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Abstract 

Motivation: Accurate prediction of liquid chromatographic retention times from small 

molecule structures is useful for reducing experimental measurements and for improved 

identification in targeted and untargeted MS. However, different experimental setups (e.g. 

differences in columns, gradients, solvents, or stationary phase) have given rise to a 

multitude of prediction models that only predict accurate retention times for a specific 

experimental setup. In practice this typically results in the fitting of a new predictive model 

for each specific type of setup, which is not only inefficient but also requires substantial prior 

data to be accumulated on each such setup. 

Results: Here we introduce the concept of generalized calibration, which is capable of the 

straightforward mapping of retention time models between different experimental setups. 

This concept builds on the database-controlled calibration approach implemented in 

PredRet, and fits calibration curves on predicted retention times instead of only on observed 

retention times. We show that this approach results in significantly higher accuracy of 

elution peak prediction than is achieved by setup-specific models. 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted January 14, 2020. . https://doi.org/10.1101/2020.01.14.905844doi: bioRxiv preprint brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/333624799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1101/2020.01.14.905844
http://creativecommons.org/licenses/by-nd/4.0/


2 

Introduction 

Mass spectrometry (MS) coupled to liquid chromatography (LC) is a key method for high-

throughput analysis of the metabolome. The LC-based separation, which separates 

analytes based on their broader physicochemical properties, is carried out before the MS 

analysis, and ensures that only a fraction of the analytes compete for ionization over time, 

leading to less isobaric analytes being captured in the same fragmentation spectrum. LC 

separation thus enables more sensitive identification of low abundant analytes, as there 

is less competition for ionization, and as isobaric analytes are more likely to result in 

individual fragmentation spectra1–3. In addition to these benefits, the retention time (𝑡 ) of 

an analyte provides complementary information to the mass-to-charge (m/z), as it derives 

from a broader set of physiochemical properties of the analyte. This complementary 

information can be especially beneficial in metabolomics where many of the analytes are 

isobaric 4,5. 

 

Even though the retention time has been shown to be a useful component for the 

identification of analytes 4,6–17, the incorporation in identification software remains limited. 

This is mainly due to the limited availability of retention time information in small molecule 

libraries, which in turn is tied to the variance in retention time caused by specific LC setups 

8,18,19. 

 

It would therefore be ideal to be able to predict observed retention times on a given LC 

setup for all known small molecule structures in databases, which has resulted in 

increasing interest in modeling chromatographic setups and associated retention times. 

There are two main strategies to achieve this: retention time inference using observed 

retention times for a given set of analytes on different experimental setups as anchors 

4,20–22, or predicting retention times from structure alone4,6,8,23. Because this first strategy 
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relies on data from multiple setups for the same set of analytes, it requires that these 

analytes have been consistently observed across setups, and is limited by the number of 

different setups for which these analytes have been observed24. The second strategy 

finds the relation between structural features (e.g. quantitative structure-retention 

relationships25) and retention time using Machine Learning (ML) algorithms. Because of 

their predictive nature, these models are not limited by prior observations of an analyte, 

but rather by the availability of structures for the analytes of interest. However, this 

limitation is strongly mitigated due to the availability of extensive databases of small 

molecule structures 26–28. 

 

As a result, such ML models have already been applied in non-targeted mass 

spectrometry to improve identification rates. For example, predicted retention times were 

used to halve the number of candidate isobaric lipids while retaining the majority of correct 

identifications4. In addition to limiting the search space, retention time predictions have 

also been used to decrease the number of false identifications for small molecules (< 400 

Da)11, natural products from Streptomyces12, and sphingolipids29. While these methods 

are typically implemented down-stream of the identification process, an approach for the 

direct incorporation of retention time predictions in the identification process proper has 

also been developed8.  

 

Nevertheless, these structure-based prediction models usually remain tied to a specific 

experimental setup, and perform very poorly for most other setups. This because 

differences in LC setup will significantly influence the retention times of analytes in 

complex ways, which results in non-transferable prediction models between setups. Even 

though the elution order is often conserved when the same type of column is used, there 

can still be dramatic variations in the retention times due to other differences in LC setup 

(e.g. in the RIKEN and FEM_long data sets as used in PredRet18). In practice, these 

differences therefore typically result in the fitting of a new predictive model for each 
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experimental setup, even when there are only seemingly small differences in the setup. 

