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INTRODUCTION

The second degree Diophantine equation of the form

2 2X -Dy - N, with the qualification that D and N be integers,

is referred to as Pell's equation. The attachment of Pell's

najne to this equation form, however, was due to an error on

Euler's part rather than to Pell's contribution to the solution

of the equation. The early Greeks and Hindus considered

special cases of this general equation form and, specifically,

the Hindus were able to solve the particular form

2 2
x^-Dy"^ - 1.

Format was the first to deal systematically with the

general equation form but he chose not to publish specific

proofs. There remains only an outline of Format's proof

that there exists an infinite number of solutions to the

2 2equation x'^-Dy - 1. Lagrange published the first proof

of the existence of a solution in this specific case, using

the theory of continued fractions. Wallis and Lord Brouncker

also found a solution and published it in 1658. Prior to

this, Euler had shown that there are infinitely many solutions

if there is one. It was Euler and Lagrange whose contributions

furthered the development of the solution of the general

equation form for
|
N I > 1.

Application of the solutions of Pell's equation is seen

most obviously in finding integral solutions of the general



quadratic form

2 2ax -Hbxy-i-cy -|- dx-|- ey + f r: 0,

in which a, b, c, d, e, f are integers. Considering the left

hand side of the equality first as a polynomial in x, the

discriminant

2 2
(by-i-d) -IjA ( cy -H ey-i-f)

must be a perfect square if one is to get integral solutions.

Consider this discriminant now as a polynomial in y:

2 2 2
(b -ifac)y -I- (2bd-ij.ae)y + d -ifaf.

2Let this polynomial in y be called z and, for purposes of

algebraic simplification, set

2 2
b ~l^c-p, 2bd-ljAerq, d -l4.af r:r.

One now has the situation

or

2 2
py -I- qy-i-rr:z ,

2 2
py -- qy-l-r-z - 0.

Considering the discriminant of the latter equation and the

original Intent of this investigation, one finds that

2
1 , 2v

q -ij.p(r-z ) must be a perfect square if one is to obtain

the desired integral solutions to the original equation. If

this discriminant is called w^, it reduces to

q -4.p(r-z )-w^ , or the Pell equation w^-l^.pz^= q^-i+pr .
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If this last equation Is solvable, one can then present

rational solutions to the original equation and, hopefully,

find integral solutions among this list of rational solutions.

A second utilization of solutions of Pell's equation

arises in finding units of the multiplicative integral domain

R l'v^J * where D is a square free integer. One finds that

if DE2 or 3 (mod i|.), the units are given by the solutions of

x^-Dy^= ±1

and if DEI (mod ij.), the units are the Integers of the form

X -)- y V D
^ where x-j-y V^ ia a solution of x^-Dy^i: ± 4.

A third area of application of the solutions of the

general Pell equation arises in finding convergents of a

continued fraction. If it is required that D > and

I

N
I

< V D , with N and D being integers and D not a perfect

square, then all positive solutions of x'^-Dy — N are such

that x/y is a convergent of the continued fraction expansion

of a/d~ .

The consideration which follows will be broken down into

three main parts: First, where
|
N

|

=: 1 specifically; second,

where
|

N
|

-
i^. specifically; third, where

|
N

|

>0 in general.

It should be noted that the notational forms p,q and

p-l-q Vd for solutions of the Pell equation are equivalent

and will be used interchangeably throughout the paper.



THE CASE
I

N
I

- 1

In the case where
|
N

|
=1, consideration will be given

? 2
first to the specific form x'^-Dy =: 1 of the Pell equation.

A considerable amount of restriction can be done at the

outset of this discussion. If D:r-1, one is left with the

2 2equation x -|- y - 1, which has only the trivial integral

solutions (±1, 0) and (0,±1). If D < -1, obviously one is

left with (il, 0) as the only possible integral solutions

to the resulting equation. Finally, if D is a perfect

square, one is left .with the equation x -( Vcy) - 1, or,

what is the same:

2 2

where K-Ndj. One notes, however, that the only two integral

perfect squares which differ by one are 1 and 0. It follows,

then, that the only possible integral solutions to this

equation are (±1, 0). For the duration of the discussion

of this first case, therefore, it will be assumed that D

is a positive Integer which is not a perfect square.

Continuing now with these restrictions on the equation

x^-Dy^r 1 , (1)

it is sought to establish the existence of solutions of

equation (1) other than the trivial ones (irl, 0).



THEOREM 1. There exist positive integers p and q such

that the absolute value of the real quantity p-qA/D is less

than any arbitrarily small positive quantity E and,

consequently, less than l/q.

Proof. Choose an integer t such that tE > 1 and let q

take on successively the integral values from to t. For

each such choice of value of q, assign to p the least integral

value greater then qVD , i.e., p - q Vd + d , where

< d^ < 1 for all < i < t. The quantity p-qVo" , then,

lies between and 1 for all such choices of p and q sine©

P^-q^'/D' = q a/d~ + d^-q^A/o" - d ,

and it has been specified that < d. < 1 for all < i < t.

Also it is noted that for no two separate choices of p and q,

say P, ,q and p ,q with i^tj, are the quantities p -q Vd~
^ ^ J j i i

and p -q A/d equal. This inequality follows by assuming
J J

that two such quantities are equal and establishing a contra-

diction. If, for iijjtj, p^-q^, a/F = p -q a/F , then
J J

(Pi-Pj) = (q^-q JA/F".

p^ and p , however, are integral so that their difference will

be integral. This equality, then, with the existing restric-

tions on D, can hold only if q -q . However, this is a



contradiction of the choice of q's, and the sought after.

Inequality has been established.

A division of the unit interval from to 1 into t

subintervals is made next, with each of the sublntervals

having length l/t. Since there are (t-fl) of the above

quantities of form p-q/VD and each such quantity has a

distinct value between and 1, it follows that two of these

quantities lie in the same interval of length l/t. Call

these two quantities p -q A/D and p -q Vd such that
i 1 J J

^i ^ ^^ *^^
^i ''^ *^1* T^e^j since these quantities are

distinct, their difference can be taken such that

(Pj_-q^''/D" )-(Pj-qjA/F) = (p^-p )-(q. -q )a/d"

is positive. It Is noted also that tnls difference is of the

original form, p-qA/D with p and q positive, and has absolute

value less than l/t and, therefore, less than E. Since the

q's take on the integral values from to t, it follows that

the absolute value of (q.-Q.) is less than or equal to t. There-
V

fore, it follows that the absolute value of (p -p )-(q -q )A/d"
1 J 1 J

is less than the absolute value of 1 and the proof of
TqV-qT)

the theorem is complete, -~...

