
ARTICLE • OPEN ACCESS

On quantifying the topological charge in micromagnetics using a lattice-
based approach
To cite this article: Joo-Von Kim and Jeroen Mulkers 2020 IOPSciNotes 1 025211

 

View the article online for updates and enhancements.

This content was downloaded from IP address 157.193.2.180 on 01/09/2020 at 14:53

https://doi.org/10.1088/2633-1357/abad0c


IOP SciNotes 1 (2020) 025211 https://doi.org/10.1088/2633-1357/abad0c

ARTICLE

On quantifying the topological charge in micromagnetics using a
lattice-based approach

Joo-VonKim1 and JeroenMulkers2

1 Centre deNanosciences et deNanotechnologies, CNRS,Université Paris-Saclay, 91120 Palaiseau, France
2 Department of Solid State Sciences, GhentUniversity, 9000Ghent, Belgium

E-mail: joo-von.kim@c2n.upsaclay.fr

Keywords:micromagnetics, skyrmion charge, skyrmions

Abstract
An implementation of a lattice-based approach for computing the topological skyrmion charge is
provided for the open sourcemicromagnetics codeMUMAX3. Its accuracy with respect to an existing
method based onfinite difference derivatives is compared for three different test cases. The lattice-
based approach is found to bemore robust for finite-temperature dynamics and for nucleation and
annihilation processes in extended systems.

1. Introduction

The topological charge or skyrmion number associatedwith anO(3)field, =m r 1( )  , is given by
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This quantity is used to characterize the topology of spin textures such as vortices and skyrmions in two-
dimensional systems (see, e.g., [1]), wherem represents the orientation of themagneticmoments.Whenm(r) is
projected onto the unit sphere,Qmeasures the number of times themomentswrap around the surface of this
sphere. For vortices andmerons,Q=±1/2, while for skyrmions,Q=±1.Higher-order half- and full-integer
charges are also possible. In numericalmicromagnetism, a common approach involves discretisingm(r, t) using
themethod offinite differences [2–4]. The underlying assumption is that cell-to-cell variations inm are
sufficiently small such that the exchange energy, approximated to lowest order as m 2( ) , remainsmeaningful.

Issues can arise under certain conditions, such as in the nucleation and annihilation of vortices and
skyrmions, or in the stochastic dynamics with random fields, where large spatial variations inm can occurwhich
reduce the accuracy of the finite-difference approximations of equation (1) and result in nonphysical values of
Q. Consider an isolated skyrmion. Figure 1(a) shows the equilibriumprofile computedwith theMUMAX3 code
[4] and the parameters in [5]. The correspondingmap ofm onto the unit sphere is given infigure 1(b), where
dots represent the orientations ofm and the lines indicate bonds between nearest-neighbour finite difference
cells [6, 7]. The entirety of the sphere is covered by thismesh, which remains intact everywhere and reflects the
fact that the spin texture infigure 1(a) possesses a nontrivial topology. Equation (1) givesQ=−0.99978290 for
this configuration, which is acceptably close to the theoretical value ofQ=−1. Consider now the effect of
disorder, e.g., due to thermalfluctuations, where eachmoment is deviated away randomly from its equilibrium
orientation infigure 1(a), as shown infigure 1(c). The correspondingmap onto the unit sphere for this
disordered case is presented infigure 1(d).While themesh appears distorted, it retains the same topology as the
case infigure 1(b) and therefore possess an identical charge.However equation (1) givesQ=−0.97115153 in
this case, which reflects a loss in accuracy of the finite difference derivatives.

In this note, we discuss a lattice-based approach for computingQ that does not require rely on spatial
derivatives.We discuss an implementation of this scheme forfinite differencemicromagnetics and provide three
examples against which this implementation is tested.
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2. Lattice-based implementation forfinite difference schemes

We follow the approach of Berg and Lüscher [8], which has been employed in atomistic spin dynamics and
Monte Carlo simulations [9, 10]. Consider the fourmoments infigure 2(a), each of which represent the average
magnetization orientation in afinite difference cell.We treat thesemoments as lattice spins and set aside all
aspects related to the interactions between them. Figure 2(a) represents one unit cell of this lattice. The
topological charge is given by the sumover the ensemble of elementary signed triangles qijk on the unit sphere,

Figure 1. (a)Configuration of amagnetic skyrmion at zero temperature, where the colour code indicates the value ofmz. (b)Projection
ofm(r) in (a) onto the unit sphere. The view is from the-z axis toward+z. (c)Example of disorderedm occurring atfinite
temperatures. (d)Projection ofm(r) in (c) onto the unit sphere.

