticoid therapy, solid
malignancy, hematological malignancy, dementia, human immunodeficiency virus/acquired immunodeficiency syndrome, calendar time
ATU average treatment effect in the untreated, CI confidence interval, TMLE targeted maximum likelihood estimation
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In this study, the raw marginal risk difference for in-
hospital mortality between obese and non-obese patients
admitted to the ICU who have a SAPS II of ≥ 32 points
at ICU admission was − 1.06% (95% CI − 3.23 to 1.11%,
P = 0.337). Two causal inference approaches were used
to estimate the ATU: an approach that used traditional
regression adjustment for confounding and that assumed
missingness completely at random, and a robust ap-
proach that used super learning within the TMLE frame-
work along with multiple imputation of missing values
under the assumption of missingness at random. The
traditional approach resulted in an ATU of − 2.48% (95%
CI − 4.80 to − 0.15%, P = 0.037), which was an even
more paradoxical finding. This may, however, be subject,
among others, to selection bias due to missing data and
residual confounding bias due to model misspecification.
By contrast, the robust approach that combined targeted
learning with multiple imputation to deal with both
types of biases yielded an ATU of − 0.59% (95% CI −
2.77 to 1.60%, P = 0.599) and thereby mitigated the obes-
ity paradox. Thus, this study did not provide evidence
that the survival of non-obese critically ill patients would
have been improved if they had been obese, nor did it
prove that their survival would have been worse.
Nevertheless, caution is warranted in the interpret-

ation of the study findings. First, despite the inclusion of
a large number of confounders, residual confounding
due to inaccurate proxy variables or unmeasured vari-
ables cannot be ruled out. In particular, data on the pa-
tient’s dietary pattern and educational level were lacking
and may have confounded the obesity-mortality relation-
ship. Additionally, the inclusion of some confounders
can be disputed. Indeed, the obesity status measured
upon admission to the ICU is the result of a potentially
long time-varying process, which makes, for example,
control for malignancy potentially not entirely appropri-
ate for eliminating confounding bias, as it may eliminate
indirect effects of obesity via malignancy, while also
introducing collider stratification bias [16]. Furthermore,
it should be noted that 1754 (26.8%) patients were dis-
carded in the traditional approach because of at least
one missing value for exposure or confounders.
Secondly, while our analysis focused on the subgroup of

non-obese patients to dampen the possible effect of col-
lider stratification bias due to the selection of patients with
a SAPS II of at least 32 points who have been admitted to
the ICU, such bias in the ATU cannot be entirely ruled
out. It may be biased when obesity affects the probability
of either ICU admission or SAPS II being ≥ 32 points, as is
likely the case. Overcoming the above two problems
would necessitate a population cohort study, where indi-
viduals’ body weight and the evolution of confounders
such as malignancy can be monitored over time [37]. Un-
fortunately, such data are currently lacking.

A third limitation of the current analysis is that the
obtained estimate and its standard error may be subject
to residual bias when the dependence of the exposure or
outcome on the confounders is too complex to approxi-
mate well by super learning at the considered sample
sizes [29]. Fourthly, while the MICE algorithm relaxes
the implicit missing completely at random assumption
of a complete case analysis (as in the first approach), it
still relies on the untestable missing at random assump-
tion and on correct specification of the parametric im-
putation model, which may further bias the TMLE
estimator [34]. Finally, although a sensitivity analysis
using different BMI cut-off values did not change the in-
terpretation of the results, a possibly non-linear dose-
response relationship between BMI and in-hospital mor-
tality among critically ill patients may be inadequately
captured by the binary nature of the definition used for
obesity.

Conclusions
A causal inference approach that is robust to residual
confounding bias due to model misspecification and se-
lection bias due to missing (at random) data mitigates
the obesity paradox observed in critically ill patients,
whereas a traditional approach results in even more
paradoxical findings. The robust approach does not pro-
vide evidence that the survival of non-obese critically ill
patients would have been improved if they had been
obese.
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