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Abstract

The Haemers-Mathon bound states that t ≤ s3 + t2(s
2 − s + 1) for any finite

regular near hexagon with parameters (s, t, t2), s ≥ 2. In this paper, we generalize
this bound to arbitrary finite near hexagons with an order. The obtained inequality
involves the orders of the quads through a given line.
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1 Introduction

Suppose S = (P ,L, I) is a partial linear space, i.e. a point-line geometry with nonempty
point set P , line set L and incidence relation I ⊆ P ×L such that any two distinct points
are incident with at most one line. S is said to have order (s, t) if every line is incident
with precisely s+ 1 points and every point is incident with exactly t+ 1 lines.

A partial linear space is called a generalized quadrangle [17] if every point is incident
with at least two lines and if for every non-incident point-line pair (x, L), there exists a
unique point on L collinear with x.

A partial linear space S is called a near hexagon if its collinearity graph has diameter
3 and if for every point x and every line L, there exists a unique point on L that is nearest
to x with respect to the distance in the collinearity graph. Such a near hexagon is said to
be regular with parameters (s, t, t2) where s, t, t2 ∈ N if S has order (s, t) and if every two
points at distance 2 have precisely t2 + 1 common neighbours. The regular near hexagons
with parameters (s, t, t2) = (s, t, 0) are precisely the generalized hexagons of order (s, t)
(as for instance defined in [19]). If x and y are two points of S, then d(x, y) denotes the
distance between x and y (in the collinearity graph), and Γi(x) with i ∈ N denotes the
set of points at distance i from x.

Suppose S is a near hexagon. A set X of points of S is called a subspace if every line
having two of its points in X has all its points in X. If X is a nonempty subspace, then
the points of X and the lines of S that have all their points in X define a subgeometry
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X̃ of S. A set X of points is called convex if every point on a shortest path between two
points of X is also contained in X. A quad of S is a nonempty convex subspace Q for
which Q̃ is a generalized quadrangle.

Generalized quadrangles and near hexagons are special cases of so-called near polygons.
These geometries were introduced in [18] because of their connection with line systems in
Euclidean spaces. The family of near polygons includes the well-studied dual polar spaces
and generalized polygons and also some “sporadic” examples related to finite simple
groups. Some of these near polygons have recently been discovered [2, 3] and are related
to the Suzuki chain, one of the most fundamental objects in the theory of finite simple
groups. It also seems that near polygons form the natural setting for studying certain
problems on (substructures of) dual polar spaces and generalized polygons, see e.g. [1].

Suppose now that S is a finite near hexagon with order (s, t), s ≥ 2, having v points.
If x and y are two points at distance 2 from each other such that |Γ1(x)∩Γ1(y)| ≥ 2, then
by Proposition 2.5 of [18], we know that x and y are contained in a unique quad Q(x, y).

If Q is a quad of S, then every line of Q̃ is incident with precisely s + 1 ≥ 3 points,
implying (see e.g. [5, Theorem 5.17]) that the generalized quadrangle Q̃ must have some
order. The following is the main result of this paper.

Theorem 1.1 Suppose S is a finite near hexagon with order (s, t), s ≥ 2, having v points.
Let L be a line of S and let Q1, Q2, . . . , Qk with k ∈ N denote all quads through L. Suppose
Qi with i ∈ {1, 2, . . . , k} has order (s, t

(i)
2 ). Then

k∑
i=1

(t
(i)
2 )2

s+ t
(i)
2

≥ t− s(s2 + 1)v − s(s+ 1)(s2 + 1)− s2t(s+ 1)

(s+ 1)(s4 − 1) + st(s− 1)(s+ 1)2 + v
.

In the special case where S is a regular near hexagon with parameters (s, t, t2) where s ≥ 2

and t2 ≥ 1, then k = t
t2

, t
(i)
2 = t2 for every i ∈ {1, 2, . . . , k} and v = (s+1)(1+st+ s2t(t−t2)

t2+1
).

In this case, the bound mentioned in Theorem 1.1 reduces to (t− t2)(t− (s3 + t2(s
2− s+

1))) ≤ 0, i.e. to t ≤ s3 + t2(s
2 − s + 1) since t > t2. This bound is called the Mathon

or Haemers-Mathon bound, see e.g. [9, 15]. Proofs of this bound can also be found in
[4, 5, 16].

In the special case where S is a generalized hexagon of order (s, t), s ≥ 2, we have
k = 0 and v = (s+ 1)(1 + st+ s2t2) and the inequality mentioned in Theorem 1.1 reduces
to t ≤ s3. This bound is known as the Haemers-Roos inequality, as it was discovered by
Haemers and Roos in [10], see also Haemers [8].

In the special case that S is the direct product of a generalized quadrangle of order
(s, t2), s, t2 ≥ 2, with a line of size s + 1 ([4, (a)], [5, Section 6.6]) and L is a line not
contained in a quad of order (s, t2), then t = t2 + 1, v = (s+ 1)2(st2 + 1), k = t2 + 1 and

t
(i)
2 = 1 for every i ∈ {1, 2, . . . , k}. In this case, the inequality in Theorem 1.1 reduces

to t2 ≤ s2. This is precisely the Higman inequality for generalized quadrangles ([11, 12],
[17, 1.2.3]). So, Theorem 1.1 can be regarded as a generalization of both the Higman
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inequality for generalized quadrangles and the Haemers-Roos inequality for generalized
hexagons.

The known near hexagons for which equality can be obtained (in Theorem 1.1) are
the generalized hexagons of order (s, s3), the direct products of generalized quadrangles
of order (s, s2) with lines of size s+ 1, and the two sporadic near hexagons constructed in
[18] from respectively the extended ternary Golay code and the Witt design S(5,8,24). It
is not clear to the author whether other examples can exist or if there is extra information
about the structure of the near hexagons that can be derived in case of equality.