Repetition of the argument utilized in the preceding

proof guarantees the existence of infinitely many integer
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pairs p,q fulfilling the requirement of that theorem. The

existence of one integer pair p,q satisfying the conditions

of Theorem 1 has been demonstrated. Choose a positive

constant E such that

E > |p-q'V/D~| >E^ .

One can then repeat the steps outlined in the proof of

Theorem 1 and discover an integer pair p-,q such that

which shows that

p -q A/FI < E ,11 ' 1

p -q Vd~| < E .

This new integer pair p,,q-, then, satisfies the conditions

of Theorem 1. By choosing yet another positive constant E

such that E <
|
P -q Vd

|

and repeating the steps in the

above proof, one is able to determine a third Integer pair

Pp»^2 *^^°^ satisfied the conditions of Theorem 1. Clearly,

then, an interminable iterative process has been defined which

will generate an Infinite set of integer pairs p ,q such

that |p -q a/d*| < E and |p -q \/~D
\
< l/q .

. . THEOREM. 2. There exists an Integer K such that

p^-Dq^= K (2)

for an Infinite number of integer pairs p,q.
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Proof. Choose the Integer pair p,q as in the iterative

process previously described in the discussion following the

proof of Theorem 1. Then,

I
p-f-qV^I - |p-qVD 4- qA/c -I- qA/o"

|

- |p-qA/D" + aqVo"! .

By the triangle inequality, /

Ip-l-qVol < |p-qA/D| + laqVcTl .

It was noted earlier that |p-qVD
I

"*^ l/q and, consequently,

I

p-qA/D
I

< |l/ql so that the obvious substitution only

strengthens the inequality and 'shows that

|p-|-qA/D|< |l/q| -I-
I

aqA/r"! . (3)

Multiplication of inequality (3) by
|

p-qA/cT | <
|
l/q

|

appropriately term by term shows that

|p -l-qA/D
I

Ip-qA/Fl - |p^-Dq^| < |l/q|
|
l/q| -l-'IzqA/DlJ .

It follows that

|p^-Dq^| < |l/q2| + |2A/d
I

- l/q^ -}- 2A/d"

and, since < l/q < 1 implies l/q^ < 1, that

ip^-Dq^l < 1 -|-2A/d" .

It has been shown previously that there is an infinite set of

integer pairs p,q satisfying the conditions herein required.



and it la now shown that
|
p^-Dq

|
< 1 -- 2Vd is true for any

and, therefore, all of these integer pairs. It is noted, how-

ever, that there are only a finite number of positive integers

less than (1 -\- Z'sD ) and that the quantity jp -Dq
|
is always

integral in value. It follows, then, that the quantity

12 21
|p -Dq

I

takes on at least one integral value less than

(1 + 2Vd ) an infinite number of times. Let that integral

value be called K and the proof of the theorem Is complete.

THEOREM 3. The equation

x^-Dy^ - 1 (1)

has at least one integral solution in which y ^ 0.

Proof. Considering the infinite set of solutions which

have been established previously for equation (2) in the

proof of Theorem 2, one divides these solutions into K^

different congruence classes, putting two integer pairs p ,q

and p ,q in the same class if and only if p = p (mod K) and
2 2 1-2

q 1= q (mod K) . It follows that some class contains an1-2
infinite number of these Integer pairs. Consider this class

which contains an infinite number of such pairs and choose

the two pairs P-»<1. and p ,q from this class such that

p p -Dq q
p ;«! ± p and q 2^ "- q . Let x - 12 12 and
1 2 l'^ ~ 2 K
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p q -p q
y--_l_2__2_^ , Direct algebraic verification shows that

K

2 2

2 2

t -Dy - 12 12 _ 12 2 1

k2 k2

= -=^(p, P -2Dp p q q +D q q -Dp q -|- 2Dp p q q -Dp q )-2 y^ y^ *^l*^2^1^2 1 2 1 2 *^r 2 1^2 2 1

_1, 22^22^22 222
k12 12 21 12

= ^(p^^.Dq^^)(p/.Dq/)

= ^(K) (K)

= 1 .

Utilizing rules of multiplication of congruences and recalling

that p ^ p (mod K) and q = q (mod K), one sees that

p q = p q (mod K). This means that p q -p q rmK, where m12-21 12 21

Is an integer* However,

P qp-Ppq, mK
y r ^ '^—=—ir -"!•

K K

Thus, y is an integer.
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To show that y ^ 0, one can assume y = and exhibit a

contradiction. If y z: 0, then

y r: 12 2 1 _ q
K

Implies that p q — p q . Solving this equality for p , one
12 2 1 1

p q
finds that p - _2_1 . jjote that y = also implies that

1 q
2

X = dri. This in turn shows that p p -Dq q - ± K, Making
12 12

the appropriate substitution shows that

^̂
2

p -Dq q
2 12

^. / 2 2,__l(p -Dq .

-q^ 2 2

2 2
However, p -Dq - K. Making the appropriate substitution,

q
it follows that _J: - ± 1 which shows that q - + q . This in

qg 1 " 2

turn shows that p = i: p . However, this is a contradiction
1 2

of the choice of p ,p ,q ,q and it has therefore been shown12 12
that y ^ 0.
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It remains only to be shown that x is an integer. Again

recalling that p, — p (mod K) and q — q (mod K) and utiliz-1-2 1-2
ing rules for multiplication of congruences, one finds that

p p —
jp p (mod K) and q q ^ q q (mod K) . However,11-12 11-12

2 2
q = q q (mod K) implies that -Dq — -Dq q (mod K)

,

1-12 1-12,
Adding congruences, one sees that

2 2
P P -Dq q r: p -Dq (mod K)

.

12 12-1 1

However, since p ,q is a solution of equation (2), one sees

that p p -Dq q = K = (mod K). This means that p p -Dq q = nK1212"- 1212

P P -Dq q
for some integer n. Noting that x - 1 2 1__2 — nK _ n, it

K K

has been shown that x is an integer. This completes the

proof of Theorem 3»

Having established the existence of at least one solution

to equation (1), the next step will be to verify the existence

of infinitely many solutions for that equation.

