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Baobab (Adansonia digitataL.) is an iconic tree ofAfrican savannahs.
Itsmultipurpose characterandnutritional compositionof fruits and
leaves offer high economic and social potential for local
communities. There is an urgent need to characterize the genetic
diversity of the Kenyan baobab populations in order to facilitate
further conservation and domestication programmes. This study
aims at documenting the genetic diversity and structure of
baobab populations in southeastern Kenya. Leaf or bark samples
were collected from 189 baobab trees in seven populations
distributed in two geographical groups, i.e. four inland and three
coastal populations. Nine microsatellite loci were used to assess
genetic diversity. Overall, genetic diversity of the species was high
and similarly distributed over the populations. Bayesian
clustering and principal coordinate analysis congruently divided
the populations into two distinct clusters, suggesting significant
differences between inland and coastal populations. The genetic
differentiation between coastal and inland populations suggests a
limited possibility of gene flow between these populations.
Further conservation and domestications studies should take into
consideration thegeographical origin of trees and more attention
should be paid to morphological characterization of fruits and
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1. Background
The multipurpose tree species Adansonia digitata L., well-known as ‘baobab’, is one of the most important
indigenous fruit trees of sub-Saharan Africa, with substantial social and economic importance [1,2]. The
tree provides food, medicine and fibre, whereas almost all tree parts, i.e. fruit pulp and shells, seeds,
leaves, flowers, roots and bark can be used [3]. Baobabs contribute significantly to economy of many
rural communities [4]. Mainly leaves and fruits are collected for food and sold as raw or processed
into a variety of products at local or international markets.

Baobab is considered to be a semi-domesticated species [5]. Humans have played an important role in
current baobab distribution and the species’ genetic structure. Local villagers, farmers and traders have
been transporting fruits from village to village, and therefore contributing significantly to baobab dispersal
and gene flow [5], not only limited to Africa but also to other continents, e.g. Caribbean Islands and India [6].

However, with increasing market demand and changing climate, the pressure on natural populations
may negatively influence their viability. Domestication and sustainable cultivation of baobabs can be an
option to increase production and at the same time conserve current natural populations [7]. However, to
achieve sustainable domestication, characterization of population genetics is an important step. Such
findings provide valuable insights into the genetic diversity, history of the species, population
structure and therefore help with further tree management, breeding and conservation strategies.
Results of this study may help to select elite baobab trees for domestication from distinct genetic
pools, thus minimizing the loss of genetic diversity that often happens during domestication [8].

In the current study, the genetic characterization of baobab populations from Kenya is assessed by
microsatellites (single sequence repeat, SSR) markers. Microsatellites are molecular markers suitable for
various applications such as parentage analysis, conservation genetics, phylogeography, population
genetics, etc. (as cited in [9]). Even though newer molecular methods are available, such as genotyping by
sequencing, or restriction site-associated DNA sequencing, microsatellites are still effective and cost-
efficient markers to use [9]. However, owing to the fact that baobab is tetraploid, the analysis of genetic
data and their interpretation requires more scrutiny than with diploid species [10]. Studies on baobab
genetic resources have been reported from West African countries such as Benin, Ghana, Burkina Faso
and Senegal [5,11,12], while East Africa is represented by studies from Malawi and Sudan [2,13]. In
studies from Sudan and Malawi, microsatellite loci developed for A. digitata [14] were applied, while
studies from West Africa used amplified fragment length polymorphism (AFLP) markers. In an extensive
genetic study of chloroplast DNA, analysing samples across the whole African continent [15], the authors
found clear differentiation of the populations of A. digitata of West African versus South/East African
origin. From East Africa, A. digitata was introduced by migrating people to the Indian subcontinent, most
probably from coastal regions of Kenya and Tanzania [6]; however up until now, not much is known
about genetic structure within East African countries, e.g. among coastal and inland populations.