This in turn gave rise to a multitude of prediction models that only predict accurate 

retention times for a specific setup8,30. 

 

A possible solution is provided by calibration between experiments, but current 

approaches for such calibration are mostly limited by matching observed retention times 

of analytes between the originally modeled LC setup, and the new LC setup. Importantly, 

however, this also means that generalization is lost, which means that accurate 

predictions for the new setup are now limited to only those analytes that were observed 

in the original setup. An example of this approach is PredRet18, which calibrates retention 

times between different experimental setups using Generalized Additive Models (GAM)31. 

In addition to calibration, an ML approach to predict the elution order of analytes has been 

developed based on the conserved elution order for specific column types across different 

LC setups8. However, the prediction of rank does not provide the same level of granularity 

as the prediction of exact retention time, and also requires specialized methods to 

incorporate in downstream analyses such as identification. 

 

It can thus be clear that, despite very promising efforts to overcome the problem of across-

setup retention time prediction, the problem has not yet been fully solved. Indeed, ideally 

we would be able to utilize the vast amount of data available in public repositories like 

MetaboLights32 and MoNA (http://mona.fiehnlab. ucdavis.edu/) to predict the retention 

time of any desired analyte on any kind of LC setup based on that analyte’s structure 

alone. This is all the more interesting as the combination of data from across many 

different experiments should provide more accurate predictions, and better generalization 

across a wider range of small molecules6. 

 

We here therefore combine the two approaches of calibration and of generalization 

through ML to obtain a much more generic method to predict analyte retention times 
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across LC setups based on structure alone. The result is our CALLC (CALibrate ALL LC) 

method, which uses a generalized calibration approach based on the mapping of retention 

time predictions between different LC setups. Interestingly, our approach also increases 

the amount of available data that can be used to fit the model, which in turn increases the 

predictive power of the model8,30,33. 

 

 Methods 

Overview of CALLC 

The objective of CALLC is to compute a retention time (𝑡 ) prediction model for a given 

LC setup from a number of data sets that contain observed analytes’ retention times, 

many of which can come from different LC setups. The goal of CALLC is therefore to 

generalize and calibrate previously trained predictive models from different LC setups for 

a specific LC setup. CALLC achieves this using three connected processing layers that 

each have their own distinct function (Figure 1). 

 

The first layer implements the predictive model training approach in which a machine 

learning model is optimized for a specific LC setup (𝐿𝐶 ), based on retention times 

obtained on that setup (𝑆𝑒𝑡 ). CALLC uses five distinct regression algorithms to fit this 

model for the given LC setup. These five distinct algorithms are used because a priori 

selection of the best performing algorithm is decidedly non-trivial, and because combining 

multiple models actually improves prediction accuracy30. After training specific models 

(𝑀 ) for each specific LC setup (𝐿𝐶 ), five 𝑡  predictions per analyte are derived from each 

model 𝑀  for the specific data set (𝑆𝑒𝑡 ) obtained on the LC setup of interest (𝐿𝐶 ). 

 

The second layer calibrates all of these predictions for 𝑆𝑒𝑡  based on a similar approach 

to that of PredRet18. The key difference is that our approach uses predicted retention 
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times instead of the observed retention times used in PredRet. The output of this second 

layer therefore again consists of five 𝑡  predictions for each model 𝑀  per analyte in 𝑆𝑒𝑡 , 

but all these predictions have now been calibrated for setup 𝐿𝐶 . 

 

The third layer then linearly combines these calibrated 𝑡  predictions from Layer 2 into a 

single predicted retention time per analyte. Each layer is described in more detail below. 

 

 

Figure 1: CALLC workflow using multiple models originating from different experimental 

setups. Each numbered data set derives from a given LC setup. For each data set, 

structural features for every molecule, and five setup-specific regression models are then 

trained in Layer 1. Predictions for the data set of interest (𝑠𝑒𝑡 ) from Layer 1 are then 

calibrated to the setup of interest (𝐿𝐶 ) in Layer 2, and these calibrated predictions are 

then combined linearly in Layer 3 to yield a single predicted retention time per analyte. 