For a given value of s ∈ N \ {0, 1}, there are only a limited number of possibilities
for (t, v) for which there can exist a near hexagon of order (s, t) with v points. This is
a consequence of the fact that there exist upper bounds for t and v in terms of s (like
the bound t ≤ s4 + s2 from [7]) and strong divisibility conditions involving s, t and v
(like the divisibility condition s5v

(s+1)(s4−1)+st(s−1)(s+1)2+v
∈ N from [6]). For given s, there

are also a limited number of possibilities for the t
(i)
2 ’s, as

√
s ≤ t

(i)
2 ≤ s2 if t

(i)
2 6= 1 and

(s+ t
(i)
2 ) | st(i)2 (s+ 1)(t

(i)
2 + 1) ([17, Section 1.2]).

Not so many examples of (families of) finite near hexagons with an order (s, t), s ≥ 2,
are known, and recent research (as in [6]) has indicated that with respect to certain prop-
erties such near hexagons behave similarly as regular near hexagons (who have distance-
regular collinearity graphs). The various recent restrictions (mentioned above) also indi-
cate that for given s, there are relatively few surviving possibilities for t and v. These
facts have increased the interest in classifying near hexagons with an order (e.g. showing
nonexistence). For certain of the feasible possibilities for s, t and v, Theorem 1.1 offers
information about the possible quads that can contain a given line, and this information
can be useful during the classification process. For several of these possibilities, the right
hand side of the inequality is strictly positive, implying that every line of the near hexagon
is contained in a quad. The following consequence of Theorem 1.1 is interesting in view of
the fact that there exist for every prime power q a near hexagon of order (q, q3) without
any quads (namely a dual twisted triality hexagon, see [19]).

Corollary 1.2 Let S be a finite near hexagon of order (s, t) with s ≥ 2 and t > s3. Then
every line of S is contained in at least one quad.

Proof. It suffices to show that in this case, the right hand side of the inequality is strictly
positive, or equivalently

s(s− 1)(s+ 1)2t2 + (s+ 1)(s4 + s2 − 1)t+ s(s+ 1)(s2 + 1)− (s3 + s− t)v > 0. (1)

This is clearly the case if t ≥ s3 + s. So, suppose s3 + 1 ≤ t < s3 + s.
Given a point x of S, we obviously have |Γ0(x)| = 1, |Γ1(x)| = s(t+ 1) and |Γ2(x)| ≤

|Γ1(x)| · st = s2t(t + 1). As every point of Γ2(x) is collinear with at most st points of
Γ3(x) and every point y ∈ Γ3(x) is collinear with exactly t + 1 points of Γ2(x) (one on
each line through y), we have |Γ3(x)| ≤ 1

t+1
· |Γ2(x)| · st ≤ s3t2. Adding all contributions,

we find that v ≤ 1 + s(t+ 1) + s2t(t+ 1) + s3t2 = (s+ 1)(1 + st+ s2t2). In combination
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with 0 < s3 + s− t ≤ s− 1, we see that the left hand side of (1) is bounded below by

s(s− 1)(s+ 1)2t2 + (s+ 1)(s4 + s2 − 1)t+ s(s+ 1)(s2 + 1)− (s2 − 1)(1 + st+ s2t2) > 0.

�

The proof of Theorem 1.1 uses similar ideas as the proofs of the Haemers-Roos in-
equality in [8, 10] and the Haemers-Mathon bound in [9]. As in these papers, we consider

two matrices C and C̃ such that C̃ is the principle submatrix of C defined by the points
at distance 1 from a given line L. The trivial inequality rank(C̃) ≤ rank(C) then leads
to the inequality mentioned in Theorem 1.1. Although the methods are similar to those
in [8, 9, 10], there are also important differences.

The computation of rank(C) in the case of generalized hexagons and regular near
hexagons was realized in [8, 9, 10] using the 3-class association scheme on the point set.
Such an association scheme does not necessarily exist for general finite near hexagons
with an order. Despite this fact, we still are able to compute the rank of C by relying on
some recent results of [7].

In the case of generalized hexagons, the matrix C̃ has an easy form and its rank is
readily computed, see [8, 10]. In general, C̃ can be written as the sum of two matrices,
where one of them is a “block diagonal matrix”. In the case of regular near hexagons, these
two matrices commute and have a common basis of eigenvectors. This fact was essentially
used in [9] to compute the eigenvalues with their multiplicities and (subsequently) the

rank of the matrix C̃. In the case of general finite near hexagons with an order, these two
matrices do not necessarily commute. We shall therefore use another method to compute
rank(C̃).

The computation of rank(C) will be done in Section 2. The computation of rank(C̃)
will be realized in Section 5 by relying on some helpful results from Sections 3 and 4.
Throughout the paper, we follow the following notation. If m ∈ N\{0}, then Om denotes
the m × m zero-matrix, Im denotes the m × m identity matrix and Jm the matrix all
whose entries are equal to 1 (with all matrices being defined over the reals).

2 Some properties of finite near hexagons with an

order

In this section, S = (P ,L, I) denotes a finite near hexagon of order (s, t), s ≥ 2, having
v = |P| points. We define the following numbers:

n0 := 1, n1 := s(t+ 1), n2 :=
v

s+ 1
− 1 + s2t− st, n3 :=

sv

s+ 1
− s2t− s.

For a proof of the following lemma, see e.g. Proposition 2.3 of [7].

Lemma 2.1 For every point x and every i ∈ {0, 1, 2, 3}, we have |Γi(x)| = ni.
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We also define the following number:

α := n0 +
n1

s2
+
n2

s4
+
n3

s6
=

(s+ 1)(s4 − 1) + st(s− 1)(s+ 1)2 + v

s5
.

We then have α > n0 + n1

s2
= 1 + t+1

s
.

Let p1, p2, . . . , pv be a particular ordering of the points of S. For every i ∈ {0, 1, 2, 3},
let Ai be the symmetric real v×v matrix whose (j, k)th entry with 1 ≤ j, k ≤ v is defined
as

(Ai)j,k :=

{
1 if (pj, pk) = i;
0 otherwise.

Then A0 is the v × v identity matrix Iv, A is the collinearity matrix of S and A0 + A1 +
A2 + A3 = Jv. We define the following additional symmetric matrix N :

N := A0 −
A1

s
+
A2

s2
− A3

s3
.