THEOREM k. If q,r and s,t are any non-trivial solutions,

excluding only the cases where qrs and r— -t or q — -s and

r=t, of the equation

x2-Dy2 = 1 , (1)
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then a non-trivial solution for that same equation and different

from both of those used to establish it is given by

(qs 4- Drt), (qt + sr) •

Proof. Since q,r and s,t are solutions for equation (1),

2 2 2 2
qi -Dr = 1 and s -Dt - 1. Therefore,

2 ? ? 7>

(q -Dr JCs'^-Dt'^) = 1 . /

Multiplying out this product, one finds that

(qs)^ -I- (Drt)^-D [(qt)^ -f (sr)^] = 1 . (i}.)

Next, add and subtract the quantity 2Dqrst on the left hand

side of equation (ij.) , Rearranging terms, it follows that

(qs)^ -h 2Dqrst -|- (Drt)^-D [(qt)^ -f- 2qrst -|- (sr)^ ] = 1

or,

(qs -|-Drt)^-D(qt -|- sr)^ - 1.

Thus, it has been shown that the suggested quantities do

satisfy equation (1).

Next it will be shown that this newly established

solution for equation (1) is in fact different from those

solutions used to produce it. This is accomplished by

assuming the contrary and exhibiting a contradiction which

must then result. Assume that (qs+Drt) = q and {qt-f-sr)-r.

Algebraic manipulation in the second of these assumed

equalities shows that

r(l-s) = qt
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or

r = -91 . (5)
1-s

Substituting equation (5) into the first of the assumed

equalities above, one finds that

2
qs + Dqfe - q^ 1-s

Simplifying,

or

Thus,

»+f!^=i

2 2
s-s + Dt = 1-s .

2 2
s -Dt = 2s-l

2 2
or, since s -Dt =1, s = 1^ This, then, implies that t = 0,

or that 3,t was the trivial solution to equation (1). However,

this contradicts the hypothesis and it has been established

that this new solution is different from the solution q,r, A

similar argument shows that it is also different from s,t.

That this new solution is non- trivial follows by noting

that the only situation which can produce the trivial solution

is that situation which Theorem i\. specifically excludes.

This is shown by assuming the new solution to be trivial and

exhibiting the implications of such an assumption. Assume

that qs -- Drt = 1 and qt -f- rs - 0. The second equality demands
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that q — Z^ . Substituting this into the first equality, one
t

2 2 P o "?

finds that Z^^ -»- Drt = 1, or a -Dt - zk . However, s'^-Dt - 1.

Thus, zi — 1, or -t — r. This means also that q z: s, referring

to the second assumed equality above. A similar consideration

when qs -f- Drt -= -1 shows that r = t and q = -s. These, then,

are the only possible combinations which will produce a

trivial new solution when the previously outlined procedure

is used. This completes the proof of the theorem.

Theorem 3 ^s established the existence of at least one

non-trivial solution to equation (l)o One can take that

solution X, y and, utilizing the procedure of Theorem i^.,

2 2establish a new non-trivial solution (x -f- Dy ),(2xy) for

equation (1). This new solution will be different from the

solution x,y. One can then take the two solutions and generate

a third, distinct from the first two. One restriction is

necessary in the choice of known solutions used to generate

new solutions. That restriction is the same one listed in

Theorem i^.; namely, the choice of a pair of solutions such that

either x. - x^ and y :r -y or x = -x and y - y is
^ J i

J i J i j

specifically ruled out in the generation of the new solution



16

One is always able to produce a different solution by

choosing to pair the last solution generated either with

itself or a previously generated solution, as the situation

demands, to give the desired new solution. Clearly, then,

this process can be repeated indefinitely, thus demonstrating

the existence of infinitely many solutions to equation (1).

The following corollary to Theorem i\. is given, although

it offers essentially the same result as that theorem, since

that result is given in a slightly different form.

COROLLARY k-l. If g,h and p,q are solutions to the

equation

x^-Dy^ - 1 , (1)

then so also are the integers s and t defined by the equation

(g -l-hVD )(p + qVc )
- s -j-tVo" . (6)

Proof. By the definition of the integers s and t in the

corollary, the following equality is also valid:

(g-hA/o )(p-qVD ) = s-tVo". (?)

Multiplication of equations (6) and (7) gives the new equality

2 2 2 2 2 2
(g -Dh )(p -Dq ) - a -Dt . One notes that the number pairs

g,h and p,q are solutions to equation (1) and, making the

appropriate substitutions, finds that (1){1) = 1= s^-Dt^,

so that the integer pair s,t is a solution of equation (1),

This completes the proof of the corollary.
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Corollary l^.-l can now be generalized to state that for

any solution p,q of equation (1) the integers r and s defined

by

(p 4-q^ f - (r -f-sVo") (8)

also make up a solution for equation (1), provided that n is

integral and positive. This is true simply by repeated

application of the corollary.

Algebraic manipulation shows that if x,y is a solution

of equation (1), then

x-yVD

or.

-I- yVd [x-yVc J [x -I-
jf\pD

_ x-yVp
"

2 2

zi x-y^fD'

1 - x-yA/o" .

X +yA/D"
(9)

One is thus able to extend the generalization of Corollary I4.-I

which was mentioned in the previous paragraph to negative

integral values of n. If n - 0, one is left with the trivial

solution 1,0 and the generalization of Corollary ij.-l is

complete.

A solution of the equation x^-Dy - 1 is called positive

if both X >0 and y > 0. The positive solutions of this
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equation are ordered by the size of the x value in each case.

Ordering solutions by the value of the x term Involved is no

compromise as one can see by noting that if x ,y and x ,y11 2 Z

2 2 2 2
are two solutions with x > x , then x -Dy = 1 =: x -Dy12 11 2 2

2 2
Subtracting x from the left side of the equality and x

1 2

from the right side and noting that since x > x > , then
1 2

2 2 2 2
X > X , one finds that -Dy < -Dy . Dividing the in-12 12
equality by -D, it follows that y ^ > y ^ and, taking positive

square roots, that y > y . Thus, ordering positive solutions
1 2

by the comparative sizes of the x values involved is a valid

procedure.

THEOREM ^ . If a,b is a positive solution for the equation

2 2
X -Dy"" = 1 (1)

such that b is the smallest positive integral value possible

for y, and if x =: 1, y zi 0, then the recursion relations
o o

X r ax + bDy
^ (10)

n n-1 n-1

This theorem and proof taken from an article by S.T.

Parker in the American Mathematical Monthly , Volume Skt

19ij-7, pp. 97 - 100.
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and

y = bx -I- ay (11)
n n-l n-1

give all the positive solutions for equation (1).