 

LC setup specific data sets 

A total of 42 experimental data sets containing a grand total of 4633 analytes from different 

experimental setups and labs  were compiled from MoNA 

(http://mona.fiehnlab.ucdavis.edu/), PredRet18, and Aicheler4. After filtering duplicate 

analytes based on their InChI key a total of 2454 unique analytes remained across these 
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42 data sets. This compiled data set contains molecules with diverse molecular weights 

(from 44.078 Da to 2406.648 Da) and structures (from acetamides to lipids). Various data 

set properties, and their respective LC column types, are available in Tables S-1 – S-3. 

 

Features 

RDKit is used to convert each InChI to numerical representations of the structure in what 

is called a feature vector34. A total of 196 features were calculated, which were filtered 

down to 157 features based on the requirement that each feature should have a standard 

deviation across analytes higher than 0.01, and squared Pearson correlation between 

features lower than 0.96. The original 196 features are listed in Table S-4, and the 157 

filtered features are given in Table S-5. 

 

Layer 1 

The first layer was trained using five machine learning algorithms: XGBoost35 (GB), 

Support Vector Regression36 (SVR), Least Absolute Shrinkage and Selection Operator37 

(LASSO), Adaptive Boosting38 (AB), and Bayesian Ridge Regression39 (BRR). Every data 

set from Table S-1 was used to create its own set of five models. This yielded a total of 

210 models for the 42 data sets. A ten-fold Cross-Validation (CV) with 25 randomly 

sampled hyperparameter sets was used for model optimization (see Code Listing S-1), 

because randomly selecting hyperparameters has been shown to require fewer iterations 

for optimization40. The hyperparameter set with the lowest Mean Absolute Error was used 

for training the model. 

 

To calibrate predictions from an original LC setup to a new LC setup, CALLC needs 

training molecules with known 𝑡  for the new setup (just as with PredRet18). These training 

molecules will be referred to as the calibration analytes. First, these calibration analytes 

are used to train five specific models for the LC setup of interest, and these models are 

added to the pool of pre-trained models from different LC setups. Second, predictions are 
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made for the calibration analytes using all models in the pool. These predictions are made 

with the same cross-validation scheme that was defined for the hyperparameter 

optimization, which means that these calibration predictions are independent from the 

learned model parameters or hyperparameters. These predictions are then used as input 

for the second layer. 

 

Layer 2 

The second layer takes the various predictions for the calibration analytes from Layer 1 

to fit a calibration curve that maps between the retention time predictions and 

observations. The calibration curve for the five newly trained models that were originally 

based on the calibration analytes constitutes the trivial case, and is therefore expected to 

be linear and have a slope of 1 and intercept of 0. In contrast, calibration curves for the 

other pre-trained models are expected to have a wide range of shapes: linear, sigmoidal, 

or even more complex functions. 

 

These calibration curves are fitted using a Generalized Additive Models (GAMs) that uses 

thin plate splines from the R-package mgcv41. The GAM is able to fit a wide range of 

functions due to its additive nature, and is fitted for every model from Layer 1 individually. 

The dimensions of the smoothing term are set to one degree of freedom (k − 1), while all 

other hyperparameters are kept at default values. 

 

The cross-validation scheme from Layer 1 is re-used to obtain predictions for the 

calibration analytes to avoid information leakage between the folds of the CV. The 

resulting calibrated predictions for the calibration analytes are subsequently blended in 

Layer 3. 
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Layer 3 

The calibrated predictions from Layer 2 are here blended in a single prediction per 

calibration analyte using an elastic net42. This elastic net model is used to get a 

regularized linear combination of calibrated predictions that originate from different 

experimental setups and algorithms for the same analyte. 

 

Model evaluation 

The CALLC architecture is evaluated using two analyses; layer performance and existing 

model comparison. The layer performance evaluation is repeated twice, once including 

duplicate analyte structures between data sets, and once with duplicate structures 

removed. This second evaluation tests whether differences in performance are solely due 

to the presence of duplicate structures. Interestingly, PredRet or similar calibration 

approaches would not be able to create a model without duplicate analytes across data 

sets. 