In Kenya, baobab can be found in the eastern part of the country in two belts; the inland belt (from
the Tanzanian border east of Mount Kilimanjaro towards the northeast around Kitui Town) and coastal
belt [16]. In Kenya, it occurs in a wide altitudinal range (from sea level up to 1058 m above sea level
(m.a.s.l)) and in diverse vegetation types such as deciduous bushland, woodland and wooden
grassland, but also thrives in areas with high rainfall on the coast [16,17]. These broad and diverse
occurrences of baobabs in Kenya are not yet thoroughly studied from the genetic point of view.
Therefore, the main objective of the study was to assess the level of genetic diversity and the genetic
structure of baobab populations in southeastern Kenya using highly variable microsatellite markers.
The results of this study will contribute to the general knowledge of baobab genetic resources in East
Africa and will be useful in further conservation and domestication programmes.
2. Material and methods
2.1. Study site
The present study was carried out in the Makueni and Taita Taveta Counties located in inland
southeastern Kenya, and in Kwale and Kilifi Counties located on the Kenyan coast. The inland
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Figure 1. Map of Kenya, displaying the sampled baobab populations. (a) An overview map of all populations, (b) inland
populations: Kibwezi, Mtito Andei, Chyulu, Voi, and (c) coastal populations: Diani, Malindi and Kilifi.
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locations have a rather hot, semi-arid climate with an average rainfall from 500 to 700 mm yr−1, a mean
annual temperature of 23°C, and the most common soils are Luvisols and Ferralsols [18]. Trees from
inland populations were sampled at an altitude range from 657 to 1058 m.a.s.l. The coastal sampling
locations occur in tropical savannah climate with the mean annual rainfall ranging from 500 to
1500 mm, mean annual temperature of 26°C, and soils belong to many different types such as
Luvisols, Ferralsols, Arenosols, Planosols, Vertisols or Acrisols [19]. Trees sampled in coastal areas
were found at low altitude ranging from 6 to 54 m.a.s.l.

2.2. Tree sampling and data collection
In total, 189 individual trees were sampled from seven populations (inland populations: Kibwezi, Mtito
Andei, Chyulu, Voi, coastal populations: Diani, Malindi, and Kilifi) during July–August 2015, figure 1
and table 1. The sampling was designed along transects corresponding to the Nairobi-Mombasa-
Highway and along the coastline to cover the broad altitudinal range (from 6 to 1058 m.a.s.l.) of baobab
occurrence in Kenya. The trees were sampled on 64 pre-selected farms along the transect (n = 146) (K.
Kehlenbeck & C. Waruhiu 2015, unpublished data), and in the Chyulu Hills National Park (n = 43), a
population which provided baobab trees at the highest elevation in the sampling area.

For each of the sampled trees, one to two healthy leaves were collected or about 5 cm2 bark sample as
an alternative source of DNA if no leaves were present. Samples were inserted into permeable paper
bags, labelled, stored in sealed plastic boxes with silica gel for drying and transported to Prague,
Czech Republic, for genetic analysis at the molecular laboratory of Czech University of Life Sciences
Prague (CULS).

2.3. DNA extraction and SSR analyses
For DNA extraction, the cetrimonium bromide (CTAB) method was used [22]. Plant material was ground
and powder was subsequently suspended in a CTAB lysis buffer (2% CTAB, 1.4 mol l−1 NaCl, 0.1 mol l−1

Tris–HCl pH 8.0, 20 mmol l−1 ethylenediaminetetraacetic acid (EDTA), 1% v/v polyvinylpyrrolidone,
0.2% v/v 2-mercaptoethanol) for 30 min at 60°C. The suspension was incubated with an equal volume of
chloroform-isoamylalcohol (24 : 1), and DNA was precipitated from the aqueous phase by 0.7 volumes of
isopropanol. After washing with 70% ethanol, DNA was dissolved in water and treated by RNase A
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(250 µg ml−1). DNA concentration and purity were measured on a NanoDrop™ spectrophotometer.