Proof. That the recursion relations (10) and (11)

actually produce solutions for equation (1) is shown by

mathematical Induction, For n = 1, the solution a,b is

produced. Assume that the relations are valid for n = k.

Then

z = ax + bDy
k -- 1 k k

and

It follows that

y :r bx -f ay .

k -1-1 k k

2 2 2 2 2 2 22= a X -j- 2abDx y -|- b D y -b Dx -2abDx y -a Dy
k kk k k kkk

Simplification shows that

= a^(x ^-Dy ^)-Db^(x ^-Dy ^)
Ic k k k

2 2 2 2- (a -Db )(x -Dy )

k k

= (1)(1)

= 1 ,

, r :
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so that one sees that the recursion relations (10) and (11)

do give solutions for equation (1).

To show that these recursion relations give all the

positive solutions for equation (1), assume that they do

not and it will be possible to establish a contradiction.

Assume, then, that there exist positive integer pairs x ,

y

satisfying equation (1) and not obtainable from the recursion

relations (10) and (11). Therefore there must be one pair

X ,y from this set of solutions not obtainable from relationsm "^m

(10) and (11) for which y is the least. Since x :r 1,
m o

y = is the initiating pair for the set obtainable from the

relations, it follows that y > b. Then
m

2 T^ 2 , 2
X - Dy + 1 = ym m m

D +-i^ < y.m
m -•

b J

2 2

m v,^

Therefore, x < ^ y ,

m b m
Suppose that x < SLzl. y . This

m b m

would yield

SI m
L b2

y 2^ 2:^ y 2^ Q ^m ^2 m

since D > 1 and b >1 and, therefore, a > 1.

This contradiction leads to the double inequality

^-1. y < X < ^ y
b m ^ m^ b m

(12)
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Algebraic manipulation of the relations (10) and (11) shows

that

X = ax -bDy (13)
n-1 n n

and

y - -bx -- ay , (li}.)

n-1 n n

On replacing x ,y in relations (13) and (llj.) by x ,y , one
^ " mm

obtains a new pair x ,y which satisfies equation (1).
m-1 m-1

Moreover, considering the inequality (12) and the relations

(13) and (lif), one finds that

m-1 L b J m m

and

m-1 L b J m m m

Thus, y > y ^ > and there exists an integer pairm m—

±

*« i*y T
with a positive y ^ less than y .m-1 m-1 m-1 m

If X ,y is a pair given by the recursion relations
m-1 m-1

(10) and (11), then so is x ,y as is seen by applying the
m m

relations (13) and (11^.). Therefore, the pair x ,y
m-1 m-1

cannot be in the set of solutions produced by the recursion

relations. The contradiction y > y > 0, then, impliesm m-1

that Theorem 5 is true.
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COROLLARY 5-1. If a,b Is the minimal positive solution

of the equation

x2-Dy2 = 1 , (1)

then a general solution is given by the set of all x,y

satisfying

(x-H yA/o") = ±(a -i-bVo')'' ' (15)

where n can be any integral value, positive, negative, or zero*

Proof. In the remarks following Corollary ^.-l it was

established that equation (15) truly does furnish solutions

for equation (1) for all integral values of n, positive,

negative, or zero.

If a,b, and n are positive so that

then

X -{- y/\/D - (a -t-bVo")" >1 ,

-x-yVd - -(a -I- bVo" )'^ < 1 ,

x-yA/D = (a --bVD )"^< 1 ,

and

-X + yA/o = -(a -I- bA/o" )"^ < 1 .

Thus, it can be shown that equation (15) gives all the

solutions to equation (1), with y ^ 0, by showing that every

solution of equation (1) with both x and y positive satisfies

equation (15) with n > 0,

Let a -I- b^ = A, the minimal positive solution of

equation (1), so that any positive solution x,y of equation
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(1) is such that x -f y a/d ^ A, since A Is minimal. Then

there exists an n > such that

a''< x + y V3< a''^^ .

It follows that

1 ^ (x + y a/IdT )a"^ = (x -I-
yA/^ )(a -I- b aAd" )""

= (x -- y Vd" )(a-b^ )'^< A,

since the inequality has been divided by the positive

quantity A . However, Corollary 1^.-1 indicates that

1 < (x -- y V^ ) (a-b a/^ )'^ < A

is a contradiction unless (x + y A/D )(a-b Vd )" =: 1, It

follows, then, that (x -|- y V~D ) r (a -|- b Vd )^ and the

proof is complete.

In considering the situation where N — -1, one finds a

similarity to the case in which N - 1 in that all solutions

2 2
of the equation x -Dy - -1 can be expressed in terms of a

single solution. However, there is a basic difference in

the two situations in that when N - -1, the equation is not

always solvable. This is true specifically for D r 3.

THEOREM 6. Let D be a positive nonsquare integer. Then

if the equation

x^-Dy^ = -1 (16)

is solvable and if g -J- h A/D is the minimal positive solution
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of equation (l6), the general solution is given by the set of

all x,y satisfying

X 4-yA/D - ±{g H-hVc )^^ '^',n = 0, ±1, ±2,... . (1?)

The following lemma is stated and proven to facilitate

the proof of Theorem 6.

LEMMA 1, Let A = a -f-bVo be the minimal positive

solution of equation (1) and let g -j- h WD be the minimal

positive solution of equation (l6), then

' A - a -I- bVc - (g -l-hA/D" )^ .

Proof. Since

{g-|-hVD)^zi g^ -- 2gh a/d" -I- h^D

z: (g -l-h D) 4-2ghA/^

and

(g^ -I- h^D) -D(2gh)^ = g^
-I- 2gVD -I- hV-4gVD

- g^-2g2h2D + h^)2

.(g^-h^D)^

-1,

one can see that (g 4- hA/o ) is a solution for equation (1).

Therefore, due to the minimality of A,
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2
1 < a -I-

bA^< (g H-iiVo") .

Since {g-\-hf\/~D )'^ - (-g -}-hA/D ), it follows that

-g -I- h Vd < (a 4- bA/D ) (-g + hVc ) < g -H hVd

or

-g + hVc" < -ag -I- bhD + (ah-bg) Vd^ < g + ^Vd .