In the sequel, we put O := Ov, I := Iv and J := Jv.

Lemma 2.2 We have J2 = v · J , NJ = JN = O and N2 = α ·N .

Proof. Obviously, we have J2 = v ·J . By Proposition 4.1 of [7], we know that N2 = α ·N .
By Lemma 2.1 and the definition of the matrix N , we know that J ·N = N · J = α′ · J ,
where α′ = n0 − n1

s
+ n2

s2
− n3

s3
= 0. �

Lemma 2.3 • If v = s3α, then the eigenvalues of the matrix s3N + J are 0 and v
and their respective multiplicities are equal to v − (s3 + 1) = s3(α− 1)− 1 > 0 and
s3 + 1.

• If v 6= s3α, then the eigenvalues of the matrix s3N + J are equal to 0, s3α and v,
and their respective multiplicities are equal to v − 1− v

α
> 0, v

α
and 1.

Proof. Since the matrices I = A0, J and N are linearly independent, the minimal
polynomial of s3N + J has degree at least 2. Based on Lemma 2.2, we compute that

s3N + J = s3N + J,

(s3N + J)2 = s6αN + vJ,

(s3N + J)3 = (s6αN + vJ) · (s3N + J) = s9α2N + v2J.

So, we see that the minimal polynomial of s3N + J has degree 2 if and only if v = s3α,
in which case X2 − vX is the minimal polynomial with roots 0 and v.

If v 6= s3α, then the minimal polynomial is equal to∣∣∣∣∣∣
X s3 1
X2 s6α v
X3 s9α2 v2

∣∣∣∣∣∣ = s3(v − s3α) ·X(X − s3α)(X − v),
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which has 0, s3α and v as roots.
Suppose v = s3α. Let m1 and m2 denote the respective multiplicities of the eigenvalues

0 and v. Then m1 +m2 = v and 0 ·m1 + v ·m2 = Tr(s3N + J) = (s3 + 1)v, implying that
m2 = s3 + 1 and m1 = v − (s3 + 1) = (α− 1)s3 − 1. As α− 1 > t+1

s
, we have m1 > 0.

Suppose v 6= s3α. Then let m1, m2 and m3 denote the respective multiplicities of 0, v
and s3α. Then

m1 +m2 +m3 = v,

v ·m2 + s3α ·m3 = Tr(s3N + J) = v(s3 + 1),

v2 ·m2 + s6α2 ·m3 = Tr((s3N + J)2) = Tr(s6αN + vJ) = v(s6α + v).

This implies that

m1 = v − 1− v

α
, m2 = 1, m3 =

v

α
.

Suppose m1 = 0. Then α = v
v−1 > 1 + t+1

s
, i.e. s > (t + 1)(v − 1), in contradiction with

v ≥ s+ 1. Hence, m1 > 0. �

Lemma 2.4 The matrix C := A2 − (s− 1)A1 + (s2 − s+ 1)A0 has rank v
α

+ 1.

Proof. An easy computation shows that

s3N + J

s+ 1
= A2 − (s− 1)A1 + (s2 − s+ 1)A0,

and by Lemma 2.3 we know that the matrix s3N+J has rank v
α

+1 (regardless of whether
v = s3α or not). �

3 Some ranks of matrices associated with generalized

quadrangles of order (s, t2)

Let Q be a finite generalized quadrangle of order (s, t2) with s, t2 ≥ 1, and let L be a line
of Q. We denote by X the set of all points of Q not contained in L. For every x ∈ X, let
x′ denote the unique point on L collinear with x. We consider the following symmetric
relations on the set X:

• R0 = {(x, x) |x ∈ X};

• R1 = {(x, y) ∈ X ×X | d(x, y) = 1 and x′ = y′};

• R2 = {(x, y) ∈ X ×X | d(x, y) = 1 and x′ 6= y′};

• R3 = {(x, y) ∈ X ×X | d(x, y) = 2 and x′ = y′};

• R4 = {(x, y) ∈ X ×X | d(x, y) = 2 and x′ 6= y′}.
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Put v := |X| = (s+ 1)st2, O := Ov, I := Iv and J := Jv. Let p1, p2, . . . , pv be a particular
ordering of the elements of X. With the relation Rk, k ∈ {0, 1, 2, 3, 4}, we associate a real
symmetric matrix Bk = (bkij)1≤i,j≤v, whose entries are defined as follows:

b
(k)
ij :=

{
1 if (pi, pj) ∈ Rk;
0 otherwise.

Then B0 = I and B0 +B1 +B2 +B3 +B4 = J . Moreover, we have

B0J = J,B1J = (s− 1)J,B2J = st2J,B3J = s(t2 − 1)J,B4J = s(s− 1)t2J.

We also have B1 = O if and only if s = 1, B2 6= O, B3 = O if and only if t2 = 1 and
B4 = O if and only if s = 1. We define the following real 5× 5 matrix:

M =


s2 − s+ 1 −(s− 1) −(s− 1) 1 1
−(s− 1)2 2s− 1 s− 1 s− 1 −1
−s(s− 1)t2 st2 st2 0 0
s(t2 − 1) s(t2 − 1) 0 s(t2 − 1) 0
s(s− 1)t2 −st2 0 0 st2

 .

The following can easily be verified (e.g. with Maple).

Lemma 3.1 • The eigenvalues of M are equal to s2 + st2 (multiplicity 1), st2 (mul-
tiplicity 2) and 0 (multiplicity 2).

• The minimal polynomial of M is equal to m(X) := X(X − st2)(X − (s2 + st2)) ∈
R[X].

Lemma 3.2 The following equations hold:

B1B0 = B1,

B1B1 = (s− 1)B0 + (s− 2)B1,

B1B2 = B4,

B1B3 = (s− 1)B3,

B1B4 = (s− 1)B2 + (s− 2)B4,

B2B0 = B2,

B2B1 = B4,

B2B2 = st2B0 + (s− 1)B2 + t2B3 + (t2 − 1)B4,

B2B3 = (t2 − 1)B2 + (t2 − 1)B4,

B2B4 = st2B1 + (s− 1)(t2 − 1)B2 + (s− 1)t2B3 + (st2 − 2t2 + 1)B4.