Samples were diluted to final concentrations of 25 ng µl−1 for further polymerase chain reaction (PCR).
Nine microsatellite primer pairs (Ad01, Ad05, Ad06, Ad08, Ad09, Ad11, Ad13, Ad17, Ad18)

originally developed for A. digitata by Larsen et al. [14] were applied to the 189 samples. Forward
primers were fluorescently labelled for detection by four colours: 6-FAM (Generi Biotech, Czech
Republic), PET, NED and VIC (Thermo Fisher Scientific, USA). Two multiplex PCRs were established:
multiplex PCR 1 consisted of six primer pairs: Ad05, Ad08, Ad09, Ad13, Ad17, Ad18; multiplex PCR
2 contained three primer pairs: Ad01, Ad06, Ad11. The PCR reaction mixture was set up in a total
volume of 12 µl containing 1 µl of DNA (25 ng µl−1), 4.4 µl of primer mix (each primer 10 mM), 0.9 µl
of 10× TaqBuffer (Thermo Fisher Scientific), 0.9 µl of 10 mM dNTP Mix (Thermo Fisher Scientific),
0.9 µl of 2.5 mM MgCl2 (Thermo Fisher Scientific), 0.7 µl 5 U of Taq DNA polymerase (Thermo Fisher
Scientific) and 3.2 µl of nuclease-free water. PCR amplifications were conducted separately for primer
mix 1 (PM1) and primer mix 2 (PM2) in a T100 Thermal Cycler (Bio-Rad, USA) by performing the
following steps: 2 min of denaturation at 95°C followed by 36 cycles at 95°C for 30 s, 58°C for 1 min
and elongation at 72°C for 2 min 30 s and a final extension for 7 min at 72°C. PCR products of PM1
and PM2 were mixed in a ratio of 1 : 2 to create a multiplex for fragment analysis by capillary
electrophoresis. The PCR products thus prepared were mixed with GeneTrace 500 LIZ size standard
(Carolina Biosystems, Czech Republic) and analysed on a Genetic Analyser 3500 (Applied Biosystems,
USA). Microsatellite alleles were scored using GENEMARKER v. 2.4.0 (SoftGenetics, USA).
190854
2.4. Data analysis

2.4.1. Genetic diversity and population differentiation

Considering the tetraploid nature of A. digitata, we used software SPAGEDI v. 1.5 that can handle
polyploid species [20]. The number of alleles (NA), effective number of alleles (NAe, [23]), gene
diversity corrected for sample sizes (He, [24]), observed heterozygosity (Ho) and inbreeding
coefficients (Fis) were computed for all populations. The same program was used to estimate the
pairwise population differentiation ρ statistic [25] and geographical differentiation among populations.
According to Meirmans et al. [10], the ρ statistic is the most relevant alternative to FST to assess the
population differentiation for polyploid species. Microsatellite data from tetraploid A. digitata were
converted to a binary matrix to calculate Nei’s genetic diversity (H ) and analyses of molecular
variance (AMOVA). H was computed from binary data in GENALEX 6.5 [21], and the binary matrix
was also applied for an AMOVA by ARLEQUIN 3.5 [26]. Two different approaches, i.e. a direct
estimation of allele frequencies based on SPAGEDI and a conversion of allele data to a binary
presence/absence matrix, were applied to obtain sufficient results.
2.4.2. Population structure

Owing to allele copy ambiguity in tetraploid datasets, the determination of precise genotypes and allele
frequencies was impossible. Here, the coding of microsatellite data was employed using the POLYSAT

package [27] in R 3.1.1 [28]. Using this package, a principal coordinate analysis (PCoA) was
performed based on the matrix of Bruvo distances between individuals. The input files to software
SPAGEDI and STRUCTURE 2.3.4 [29] were prepared using POLYSAT. Bayesian model-based clustering of
microsatellite data was computed in STRUCTURE 2.3.4.

To reveal the number of clusters, samples were divided into three datasets: one containing all
samples, one with only inland samples and one with only coastal samples. Janes et al. [30] reported
that ΔK frequently identifies K = 2 even if more subpopulations are present; therefore, it may cause an
over- or underestimation of population genetic structure. To prevent this, a division of samples was
done to reveal if there is more genetic structure within each of the two regions. In STRUCTURE, the
admixture model and correlated allele frequency model were applied [29]. Then, STRUCTURE was run
for each dataset with a burn-in period of 100 000 followed by 100 000 Markov chain Monte Carlo
steps. For each dataset, the number of clusters (K ) was adjusted as follows: K = 1–10 for all samples,
K = 1–7 for inland samples and K = 1–6 for coastal samples. Each K-value was replicated 10 times.
Owing to the unbalanced sampling of populations, the ALPHA (α) parameters were set as follows: for
all individuals α = 0.1, for inland samples α = 0.14, and for coastal samples α = 0.17 [31]. The output
data from STRUCTURE were analysed in the STRUCTURE HARVESTER [32] to assess the optimal K following



Table 2. Pairwise geographical (above diagonal) and genetic differentiation (ρ, [25]) among baobab (A. digitata) populations
from the seven studied locations (below diagonal) in southeastern Kenya.