Considering just the middle term of this inequality for a

moment, the following algebraic manipulation shows that it

is a solution for equation (l6):

( -ag + bhD ) ^- ( -gb -- ah ) ^D

22 22222 22
:: a g -2agbhD -l-bhD-gbD-H 2agbhD-a h D

- a^g^-g^b^D-a^^D -I- b^h^D^

:: g^(a^-b^D)-Dh^(a^-Db^)

= (g^-Dh2)(a2-b2D)

2 2

- -1 .

It follows, then, that (-gb -f ah) is not equal to zero.

For notational simplicity, let p — -ag -\- bhD and q 3 -gb + ah.

One notes that if a number lies between the minimal positive

solution g 4- hA^D of equation (l6) and the reciprocal of the

minimal positive solution -g -|- hVo , then the reciprocal of
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that number must also lie between the minimal positive

solution and its reciprocal. It follows that either

1< p -j-qA/B < g 4- hA;^

or

1 < -p -I- qA/F < g -- hVdT ,

However, g,h is the minimal positive solution of equation

(l6) so it must be that p -|- q^fD = g 4- h.^fD • This implies

that

^^:^.g4-hVF
g -- hA/D

or

a -I- bA/D~= (g + hA/F")

and the proof of the lemma is complete.

For the proof of Theorem 6, one chooses any solution x,y

of equation (l6) such that x,y > 0. Such a choice is possible

since, as in the proof of Corollary $-1, if a,b, and n are

positive so that

X + yA/D = (a -I- bA/o" )^ > 1 ,

then

-x-J^fD - -(a + bA/o" )^ < 1 ,

x-yA/o - {d -^ bVD~)'^< 1,
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and

-X -I- y A^d" = -(a 4- b V^ )"^< 1.

Thus one can find an n such that

Dividing throughout the inequality by A^, one finds that

1 < (x -l-y a/d )a'^< A X (g -- h a/d^ ) .

Dividing throughout the inequality by (g 4- hA/D ), it becomes

(-g -»-h a/~D ) < s -I- t a/^ < g ^-h a/d^ , (18)

where s,t is a solution of equation (1),

That s,t is a solution of equation (1) is verified by

the following demonstration:

s 4-t a/^ = (x -l-y VY )(a -I- b A/^)'^(-g 4.h Vd^ ). (I9)

Taking the product (x -|- yVD )(-g ^-hVo ), both elements of

which are solutions of equation (16), one shows that their

product is a solution of equation (1) by the following

algebraic manipulation:

(x+yA/Dr)(-g^.hA/D~) x(-xg4-ybD) -|- ( -gy -J-xh) 'n/d" .

Substituting into the form x^-Dy , one finds that

(-xg +yhD) -(-gy + xh) D

'

2 2 2 2 2 2 2 2 2= X g -2xyghD -l-yhD-gyD-}- 2xyghD-x h D
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2222 22 222
=: X g -X h D-g y D 4- y h D

2, 2 2, 2 , 2 2,
= x (g -Dh )-y D(g -Dh )

2 2 2 2-U -Dy )(g -Dh )

f

so that the product (x -- yVD )(-g + hVl> ) does produce an

element which is a solution of equation (1). One notes that

(a 4- b A/D ) also is a solution of equation (1) and, by the

previously presented generalization of Corollary ^-1, the

overall product (19) is seen to be a solution of equation (1).

This completes the demonstration that s,t is a solution of

equation (1).

Return now to the Inequality (l8) and consider just the

left hand term -g -f- h V D • This quantity is the inverse of

the positive quantity g -- h Vd , which is greater than one.

Therefore, -g -4- h V D is positive but less than one. It

follows that {-g +h Vd ) is also positive and less than

(-g -I- h A/d ). Also, since g -4- h Y D is greater than one.

It follows that (g 4- ii a/d~) is greater than (g -I- h Vd ).

Making the appropriate substitutions in inequality (l8), one

finds that
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(-g4.hA/T)^< s -|-tVD"<(g-l-h/v/T)^

or

A"-'-< 3 -I- t V^ < A .

However, since A is the minimal positive solution of equation

(1), it follows that s -I- t a/^=1. Substituting this

relationship into equation (19) # one finds that

1 = (x -l-y V^)(a +b a/d )"''(-g +hA/D~),

or, multiplying by (a'^) (g -f h A/D ), that

U +yA/T ) = (g 4-h a/d')(a'')

= (g -l-h/^D )(g ^h^D )^^

/ ^ ^n: x2n +1
=: (g +h A/D )

In the proof of Lemma 1 it was established that

(g + h a/T ) is a solution of equation (1). The

generalization of Corollary ij.-l then shows that

[(g +hA^ )^]'' - (g +hA/^)^
is also a solution of equation (1) for all integral n. Let

(g + h a/d" )2^-
g^ + h a/Y .

Then algebraic manipulation shows that the product

(g -- h a/~d ) (g + h a/^
)
- (g ^. h Vd" )2^ "* ^

is a solution of equation (l6):
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(g^ -I- h A^D ) (g ^ h Vd ) = (g^g 4- h hD) + (g h -I- gh ) V^

and

2 2
(g g -f h hD) -D(g h -l-gh )11 11

22 22222 22
= g g-l-2gghhD-f-h hD-g h D-2g gh hD-g h D

1 111 1 11 1

2 2 2 2 2 2
= g^ (g -Dh )-Dh (g -Dh )

2 2 2 2
-(g -Dh ^)(g -Dh )

1 1

=(1){-1)
;

- -1.

This completes the proof of the theorem.

As an example of the situation where equation {l6) can

be solved, one can look at the equation for D — 5« In this

case the minimal positive solution is (2 -^ N$ ) » Substitut-

ing this quantity into equation (1?) for n - 1,2 gives the

additional solutions for equation (l6) of {38 -I- 17 V5 ) and

(682 -f- 305^ ) .

An example has been given for which equation (I6) is not

solvable, thus ruling out the possibility of universal

solvability. Also, a general solution has been established

for those situations in which equation (16) is solvable.

Thus, the discussion of the situation where N =: -1 is

complete and, likewise, the discussion of the first case

where I N
|
- 1 is complete.
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THE CASE
I

N
I

= 14.