 

The layers are evaluated with learning curves and a ten-fold CV strategy. The CV strategy 

is performed on two levels. On the first level, one fold is separated from the fitting 

procedure, with training in all layers based on the nine remaining folds. The separated 

fold, which is independent from parameter or hyperparameter optimization in any of the 

layers, is then used for final evaluation purposes across the three layers. Data sets are 

excluded from evaluation if they contain less than twenty analytes. 

 

The learning curves use an increasing number of calibration analytes for training, with this 

number ranging from 20 to 100 in steps of 20 calibration analytes. The calibration analytes 

for each step are randomly sampled, and the remaining analytes are used for evaluation 

purposes. The whole procedure for each data set is repeated five times with different sets 

of calibration analytes. A data set is excluded from steps in the learning curve if less than 

ten analytes remain after selecting the calibration analytes. Importantly, each evaluation 
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for the learning curve is based on a subset of the data that was not used in parameter or 

hyperparameter optimization in any of the layers.  

 

The predicted retention times are evaluated between predicted and observed tR using the 

Relative Mean Absolute Error (RMAE) and Pearson correlation (R) metrics. The MAE is 

made relative for each data set by dividing by the tR of the last observed analyte. For 

evaluation of the layers, models from Layer 1 and Layer 2 are chosen to represent the 

layers based on the highest R or lowest RMAE on the training set CV. The exact metric 

is selected by matching it with the visualization metric for the test set. 

 

The external comparison is made between Layer 3 of CALLC and the reported 

performance from the Aicheler et al. SVR model4. Overlapping structures across data sets 

are allowed for CALLC. 

 

Data availability and study reproducibility 

Scikit-learn43 V0.20.0, XGBoost35 V0.9, RDKit34 V2019.09.1 and Pandas44 V0.25.3 

libraries for Python V3.6 were used. The library mgcv41 V1.8-31 was used for R V3.5.1. 

The code used to generate the regression models and make predictions and figures is 

available at: 

 

https://github.com/RobbinBouwmeester/CALLC_evaluation 

 

In addition to the code required to reproduce the research presented, CALLC has a user-

friendly Graphical User Interface (Figure S-1) that is available at: 

 

https://github.com/RobbinBouwmeester/CALLC 
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Results 

Layer 1 

The CALLC architecture consists of three connected layers (Figure 1). The first layer 

(Layer 1) uses a similar approach to fitting a conventional setup-specific tR prediction 

model. The performance of each Layer 1 algorithm for different numbers of calibration 

analytes is shown in Figure 2. In this comparison a representative model of Layer 1 is 

selected by choosing the learning algorithm with the best CV performance (labeled as 

Layer 1 in the figure).  

 

This comparison clearly shows that using more training analytes leads to higher 

performance, and as we have observed before30, there is not one algorithm that always 

outperforms the others. Instead of selecting a single learning algorithm, the best 

performing model is therefore used in further comparisons of the layers in CALLC. 

 

There is no difference in performance between the two different analyses (with duplicate 

analytes between data sets and without duplicate analytes). For completeness, the same 

evaluation is repeated with the RMAE as the metric (Figure S-2), yielding identical 

conclusions. 
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Figure 2: Comparison of different regression models in Layer 1 and the model predictions 

that were selected based on the CV performance (labeled as Layer 1). The evaluation 

metric is the Pearson correlation and the red dot shows the mean value of this metric. 

The left panel consists of 34 data sets that have shared analyte structures between data 

sets. The right panel consists of 21 data sets that do not share any analyte structures 

between data sets. 

 

Layer 2 

In the second layer (Layer 2) a GAM is used to calibrate the predictions from Layer 1 for 

the experimental setup that is being evaluated. A GAM was chosen based on its relative 

simplicity and robustness to overfitting. Furthermore, a GAM is a suitable algorithm 

because a significant proportion of experimental setups have a conserved elution order, 

meaning that the calibration curve must be able to fit monotonal increasing or decreasing 

calibration curves. The capability of a GAM to fit complex calibration curves is shown in 

Figure 3 where the gradient profile of the solvents is different.  