Figure 2. Lattice scheme for computing the topological charge. (a)Two signed triangles, q124 and q234,make up the unit cell.
(b)Alternative definition of the signed triangles. (c) Scheme for the local charge density at site (i, j) by averaging over the two unit cells
spanned by the signed triangles constructedwith the nearest neighbours. (d) Scheme for an arbitrary finite-size geometry, where
numbers indicate weights and crosses indicate vacant sites.
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which is invariant under a cyclic permutation of the indices ijk. Figure 2(a) shows two of such signed triangles
thatmake up the unit cell, q124 (grey) and q234 (white). Figure 2(b) represents another definition that is equally
valid. á ñijk in equation (2) indicates that the summation is restricted to unique triangles as shown infigures 2(a)
or 2(b).

Figure 2(c) illustrates a variation of this scheme that allows a local charge density analogous to equation (1) to
be defined at a site i j,( ), which is commensurate with the coordinates of the finite difference cells inwhich mi j, is
defined. Themethod involves averaging over the two unit cells comprising the four triangles spanned by (i, j)
with its nearest-neighbour spins, (i+1, j), (i, j+1), (i−1, j), and (i, j−1). This approach uses both of the
conventions infigures 2(a) and (b), and takes the average of the two, thereby assigning aweight of 1/2 to each
triangle qijk. Forfinite-sized systems, the same averaging procedure cannot be applied at curved boundary edges
because not all signed triangles are present, i.e., only one of the definitions, figure 2(a) orfigure 2(b), produces
the necessary orientation to cover the three spins that comprise the boundary, e.g., the blue triangles in the top
left and bottom right offigure 2(d). In such cases, we assign aweight of 1 to the isolated signed triangle.

We provide an implementation of thismethod forMUMAX3 through the extension
ext_topologicalchargelatticewhich is publicly available inMUMAX3.10 [11]. This extension
provides a local charge density at site (i, j) in units ofm−2, analogous to the quantity provided by the finite-
difference implementation of equation (1) through the extensionext_topologicalcharge, which is
obtained by dividing the qijk by the surface area of the unit cell.

3. Simulation exampleswith the lattice-based approach

3.1. Isolated skyrmion atfinite temperatures with periodic boundary conditions
Consider an isolated ferromagnetic skyrmion in a 200×200×0.6 nmfilm, discretisedwith 256×256×
1finite difference cells, with periodic boundary conditions in the filmplane.We use an exchange constant of
A=16 pJ m−1, a saturationmagnetisation ofMs=1.1 MAm−1, a perpendicularmagnetic anisotropy
constant ofKu=0.54 MJ m−3, an interfacial Dzyaloshinskii-Moriya interaction (DMI) constant of
D=2.7 mJ m−2, and aGilbert damping ofα=0.3. These parametersmodel a threemonolayer-thick Cofilm
with aCurie temperature of 550K [12]. Dipolar interactions are neglected for simplicity. The evolution ofQ(t)
over 100ns is presented infigure 3 for four different temperatures, where an adaptive time-step integration
method is used to solve the stochastic Landau–Lifshitz equation [13].Q is computed at 5ps intervals using finite
difference derivatives (equation (1)) as implemented by the existingext_topologicalcharge extension in
MUMAX3, andwith the lattice-based implementation inext_topologicalchargelattice. Large
fluctuations are seen in theQ(t) computedwithfinite difference derivatives, whose distribution spreads as the
temperature increases as shown by the histograms infigure 3.Moreover the time-averagedQ obtained, which
coincides with the peaks in the distribution function P(Q), does not coincide with the expected value of−1.On
the other hand the lattice-based approach gives a near-constant value ofQ over the range of temperatures and
times simulated, where fluctuations (not visible) aremainly related to the limits of the single-precision floating-
point arithmetic (e.g.,Q=−1.0000001,−1.0000004,−1.0000008,−1.0000002, and−0.9999996 over 20-ns
intervals atT=400 K). Deviations fromQ=−1 can be detected at 400Kwith the lattice-based approach,
where transient−1/2 and−1 states are also seen infigure 3. These represent thermally-driven nucleation and
annihilation ofmeron and skyrmion states, respectively.