Proof. Obviously, BiB0 = BiI = Bi for every i ∈ {1, 2}.
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If (x, y) ∈ R1 and (y, z) ∈ R1, then (x, z) belongs to either R0 and R1. If (x, z) ∈ R0,
i.e. if x = z, then there are s − 1 points y ∈ X such that (x, y), (y, z) ∈ R1, namely the
s − 1 points on the line xx′ distinct from x and x′. If (x, z) ∈ R1, then there are s − 2
points y ∈ X such that (x, y), (y, z) ∈ R1, namely the s− 2 points on xx′ distinct from x,
z and x′. We conclude that B1B1 = (s− 1)B0 + (s− 2)B1.

If (x, y) ∈ R1 and (y, z) ∈ R2, then the lines xy and yz are different, and so we
necessarily have d(x, z) = 2. Since x′ = y′ and y′ 6= z′, we have x′ 6= z′, implying
that (x, z) ∈ R4. Conversely, if (x, z) ∈ R4, then there is a unique point y ∈ X for which
(x, y) ∈ R1 and (y, z) ∈ R2, namely the unique point on xx′ collinear with z. We conclude
that B1B2 = B4. Taking the transpose of this equation, we find B2B1 = B4.

If (x, y) ∈ R1 and (y, z) ∈ R3, then also (x, z) ∈ R3. Conversely, if (x, z) ∈ R3, then
there are s − 1 points y ∈ X such that (x, y) ∈ R1 and (y, z) ∈ R3, namely the s − 1
points on xx′ distinct from x and x′. We conclude that B1B3 = (s− 1)B3.

We compute that B1B4 = B1J−B1B0−B1B1−B1B2−B1B3 = (s−1)B2 +(s−2)B4.

Suppose (x, y) and (y, z) belong to R2. It is impossible that (x, z) ∈ R1, as otherwise
x, y, z are mutually collinear and so contained in a line that would be disjoint from L
(since (x, y) ∈ R2) and also meet L (since (x, z) ∈ R1). So, (x, z) ∈ R0 ∪R2 ∪R3 ∪R4.

If (x, z) ∈ R0, i.e. x = z, then there are st2 points y such that (x, y), (y, z) ∈ R2,
namely the st2 points y ∈ X \ {x} that are on one of the t2 lines through x disjoint from
L. If (x, z) ∈ R2, then there are s− 1 points y ∈ X such that (x, y), (y, z) ∈ R2, namely
the s − 1 points on the line xz distinct from x and z. If (x, z) ∈ R3, then there are t2
points y ∈ X for which (x, y), (y, z) ∈ R2, namely the t2 neighbours of x and z distinct
from x′ = z′. If (x, z) ∈ R4, then there are t2−1 points y ∈ X for which (x, y), (y, z) ∈ R2,
namely the t2 − 1 neighbours of x and z that do not lie on the lines xx′ and zz′.

We conclude that B2B2 = st2B0 + (s− 1)B2 + t2B3 + (t2 − 1)B4.

Suppose (x, y) ∈ R2 and (y, z) ∈ R3. Then x′ 6= y′ and y′ = z′ implies that x′ 6= z′,
i.e. (x, z) ∈ R2 ∪R4.

Suppose (x, z) ∈ R2. Any point y ∈ X satisfying (x, y) ∈ R2 and (y, z) ∈ R3 cannot
be contained in any of the lines xx′, xz and so must be contained in one of the t2 − 1
lines through x distinct from xx′ and xz. Each of these t2 − 1 lines contains a unique
point y ∈ X satisfying (x, y) ∈ R2 and (y, z) ∈ R3, namely the unique point of that line
collinear with z′.

Suppose (x, z) ∈ R4. Any point y ∈ X satisfying (x, y) ∈ R2 and (y, z) ∈ R3 cannot
be contained on xx′ nor on the unique line through x meeting zz′. On each of the t2 − 1
other lines through x, there is a unique choice for such a point, namely the unique point
on that line collinear with z′.

It follows that B2B3 = (t2 − 1)B2 + (t2 − 1)B4.

We compute that B2B4 = B2J −B2B0−B2B1−B2B2−B2B3 = st2B1 + (s− 1)(t2−
1)B2 + (s− 1)t2B3 + (st2 − 2t2 + 1)B4. �

The following is an immediate consequence of Lemma 3.2.
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Corollary 3.3 Putting F := J − s(B1 +B2) + (s2 − s)I, we find

FB0 = (s2 − s+ 1)B0 − (s− 1)B1 − (s− 1)B2 +B3 +B4,

FB1 = −(s− 1)2B0 + (2s− 1)B1 + (s− 1)B2 + (s− 1)B3 −B4,

FB2 = −s(s− 1)t2B0 + st2B1 + st2B2,

FB3 = s(t2 − 1)B0 + s(t2 − 1)B1 + s(t2 − 1)B3,

FB4 = s(s− 1)t2B0 − st2B1 + st2B4.

The equations in Corollary 3.3 can be summarized as

[B0 B1 B2 B3 B4]
T · F = (M ⊗ I) · [B0 B1 B2 B3 B4]

T ,

where M ⊗ I denotes the Kronecker product [13, Section 4.2] of the matrices M and I.
If p(X) ∈ R[X], then by Lemma 4.2.10 of [13], we know that

[B0 B1 B2 B3 B4]
T · p(F ) = (p(M)⊗ I) · [B0 B1 B2 B3 B4]

T .

In particular, we have [B0 B1 B2 B3 B4]
T · m(F ) = O, where m(X) ∈ R[X] is the

polynomial as defined in Lemma 3.1. This implies that m(F ) = B0m(F ) = O. So, the
minimal polynomial of F is a divisor of m(X) and its eigenvalues are λ1 := s2 + st2,
λ2 := st2 and λ3 := 0 (possibly with multiplicity 0). For every i ∈ {1, 2, 3}, let mi denote
the multiplicity of λi as an eigenvalue of F . Then

m1 +m2 +m3 = v = st2(s+ 1),
m1λ1 +m2λ2 +m3λ3 = Tr(F ),
m1λ

2
1 +m2λ

2
2 +m3λ

2
3 = Tr(F 2).