Kibwezi Mtito Andei Voi Chyulu Hills Diani Kilifi Malindi

Kibwezi 29 114 8 270 243 238

Mtito Andei 0.000 85 33 241 216 215

Voi 0.022 0.040 116 160 150 170

Chyulu Hills 0.004 0.000 0.035 274 248 245

Diani 0.289 0.313 0.330 0.289 71 132

Kilifi 0.288 0.302 0.320 0.291 0.044 61

Malindi 0.296 0.306 0.331 0.305 0.148 0.071

royalsocietypublishing.org/journal/rsos
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the ΔKmethod of Evanno et al. [33]. Cluster alignment of replicates was conducted in CLUMPP v. 1.1.2 [34],
and graphically visualized with DISTRUCT v. 1.1 [35].
sci.6:190854
3. Results
3.1. Genetic diversity
A total of 117 alleles were scored among nine loci. Allele frequencies and gene diversity computed per
population are shown in table 1. The effective number of alleles per population ranged from 4 to 6,
while the number of alleles per locus ranged from 5 to 11. Overall gene diversity (He) was high for
all populations (greater than 0.71) (table 1). The overall observed heterozygosity (Ho) was also high
(greater than 0.79); the Ho for single populations was always higher than He. The mean values of
the inbreeding coefficient (Fis) ranged from –0.136 to 0.049 (table 1), the negative values indicate a
slight deficit of homozygotes, the values closer to zero exhibit rather a balance between
homozygotes and heterozygotes within populations. Similar values were found for combined inland
and coastal individuals, with lower Fis in inland populations resulting from higher observed
heterozygosity.

Genetic differentiation (ρ) computed for the seven populations and compared with the geographical
distances are presented in table 2. While genetic differentiation (ρ) between coastal and inland
populations was generally high (greater than 0.090), differentiation within each of the two regions
was very low. The lowest genetic differentiation was revealed between Mtito Andei and Kibwezi (0.0)
as well as Chyulu populations (0.004). These were also the locations with short geographical distances
of only about 29–33 km each. The highest values of genetic differentiation were found between Voi
and Diani as well as Voi and Malindi (range 0.330–0.331) (table 2). In general, ρ values among the
four studied inland populations were low, ranging from 0.000 to 0.040, but moderate among the three
studied coastal populations (0.044–0.148).

AMOVA calculated for all seven populations revealed low variation among (9.4%) and high variation
within populations (90.6%). Separating inland and coastal regions, data showed 22.1% variance among
and 77.9% within groups. AMOVAs conducted separately for inland and coastal populations revealed
low variation among populations (table 3).

3.2. Population structure
The true number of clusters among all samples was detected for K = 2 (figure 2a), based on the Evanno
et al. [33] statistics obtained from STRUCTURE HARVESTER [32]. These results are presented in the electronic
supplementary material, S2. The bar plot resulting for two clusters clearly differentiated inland and
coastal individuals. To reveal if there is a genetic structure within inland and coastal populations,
subclustering analyses were performed for each region. For inland populations, we determined
optimal K = 4 and for coastal populations K = 3. However, we did not identify any clear structure
within either of the two regions (figure 2b,c). Similar results to the STRUCTURE analysis were obtained
from the PCoA (figure 3). Within the inland and coastal clusters, individuals did not reflect any
population structure but were clearly separated by the region.
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Figure 2. Bayesian clustering analysis based on nine SSR markers data for baobab (A. digitata) populations from southeastern Kenya
performed using STRUCTURE [29] for (a) all seven pre-defined populations, where two main clusters (K = 2)—inland and coastal—
were identified. (b) Cluster analysis for only inland populations (K = 4) and (c) coastal populations (K = 3).