 

The performance of the mapping mainly depends on the accuracy of predictions from 

Layer 1. Figure S-3 shows a less successful mapping due to inaccurate predictions from 
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Layer 1. These kinds of inaccurate predictions, which remain inaccurate after calibration, 

do not contribute to an improvement of the prediction accuracy. In the third and last layer 

the calibrated predictions from Layer 2 are combined into a single prediction per analyte, 

but in such a way that inaccurate (calibrated) predictions are likely to be ignored in this 

combination. 

 

Figure 3: Example of a GAM model that is used to calibrate predictions from a model 

based on the ‘LIFE_old’ data set to the ‘LIFE_new’ data set. Black points show predictions 

used for fitting the calibration curve, while red points are part of the test set. The shaded 

grey area is the standard deviation of the fit. 

 

 

 

 

.CC-BY-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted January 14, 2020. . https://doi.org/10.1101/2020.01.14.905844doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905844
http://creativecommons.org/licenses/by-nd/4.0/


14 

Layer 3 

After calibration in Layer 2, the final layer (Layer 3) of the model blends the predictions 

from different data sets and algorithms for a more accurate prediction. The learning 

algorithm in Layer 3 should be able to handle the sparsity in (accurate) predictions from 

Layer 2 to make accurate predictions, because a large proportion of calibrated predictions 

are not useful for achieving a higher performance (e.g. Figure S-3). An elastic net can do 

this because it blends predictions without overtraining due to regularization, and because 

of its relative simplicity of the trained linear model. An additional advantage of the elastic 

net is that the fitted coefficients, and the contribution of each model from the previous 

layers can be interpreted with relative ease. 

 

Layer evaluation 

In this section, the performance of each layer is evaluated. The performance of Layer 1 is 

based on the best performing model from Layer 1. Performance of this layer is determined 

by the model and data for the specific data set. The performance of Layer 2 is based on 

the best CV performing model from Layer 1 after calibration. Performance of this layer is 

determined by a single calibrated model selected from several data sets. Finally, for Layer 

3 no selection of models needs to be made, because a linear combination of all calibrated 

predictions is used. This also means that performance from Layer 3 is not determined by 

single data sets or learning algorithms. 

 

A significant difference in performance can be observed for the different layers in the 

learning curves (Figure 4). For both analyses, with duplicate analytes between data sets 

and without duplicate analytes, Layer 3 achieves the highest performance for all the 

different number of calibration analytes. This is particularly noticeable for low numbers of 

calibration analytes (below 60). In addition, Layer 2 outperforms Layer 1, especially when 

duplicate analytes are allowed across the data sets. This is unsurprising, because those 

analytes have been observed before and are therefore relatively easy to predict after 
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calibration as shown before by PredRet18. However, when no overlapping analytes 

between data sets are available, calibration of predictions can still improve predictions. 

And even when there is no overlap in analyte structures the performance is increased by 

further combining these calibrated predictions in Layer 3. For completeness, the same 

evaluation is performed with the RMEA as a metric (Figure S-4), yielding the same 

conclusions. 

 

Figure 4: Performance comparison between the different layers using the Pearson 

correlation between predicted and experimental tR. In the left panel duplicated molecules 

are allowed for 34 data sets, while in the right panel duplicate molecules are removed for 

21 data sets. The red dot shows the mean value. 

 

An analysis with a ten-fold CV was used to show individual performance on the data sets 

(Figure 5). In this analysis, 16 out of the 40 data sets achieve an easily observable higher 

performance in Layer 3 predictions compared to Layer 1 predictions. Only a slightly better 

performance can be observed for 17 out of 40 data sets, and a slightly worse performance 

was observed for seven data sets. 
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Comparisons between Layer 1 and Layer 2 show that performance differences here are 

smaller (Figure S-5). Ten data sets achieve an easily observable higher performance for 

Layer 2, while the remaining data sets perform on par with Layer 1. For the comparison 

between Layer 2 and Layer 3, almost all data sets had better or equal performance, 

except for two data sets that performed worse (Figure S-6).  

 

For the analysis without duplicate structures between data sets the same observations 

are made (Figures S-7 – S-9). However, as expected, the difference in performance 

between Layer 1 and Layer 2 is smaller here due to the absence of overlapping analytes. 