This linear system allows to compute the values for m1, m2 and m3 as soon as we know
the values of Tr(F ) and Tr(F 2). Since F = J − s(B1 + B2) + (s2 − s)I, we have
Tr(F ) = (s2 − s+ 1)st2(s+ 1). We compute

F 2 = J2 + s2(B2
1 +B2

2 + 2B1B2) + (s2 − s)2I
−2s(B1 +B2)J + 2(s2 − s)J − 2s2(s− 1)(B1 +B2)

= st2(s+ 1)J + s2
(

(s− 1)I + (s− 2)B1 + st2I + (s− 1)B2 + t2B3 + (t2 − 1)B4

+2B4

)
+ (s2 − s)2I − 2s(s− 1 + st2)J + 2(s2 − s)J − 2s2(s− 1)(B1 +B2).

From this one easily deduces that Tr(F 2) = s2t2(s + 1)(s2t2 − st2 + s3 − s2 + t2). The
above linear system can now be solved and we find the following solutions:

m1 =
(s2 − 1)st2
s+ t2

, m2 = s+ 1, m3 =
s+ 1

s+ t2
(st22 + st2 − s− t2).

From this, one easily deduces that rank(F ) = s+ 1 + (s2−1)st2
s+t2

.
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We thus see that the eigenspace corresponding to the eigenvalue st2 has degree s+ 1.
In fact, it is easy to describe this eigenspace. Put L = {x1, x2, . . . , xs+1}. We may
suppose that we have ordered the points p1, p2, . . . , pv in such a way that the points
in Γ1(x1) come first, followed by those in Γ1(x2), then those in Γ1(x3), etc. For every
i ∈ {1, 2, . . . , s + 1}, let wi be the column vector of dimensions st2(s + 1) × 1 such
that if j ∈ {1, 2, . . . , st2(s + 1)}, then (wi)j1 = 1 if (i − 1)st2 + 1 ≤ j ≤ i · st2 and
(wi)j1 = 0 otherwise. Then 〈w1, w2, . . . , ws+1〉 is the (s + 1)-dimensional eigenspace of F
corresponding to the eigenvalue st2.

Now, define E := B0 + B1 + B3. Taking the ordering of the points as above, we see
that E is a block diagonal matrix whose diagonal consists of s + 1 blocks of type Jst2 .
So, E has two eigenvalues, namely st2 with multiplicity s + 1 and 0 with multiplicity
(st2− 1)(s+ 1). The eigenspace corresponding to the eigenvalue st2 is obviously equal to
〈w1, w2, . . . , ws+1〉.

So, if Wi with i ∈ {1, 2, 3} denotes the eigenspace of F corresponding to the eigenvalue
λi, then W2 = 〈w1, w2, . . . , ws+1〉 and Rn is the orthogonal direct sum W1⊕W2⊕W3. As
W1 ⊕W3 is orthogonal with W2, it should be the eigenspace of E corresponding to the
eigenvalue 0.

Lemma 3.4 If E = B0 + B1 + B3 and F = J − s(B1 + B2) + (s2 − s)I = (B3 + B4) −
(s− 1)(B1 +B2) + (s2 − s+ 1)I, then the following hold:

(1) The matrix E has rank s+ 1.

(2) The matrix F − E has rank (s2−1)st2
s+t2

.

(3) The matrix [F E] has rank s+ 1 + (s2−1)st2
s+t2

.

Proof. (1) The matrix E has only one nonzero eigenvalue, namely st2, whose correspond-
ing eigenspace W2 has dimension s+ 1.

(2) The matrix F − E has two eigenvalues, namely s2 + st2 = s2 + st2 − 0 and
0 = st2− st2 = 0− 0, whose respective eigenspaces are W1 and 〈W2,W3〉. So, the rank of

F − E is equal to dim(W1) = m1 = (s2−1)st2
s+t2

.

(3) We have rank([F E]) = rank([F −E E]) = dim(W1)+dim(W2) = s+1+ (s2−1)st2
s+t2

.
Indeed, by the proof of part (2) we know that the column space of F −E is equal to W1,
and by the proof of part (1) we know that the column space of E is equal to W2. �

Remark. The eigenvalues and multiplicities of the matrix B1 + B2 were mentioned in
[9]. From this information, Lemma 3.4 can also be derived. We have opted to give a
self-contained proof of Lemma 3.4 since [9] was never published and only mentions the
values of eigenvalues and multiplicities.

4 Some ranks of other matrices

For given s, t ∈ N \ {0}, consider the partial linear space S that satisfies the following
properties:
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(1) Every line contains precisely s+ 1 points.

(2) There exists a line L in S that meets every other line.

(3) Every point of L is incident with precisely t lines distinct from L.

(4) Every point not incident with L is incident with a unique line meeting L.

Alternatively, S can also be obtained by considering a line pencil U consisting of t lines
of size s + 1 through a given point (the center), taking s + 1 isomorphic copies of U and
adding one extra line that contains the s+1 centers of these s+1 isomorphic line pencils.

Let X denote the set of all points of S not contained in L. Similarly as in Section
3, we can define relations R0, R1, R2, R3 and R4 on X. As every line meets L, we have
R2 = ∅. If x and y are two noncollinear points of X, then any path between x and y must
pass through their projections x′ and y′ on the line L, showing that also R4 = ∅. Note
that if t = 1, then also R3 = ∅.

If A is a square matrix and k ∈ N \ {0}, then D(A, k) denotes the block diagonal
matrix whose diagonal consists of k copies of the matrix A.

Put v := |X| = st(s + 1). Similarly as in Section 3, we can associate to each Ri,
i ∈ {0, 1, 2, 3, 4}, a real v × v matrix Bi. We have B0 = Iv and B2 = B4 = Ov.