Table 3. Analysis of molecular variance (AMOVA) for baobab (A. digitata) populations in southeastern Kenya show variation
among and within groups/populations. (AMOVA was assessed for all seven populations, for the coastal and inland group, for
coastal and inland individuals, and for inland (four) and for coastal populations (three) separately. d.f., degrees of freedom; p <
0.001, 10 000 permutations.)

d.f.
sum of
squares

variance
components

percentage of
variation

among all seven populations 6 267.48 1.34 9.40

within all seven populations 2358.96 12.96 90.60

among inland and costal group 1 179.29 3.71 22.07

within inland and costal group 2447.15 13.09 77.93

among four inland populations 3 56.01 0.15 1.12

within four inland populations 2106.34 13.25 98.88

among three coastal populations 2 32.18 0.61 5.23

within three coastal populations 252.63 10.98 94.77
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4. Discussion
4.1. Genetic diversity and differentiation
Only a few studies have been published on the genetic diversity of A. digitata using microsatellites
[2,6,13]. Genetic diversity represented by He and H was shown to be similar to Sudanese baobab
populations [2]. Slightly higher values of H were observed in Malawian baobab populations [13]. In
West Africa, AFLP markers were used to estimate genetic diversity and genetic structure of A.
digitata. Although not directly comparable to our findings, genetic diversity was also high
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[5,11,12]. Baobab populations across the African continent seem to possess high genetic diversity.
Such populations are generally considered to be healthy, with greater resistance to pest and disease,
and lower susceptibility to environmental changes [36]. Genetic diversity and population structure
of a plant species are directly influenced by its reproductive system and gene flow [37]. Baobab is a
self-incompatible species [38] possessing a reproductive mechanism common for most angiosperm
plants which help to maintain and increase diversity within populations as cited in [37]. The major
baobab pollinators are fruit bats [39], and seed dispersal is commonly mediated by humans and
many animals (e.g. elephants, baboons, chimpanzees, eland) [17]. The movement of pollinators
and dispersal agents has an important role in the current genetic diversity of baobabs.
Furthermore, the level of diversity is influenced by the baobab’s tetraploid nature. Polyploids
are generally known to have higher levels of genetic diversity compared to diploid species,
owing to a larger total number of chromosome copies [10]. Thus, polyploid species may result in
broader ecological amplitudes [40,41].

Genetic differentiation (ρ) was low within both inland and coastal regions which indicates sufficient
gene flow within both regions. Similarly, in Sudan, low genetic differentiation was found among
populations in the Nuba Mountains [2]. Nevertheless, substantially higher ρ values were observed
among both regions in Kenya. This fact suggests rather limited gene flow between inland and coastal
populations. Interestingly, patterns of genetic differentiation are not correlated to geographical
distances, as the geographical distance between Voi (inland, but closest to coast) and Kilifi (coast, but
closest to inland) was almost similar to those between the two inland populations Kibwezi and Voi
(figure 1), but reported ρ values differ strongly (0.320 and 0.022, respectively). A similar observation
was made in Malawi where the closest geographical populations (56 km) were clustered separately,
whereas populations 204 km apart were clustered together [13]. This implies that geographical
distance is not the main factor that shapes patterns of baobab diversity, which is not uncommon in a
semi-domesticated species [42].

In the present study, most genetic variation (greater than 90%) was found within the seven surveyed
populations and 9.4% of the variation was observed among populations based on AMOVA analysis.
Results are in line with the findings of Wiehle et al. [2], who also reported low variation among (7.1%)
and high within-location variation (92.9%) in Sudan. However, AMOVA was also performed among
and within inland and the coastal regions only, where substantially higher values between two
regions were found (22.07%). These results support the fact that there is a limited gene flow between
coastal and inland regions.