Two theorems are stated and proven in the consideration

of the case where
|
N

|

= if, the first dealing with N = if and

the second dealing with N - -if. Attention is called to the

close similarity between these two theorems and Corollary $-1

and Theorem 6,

THEOREM 7. If D is a positive nonsquare integer and if

& \- f ^l D is the minimal positive solution of the equation

x^-Dy2- if, (20)

then the general solution to equation (20) is given by the

set of all x,y satisfying

X. -k- 7 '/d = ±2 e -I- f a/d n
, n = 0, ±1, ±2, . . . . (21)

2

Proof. That equation (20) is always solvable follows

directly from noting that one need only double a solution of

2 2 2 2X -Dy =: 1 to produce a solution for the equation x -Dy —
if

2 2and that the equation x -Dy = 1 has been shown to be solvable

in all cases in Theorem 3, It does not follow, however, that

merely doubling the solutions of equation (1) will give all

of the solutions of equation (20),

If X + y a/d and x 4- y A/D are any two solutions
2 2 33

of equation (20), then the number pair x ,y described by
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their product in the following form is also an acceptable

solution to equation (20):

X + y aJ~D
2 2

X + y a/d"
3 "^3 ^

= X + y a/Id" . (22)
1 1

^

This statement is verified by showing that x -h y11 a/d

describes an integer pair and that x ,y actually satisfies

equation (20).

2 2 2 2
First, one sees that x -Dy :: I], and x -Dy - k

2 2 3 3

2 2 2 2
implies that x E ^7 (mod 2) and x i^ Dy (mod 2),

2 2 3 ~ 3

which in turn implies that x n Dy (mod 2) and2~ 2

X E ^y (mod 2). The last two congruence relations hold
3 3

true since congruence (mod 2) is simply a check on the agree-

ment of the parity of two elements and one notes that the

square of an integer is even or odd as the integer itself is

even or odd. Multiplying out the product

"

^g -t- y^^ X -I- y aTd
3 ^ ^

r X -h y a/~D ,

1 1

one finds that

XX 4- y y D
X ::: _2_i 2^
1 2
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or that 2x — x. x 4-yyD. Substituting and adding appropriate12323
congruences (mod 2), one finds that

2
2x - X X. -|-yyD=:Dyy +Dyy = D(D -I- l)y y = (mod 2)

.

1 23 23- 23 23~ 23~
The last congruence in the preceding series is valid since

one or the other of the two consecutive integers D and (D -HI)

must be even, thus making the entire product even and

congruent to zero (mod 2),

X y + X y
Slmilarily, y, - ^ -^ 3 ^ or 2y - x v -f- x y and1" 2 12332

1 23 32 23 23 23

Thus, both X and y as defined in equation (22) are integers.

Consider the product

X 2.Dy 2 _ j^ _y a/3 )(x + y a/^ )111111
X -y a/d" X -y aTd

3 } 2 2^ 3 3'

r- 2^2-,^2_2^
= k

X -Dy
2 2

X -Dy
_2 13.

- k
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Prom this one sees that the Integer pair x ,y as defined by-

equation (22) is actually a solution of equation (20). The

generalization is now obvious. The equation

X 4- y a/T = ±2 e -^f a/^ n
(21)

defines a set of solutions for equation (20), one for each

integer n. It remains only to show that equation (21)

exhibits all solutions for equation (20) to complete the proof

of this theorem.

Referring again to the restrictions as offered in the

proof of Corollary 5-l» one recalls that if a,b, and n are

positive so that

then

X + y Vd := (a -f b V^ )^ > 1 ,

-x-y a/T = -(a 4- b A^d" )^< 1 ,

x-y V^ r (a -- b A/d" )"^< 1 ,

-X -l-yA/^ = -(a -}- b a/d" )""< 1 .

Thus, one can choose any solution x + y a/1d~ of equation (20)

such that X > and y > 0, and will have shown that all

solutions of equation (20) are of the form

and
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±2 -t-f a/"^
n

when one has shown that all solutions x + y ^/'D such that

X > and y > are of that form.

There exists an n > such that

e -I- f A^D
n
< X -I- J^fD < 2 e +f aTd"

n -}- 1
(23)

for the positive solution x -f- y A/D , due to the minimality

of e --f a/~D . Multiply (23) throughout by the posltii.ve

quantity

e -t-f ^/~D

2

-n

2

n

The inequality

2 < (x -i-y a/T) >-f A^d"
n
< e -^ t ^^D (2k)

results. However, it has been previously established that all

quantities of the form (21) are solutions of equation (20).

One notes, therefore, that >-f ^Td
n

is of the form

(1/2) (t -- u V D ) for some t,u, an integral solution of



36

equation (20). Thus, the center term in the inequality {2l\.)

is of the form (22), which indicates that it is an Integral

solution of equation (20). However, since e -f f V D is the

minimal positive solution of equation (20), it must be that

(x -I- 7 Vd" )
i-t Vd - 2 . (25)

Multiplying {2S) by the quantity

e + f V7
^

n

it follows that

X + y V~D = 2 e 4- f V~^
n

This completes the proof of Theorem ?•

THEOREM 8. If the equation

x2-Dy2 = -l^ (26)

is solvable and if its minimal positive solution is u+vVd ,

then a general solution for equation (26) is given by the

set of all x,y satisfying

x-Hys/D - ±2 u -^v^/

D

2

2n-|-l

, n = 0,±l,±2,... . (27)

The following lemma is stated and proven to facilitate

the proof of the theorem.
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LEMMA 2. If e -I- f a/~d" is the minimal positive solution

of equation (20) and u -f- v V D is the minimal positive

solution of equation (26), then

e -l-f Vd" = u -- V a/T (28)

Proof. A consideration of parity entirely analogous to

the argument used in the proof of Theorem 7 assures one that

the quantity 2 u 4- V ^ is integral. Direct substitution

shows that

u^ -I- Dv^ %(uv)^:r u^ -t- 2Du^v^ + v^^-U)u^v^

/ 2 ^ 2.2
_ (u -Dv )

4

= lf .

Thus, 2 u -fv a/d is an integral solution of equation

(20). It follows that
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1 < e -I- f a/Id" < 2 u -I- V Vd" (29)

due to the minimality of (e +f A/D ). Multiplying through

(29) by the quantity -u "^ v V D
, one sees that

2 /

•u 4- V aAd" <: (e +f a/d~)
2

-u -t-v a/d
"

2
< u -- V a/d^ . (30)

An argiiment similar to the one used in the proof of Theorem 7

indicates that the product in the center of the inequality

(30) is an integral solution of equation (26), Since

-u -t- V A/d ia positive and (u -- v a/d" ) is the minimal
2

positive solution of equation (26), it follows that

(e -hf a/d )
-u + V A/ D - u +y a/~D

must be true. However, this implies that

-l-f a/T - 2 u_±v.^/5~

and the proof of the lemma is complete.