3.2. Soliton pair generation in a ferromagnetic track
We turn our attention to nucleation of skyrmion-antiskyrmion pairs due to spin-transfer torques [14, 15]. The
geometry comprises a 1000×125×0.6 nmfilmwith the samemagnetic parameters as in section 3.1, except
forD=0.1 mJ m−2 andα=0.05. A nucleation zone is defined by a 25-nmdiameter circular region of the
track, inwhich the uniaxial anisotropy is oriented along y insteadwithKu=0.5 MJ m−3. A conventional
currentflows along-x with a density of 25 TAm−2 and a spin polarisation ofP=1, with nonadiabatic terms
being neglected. The spin-transfer torques, combinedwith the nonuniform effective fields seen at the nucleation
zone, result in skyrmion-antiskyrmion pairs being shed from this site, which then undergoKelvinmotion and
propagate along the x direction before separating and annihilating.
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Figure 4 presentsQ(t) and snapshots of themicromagnetic state. Four different cell sizes are considered to
test the relative accuracy of equation (1)with respect to equations (2) and (3). For the smallest (figure 4(a)), there
is good agreement between the twomethodswhere only a handful of points with nonintegerQ are obtainedwith
equation (1), which occur at the transitions involving the nucleation and annihilation of (anti)skyrmions. As the
cell size is increased (figures 4(b)–(d)), a greater number of nonintegerQ is obtainedwith equation (1), with
smooth variations observed infigures 4(c) and 4(d).Meanwhile, the lattice-based approach provides clear
plateaus inQ close to integer values for all cases, which suggests that the smooth variations in nonintegerQ are
related to the loss in accuracy of the finite difference derivatives. The nucleation events differ between the four
cases because the circular nucleation zone is discretised differently. Figure 4(e) shows snapshots of the
micromagnetic state at different instances where nucleation, Kelvinmotion of skyrmion-antiskyrmion pairs,
and (anti)skyrmion annihilation can be seen.

3.3. Isolated skyrmion in confined structures atfinite temperatures
In systemswithDMI, boundary edges result in a tilt in the backgroundmagnetization away fromthe z-axis, even in a
nominally uniformly-magnetized state, as a result of chiral boundary conditions [16, 17]. The tilt orientation is
determinedby the signofD and the resultingQ can take onnoninteger values.Weconsider adisc, 200 nmindiameter
and0.6 nmin thickness,which is discretisedwith256×256×1finite difference cells (all othermagnetic parameters
are identical to those in section3.1). Adiscwith an isolated skyrmionatT=0K is found togiveQof−0.9304853
usingext_topologicalcharge and−0.9468352usingext_topologicalchargelattice.Deviations
fromQ=−1 represent the contribution fromthe edgemagnetization tilts.

Q(t) for this disc is shown infigure 5 for four different temperatures. In contrast tofigure 3, both the
derivative- and lattice-basedmethods give fluctuations inQ, albeit to a lesser extent for the latter. Based on the
results above, the variations inQ seenwith the lattice-basedmethod infigure 5 can be attributed to the thermal
fluctuations of the edgemagnetization states. Boundary edges also facilitate annihilation of the isolated

Figure 3.Comparison of Q t( ) computedwith equation (1) (‘derivative’) andwith equations (2) and (3) (‘lattice’) at different
temperatures: (a) 100K, (b) 200K, (c) 300K, and (d) 400K. The right inset shows the histogramof the 2×104 points forQ obtained
with equation (1).
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skyrmion, which can be seen atT=300 and 400K (figures 5(e)–(h), respectively), as evidenced by a sharp
transition in the time-averaged curves towardQ=0.Minor oscillations in these time-averaged curves also
appear, which result frompartially-reversed states at the boundaries that occur during the annihilation process.
This example shows that deviations fromnoninteger (and non half-integer) values ofQ can be expected in
confined structures when nucleation and annihilation of topological charges take place, in the presence of
thermalfluctuations with chiral boundary conditions, or both.

4. Conclusion

Spurious variations in the topological charge due to inaccuracies infinite-difference derivatives can bemitigated
by using a lattice-based approach, for whichwe provide an implementation for theMUMAX3micromagnetics
code.While the results do not necessarily call into question the validity of publishedwork (since the topological

Figure 4.Generation of skyrmion-antiskyrmion pairs due to spin-transfer torques.Q(t) in a 1000×125×0.6 nm track, with
different finite difference discretisation in thefilm plane: (a) 1024×128, (b) 768×96, (c) 512×64, and (d) 384×48 cells. All
systems are 1 cell thick. (e) Snapshots of themicromagnetic state at four instances for the discretisation in (a). The vertical dashed lines
in (a) correspond to the snapshots in (e). J indicates the conventional current, v the direction of Kelvinmotion of the nucleated pairs,
and the circle indicates the nucleation zone.
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charge is often used as a proxy formagnetization gradients), they do highlight the carewithwhich noninteger
values ofQ(t) should be interpreted, particularly when processes such as nucleation, annihilation, and thermal
fluctuations are at play.
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temperatures: (a), (b) 100K, (c), (d) 200K, (e), (f) 300K, and (g), (h) 400K. The solid black line represents amoving time average
computedwith a 1-nswindow.
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