Lemma 4.1 If E := B0+B1+B3 and F := (B3+B4)−(s−1)·(B1+B2)+(s2−s+1)Iv =
B3 − (s− 1)B1 + (s2 − s+ 1)Iv, then the following hold:

(1) rank(E) = s+ 1;

(2) rank(F − E) = t(s2 − 1);

(3) rank([F E]) = s+ 1 + t(s2 − 1).

Proof. Put L = {x1, x2, . . . , xs+1}. Without loss of generality, we may assume that
we have labeled the points in X in such a way that those collinear with x1 come first,
followed by those collinear with x2, etc. The collinearity graph Γ of S is the disjoint union
of (s+ 1)t cliques of size s, and we may suppose that we have labeled the points in each
Γ1(xi) in such a way that those belonging to the same clique occupy consecutive places.
Then

B0 = Iv,

B0 +B1 = U1 := D(Js, (s+ 1)t),

B0 +B1 +B3 = U2 := D(Jst, s+ 1).

We thus see that E = U2 has rank s+ 1. We compute that

F = B3 − (s− 1)B1 + (s2 − s+ 1)Iv

= (U2 − U1)− (s− 1)(U1 − Iv) + (s2 − s+ 1)Iv

= U2 − sU1 + s2Iv.
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Eigenspace Dimension Ẽ = Ũ2 Ũ1 Ĩv F̃ := Ũ2 − sŨ1 + s2Ĩv F̃ − Ẽ = −sŨ1 + s2Ĩv

〈w̄〉 1 st s 1 st 0

W1 t− 1 0 s 1 0 0

W2 (s− 1)t 0 0 1 s2 s2

Table 1: Eigenvalues of the matrices Ẽ = Ũ2, Ũ1, Ĩv, F̃ and F̃ − Ẽ

If we put Ũ2 = Jst, Ũ1 := D(Js, t) , Ĩv := Ist, Ẽ := Ũ2 and F̃ := Ũ2 − sŨ1 + s2Ĩv, then

F = D(F̃ , s+ 1) and E = D(Ẽ, s+ 1).
Consider the following column vectors of dimensions st× 1:

w̄ = [1 1 · · · 1 1]T ,

w̄1 = [1 1 · · · 1︸ ︷︷ ︸
s

0 0 · · · 0︸ ︷︷ ︸
s(t−1)

]T ,

w̄2 = [0 0 · · · 0︸ ︷︷ ︸
s

1 1 · · · 1︸ ︷︷ ︸
s

0 0 · · · 0︸ ︷︷ ︸
s(t−2)

]T ,

...

w̄t = [0 0 · · · 0︸ ︷︷ ︸
s(t−1)

1 1 · · · 1︸ ︷︷ ︸
s

]T .

Put W1 = 〈w̄1 − w̄2, . . . , w̄1 − w̄t〉 and let W2 denote the subspace 〈w̄1, w̄2, . . . , w̄t〉⊥
consisting of all column vectors of dimensions st × 1 that are orthogonal with each of
w̄1, w̄2, . . . , w̄t with respect to the standard inner product. Then Rst is the direct sum
〈w̄〉 ⊕W1 ⊕W2.

The matrices Ũ2, Ũ1 and Ĩv commute and so they have a common basis of eigenvectors,
see e.g. [14, Theorem 1.3.21]. Such a basis can be taken to be equal to {w̄} ∪ B1 ∪ B2,
where Bi with i ∈ {1, 2} is a basis of Wi. The corresponding eigenvalues are mentioned
in Table 1. From this table, we deduce that

• rank(Ẽ) = 1 and rank(F̃ − Ẽ) = (s− 1)t,

• the column space of F̃ − Ẽ is W2 and the one of Ẽ is 〈w̄〉,

• rank([F̃ Ẽ]) = rank([F̃ − Ẽ Ẽ]) = dim(〈W2, w̄〉) = 1 + (s− 1)t.

Since F = D(F̃ , s+ 1) and E = D(Ẽ, s+ 1), the claims of the lemma follow. �

5 Proof of Theorem 1.1

Let S = (P ,L, I) be a finite near hexagon of order (s, t), s ≥ 2. Let L = {x1, x2, . . . , xs+1}
be a line of S and suppose L is contained in precisely k ∈ N quads which we will denote
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by Q1, Q2, . . . , Qk. Put

Qk+1 :=
(

Γ1(L) \ (Q1 ∪Q2 ∪ · · · ∪Qk)
)
∪ L.

The sets Q1, Q2, . . . , Qk+1 determine a partition of the set Γ1(L) of points at distance 1

from L. If Qk+1 6= L, then the geometry Q̃k+1 induced on Qk+1 by the lines contained in
Qk+1 belongs to the family of geometries under consideration in Section 4.

Let p1, p2, . . . , pv with v = |P| be an ordering of the points of S. Without loss of
generality, we may suppose that we have ordered the points in such a way that the
(s + 1)st points in Γ1(L) come first. The points inside Γ1(L) will be ordered such that
those contained in Q1 come first, followed by those in Q2, then those in Q3, etc. The
points inside each Γ1(L) ∩ Qi are ordered such that those in Γ1(x1) come first, followed
by those in Γ1(x2), then those in Γ1(x3), etc... As explained in Section 4, the set Qk+1 \L
can be regarded as a union of cliques of size s. We also assume that inside each Γ1(xi) ∩
Γ1(L)∩Qk+1, the points are labeled such that those belonging to the same clique occupy
consecutive places.