4.2. Population structure
Bayesian clustering and PCoA separated baobabs into two groups according to their geographical origin,
i.e. to inland and coastal clusters. One of the factors to explain these findings may be elevation; inland
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populations are found in higher altitudes (greater than 600 m.a.s.l.) while coastal populations are found

close to sea level (less than 60 m.a.s.l.), with substantially different climate conditions. Therefore, climate
and elevation may explain the current population structure. Moreover, baobabs have different
phenologies in the two regions. Based on personal observations, inland trees bore fruit earlier than
those at the coast. This is most likely caused by different flowering times, and therefore, the gene flow
between both regions is very limited. The main baobab pollinators, fruit bats [39], may play a
significant role in shaping genetic structure [37]. The fruit bat Rousettus aegyptiacus was reported to
pollinate baobab flowers at the coastal region in Kenya [43], however, no information is available for
the inland region. Bats may contribute to long-distance pollen dispersal and ensure the genetic
connectivity [44], but R. aegyptiacus might not be responsible for the pollination of baobab in inland
regions and therefore not supporting gene flow between coastal and inland baobab populations.
However, the behaviour of bats is largely unknown, only a few studies have been carried out (as cited
in [4,39]) and more research with a focus on pollination of baobabs should be performed to truly
understand the pollinator’s behaviour and its effects on baobab populations.

The clear differences between inland and coastal clusters as shown in the present study were
observed in a similar way in some other studies. In Benin, for example, coastal populations (in the
Guinean climatic zone) were also clearly divided from inland populations [5]. A study by Bell et al.
[6] also described strong differentiations between inland and coastal clusters for baobabs sampled in
East and southeast African regions (Mozambique, Tanzania, Kenya and South Africa). The baobab is
a typical savannah tree, and coastal climatic conditions, where the climate is more humid, may be
limiting for the occurrence of the tree. Thus, Assogbadjo et al. [5] explained Benin’s baobab
distribution by climatic changes (dry era) in the late Holocene about 3700 years BP in the coastal area.
These climatic conditions allowed the baobab to reach the coast and to grow there. According to
them, later, the baobabs may have adjusted to the more humid conditions, which can be found there
nowadays. Therefore, a similar change of climatic condition may also have occurred in Kenya and
other coastal areas of East Africa. Apart from the climate, the different edaphic conditions of the
coastal areas may have acted as a factor of selection pressure on African baobab populations [45]. As
the coastal soils are often formed on calcareous sedimentary rocks, the baobabs may have adapted to
the alkalinity and lack of nutrients typical for these sites, as edaphic adaptation is a known driver of
evolution of ecotypes and speciation in plants [46,47]. Another possibility is a more recent
introduction of baobabs to the coastal region by humans. Ancient Africans who belonged to farming,
nomadic and fishing communities were familiar with the numerous uses of baobabs, and they carried
the lightweight and nutritious baobab fruits when travelling overland [6]. Such journeys might have
introduced the baobabs to the coastal regions where the trees adjusted to the new environment
without being able to exchange pollen with inland individuals and over time, they evolved to a
coastal ecotype, because both factors influencing evolution, i.e. selection pressure and a barrier to
gene flow, are present [48].

However, the reason for such genetic differentiation remains unrevealed. Most probably, different
population histories associated with climate change or even human intervention could have caused
the current genetic differentiation. Therefore, nowadays baobabs from both regions are not capable of
gene exchange owing to different phenology and flowering time. The fact that those findings were
also observed in other parts of Africa e.g. Benin, Mozambique, Tanzania, Kenya [5,6] means that
further studies should look if such genetic differentiation also reflects some morphological changes
within the trees. If yes, it could reveal two distinct baobab ecotypes (coastal and inland), with a
special adaptation to climatic and environmental conditions of the two locations.
5. Conclusion
This study has revealed high genetic diversity in all studied baobab populations and strong
differentiation between inland and coastal populations. The differentiation cannot be easily explained
but may have been caused by different population histories supported by particular climatic
conditions, which prevent genetic exchange between the two study regions. Thus, gene flow mostly
occurs within populations in both regions, a fact which is also important for conservation and
management issues. The results of this study contribute to the general knowledge of baobab trees in
East Africa and may help to further conservation and domestication programmes. Selection of baobab
elite trees for domestication should be done separately in the two study regions to maintain
the genetic diversity of the species. We also recommend more intensive sampling and analysis of the
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genetic and morphological characterization of coastal and inland baobab populations across Africa to

assess if such differentiation could also be found in other parts of the continent. This would be
helpful in revealing new facts about phylogeography, genetics and morphology of this species.
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