Continuing with the proof of Theorem 6, if x -f- yA/~D~ is

any positive solution of equation (26), it is possible to
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39

e-l-fVd n
Vd< X -1-y^ D < 2 + fA/D

n4-l

It follows that

2< e+f a/d -n
(x-»-yA/F ) < e-J-fVo",'

2 < e±fa/^' -n
(x+yVo )< 2 u-t-vVp"

2

-u -j-vVd < -t-f a/d"
-n

(x+jA/d )

-^+v a/d <2 u-I-vA/d
"

Since < -u4-vVd" ^^ 1 and 1 < u-fyA/p ^

2 2

-u4-v a/d < -ffVo
-n
(x+yA/F) -u-t-vA/p

"

<2 u-t-vA/^

(e4-fA/D ) = 2 u-I-vA/d
"

2
Implies that

e-fA/D< e-l-f a/d
-n

(x-l-yA/D )
-u-j-vA/d

2
<e-|-fA/D . (31)
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Again utilizing an argument similar to the one used in the

proof of Theorem 7# one sees that the center product in the

inequality (31) is an integral solution for equation (20).

However, (3I) shows that this integral solution value is

positive, since it is larger than the inverse of the

minimal positive solution of equation (20), and that it is

less than the minimal positive solution of that equation*

The only possibility, then, is that

e +f Vd" -n
(x-HyA/F) -u-I-vVd"

2
- 2 .

Multiplying through by u -j-vVd

2

e H-fa/d
n

, one sees that

x+ya/d = e+f Vd n
u -fvA/p

However, e -l-fVd"- u+vVd" 80 that

x-HyA/Fi: 2
2

2n-l-l

Lemma 2 shows that e -t-fVd _
2

u -i-vV^
2

or that
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e-t-f a/d

L 2

n
= 2 u -t-vVd

2n
. However, Theorem 7 has

established that this Is a valid solution for equation (20)

for all Integers n. Let 2 u+vVd 2n
- u -I- v ^^E . Then

direct algebraic manipulation shows that the solution formed

by the product

(u^-j-v^a/d" )
u-t-vVp - 2 u +va/d"

2n-f-l

satisfies equation (26):

(u 4-va/d )
ii±vVD _11 2

u u -t-v vD
1 1 +

U V -fuv
1 1 Vd"

and

u u 4-v vD
1 1

L 2

- D
U V -f uv11

2 2^ ^ 2 2^2u u 4- 2u uv vD -Hv V D111 1

2 2 2 2
u V D --2u uv vD -t-u V D
1 11 1
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u ^(u2-Dv2)-v 2d(u^-v^D)
_ JL 1

, 2 ^ 2,, 2 ^ 2,
(u -Dv )(u -Dv )

1 1

" k

A consideration of parity analogous to the argument

used. in the proof of Theorem 7 shows that quantities of the

form 2 u-t-vVD
2n-hl

are integral. This completes the

proof of Theorem 8 and the consideration of the case

I

N
I

= 14. as well.

THE CASE
I

N
I

>

The third and final case to be considered is that

situation in general where N ^ 0. One should note that

the general equation in this case is not always solvable

and that the following theorem is based on the assumption

of solvability,

- THEOREM 9. If j,k is a solution of equation (1), and

if p,q is a solution of the general equation
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x^-Dy^ - N , (32)

where D > and nonsquare, then the integer pair s,t defined

by

s+tVc = (J-»-kVD")(p-|-qA/D~) (33)

is a solution for equation (32).

Proof. The proof is simply a matter of algebraic

manipulation to obtain verification of the statement of the

theorem.

(s^-tVc") = (j-l-kViD^)(p-|-qVDr )

implies that

s +tA/D' :: ( jp -l-Dqk) -!-( jq -l-pk) Vd

or that sz:(jp-»-Dqk) and t = (jq-*-pk). Substituting these

2 2
values into the form x -Dy , one finds that

(jp4-qkD)^-D(jq-f-pk)^

22 22222 22
- j p -|-2Djkpq4-q k D -Dj q -2Djkpq-Dp k

,2, 2 ^ 2, ^, 2, 2 ^ 2,= J (p -Dq )-Dk (p -Dq )

2 2 2 2
^(j -Dk'')(p'^-Dq'')

= (1)(N)

= N .

This completes the proof of the theorem.

COROLLARY 9-1. Under the conditions stated in Theorem

9, if equation (32) has one solution, it has infinitely

many solutions.



Proof. In Theorem 9 it was shown that the product of a

solution of equation (32) and a solution of equation (1)

produces a solution for equation (32). Also, in Corollary

5-1 it was shown that there exist infinitely many solutions

of equation (1). It is therefore possible to form infinitely

many different products involving unique solutions of

equation (1) and the single solution of equation (32) which

is postulated by the theorem. This infinite set of products

would, therefore, contain infinitely many solutions of

equation (32). That these are different solutions follows

directly by assuming two solutions to be equal and noting

the implications. If x +y Vd and x -hy VD are solutions

of equation (1) and p4-qVD Is a solution of equation (32)

such that

(x -l-y Vd )(p-t-qVD') = (x^^.y^A/D )(p-|-qVD'),11 2 2

then, multiplying through by (p-l-qVc )"
, one sees that

x^+ y^Vo -^^-^ y^"^ •

Thus, X i: X and y = y . This completes the proof of the12 12
corollary.

Although the above process assures the existence of

and shows how to find infinitely many solutions of equation

(32) whenever one such solution exists, it by no means offers
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a method of obtaining all solutions for equation (32) • A

specific example will be sufficient to demonstrate this fact:

I
—

2 2
7,0 and ^ \-hf.\J 2 are two solutions of the equation x -2y — i^.9

but neither can be obtained by multiplying the other by a

2 2
solution of X -2y - 1.

Referring to the equation ( j +kA/D~ ) (p -t-q a/d ) = s + tV^
as explained in Theorem 9, the two integer pair solutions

p,q and s,t of equation (32) are in the same class, or belong

to the same class o That is to say, two integer pair solutions

of equation (32) are in the same class if and only if one

integer pair can be obtained from the other by multiplication

by a solution of equation (1),

The following theorem establishes a finite test for

solvability of equation (32). This is done by establishing

bounds for the smallest element of each solution class, with

the ordering being based on the magnitude of the x term of

the solution pair x,y. One is able to make the restriction

that X > by noting that the two solutions p -t-qA/D and

-p-qVo are in the same class.