For every i ∈ {1, 2, . . . , k}, let t
(i)
2 ∈ N \ {0} such that the generalized quadrangle Q̃i

has order (s, t
(i)
2 ). Put t

(k+1)
2 := t−t(1)2 −t

(2)
2 −· · ·−t

(k)
2 . Then for every i ∈ {1, 2, . . . , k+1}

and for every point x ∈ L, there are precisely t
(i)
2 lines through x distinct from L that are

contained in Qi. Put k̃ := k + 1 if Qk+1 6= L (or equivalently, t
(k+1)
2 6= 0), and k̃ := k

otherwise.
For all k1, k2 ∈ N\{0}, let J(k1, k2) denote the real k1×k2 matrix all whose entries are

equal to 1. For all i, j ∈ {1, 2, . . . , k̃}, denote by O(i,j) the real zero matrix of dimensions

(s+1)st
(i)
2 ×(s+1)st

(j)
2 , and by E(i,j) the real (s+1)st

(i)
2 ×(s+1)st

(j)
2 block diagonal matrix

whose diagonal consists of s+ 1 copies of J(st
(i)
2 , st

(j)
2 ), i.e. E(i,j) = D(J(st

(i)
2 , st

(j)
2 ), s+ 1)

using the notation of Section 4.
Consider now the matrix

C := A2 − (s− 1)A1 + (s2 − s+ 1)Iv,

which has rank v
α

+1 by Lemma 2.4. Let C̃ [Ã2, Ã1, respectively Ĩ] denote the submatrices
obtained by selecting the first (s + 1)st rows and columns of C [A2, A1, respectively Iv].
Then

rank(C̃) ≤ rank(C) =
v

α
+ 1

and
C̃ = Ã2 − (s− 1)Ã1 + (s2 − s+ 1)Ĩ .

For every i ∈ {1, 2, . . . , k̃}, let R
(i)
0 , R

(i)
1 , R

(i)
2 , R

(i)
3 , R

(i)
4 denote the relations of Qi \ L as

defined in Sections 3 and 4, and let B
(i)
0 , B

(i)
1 , B

(i)
2 , B

(i)
3 , B

(i)
4 denote the corresponding

matrices (as defined in these sections). By Brouwer and Wilbrink [4], every two collinear
points of Γ1(L) must lie in the same Qi, and every two points of Γ1(L) at distance 2 lie
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in the same Qi or have the same projection on L. This allows to conclude that

Ã1 =


B

(1)
1 +B

(1)
2 O(1,2) O(1,3) · · · O(1,k̃)

O(2,1) B
(2)
1 +B

(2)
2 O(2,3) · · · O(2,k̃)

O(3,1) O(3,2) B
(3)
1 +B

(3)
2 · · · O(3,k̃)

...
...

...
. . .

...

O(k̃,1) O(k̃,2) O(k̃,3) · · · Bk̃
1 +Bk̃

2

 ,

Ã2 =


B

(1)
3 +B

(1)
4 E(1,2) E(1,3) · · · E(1,k̃)

E(2,1) B
(2)
3 +B

(2)
4 E(2,3) · · · E(2,k̃)

E(3,1) E(3,2) B
(3)
3 +B

(3)
4 · · · E(3,k̃)

...
...

...
. . .

...

E(k̃,1) E(k̃,2) E(k̃,3) · · · B
(k̃)
3 +B

(k̃)
4

 .

Note that E(i,i) = B
(i)
0 +B

(i)
1 +B

(i)
3 for every i ∈ {0, 1, . . . , k̃}. We compute that

C̃ :=


F (1) E(1,2) E(1,3) · · · E(1,k̃)

E(2,1) F (2) E(2,3) · · · E(2,k̃)

E(3,1) E(3,2) F (3) · · · E(3,k̃)

...
...

...
. . .

...

E(k̃,1) E(k̃,2) E(k̃,3) · · · F (k̃)

 ,

where F (i) = (B
(i)
3 + B

(i)
4 ) − (s − 1) · (B(i)

1 + B
(i)
2 ) + (s2 − s + 1)I

(s+1)st
(i)
2

for every i ∈
{0, 1, . . . , k̃}. We now compute the rank of the matrix C̃. We will rely on the following
facts which follow from Lemmas 3.4, 4.1 and the definition of the E(i,j)’s.

(I) The rank of the matrix E(i,j), i, j ∈ {1, 2, . . . , k̃}, is equal to s+ 1.

(IIa) The rank of the matrix F (i) − E(i,i) is equal to
st

(i)
2 (s2−1)
s+t

(i)
2

for every i ∈ {1, 2, . . . , k}.

(IIb) If t
(k+1)
2 6= 0, then the rank of the matrix F (k+1)−E(k+1,k+1) is equal to t

(k+1)
2 (s2−1).

(IIIa) The rank of the matrix [F (i) E(i,i)] is equal to s + 1 +
st

(i)
2 (s2−1)
s+ti2

for every i ∈
{1, 2, . . . , k}.

(IIIb) If t
(k+1)
2 6= 0, then the rank of the matrix [F (k+1) E(k+1,k+1)] is equal to s + 1 +

t
(k+1)
2 (s2 − 1).

Note that the column spaces of the matrices E(i,i) and E(i,j) coincide for all i, j ∈
{1, 2, . . . , k̃} (due to the repetition of columns). We then see that the following also
hold:
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(IIIa’) The rank of the matrix [F (i) E(i,j)] is equal to s + 1 +
st

(i)
2 (s2−1)
s+ti2

for every i ∈
{1, 2, . . . , k} and every j ∈ {1, 2, . . . , k̃}.

(IIIb’) If t
(k+1)
2 6= 0, then the rank of the matrix [F (k+1) E(k+1,i)] is equal to s+1+t

(k+1)
2 (s2−

1) for every i ∈ {1, 2, . . . , k + 1}.

The rank of the sum of two matrices is at most the sum of the ranks of these matrices.
So, the rank of C̃ is at most the sum of the ranks of the matrices

F (1) − E(1,1) O(1,2) O(1,3) · · · O(1,k̃)

O(2,1) F (2) − E(2,2) O(2,3) · · · O(2,k̃)

O(3,1) O(3,2) F (3) − E(3,3) · · · O(3,k̃)

...
...

...
. . .

...

O(k̃,1) O(k̃,2) O(k̃,3) · · · F k̃ − E(k̃,k̃)

 ,

E(1,1) E(1,2) E(1,3) · · · E(1,k̃)

E(2,1) E(2,2) E(2,3) · · · E(2,k̃)

E(3,1) E(3,2) E(3,3) · · · E(3,k̃)

...
...

...
. . .

...