 

When the results from Figure 5 are analyzed in more detail, it becomes clear why certain 

data sets show no improvement in Layer 3 over Layer 1 (Figures S-10 – S-13). 

Specifically, for the Krauss set, none of the layers show any real ability to predict analyte 

retention times. For MTBLS4 and MTBLS17, their small data set sizes (less than 40 

analytes) can potentially explain the worse performance. Cao_HILIC is only providing 

worse predictions for analytes that are non-retained (or at least that elude very early), 

because prediction performance of Layer 3 is higher for longer retained analytes. 

 

We can thus show that using several learning algorithms and incorporating more data 

increases the accuracy of retention time prediction for CALLC. Moreover, every layer in 

CALLC has its own distinct function, and all are critical to obtaining the highest possible 

performance. Importantly, these results show that overlap in analyte structures is not 

required to improve performance, and that the concept of generalized calibrations works 

well even when there is no overlap in structures between the data sets. 
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Figure 5: CV performance evaluation between Layer 1 and Layer 3 on 40 data sets, where 

shared analytes structures between data sets are allowed. The evaluation metric is the 

Pearson correlation between predicted and observed retention times. The left panel 

shows the achieved correlation for each data set in both layers, where the dotted line 

indicates the position where both layers perform equally. The right panel shows the 

difference in the Pearson correlation between the layers. Positive values mean that Layer 

3 had a higher correlation than Layer 1, with the height of the bar showing the magnitude 

of the difference between the correlation values. Negative values show a higher 

correlation in Layer 1 than Layer 3. 

 

Layer 3 coefficient interpretation 

One of the advantages of using an elastic net in Layer 3 is the relative ease of 

interpretation. These coefficients can be used to determine which prediction sets, from a 

specific learning algorithm and data set, are the most predictive for the data set of interest. 

These elastic net coefficients show only a slight clustering between used models (Figures 

S-14 and S-15), and, importantly, that Layer 3 used a large variety of models to generate 

predictions for a data set. 
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Comparison with the Aicheler model 

To obtain an external evaluation of CALLC, a comparison is made with the SVR-based 

predictor from Aicheler et al.4 (Figure 6). This shows the added value of CALLC compared 

to existing strategies. In this comparison, CALLC demonstrates an average improvement 

of about 1.5 times for the MAE. Even when the procedure is repeated twenty times for 

each step, each time using different calibration analytes there are only two of the 340 

rounds that perform worse than the MAE reported by Aicheler et al. While the difference 

between the models becomes smaller for large numbers of calibration analytes, CALLC 

performance remains significantly better. 

 

Figure 6: Performance comparison between an external tR prediction model and this 

model. For CALLC the data sets contained duplicate structures across data sets. Error 

bars for different numbers of initial training instances are only shown for CALLC, while 

only average performance for the Aicheler et al.  model could be obtained. 
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Discussion 

Retention time prediction has still not been used to its fullest potential in LC-MS, mainly 

because it is difficult to port predictions to different LC setups. To boost the use of 

retention time prediction, we here therefore introduced CALLC, which uses the concept of 

generalized calibrations for a more flexible application of retention time prediction and 

accurate predictions across LC setups. CALLC selects the most predictive molecular 

features, the most appropriate machine learning algorithms, and combines all information 

from individual pre-trained models. We show that using multiple data sets instead of a 

single data set improves prediction accuracy. Internal validation showed a significant 

increase in the performance of our approach, regardless of whether duplicated molecules 

were included (Figure 4 and 5). Moreover, external validation also shows a significant 

improvement in tR prediction accuracy (Figure 6). 

 

Of note, our strategy is adaptive because of its layered design. When a new data set is 

added, the model does not need to be retrained entirely. Indeed, a new model is only 

trained in Layer 1 for the added data set. Layer 2 and Layer 3 are then very fast to retrain 

due to the single feature used in the calibration, and the inherent simplicity of the elastic 

net, respectively. The chosen learning algorithms or calibration method can also be 

swapped out to make the overall approach more suitable for any specific problems the 

researcher might be facing. 

 

CALLC is also made freely available online as a software tool, which includes a Graphical 

User Interface to allow researchers to apply CALLC on their own data. 
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