THEOREM 10. If the equation

x^-Dy^r N (32)

Is solvable, it has a solution s,t with

< s < ^BaJ:! . N~ (3i^.)



where Ara+bA/o" is the minimal positive solution of equation

(1) and B- -A- , If there Is more than one class of solutions
A-1

to equation (32), each solution class contains an element for

which the inequality (34-) iiolds.

Proof. If p-fqA/D^ is the minimal positive solution of

equation (32), then the conditions of the theorem are

satisfied. Otherwise, given any solution p 4-qVD of equation

(32) with p > and p --q'VD non-minimal, a solution s-J-tA/D

of that same equation is sought such that

(x+yA/F )(p-|-qA/D ) = s-|-tA/D , (35)

with x-J-yVD a solution of equation (1) and 0<s<p. The

proof is broken down into two parts: (1) N > and (2) N < 0.

If N > 0, let A-a-l-bVo again be the minimal positive

solution of equation (1) and, referring to equation (35), if

q > 0, choose x + yVc to be A~ z: a-bVo while, if q < 0,

choose X -HyVd to be Azza-f-bVD . It follows, then, that

s— pa-bjqlD. Rearranging terms, one finds that

3 = p i-bVo
p

(36)
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and further rearranging terms, one sees that
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srp L-bA^ -H b'VF 1- 1- N_ (37)

2 2 2
Since N > and p -q D=N, then 1-3^-. N

^ .p^g impHes
P P

that < JL < 1.

Note, for a general K such that < K < 1, that

< 1-A/1-K= K
< K

I+a/i-k" 2-K
(38)

The last inequality is valid since, for < K < 1, a/i-K > 1-K

implies 1 + Vl-K > 1 +(1-K) = 2-K. Substituting X for K in

P

inequality (38) and then making the appropriate substitutions

in equation (37)» one finds that

< p L-bA/D'+bViD 1- 1-~2
p

<p i-bA/o+bV^

N

Z.
N

P*^
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Simplification shows that

< s < p a' -l-bA/D N

2p^-N

(39)

Note that bA/D - V^ -1 < a and make the appropriate substitu-

tion in (39)* O^e then sees that

< s < p
-1

-H bA/o

2p^-N
< P

-1
A -fa N

L2p^-N.

or that

< s < p A'V a

2p^-N
J J

(i^-O)

Inequality (^O) shows that s < p will hold, if it is

true that A"-'-^ a < 1. Algebraic manipulation of

L2P -NjJ

this last inequality shows that

2p^-N-|-A(aN) < A(2p^-N),

2p (1-A) < N(l-A-Aa) .

Since (1-A) < 0,

2p > N r l-A-Aal



Thus

l^9

p2>l
1-A _ Aa
1-A 1-A

2
P > 1 + Aa

A-1
N
1

Noting that B--i-. ,

A-1

p^ >(1+Ba)|

p>AyM_ti . N . (j+1)

since p,q was any solution of equation (32) such that

p > 0, it is immediately apparent that if s < /vyMJli . N

does not hold, the steps in the above consideration can be

repeated using s,t instead of p,q, thus getting a solution

with the X value less than So Since all of the values

obtained in this fashion are integral and positive, a finite

number of repitions of the above process establishes inequality

(3i^)o This completes the proof for N > 0.

In the case where N < 0, one makes the same initial

choices of values involved as in the proof of the case where

N >0 down to the point where it was found that srpa-bjqJD.

Algebraic manipulation shows that
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-|q| Vd
ql Vd

= |q|VD i-bA/^a-bV D -- a -1-h
a/d"

= |q|A/D i-bA^D -l-a

_|q|//D L-bA/D + a
q'^D-t-N _^

2
q D

- <l Vd a-bA/o" -- a

q^D

= q Vd^ i-bVo -t 1-1- -N

Noting here that < —^ < 1, one can see, as In the proof of

q^D

the case wnere N > 0, that

3 < q a/d^ a-bA/D -J

- N

2- -N J
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N

s < lq|A/D A'-'-.i-a r q^D

-2+ K

< |q|VD a" + a N

2q^D -HN

< IqlA/D" a""''^ a

2p^-N

If a < p Is to be valid, |q|V^ A""^-(- a

L2p2-N.

< p must

also hold true. Since N < 0, the quantity P must be
|q|A/D

less than one. Thus A"^4.a
.2p2-N.

< 1 must be true If p

is to be greater than s. Algebraic manipulation of this last

inequality shows that

(2p^-N4-AaN) < A{2p^-N)

2p^(l-A) < N(l-A-Aa) .

Since (1-A) < ,
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p2>l
1-A-Aa
1-A

p2 > hi^] i

p >v^
Ba + l

N .

As in the proof for N > 0, the capacity for repititlon of

this process coupled with the fact that only positive integral

solutions are obtained insures the establlsi:aiient of inequality

(34.) after a finite number of repititions. This completes the

proof of the theorem.

Theorem 10 has reduced the question of the solvability

2 2
of the equation x -Dy = N to a finite consideration. After

2 2
determining the minimal positive solution of x -Dy :z 1, one

need only consider the nxombers of the form (^ -N) ^qj, g in

the interval established in Theorem 10 to see if any of these

numbers are perfect squares. If there are two or more accept-

able values of s in the interval, it is easily determined

whether the solutions are in the same class.

As an example, if D-2, the minimal positive solution of

2 2
X -2y z: 1 is 3,2. The condition of Theorem 10 is satisfied

if < s < iVN . Since N=s^-2t^< s^, one needs only to
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investigate the integers between Vn and ^VN . Obviously,

this greatly diminishes the task of answering the question

2 2
of the solvability of the equation x -2y = N.
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The purpose of this paper Is to investigate the conditions

under which Pell's equation is solvable and, if it is solvable,

to define a general solution form. Applications of solutions

will be given without detail.

Pell's equation is a second degree Diophantine equation

of the form x^-Dy - N, with the restriction that D and N be

integers and that D not be a square. This equation form is

so named as a result of an historical error rather than as a
.

result of Pell's contribution to its solution.

The paper is divided into three sections. In the first

section the specific case where
|

N
|
= 1 is dealt with. The

situations where N = 1 and where N = -1 are considered

separately within this section. In the second section the

case where
I
N I z: if is treated, again with the situations

N = 1]. and N = -I4. being considered separately. Finally, in

the third section the case |n| > in general is considered, ,

without benefit of either of the previous restrictions, but

nevertheless encompassing both of those cases as sub-cases

of the overall situation.