E(k̃,1) E(k̃,2) E(k̃,3) · · · E(k̃,k̃)

 ,
i.e. at most

(s2 − 1) ·
( st

(1)
2

s+ t
(1)
2

+
st

(2)
2

s+ t
(2)
2

+ · · ·+ st
(k)
2

s+ t
(k)
2

+ t
(k+1)
2

)
+ (s+ 1)

= (s+ 1) + (s2 − 1) ·
( st

(1)
2

s+ t
(1)
2

+
st

(2)
2

s+ t
(2)
2

+ · · ·+ st
(k)
2

s+ t
(k)
2

+ t− t(1)2 − t
(2)
2 − · · · − tk2

)
= (s+ 1) + (s2 − 1) ·

(
t− (t

(1)
2 )2

s+ t
(1)
2

− (t
(2)
2 )2

s+ t
(2)
2

− · · · − (t
(k)
2 )2

s+ t
(k)
2

)
. (2)

Now, consider C̃ as a block diagonal matrix of dimensions k̃× k̃, and denote by C̃(i) with

i ∈ {1, 2, . . . , k̃} the matrix obtained from C̃ by selecting the first i rows (of blocks). We
prove by induction on i ∈ {1, 2, . . . , k} that

rank(C̃(i)) ≥ (s+ 1) +
( i∑
j=1

(s2 − 1)st
(i)
2

s+ t
(i)
2

)
.

Looking at the column span of C̃(1) and invoking (IIIa’), we indeed see that

rank(C̃(1)) = (s+ 1) +
st

(1)
2 (s2 − 1)

s+ t
(1)
2

.
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Now, suppose that

rank(C̃(i)) ≥ s+ 1 +
i∑

j=1

st
(i)
2 (s2 − 1)

s+ t
(i)
2

for a certain i ∈ {1, 2, . . . , k − 1}.
For every j ∈ {1, 2, . . . , st(s+ 1)}, let ej be the row matrix of dimensions 1× st(t+ 1),

all whose entries are equal to 0, except for the jth one which is equal to 1. Then the real
vector space V of all row matrices of dimensions 1× st(t + 1) can be written as a direct
sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk̃,
where

V1 := 〈e1, . . . , est(1)2 (s+1)
〉,

V2 := 〈e
st

(1)
2 (s+1)+1

, . . . , e
s(t

(1)
2 +t

(2)
2 )(s+1)

〉,
...

Vk := 〈e
s(t

(1)
2 +···+t(k−1)

2 )(s+1)+1
, . . . , e

s(t
(1)
2 +···+t(k)2 )(s+1)

〉.

If k̃ = k + 1, i.e. t
(k+1)
2 6= 0, then we define

Vk+1 := 〈e
s(t

(1)
2 +···+t(k)2 )(s+1)+1

, . . . , est(s+1)〉.

For every j ∈ {1, 2, . . . , k̃}, let Πj : V → Vj be the canonical projection operator from V

on the subspace Vj. For every j ∈ {1, 2, . . . , k̃}, let Wj denote the row span of the matrix

C̃(j). Then Properties (I) and (IIIa’) imply the following:

• Πi+1(Wi) has dimension s+ 1;

• Πi+1(Wi+1) has dimension s+ 1 +
st

(i+1)
2 (s2−1)
s+t

(i+1)
2

.

It follows that dim(Wi+1) ≥ dim(Wi) +
st

(i+1)
2 (s2−1)
t
(i+1)
2 +s

= rank(C̃(i)) +
st

(i+1)
2 (s2−1)
t
(i+1)
2 +s

and hence

rank(C̃(i+1)) = dim(Wi+1) ≥ rank(C̃(i))+
st

(i+1)
2 (s2 − 1)

t
(i+1)
2 + s

≥ s+1+
( i+1∑
j=1

st
(j)
2 (s2 − 1)

s+ t
(j)
2

)
.

We thus know that

rank(C̃(k)) ≥ s+ 1 +
( k∑
j=1

st
(j)
2 (s2 − 1)

s+ t
(j)
2

)
.

Note that rank(C̃) = rank(C̃(k)) if k̃ = k.

Suppose now that k̃ = k+ 1, or equivalently, t
(k+1)
2 6= 0. By Properties (I) and (IIIb’),

we also know
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• Πk+1(Wk) has dimension s+ 1;

• Πk+1(Wk+1) has dimension s+ 1 + t
(k+1)
2 (s2 − 1).

It follows that dim(Wk+1) ≥ dim(Wk) + t
(k+1)
2 (s2 − 1). Hence,

rank(C̃) = rank(C̃(k+1)) ≥ rank(C̃(k))+t
(k+1)
2 (s2−1) ≥ (s+1)+(s2−1)·

(
t
(k+1)
2 +

k∑
j=1

st
(j)
2

s+ t
(j)
2

)
.

Comparing the lower bound for rank(C̃) with the upper bound obtained in (2), we find

rank(C̃) = (s+ 1) + (s2 − 1) ·
(
t
(k+1)
2 +

k∑
j=1

st
(j)
2

s+ t
(j)
2

)
= (s+ 1) + (s2 − 1) ·

(
t−

k∑
j=1

(t
(j)
2 )2

s+ t
(j)
2

)
,

regardless of whether k̃ = k or k̃ = k + 1. From rank(C̃) ≤ rank(C), we deduce that

(s+ 1) + (s2 − 1) ·
(
t−

k∑
j=1

(t
(j)
2 )2

s+ t
(j)
2

)
≤ v

α
+ 1,

which is equivalent to

k∑
j=1

(t
(j)
2 )2

s+ t
(j)
2

≥ t− s(s2 + 1)v − s(s+ 1)(s2 + 1)− s2t(s+ 1)

(s+ 1)(s4 − 1) + st(s− 1)(s+ 1)2 + v
.

Remark. In [9], the matrix C̃ was written as the sum of two matrices, where one of them
was the “block diagonal matrix” with “diagonal entries” equal to F (1), F (2), . . . , F (k). For
the case under consideration in [9], namely for regular near hexagons with parameter
t2 > 0, these two matrices commute and thus have a common basis of eigenvectors. For
the cases under consideration here, these two matrices do not necessarily commute and
so we had to resort to different methods for computing the rank of C̃.
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